Science.gov

Sample records for bipolar junction transistor

  1. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  2. Magnetoamplification in a bipolar magnetic junction transistor.

    PubMed

    Rangaraju, N; Peters, J A; Wessels, B W

    2010-09-10

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  3. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  4. Polyphosphonium-based ion bipolar junction transistors.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  5. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect

    Mimila-Arroyo, J.

    2013-11-04

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450 K.

  6. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  7. Toward complementary ionic circuits: the npn ion bipolar junction transistor.

    PubMed

    Tybrandt, Klas; Gabrielsson, Erik O; Berggren, Magnus

    2011-07-01

    Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications. PMID:21598973

  8. Single-event burnout of power bipolar junction transistors

    SciTech Connect

    Titus, J.L. ); Johnson, G.H.; Schrimpf, R.D.; Galloway, K.F. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    Experimental evidence of single-event burnout of power bipolar junctions transistors (BJTs) is reported for the first time. Several commercial power BJTs were characterized in a simulated cosmic ray environment using mono-energetic ions at the tandem Van de Graaff accelerator facility at Brookhaven National Laboratory. Most of the device types exposed to this simulated environment exhibited burnout behavior. In this paper the experimental technique, data, and results are presented, while a qualitative model is used to help explain those results and trends observed in this experiment.

  9. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    SciTech Connect

    Kennedy, E.J. Oak Ridge National Lab., TN ); Alley, G.T.; Britton, C.L. Jr. ); Skubic, P.L. ); Gray, B.; Wu, A. )

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents {le}1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier.

  10. Emitter space charge layer transit time in bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Rustagi, S. C.; Chattopadhyaya, S. K.

    1981-04-01

    The charge defined emitter space charge layer transit times of double diffused transistors have been calculated using a regional approach, and compared with the corresponding base transit times. The results obtained for emitter space-charge layer transit times have been discussed with reference to the capacitance analysis of Morgan and Smit (1960) for graded p-n junctions.

  11. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  12. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    NASA Astrophysics Data System (ADS)

    Oo, Myo Min; Rashid, N. K. A. Md; Karim, J. Abdul; Zin, M. R. Mohamed; Hasbullah, N. F.

    2013-12-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region.

  13. Using Animation to Improve the Students' Academic Achievement on Bipolar Junction Transistor

    ERIC Educational Resources Information Center

    Zoabi, W.; Sabag, N.; Gero, A.

    2012-01-01

    Teaching abstract subjects to students studying towards a degree in electronics practical engineering (a degree between a technician and an engineer) requires didactic tools that enable understanding of issues without using advanced mathematics and physics. One basic issue is the BJT (Bipolar Junction Transistor) that requires preliminary…

  14. Junction-to-Case Thermal Resistance of a Silicon Carbide Bipolar Junction Transistor Measured

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Junction temperature of a prototype SiC-based bipolar junction transistor (BJT) was estimated by using the base-emitter voltage (V(sub BE)) characteristic for thermometry. The V(sub BE) was measured as a function of the base current (I(sub B)) at selected temperatures (T), all at a fixed collector current (I(sub C)) and under very low duty cycle pulse conditions. Under such conditions, the average temperature of the chip was taken to be the same as that of the temperature-controlled case. At increased duty cycle such as to substantially heat the chip, but same I(sub C) pulse height, the chip temperature was identified by matching the V(sub BE) to the thermometry curves. From the measured average power, the chip-to-case thermal resistance could be estimated, giving a reasonable value. A tentative explanation for an observed bunching with increasing temperature of the calibration curves may relate to an increasing dopant atom ionization. A first-cut analysis, however, does not support this.

  15. Bipolar Junction Transistors in Two-Dimensional WSe2 with Large Current and Photocurrent Gains.

    PubMed

    Agnihotri, Pratik; Dhakras, Prathamesh; Lee, Ji Ung

    2016-07-13

    In the development of semiconductor devices, the bipolar junction transistor (BJT) features prominently as being the first solid state transistor that helped to usher in the digital revolution. For any new semiconductor, therefore, the fabrication and characterization of the BJT are important for both technological importance and historical significance. Here, we demonstrate a BJT device in exfoliated TMD semiconductor WSe2. We use buried gates to electrostatically create doped regions with back-to-back p-n junctions. We demonstrate two central characteristics of a bipolar device: current gain when operated as a BJT and a photocurrent gain when operated as a phototransistor. We demonstrate a current gain of 1000 and photocurrent gain of 40 and describe features that enhance these properties due to the doping technique that we employ. PMID:27336742

  16. Bias dependence of synergistic radiation effects induced by electrons and protons on silicon bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi

    2015-06-01

    Bias dependence on synergistic radiation effects caused by 110 keV electrons and 170 keV protons on the current gain of 3DG130 NPN bipolar junction transistors (BJTs) is studied in this paper. Experimental results indicate that the influence induced by 170 keV protons is always enhancement effect during the sequential irradiation. However, the influence induced by 110 keV electrons on the BJT under various bias cases is different during the sequential irradiation. The transition fluence of 110 keV electrons is dependent on the bias case on the emitter-base junction of BJT.

  17. Investigation of deep level defects in copper irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kumar, Ravi; Ravindra, M.; Damle, R.

    2008-08-01

    Commercial bipolar junction transistor (2N 2219A, npn) irradiated with 150 MeV Cu11+-ions with fluence of the order 1012 ions cm-2, is studied for radiation induced gain degradation and deep level defects. I-V measurements are made to study the gain degradation as a function of ion fluence. The properties such as activation energy, trap concentration and capture cross-section of deep levels are studied by deep level transient spectroscopy (DLTS). Minority carrier trap levels with energies ranging from EC - 0.164 eV to EC - 0.695 eV are observed in the base-collector junction of the transistor. Majority carrier trap levels are also observed with energies ranging from EV + 0.203 eV to EV + 0.526 eV. The irradiated transistor is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 350 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for transistor gain degradation.

  18. Large-scale transient sensitivity analysis of a radiation damaged bipolar junction transistor.

    SciTech Connect

    Hoekstra, Robert John; Gay, David M.; Bartlett, Roscoe Ainsworth; Phipps, Eric Todd

    2007-11-01

    Automatic differentiation (AD) is useful in transient sensitivity analysis of a computational simulation of a bipolar junction transistor subject to radiation damage. We used forward-mode AD, implemented in a new Trilinos package called Sacado, to compute analytic derivatives for implicit time integration and forward sensitivity analysis. Sacado addresses element-based simulation codes written in C++ and works well with forward sensitivity analysis as implemented in the Trilinos time-integration package Rythmos. The forward sensitivity calculation is significantly more efficient and robust than finite differencing.

  19. Urea biosensor based on an extended-base bipolar junction transistor.

    PubMed

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described. PMID:24211878

  20. Urea biosensor based on an extended-base bipolar junction transistor.

    PubMed

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  1. Radiation effects on bipolar junction transistors and integrated circuits produced by different energy Br ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Liu, Chaoming; Zhao, Zhiming; Lan, Mujie; Yang, Dezhuang; He, Shiyu

    2009-12-01

    The radiation responses of the NPN bipolar junction transistors (BJTs) and the TTL bipolar integrated circuits (ICs) have been examined using 20, 40 and 60 MeV Br ions. Key electric parameter was measured and compared after each energy irradiation. Experimental results demonstrate that the degradation in electric parameters caused by the Br ions shows a common feature for the NPN BJTs and TTL ICs, in which the degradation is strengthened with decreasing the Br ions energy. The ionizing dose ( D i) and displacement dose ( D d) as a function of the chip depth in the bipolar devices were calculated using the SRIM code, in order to analyze the radiation effects on the NPN BJTs and the Bipolar ICs. From the experiment and calculation results, it could be deduced that the Br ions mainly cause displacement damage to both the NPN BJTs and the TTL ICs, and the higher the ratio of D d/( D d+D i), the larger the degradation in electric parameters at a given total dose.

  2. Implementation of total dose effects in the bipolar junction transistor Gummel-Poon model

    SciTech Connect

    Montagner, X.; Fouillat, P.; Briand, R.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1997-12-01

    The effects of total dose on the SPICE model of bipolar junction transistors are investigated. The limitations of the standard Gummel-Poon model for simulating the radiation-induced excess base current are analyzed, and a new model based on an empirical approach is proposed. Four new SPICE rad-parameters are presented, and investigated for different dose rates. The relevant parameters are extracted using a new algorithmic procedure, combining a genetic approach and the standard optimization technique which minimizes the RMS error between measured and simulated excess base current. It is shown that the excess base current is accurately described by the same formula whatever the device type is. An empirical fitting of the rad-parameters as a function of total dose is proposed to use in hardening electronic circuits for space-like environments.

  3. Radiation effects on bipolar junction transistors induced by 25 MeV carbon ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Geng, Hongbin; Zhao, Zhiming; Yang, Dezhuang; He, Shiyu

    2010-12-01

    The characteristic degradation in silicon NPN bipolar junction transistors (BJTs) of 3DG112 type is examined under the irradiation with 25 MeV carbon (C) ions and various bias conditions. Different electrical parameters were measured in-situ during the exposure under each bias condition. From the experimental data, larger variation of base current ( IB) is observed after irradiation at a given value of base-emitter voltage ( VBE), while the collector current is only slightly affected by irradiation at a given VBE. The gain degradation is mostly affected by the behavior of the base current. The change in the reciprocal of current gain (Δ(1/ β)) increases linearly with increasing the C ions fluence. The degradation of the NPN BJTs under various bias conditions during irradiation was studied. Compared to the case where the terminals are grounded, at a given fluence, the change in the reciprocal of current gain varies slightly less when the base-emitter junction is forward biased. On the other hand, there is no distinction for the change in the reciprocal of current gain between the case of reverse-biased base-emitter junction and that of all terminals grounded for the NPN BJTs at a given fluence.

  4. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  5. Incident particle range dependence of radiation damage in a power bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Ming; Li, Xing-Ji; Geng, Hong-Bin; Rui, Er-Ming; Guo, Li-Xin; Yang, Jian-Qun

    2012-10-01

    The characteristic degradations in silicon NPN bipolar junction transistors (BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon (C), 40-MeV silicon (Si), and 40-MeV chlorine (Cl) ions respectively. Different electrical parameters are measured in-situ during the exposure of heavy ions. The experimental data shows that the changes in the reciprocal of the gain variation (Δ(1/β)) of 3DD155 transistors irradiated respectively by 25-MeV C, 40-MeV Si, and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence. The Δ(1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence, a little smaller when the device is irradiated by 40-MeV Si ions, and smallest in the case of the 40-MeV Cl ions irradiation. The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.

  6. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Rui, Erming

    2014-01-01

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) remains invariable. The current gain varies slightly, when the annealing temperature (TA) is lower than 400 K, while varies rapidly at TA<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(-/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(-/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  7. Design and simulation of oxide and doping engineered lateral bipolar junction transistors for high power applications

    NASA Astrophysics Data System (ADS)

    Loan, Sajad A.; Bashir, Faisal; Akhoon, M. Saqib; Alamoud, Abdulrahman M.

    2016-01-01

    In this paper, we propose new structures of lateral bipolar junction transistor (LBJT) on silicon on insulator (SOI) with improved performance. The proposed devices are lateral bipolar transistors with multi doping zone collector drift region and a thick buried oxide under the collector region. Calibrated simulation studies have revealed that the proposed devices have higher breakdown voltage than the conventional device, that too at higher drift doping concentration. This has resulted in improved tradeoff between the on-resistance and the breakdown voltage of the proposed devices. It has been observed that the proposed device with two collector drift doping zones and a buried oxide thick step results in ∼190% increase in the breakdown voltage than the conventional device. The further increase in the number of collector drift doping zones from two to three has increased the breakdown voltage by 260% than the conventional one. On comparing the proposed devices with the buried oxide double step devices, it has been found that an increase of ∼15-19% in the breakdown voltage is observed in the proposed devices even at higher drift doping concentrations. The use of higher drift doping concentration reduces the on-resistance of the proposed device and thus improves the tradeoff between the breakdown voltage and the on-resistance of the proposed device in comparison to buried oxide double step devices. Further, the use of step doping in the collector drift region has resulted in the reduction of kink effect in the proposed device. Using the mixed mode simulations, the proposed devices have been tested at the circuit level, by designing and simulating inverting amplifiers employing the proposed devices. Both DC and AC analyses of the inverting amplifiers have shown that the proposed devices work well at the circuit level. It has been observed that there is a slight increase in ON delay in the proposed device; however, the OFF delay is more or less same as that of the

  8. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  9. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  10. Effect of bias condition on heavy ion radiation in bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Ming; Li, Xing-Ji; Geng, Hong-Bin; Yang, De-Zhuang; He, Shi-Yu

    2012-08-01

    The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (Cl) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voltage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.

  11. DLTS Studies of bias dependence of defects in silicon NPN bipolar junction transistor irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Geng, Hongbin; Rui, Erming; Yang, Jianqun; Xiao, Liyi

    2012-10-01

    The characteristic degradation in silicon NPN bipolar junction transistors (BJTs) of 3DG130 type is examined under the irradiation with 35 MeV silicon (Si) ions under forward, grounded and reverse bias conditions, respectively. Different electrical parameters were in-situ measured during the exposure under each bias condition. Using deep level transient spectroscopy (DLTS), deep level defects in the base-collector junction of 3DG130 transistors under various bias conditions are measured after irradiation. The activation energy, capture cross section and concentration of observed deep level defects are measured using DLTS technique. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions could affect the concentration of deep level defects, and the displacement damage induced by heavy ions.

  12. Analysis of generation and annihilation of deep level defects in a silicon-irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kulkarni, S. R.; Ravindra, M.; Damle, R.

    2007-08-01

    A commercial bipolar junction transistor (2 N 2219 A, npn), irradiated with 120 MeV Si9+ ions with a fluence of the order of 1012 ions cm-2, is studied for radiation-induced gain degradation and deep level defects. I-V measurements are made to study the gain degradation as a function of ion fluence. Properties such as activation energy, trap concentration and capture cross section of deep levels are studied by deep level transient spectroscopy (DLTS). Minority carrier trap energy levels with energies ranging from EC - 0.160 eV to EC - 0.581 eV are observed in the base-collector junction of the transistor. Majority carrier trap levels are also observed with energies ranging from EV + 0.182 eV to EV + 0.401 eV. The identification of the defect type is made on the basis of its finger prints such as activation energy, annealing temperature and capture cross section by comparing with those reported in the literature. New energy levels for the defects A-center, di-vacancy and Si-interstitial are also observed. The irradiated transistor is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 250 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for transistor gain degradation.

  13. Voltage regulator for battery power source. [using a bipolar transistor

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1979-01-01

    A bipolar transistor in series with the battery as the control element also in series with a zener diode and a resistor is used to maintain a predetermined voltage until the battery voltage decays to very nearly the predetermined voltage. A field effect transistor between the base of the bipolar transistor and a junction between the zener diode and resistor regulates base current of the bipolar transistor, thereby regulating the conductivity of the bipolar transistor for control of the output voltage.

  14. A Logarithmic Response Complementary Metal Oxide Semiconductor Image Sensor with Parasitic P-N-P Bipolar Junction Transistor

    NASA Astrophysics Data System (ADS)

    Lai, Cheng‑Hsiao; Lai, Liang‑Wei; Chiang, Wen‑Jen; King, Ya‑Chin

    2006-04-01

    Logarithmic-response complementary metal oxide semiconductor (CMOS) active pixel sensors provide a desirable attribute of wide dynamic range even with low supply voltages. In this paper, a log-mode pixel with employing parasitic P-N-P bipolar junction transistor (BJT) to amplify photo-current is investigated and optimized. A new log-mode cell with a calibration transistor is proposed to increase the output voltage swing as well as to reduce the fixed pattern noise. The measurement results demonstrate that, the output voltage swing of this new cell is enhanced by 4× and fixed pattern noise (FPN) of a pixel array can be reduced by 10× comparing to that of a conventional log-mode CMOS active pixel sensor.

  15. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  16. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor

    NASA Astrophysics Data System (ADS)

    Yuan, Heng; Zhang, Ji-Xing; Zhang, Chen; Zhang, Ning; Xu, Li-Xia; Ding, Ming; Patrick, J. Clarke

    2015-02-01

    A low gate voltage operated multi-emitter-dot gated lateral bipolar junction transistor (BJT) ion sensor is proposed. The proposed device is composed of an arrayed gated lateral BJT, which is driven in the metal-oxide-semiconductor field-effect transistor (MOSFET)-BJT hybrid operation mode. Further, it has multiple emitter dots linked to each other in parallel to improve ionic sensitivity. Using hydrogen ionic solutions as reference solutions, we conduct experiments in which we compare the sensitivity and threshold voltage of the multi-emitter-dot gated lateral BJT with that of the single-emitter-dot gated lateral BJT. The multi-emitter-dot gated lateral BJT not only shows increased sensitivity but, more importantly, the proposed device can be operated under very low gate voltage, whereas the conventional ion-sensitive field-effect transistors cannot. This special characteristic is significant for low power devices and for function devices in which the provision of a gate voltage is difficult.

  17. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    PubMed

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. PMID:21835604

  18. A novel 4H-SiC lateral bipolar junction transistor structure with high voltage and high current gain

    NASA Astrophysics Data System (ADS)

    Deng, Yong-Hui; Xie, Gang; Wang, Tao; Sheng, Kuang

    2013-09-01

    In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base field plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm-3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 μm and base doping as high as 8 × 1017 cm-3 contribute to a maximum current gain of only 128.

  19. Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.

  20. A new bipolar transistor - GAT

    NASA Astrophysics Data System (ADS)

    Kondo, H.; Yukimoto, Y.

    1980-02-01

    A new bipolar transistor named Gate Associated Transistor (GAT) was proposed and the operating mechanisms were verified. The structure of the GAT has a unique base region consisting of an FET merged into the base of a standard bipolar transistor. The operating mechanisms and characteristics of the GAT were investigated and compared with those of standard power transistors. The most outstanding feature of the GAT was a large area for safe operation.

  1. Resonant transmission in the base/collector junction of a bipolar quantum-well resonant-tunneling transistor

    NASA Astrophysics Data System (ADS)

    Seabaugh, A. C.; Kao, Y.-C.; Frensley, W. R.; Randall, J. N.; Reed, M. A.

    1991-12-01

    A new transistor effect is demonstrated in a 120-nm base, bipolar quantum-well, resonant-tunneling transistor (BiQuaRTT). In this BiQuaRTT, a strong, multiple negative differential resistance (NDR) characteristic is obtained at room temperature with high-current gain. The effect is shown to be the consequence of an asymmetric, quantum-well-base heterostructure whose shape is controlled by the base/collector bias. Changes in the quantum-well shape lead to large modulations of the transmission coefficient for quasi-thermalized minority electrons crossing the quantum-well base. In this letter, the transport characteristics of these transistors are described, including also temperature and magnetic field dependence.

  2. I-V and DLTS study of generation and annihilation of deep-level defects in an oxygen-ion irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kulkarni, S. R.; Ravindra, M.; Damle, R.

    A commercial bipolar junction transistor (2N 2219A, npn) irradiated with 84 MeV O6+-ions with fluence of the order of 1013 ions cm-2 is studied for radiation-induced gain degradation and deep-level defects or recombination centers. I-V measurements are made to study the gain degradation as a function of ion fluence. Properties such as activation energy, trap concentration and capture cross section of deep levels are studied by deep-level transient spectroscopy. Minority carrier trap energy levels with energies ranging from EC -0.17 eV to EC -0.55 eV are observed in the base-collector junction of the transistor. Majority carrier defect levels are also observed with energies ranging from EV +0.26 eV to EV +0.44 eV. The irradiated device is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 250 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for an increase in base current through Shockley-Read-Hall or multi-phonon recombination and consequent transistor gain degradation.

  3. The super junction bipolar transistor: a new silicon power device concept for ultra low loss switching applications at medium to high voltages

    NASA Astrophysics Data System (ADS)

    Bauer, Friedhelm D.

    2004-05-01

    A new silicon power device concept based on the super junction (SJ) principle for power electronics in a broad spectrum of consumer, industrial and other energy conversion applications is presented in this paper. This new concept can help to sustain the trend towards ultra low loss switching--the past, present and future dominant driving force in the development of silicon high power switches. The super junction bipolar transistor (SJBT) shares many similarities with the super junction MOSFET. It has a similar MOS control structure integrated on the cathode side on top of a base region, which is organized into a columnar structure of alternating p- and n-doped pillars. The anode consists of a p-doped emitter--the SJBT is thus a bipolar super junction power device with carrier modulation taking place in only some portion of the base. The super junction structure makes up for fundamentally different device characteristics compared to an IGBT: carrier modulation in the SJBT is made possible by elimination of the reverse bias between p- and n-doped pillars when large quantities of majority carriers are injected from the p-emitter into the p-type pillar. With the electrostatic potential being grounded at the cathode, de-biasing of the pillars as well as carrier modulation will vanish towards the cathode. The unique characteristic of the SJBT on-state is an electron-hole plasma originating at the anode, which will segregate and give place to unipolar current flow in both pillars (de-mixing of the plasma) in the base region close to the cathode. Compared to an IGBT, the SJBT offers the same or lower conduction losses at a very small fraction (25%) of the cost in terms of switching losses.

  4. Effects of base doping and carrier lifetime on differential current gain and temperature coefficient of 4H-SiC power bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Niu, X.; Fardi, H.

    2012-04-01

    4H-SiC NPN bipolar junction transistor (BJT) is studied systematically by performing two-dimensional numerical simulations. Several design issues are discussed. Depending on the doping concentration of the base and the carrier lifetimes, both positive and negative temperature coefficients in the common emitter current gain could exist in 4H-SiC NPN BJTs with aluminium-doped base. The temperature coefficients of the current gain at different base doping concentrations and different carrier lifetimes have been determined. A high base doping concentration can reduce the requirement for the carrier lifetime in order to obtain negative temperature coefficient in current gain. Device simulations are performed to evaluate the carrier lifetimes by fitting the measured output IC -VCE curves. An excellent fitting is obtained and the base electron lifetime and the emitter hole lifetime are extracted to be about 22 and 5.7 ns, respectively.

  5. TILBW Bipolar Power Switching Transistor

    NASA Astrophysics Data System (ADS)

    Silard, Andrei P.; Nani, Gabriel

    1989-03-01

    The work reports the development of TILBW (Two Interdigitation Levels with heavily-doped Base Wells) bipolar power switching transistors, which combine the main advantages of both TIL and GAT devices. The TILBW transistors exhibit the following many-fold advantages in comparison with identical, yet conventional devices of the same class (identical area and case) processed simultaneously: a reduction of the turn-on time by a factor of ˜ 20; a two-fold reduction of the fall time tf; an ˜ 18-percent increase of VCEO(SUS); an ˜ 23-percent increase of VCBO; an enhanced RBSOA.

  6. High power gain switched laser diodes using a novel compact picosecond switch based on a GaAs bipolar junction transistor structure for pumping

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha

    2006-04-01

    A number of up-to-date applications, including advanced optical radars with high single-shot resolution, precise 3 D imaging, laser tomography, time imaging spectroscopy, etc., require low-cost, compact, reliable sources enabling the generation of high-power (1-100 W) single optical pulses in the picosecond range. The well-known technique of using the gain-switching operation mode of laser diodes to generate single picosecond pulses in the mW range fails to generate high-power single picosecond pulses because of a lack of high-current switches operating in the picosecond range. We report here on the achieving of optical pulses of 45W / 70ps, or alternatively 5W / 40ps, with gain-switched commercial quantum well (QW) laser diodes having emitting areas of 250 × 200 μm and 75 × 2 μm, respectively. This was made possible by the use of a novel high-current avalanche switch based on a GaAs bipolar junction transistor (BJT) structure with a switching time (<200ps) comparable to the lasing delay. (The extremely fast transient in this switch is caused by the generation and spread of a comb of powerfully avalanching Gunn domains of ultra-high amplitude in the transistor structure.) A simulation code developed earlier but modified and carefully verified here allowed detailed comparison of the experimental and simulated laser responses and the transient spectrum.

  7. Noise modeling of microwave heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Escotte, Laurent; Roux, Jean-Phillippe; Plana, Robert; Graffeuil, Jacques; Gruhle, Andreas

    1995-05-01

    Analytical expressions of microwave heterojunction bipolar transistors minimum noise figure and noise parameter are reported in this paper. These expressions are derived from a noise model including nonideal junctions, emitter and base resistances and have been compared with measured data obtained on a Si/SiGe HBT. An agreement between theoretical and experimental data was observed up to 20 GHz for several bias conditions. The limits of the model or the range of validity of the proposed equations have been also examined with the help of an appropriate CAD software. The analysis of the influence of parasitic elements on noise parameters has shown a strong influence of the extrinsic base collector capacitance at microwave frequencies.

  8. Bipolar effects in unipolar junctionless transistors

    NASA Astrophysics Data System (ADS)

    Parihar, Mukta Singh; Ghosh, Dipankar; Armstrong, G. Alastair; Yu, Ran; Razavi, Pedram; Kranti, Abhinav

    2012-08-01

    In this work, we analyze hysteresis and bipolar effects in unipolar junctionless transistors. A change in subthreshold drain current by 5 orders of magnitude is demonstrated at a drain voltage of 2.25 V in silicon junctionless transistor. Contrary to the conventional theory, increasing gate oxide thickness results in (i) a reduction of subthreshold slope (S-slope) and (ii) an increase in drain current, due to bipolar effects. The high sensitivity to film thickness in junctionless devices will be most crucial factor in achieving steep transition from ON to OFF state.

  9. Bipolar-FET combinational power transistors for power conversion applications

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chin, S. A.

    1984-01-01

    Four bipolar-FET (field-effect transistor) combinational transistor configurations are compared from the application point of view. The configurations included are FET-Darlington (cascade), emitter-open switch (cascode), parallel configuration, and FET-gated bipolar transistors (FGT).

  10. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  11. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  12. An approach to decrease dimensions of field-effect transistors without p-n-junctions

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.; Bulaeva, E. A.

    2014-07-01

    It has been recently shown, that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation under condition of optimization of dopant and/or radiation defects leads to increasing sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions, which include into their system). In this situation, one can also obtain increase of homogeneity of dopant in doped area. In this paper, we consider manufacturing a field-effect heterotransistor without p-n-junction. Optimization of technological process with using inhomogeneity of heterostructure gives us possibility to manufacture transistors to be more compact.

  13. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  14. Perpendicular transport in superlattice bipolar transistors (SBT)

    NASA Astrophysics Data System (ADS)

    Sibille, A.; Palmier, J. F.; Minot, C.; Harmand, J. C.; Dubon-Chevallier, C.

    Diffusion-limited electron transport in superlattices is studied by gain measurements on heterojunction bipolar transistors with a {GaAs}/{GaAlAs} superlattice base. In the case of thin barriers, Bloch conduction is observed, while hopping between localized levels prevails for large barriers. A transition occurs between these two regimes, localization being achieved when the energy broadening induced by the electron-phonon coupling added to the disorder due to imperfect growth is of the order of the miniband width. This interpretation is supported by temperature dependence measurements of the perpendicular mobilities in relation with theoretical calculations of these mobilities.

  15. Hardening measures for bipolar transistors against microwave-induced damage

    NASA Astrophysics Data System (ADS)

    Chai, Chang-Chun; Ma, Zhen-Yang; Ren, Xing-Rong; Yang, Yin-Tang; Zhao, Ying-Bo; Yu, Xin-Hai

    2013-06-01

    In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.

  16. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  17. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  18. Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.

    2006-01-01

    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.

  19. Advanced insulated gate bipolar transistor gate drive

    DOEpatents

    Short, James Evans; West, Shawn Michael; Fabean, Robert J.

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  20. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  1. Observation of negative differential transconductance in tunneling emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    van Veenhuizen, Marc J.; Locatelli, Nicolas; Moodera, Jagadeesh; Chang, Joonyeon

    2009-08-01

    We report on measurement of negative differential transconductance (NDTC) of iron (Fe)/magnesium-oxide (MgO)/silicon tunneling emitter NPN bipolar transistors. Device simulations reveal that the NDTC is a consequence of an inversion layer at the tunneling-oxide/P-silicon interface for low base voltages. Electrons travel laterally through the inversion layer into the base and give rise to an increase in collector current. The NDTC results from the recombination of those electrons at the interface between emitter and base contact which is dependent on the base voltage. For larger base voltages, the inversion layer disappears marking the onset of normal bipolar transistor behavior.

  2. Heterojunction bipolar transistor technology for data acquisition and communication

    NASA Technical Reports Server (NTRS)

    Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.

    1992-01-01

    Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.

  3. Experiments with Charge Indicator Based on Bipolar Transistors

    ERIC Educational Resources Information Center

    Dvorak, Leos; Planinsic, Gorazd

    2012-01-01

    A simple charge indicator with bipolar transistors described recently enables us to perform a number of experiments suitable for high-school physics. Several such experiments are presented and discussed in this paper as well as some features of the indicator important for its use in schools, namely its sensitivity and robustness, i.e. the…

  4. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    ERIC Educational Resources Information Center

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  5. Early effect of SiGe heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Bo; Zhang, He-Ming; Hu, Hui-Yong; Qu, Jiang-Tao

    2012-06-01

    The standard Early voltage of the SGP model is generalized for SiGe NPN heterojunction bipolar transistors (HBTs). A new compact formulation of the Early voltage compatible with the SGP model is presented. The impact of the Ge profile on Early effect is shown and validated by experiments. The model can be applied to the SGP model for circuit simulation.

  6. Computer simulation of the scaled power bipolar SHF transistor structures

    NASA Astrophysics Data System (ADS)

    Nelayev, V. V.; Efremov, V. A.; Snitovsky, Yu. P.

    2007-04-01

    New advanced technology for creation of the npn power silicon bipolar SHF transistor structure is proposed. Preferences of the advanced technology in comparison with standard technology are demonstrated. Simulation of both technology flows was performed with emphasis on scaling of the discussed device structure.

  7. Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor.

    PubMed

    Vainshtein, Sergey; Kostamovaara, Juha; Yuferev, Valentin; Knap, Wojciech; Fatimy, Abdel; Diakonova, Nina

    2007-10-26

    Broadband pulsed THz emission with peak power in the sub-mW range has been observed experimentally during avalanche switching in a gallium arsenide bipolar junction transistor at room temperature, while significantly higher total generated power is predicted in simulations. The emission is attributed to very fast oscillations in the conductivity current across the switching channels, which appear as a result of temporal evolution of the field domains generated in highly dense electron-hole plasma. This plasma is formed in turn by powerful impact ionization in multiple field domains of ultrahigh amplitude.

  8. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  9. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  10. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  11. Doping To Reduce Base Resistances Of Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.

  12. Correlated noise in bipolar transistors: Model implementation issues

    NASA Astrophysics Data System (ADS)

    Huszka, Zoltan; Chakravorty, Anjan

    2015-12-01

    A new orthogonalization scheme is suggested for implementing correlated noise of bipolar transistors. The scheme provides a necessary condition on the non-quasi-static (NQS) models that can be used to obtain an implementation-suitable correlated noise model. One of the solutions presented here corresponds to a single node realization not reported so far. The gm -factor is introduced in the noise analysis explaining the deviations of a former noise model from device simulations. The model is extended to include the collector space-charge-region induced noise by retaining the simplicity of the realization and preserving the model parameter count.

  13. Current dependence of base-collector capacitance of bipolar transistors

    NASA Astrophysics Data System (ADS)

    Liu, William; Harris, James S.

    1992-08-01

    We present analytical expressions for the base-collector capacitance of bipolar transistors in three operating conditions as the collector current density is continuously increased until the collector is fully depleted. A simple model is also presented to calculate this capacitance after base pushout occurs. The critical current densities separating each operating condition are discussed. The capacitance as a function of current density is calculated for various base-collector biases, collector thicknesses and collector dopings. The calculated results of this simple base-collector capacitance model are in close agreement with SEDAN simulation results. In addition, these results are shown to agree with published experimental work.

  14. Auger recombination in heavily doped shallow-emitter silicon p-n-junction solar cells, diodes, and transistors

    NASA Technical Reports Server (NTRS)

    Shibib, M. A.; Lindholm, F. A.; Fossum, J. G.

    1979-01-01

    A rigorous analytic evaluation of an emitter model that includes Auger recombination but excludes bandgap narrowing is presented. It is shown that such a model cannot explain the experimentally observed values of the open-circuit voltage in p-n-junction silicon solar cells. Thus physical mechanisms in addition to Auger recombination are responsible for the experimentally observed values of the open-circuit voltage in silicon solar cells and the common-emitter current gain in bipolar transistors.

  15. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  16. Performance of electronic switching circuits based on bipolar power transistors at low temperature

    NASA Astrophysics Data System (ADS)

    El-Ghanam, S. M.; Abdel Basit, W.

    2011-03-01

    In this paper, the performance of the bipolar power transistor of the type MJE13007 was evaluated under very low temperature levels. The investigation was carried out to establish a baseline on functionality and to determine suitability of this device for use in space applications under cryogenic temperatures. The static and dynamic electrical characteristics of the proposed transistor were studied at low temperature levels ranging from room level (300 K) down to 100 K. From which, it is clear that, several electrical parameters were affected due to operation on such very low temperature range, e.g. the threshold voltage ( V γ) increasing from 0.62 up to 1.05 V; while the current gain h FE decreases significantly from 26 down to 0.54. Also, the capacitance-voltage relationships ( C- V) of the collector-base and emitter-base junctions were studied at cryogenic temperatures, where a pronounced decrease was observed in the capacitances value due to temperature decrease. For example, at F = 50 kHz; CCB and CBE decreased from 2.33 nF down to 0.07 nF and from 36.2 down to 12 nF, respectively due to decreasing of temperature level from 300 down to 100 K. Finally the study was extended to include the dynamic characteristics and switching properties of the tested high power transistor. The dependency of both the rise and fall times ( t r, t f) on the temperature shows great variations with temperature.

  17. Microwave damage susceptibility trend of a bipolar transistor as a function of frequency

    NASA Astrophysics Data System (ADS)

    Ma, Zhen-Yang; Chai, Chang-Chun; Ren, Xing-Rong; Yang, Yin-Tang; Chen, Bin; Song, Kun; Zhao, Ying-Bo

    2012-09-01

    We conduct a theoretical study of the damage susceptibility trend of a typical bipolar transistor induced by a high-power microwave (HPM) as a function of frequency. The dependences of the burnout time and the damage power on the signal frequency are obtained. Studies of the internal damage process and the mechanism of the device are carried out from the variation analysis of the distribution of the electric field, current density, and temperature. The investigation shows that the burnout time linearly depends on the signal frequency. The current density and the electric field at the damage position decrease with increasing frequency. Meanwhile, the temperature elevation occurs in the area between the p-n junction and the n-n+ interface due to the increase of the electric field. Adopting the data analysis software, the relationship between the damage power and frequency is obtained. Moreover, the thickness of the substrate has a significant effect on the burnout time.

  18. Bipolar transistor degradation under dynamic hot carrier stress

    NASA Astrophysics Data System (ADS)

    Horiuchi, Tadahiko; David Burnett, J.; Hu, Chenming

    1995-04-01

    Hot carrier induced bipolar transistor degradation under dynamic stress is studied. The model, ΔIB ∝ ( IR1.8t) 0.5, established from d.c. emitter-base reverse bias stress measurements is found to be still valid under pulse stress down to 20 ns pulse width, where ΔIB is drift of base current, IR is reverse emitter-base current under stress and t is stress time. Although partial degradation recovery is observed under d.c. emitter-base forward bias, ΔIB from alternating reverse-forward stress representative BiCMOS circuit operation agrees with the ΔIB model with no significant recovery effect. This is explained by a higher degradation rate after recovery of previous damage. An experimental basis of BiCMOS circuit reliability testing simulation is thus provided.

  19. Mathematical modeling of the characteristics of bipolar heterojunction transistors

    SciTech Connect

    Butakova, N.G.; Valiev, K.A.; Zubov, A.V.; Orlikovskii, A.A.

    1986-03-01

    The authors review the known methods of modeling bipolar heterojunction transistors (BHT) and illustrate that none of the available models is sufficiently universal. The authors develop a semi-empirical model which is valid for a wide number of heterojunctions, such as InSb-Ge, GaSb-Ge, CdS-Ge, GaAs-Ge, ZnSe-Ge, GaAs-Si, ZnSe-GaAs, etc., plus three-component compounds such as Als/bu z/Ga/sub 1-z/ As - GaAs. The assumptions underlying the model were confirmed experimentally in the cases when the heterojunction is formed by compounds of the group A/sub III/B/sub V/ with a common anion, such as CdTe-CdHgTe.

  20. Development of gallium nitride-based PNP heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Green, Daniel S.

    GaN-based electronics have progressed mightily in the last 15 years. The primary focus of this development has been the AlGaN/GaN heterostructure FET, with the commercialization of this device in progress. Bipolar transistors however offer a few key potential advantages over the FET device, including the primary advantage of normally off operation. Additionally, the pnp heterostructure bipolar transistor (HBT) in particular offers more attractive base performance relative to the npn HBT. The pnp HBT also serves as an excellent test vehicle for the several material parameters of p-Gan that remain poor defined. However, implementation of the pnp HBT has been limited by the difficulty contacting p-GaN collector material. This work was designed to demonstrate and understand the pnp HBT. The research served as both an engineering challenge as well as an investigation of physical parameters governing the transport in the device. In order to remedy the poor collector contact available with buried p-GaN, a transformation diode HBT structure was introduced that added an n-type subcollector the HBT structure. This allowed for good collector contact at the cost of introducing an offset voltage to the HBT performance due to the turn-on voltage of the transformation diode under normal operation. The first transformation diode HBT in GaN was successful demonstrated. In order to improve the transformation diode performance, successive design iterations were performed to isolate the performance limiting elements. Device designs were implemented to mitigate saturated hole velocity, as well as to decrease base transit time through aggressive base scaling and compositional grading. Physical simulations and modelling of device non-idealities were used to understand actual device performance. Hole lifetime and saturated hole velocity were identified as primary contributors to lower than expected performance device performance. Successive device iterations yielded HBT performance of

  1. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  2. Characterization, Modeling and Fabrication of Aluminum Gallium Arsenide/gallium Arsenide Heterojunction Bipolar Transistors.

    NASA Astrophysics Data System (ADS)

    Ozaydin, Melih

    1995-01-01

    Heterojunction bipolar transistors have found broad applications in recent years as a result of intense research. In order to explore and utilize HBTs for a better performance, the carrier transport phenomenon in HBTs needs to be investigated, and the device parameters optimized. Demand for higher speed and smaller dimensions also requires implementation of new fabrication techniques that will make possible the realization of smaller transistor dimensions. In this thesis we analyze physical characteristics, transport mechanisms, modeling, parameter extraction and electron-beam lithography fabrication techniques for self -aligned heterojunction bipolar transistors. We present a new multi-flux method to analyze the emitter-base heterojunction by self-consistent solution of Schrodinger and Poisson equations. The simulation results show transport characteristics of electrons which differ from those found with the commonly used WKB method. Simulation of electron transport in the base region based on a balance equations approach indicates that tunneling electrons give rise to unique transport characteristics in the base of HBTs. A domain-like density profile is found as a result of ballistic and diffusive transport in different parts of the base region. Bias dependent non-equilibrium behavior is found from the I-V measurements of HBTs, and non-equilibrium transport is shown to be responsible for reduction of the recombination rate. Collector-base space charge region is also investigated and utilization of multi-velocity overshoot is shown to reduce the total collector delay time by 10 percent and improve the breakdown voltage by 70 percent. A semi-two-dimensional model is developed to obtain microwave characteristics, as well as the parameter extraction of transistors. For the parameter extraction procedure, a least-squares technique is used. We also develop a self-aligned process using selective dry-etching for heterojunction transistors. Most of the lithography steps

  3. Composition induced design considerations for InP/Ga xIn 1- xAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2002-12-01

    Several design principles based on compositional grading and heavy doping of the base region of a heterojunction bipolar transistor (HBT) have been presented. Physical and technological advantages underlying composition induced design criteria of InP/Ga xIn 1- xAs HBTs have been discussed. A number of issues such as superlattice based grading in the base region, base resistance vs base region grading, the emitter-base junction design, tradeoffs between base region grading and the nonuniform doping of the base region, and the surface recombination at the external base region, have been articulated.

  4. Neutron effects on the electrical and switching characteristics of NPN bipolar power transistors

    NASA Technical Reports Server (NTRS)

    Frasca, Albert J.; Schwarze, Gene E.

    1988-01-01

    The use of nuclear reactors to generate electrical power for future space missions will require the electrical components used in the power conditioning, control, and transmission subsystem to operate in the associated radiation environments. An initial assessment of neutron irradiation on the electrical and switching characteristics of commercial high power NPN bipolar transistors was investigated. The results clearly show the detrimental effects caused by neutron irradiation on the electrical and switching characteristics of the NPN bipolar power transistor.

  5. Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab

    2003-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.

  6. Optimisation of trench isolated bipolar transistors on SOI substrates by 3D electro-thermal simulations

    NASA Astrophysics Data System (ADS)

    Nigrin, S.; Armstrong, G. A.; Kranti, A.

    2007-09-01

    This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area.

  7. A unified electrothermal hot-carrier transport model for silicon bipolar transistor simulations

    NASA Astrophysics Data System (ADS)

    Szeto, Simon; Reif, Rafael

    1989-04-01

    A transport model which consistently takes into account carrier and lattice heating is proposed for silicon bipolar transistor simulations. Unlike earlier nonisothermal and hot-carrier transport formulations, neither the carrier temperatures nor the device (lattice) temperature is required to be uniform. Their spatial dependence is determined from the corresponding energy balance equations. The two previous transport approaches are coupled by a new lattice heat generation model which accounts for mutual energy transfers among the carriers and the lattice through their temperature differences. By applying this model to the heat flow equation, hot-carrier induced lattice heating for a submicron npn structure is simulated. The effect of lattice heating on electron temperature distributions is discussed. Our simulation is also able to predict velocity overshoot and the Kirk effect. To study the problem of device heating, the effects on the lattice temperature due to thermal boundary characteristics and the proximity of heat sinks to the base-collector junction are investigated numerically. Device characteristics are also compared with those obtained from SEDAN.

  8. 300 Degree C GaN/AlGaN Heterojunction Bipolar Transistor

    SciTech Connect

    Abernathy, C.R.; Baca, A.G.; Cho, H.; Chow, P.P.; Han, J.; Hichman, R.A.; Jung, K.B.; Kopf, R.F.; La Roche, J.R.; Pearton, S.J.; Ren, F.; Shul, R.J.; Van Hove, J.M.; Wilson, R.G.

    1998-10-14

    A GaN/AIGaN heterojunction bipolar transistor has been fabricated using C12/Ar dry etching for mesa formation. As the hole concentration increases due to more efficient ionization of the Mg acceptors at elevated temperatures (> 250oC), the device shows improved gain. Future efforts which are briefly summarized. should focus on methods for reducing base resistance.

  9. Negative Differential Transconductance in Silicon Quantum Well MOSFET/Bipolar Hybrid Transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint; Lee, Mark; Edwards, Hal; Chatterjee, Tathagata; Mathur, Guru; Maggio, Ken; Univ of Texas, Dallas/Texas Instruments Collaboration

    2015-03-01

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect / bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (VG). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on VG that reduces drain-source current through the QW. These devices establish the feasibility of exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner. Supported by Semiconductor Research Council Task Number 1836.145.

  10. Epitaxially-Grown GaN Junction Field Effect Transistors

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Denbaars, S.P.; Lester, L.F.; Mishra, U.K.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-05-19

    Junction field effect transistors (JFET) are fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition (MOCVD). The DC and microwave characteristics of the device are presented. A junction breakdown voltage of 56 V is obtained corresponding to the theoretical limit of the breakdown field in GaN for the doping levels used. A maximum extrinsic transconductance (gm) of 48 mS/mm and a maximum source-drain current of 270 mA/mm are achieved on a 0.8 µ m gate JFET device at VGS= 1 V and VDS=15 V. The intrinsic transconductance, calculated from the measured gm and the source series resistance, is 81 mS/mm. The fT and fmax for these devices are 6 GHz and 12 GHz, respectively. These JFETs exhibit a significant current reduction after a high drain bias is applied, which is attributed to a partially depleted channel caused by trapped hot-electrons in the semi-insulating GaN buffer layer. A theoretical model describing the current collapse is described, and an estimate for the length of the trapped electron region is given.

  11. Transferred substrate heterojunction bipolar transistors for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Fung, A.; Samoska, L.; Siegel, P.; Rodwell, M.; Urteaga, M.; Paidi, V.

    2003-01-01

    We present ongoing work towards the development of submillimeter wave transistors with goals of realizing advanced high frequency amplifiers, voltage controlled oscillators, active multipliers, and traditional high-speed digital circuits.

  12. A model for ballistic transport across locally gated graphene bipolar junctions.

    PubMed

    Nguyen, Nhung T T; To, D Quang; Nguyen, V Lien

    2014-01-01

    An alternative model of Gaussian-type potential is suggested, which allows us to describe the transport properties of the locally gated graphene bipolar junctions in all possible charge density regimes, including a smooth transition between the regimes. Using this model we systematically study the transmission probability, the resistances, the current-voltage characteristics, and the shot noise for ballistic graphene bipolar junctions of different top gate lengths under largely varying gate voltages. Obtained results on the one hand show multifarious manifestations of the Klein tunneling and the interference effects, and on the other hand describe well typical experimental data on the junction resistances.

  13. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    SciTech Connect

    Thornton, R.L.; Mosby, W.J.; Chung, H.F.

    1988-12-26

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  14. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    Thornton, R. L.; Mosby, W. J.; Chung, H. F.

    1988-12-01

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  15. Ballistic bipolar junctions in chemically gated graphene ribbons

    PubMed Central

    Baringhaus, Jens; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich; Tegenkamp, Christoph

    2015-01-01

    The realization of ballistic graphene pn-junctions is an essential task in order to study Klein tunneling phenomena. Here we show that intercalation of Ge under the buffer layer of pre-structured SiC-samples succeeds to make truly nano-scaled pn-junctions. By means of local tunneling spectroscopy the junction width is found to be as narrow as 5 nm which is a hundred times smaller compared to electrically gated structures. The ballistic transmission across the junction is directly proven by systematic transport measurements with a 4-tip STM. Various npn- and pnp-junctions are studied with respect to the barrier length. The pn-junctions are shown to act as polarizer and analyzer with the second junction becoming transparent in case of a fully ballistic barrier. This can be attributed to the almost full suppression of electron transmission through the junction away from normal incidence. PMID:25898259

  16. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    PubMed

    Martí, A; Luque, A

    2015-01-01

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374

  17. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion

    PubMed Central

    Martí, A.; Luque, A.

    2015-01-01

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374

  18. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao; Wang, Zhikuan

    2016-09-01

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation.

  19. Residual phase noise modeling of amplifiers using silicon bipolar transistors.

    PubMed

    Theodoropoulos, Konstantinos; Everard, Jeremy

    2010-03-01

    In this paper, we describe the modeling of residual 1/f phase noise for Si bipolar amplifiers operating in the linear region. We propose that for Si bipolar amplifiers, the 1/f phase noise is largely caused by the base emitter recombination flicker noise. The up-conversion mechanism is described through linear approximation of the phase variation of the amplifier phase response by the variation of the device parameters (C(b)c, C(be), g(m), r(e)) caused by the recombination 1/f noise. The amplifier phase response describes the device over the whole frequency range of operation for which the influence of the poles and zeros is investigated. It is found that for a common emitter amplifier it is sufficient to only incorporate the effect of the device poles to describe the phase noise behavior over most of its operational frequency range. Simulations predict the measurements of others, including the flattening of the PM noise at frequencies beyond f(3dB), not predicted by previous models.

  20. Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow

    NASA Astrophysics Data System (ADS)

    Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.

    1989-10-01

    The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.

  1. Investigation and application of neutron damage to bipolar transistors in light water reactor dosimetry

    SciTech Connect

    Roknizadeh, M.

    1987-01-01

    A method of fast neutron metrology and a basis for prediction of changes in performance parameters of semiconductor devices in power plant radiation environments has been established using Cf-252 sources. Three general purpose NPN bipolar transistors (PN2222A, ECG-196, and ECG-184) were chosen as the neutron damage monitors and the change in inverse d.c. current gain before and after irradiation was chosen as the damage parameter for the measurement. The main findings of the investigation were as follows: the change in inverse d.c. current gain for PN2222A transistors was approximately a linear function of the neutron fluence up to 2.0E15 n(1MeV)/cm/sup 2/. The concept of 1-MeV equivalent neutron fluence which characterizes an incident energy-fluence spectrum in terms of the fluence of monoenergetic neutrons at 1 MeV, is in error for application to common transistors in a typical power plant environment. Finally, the normalized damage coefficient which is the ratio of damage to 1-MeV equivalent neutron fluence divided by the measured base transit time of individual transistors, for all three types of transistors is nearly the same with an average value of 1.27E - 7 +/- 15.0% cm/sup 2//m(1 MeV).Sec.

  2. Efficient far-infrared thermal bremsstrahlung radiation from a heterojunction bipolar transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2015-08-28

    We investigate the far-infrared thermal radiation properties of a heterojunction bipolar transistor. The device conveniently provides a high electric field for electrons to heat the lattice and the electron gas in a background with ions embedded. Because of very high effective temperature of the electron gas in the collector, the electron-ion bremsstrahlung makes efficient the thermal radiation in the far-infrared region. The transistor can yield a radiation power of 0.1 mW with the spectral region between 2 and 75 THz and a power conversion efficiency of 6 × 10{sup −4}. Such output contains a power of 20 μW in the low-frequency part (2–20 THz) of the spectrum.

  3. SEMICONDUCTOR DEVICES: A symbolically defined InP double heterojunction bipolar transistor large-signal model

    NASA Astrophysics Data System (ADS)

    Yuxiong, Cao; Zhi, Jin; Ji, Ge; Yongbo, Su; Xinyu, Liu

    2009-12-01

    A self-built accurate and flexible large-signal model based on an analysis of the characteristics of InP double heterojunction bipolar transistors (DHBTs) is implemented as a seven-port symbolically defined device (SDD) in Agilent ADS. The model accounts for most physical phenomena including the self-heating effect, Kirk effect, soft knee effect, base collector capacitance and collector transit time. The validity and the accuracy of the large-signal model are assessed by comparing the simulation with the measurement of DC, multi-bias small signal S parameters for InP DHBTs.

  4. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  5. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    SciTech Connect

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  6. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    SciTech Connect

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S.; Carr, S. M.

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  7. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    DOE PAGES

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less

  8. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    NASA Astrophysics Data System (ADS)

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carr, S. M.; Carroll, M. S.

    2015-05-01

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  9. Unipolar and bipolar operation of InAs/InSb nanowire heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Nilsson, Henrik A.; Caroff, Philippe; Lind, Erik; Pistol, Mats-Erik; Thelander, Claes; Wernersson, Lars-Erik

    2011-09-01

    We present temperature dependent electrical measurements on n-type InAs/InSb nanowire heterostructure field-effect transistors. The barrier height of the heterostructure junction is determined to be 220 meV, indicating a broken bandgap alignment. A clear asymmetry is observed when applying a bias to either the InAs or the InSb side of the junction. Impact ionization and band-to-band tunneling is more pronounced when the large voltage drop occurs in the narrow bandgap InSb segment. For small negative gate-voltages, the InSb segment can be tuned toward p-type conduction, which induces a strong band-to-band tunneling across the heterostructucture junction.

  10. Effect of doping and stoichiometric profile on transport in SiGe heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Halilov, S.

    2016-09-01

    Based on analytical consideration and numerical simulations, it is shown how the mutually adjusted doping and stoichiometric profile results in improved frequency response and current gain in Si1‑x Ge x -based heterojunction bipolar transistor. The closed-form expressions are derived for the dopant distribution within a certain mobility model which is parametrized in terms of the impurity concentration and stoichiometric grading on the same footing. With proper parametrization of the mobility, the method is suitable in both limits of high alloy scattering/low crystal ordering and low alloy scattering/highly ordered stoichiometrically graded structure. The work is corroborated by device simulations of a single-side HBT 30% stoichiometrically graded base, with detailed IV-curve, Gummel and AC analysis. It is shown that the distinct impurity distribution results in a reduced space-charge region, contributes to an effective electric field assisting the diffusion of the minority carriers and results in the saturation current density increased by 50%, the AC gain increased by 90%, the four-fold increase of the DC current gain, and improves the transition frequency from 274 to 358 GHz as compared to the case of the uniformly distributed acceptors. The obtained results may serve as a practical guide in design of highly-graded heterojunction bipolar transistors with efficient frequency response, high gain and enhanced power.

  11. Effect of doping and stoichiometric profile on transport in SiGe heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Halilov, S.

    2016-09-01

    Based on analytical consideration and numerical simulations, it is shown how the mutually adjusted doping and stoichiometric profile results in improved frequency response and current gain in Si1-x Ge x -based heterojunction bipolar transistor. The closed-form expressions are derived for the dopant distribution within a certain mobility model which is parametrized in terms of the impurity concentration and stoichiometric grading on the same footing. With proper parametrization of the mobility, the method is suitable in both limits of high alloy scattering/low crystal ordering and low alloy scattering/highly ordered stoichiometrically graded structure. The work is corroborated by device simulations of a single-side HBT 30% stoichiometrically graded base, with detailed IV-curve, Gummel and AC analysis. It is shown that the distinct impurity distribution results in a reduced space-charge region, contributes to an effective electric field assisting the diffusion of the minority carriers and results in the saturation current density increased by 50%, the AC gain increased by 90%, the four-fold increase of the DC current gain, and improves the transition frequency from 274 to 358 GHz as compared to the case of the uniformly distributed acceptors. The obtained results may serve as a practical guide in design of highly-graded heterojunction bipolar transistors with efficient frequency response, high gain and enhanced power.

  12. Fabrication and high temperature characteristics of ion-implanted GaAs bipolar transistors and ring-oscillators

    NASA Technical Reports Server (NTRS)

    Doerbeck, F. H.; Yuan, H. T.; Mclevige, W. V.

    1981-01-01

    Ion implantation techniques that permit the reproducible fabrication of bipolar GaAs integrated circuits are studied. A 15 stage ring oscillator and discrete transistor were characterized between 25 and 400 C. The current gain of the transistor was found to increase slightly with temperature. The diode leakage currents increase with an activation energy of approximately 1 eV and dominate the transistor leakage current 1 sub CEO above 200 C. Present devices fail catastrophically at about 400 C because of Au-metallization.

  13. Spin-valve transistor with a NP junction

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Lo, C. K.; Yao, Y. D.

    2006-09-01

    A 0.5 um-wide spin-valve transistor has been successfully made by a standard lift-off process using electron beam lithography. This spin-valve transistor consists (SVT) of a pseudo-spin-valve emitter, a metal base, and a p-n barrier collector. At 77 K, the collector current changed from 714 nA at magnetically parallel alignments of the emitter magnetic moments to 8 nA at magnetically anti-parallel alignments. The magnetocurrent ratio was 8600%. The corresponding transfer ratio was 2E-4. These results are useful for the research of the fabrication of the sub-micron size SVT.

  14. Spin-orbit effects in a graphene bipolar pn junction

    NASA Astrophysics Data System (ADS)

    Yamakage, A.; Imura, K.-I.; Cayssol, J.; Kuramoto, Y.

    2009-08-01

    A graphene pn junction is studied theoretically in the presence of both intrinsic and Rashba spin-orbit couplings. We show that a crossover from perfect reflection to perfect transmission is achieved at normal incidence by tuning the perpendicular electric field. By further studying angular-dependent transmission, we demonstrate that perfect reflection at normal incidence can be clearly distinguished from trivial band gap effects. We also investigate how spin-orbit effects modify the conductance and the Fano factor associated with a potential step in both nn and np cases.

  15. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint; Lee, Mark; Edwards, Hal; Mathur, Guru; Chatterjee, Tathagata; Maggio, Ken

    2014-11-01

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (VG). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on VG that reduces drain-source current through the QW. These devices establish the feasibility of exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.

  16. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    SciTech Connect

    Naquin, Clint; Lee, Mark; Edwards, Hal; Mathur, Guru; Chatterjee, Tathagata; Maggio, Ken

    2014-11-24

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility of exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.

  17. Characterization of InGaP/GaAs Heterojunction Bipolar Transistors with a Heavily Doped Base

    NASA Astrophysics Data System (ADS)

    Oka, Tohru; Ouchi, Kiyoshi; Mochizuki, Kazuhiro

    2001-09-01

    Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with a heavily doped base are examined at the base doping level NB ranging from 5× 1019 to 5× 1020 cm-3. At NB of less than 3× 1020 cm-3, the current gain is mainly determined by Auger recombination in the intrinsic base region and is inversely proportional to the square of NB. In contrast, the current gain at NB above 3× 1020 cm-3 is significantly decreased. We evaluated the effective barrier height of holes between the emitter and the base by measuring temperature dependence of current gain, and found that the effective hole barrier is reduced as NB increases. This result is explained by the large energy shift of the Fermi level inside the valence band due to heavy doping, causing the increase in the back injection of holes into the emitter, and thus reducing the current gain.

  18. Dead-space corrected GaInP/GaAs composite collector double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Poh, Z. S.; Yow, H. K.; Ong, D. S.; Houston, P. A.; Krysa, A. B.

    2007-04-01

    GaInP/GaAs/GaInP double heterojunction bipolar transistors incorporating dead-space corrected composite collectors were investigated experimentally. The optimized DHBT with a 10-nm lowly doped GaAs spacer and a 5-nm highly doped GaInP spacer has extended the operating range of the collector-emitter voltage, VCE, by maximizing the collector-emitter voltage at the onset of the multiplication, VCE ,onset, to 20 V, while minimizing the saturation voltage, VCE ,sat (<1 V), and maintaining the nominal breakdown voltage, BVCEO, of the GaInP collector at 25 V. The design incorporating an Al0.11Ga0.89As spacer rather than a GaInP spacer within the lowly doped GaAs-GaInP composite collector demonstrated similar breakdown behavior.

  19. Investigation of InGaP/GaAs double-delta-doped heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Wang, W.-C.; Cheng, S.-Y.; Chang, W.-L.; Pan, H.-J.; Shie, Y.-H.; Liu, W.-C.

    1998-06-01

    The double-delta-doped heterojunction bipolar transistor 0268-1242/13/6/015/img1 is successfully fabricated with improved current-voltage characteristics by employing the insertion of delta-doped sheets at emitter-base (E-B) and base-collector (B-C) heterojunction. Because of the use of delta-doped sheets, the potential spikes at E-B and B-C heterojunction are suppressed substantially. Thus a higher emitter injection efficiency (current gain) and a lower knee voltage are obtained. From experimental results, it is shown that the studied 0268-1242/13/6/015/img2 device is a good candidate for high-speed and high-power circuit applications.

  20. Analysis of long-term ionizing radiation effects in bipolar transistors

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.

    1978-01-01

    The ionizing radiation effects of electrons on bipolar transistors have been analyzed using the data base from the Voyager project. The data were subjected to statistical analysis, leading to a quantitative characterization of the product and to data on confidence limits which will be useful for circuit design purposes. These newly-developed methods may form the basis for a radiation hardness assurance system. In addition, an attempt was made to identify the causes of the large variations in the sensitivity observed on different product lines. This included a limited construction analysis and a determination of significant design and processes variables, as well as suggested remedies for improving the tolerance of the devices to radiation.

  1. SEMICONDUCTOR DEVICES: Carrier stored trench-gate bipolar transistor with p-floating layer

    NASA Astrophysics Data System (ADS)

    Rongyao, Ma; Zehong, Li; Xin, Hong; Bo, Zhang

    2010-02-01

    A carrier stored trench-gate bipolar transistor (CSTBT) with a p-floating layer (PF-CSTBT) is proposed. Due to the p-floating layer, the thick and highly doped carrier stored layer can be induced, and the conductivity modulation effect will be enhanced near the emitter. The accumulation resistance and the spreading resistance are reduced. The on-state loss will be much lower than in a conventional CSTBT. With the p-floating layer, the distribution of electric fields of the conventional IGBT is reformed, and the breakdown voltage is remarkably improved. The simulation results have shown that the forward voltage drop (VCE-on) of the novel structure is reduced by 20% and 17% respectively, compared with the conventional trench IGBT (TIGBT) and CSTBT under the same conditions. Moreover, an increment of more than 100 V of the breakdown voltage is achieved without sacrificing the SCSOA (short circuit safely operation area) compared with the conventional TIGBT.

  2. Analytical modeling and numerical simulations of the thermal behavior of trench-isolated bipolar transistors

    NASA Astrophysics Data System (ADS)

    Marano, I.; d'Alessandro, V.; Rinaldi, N.

    2009-03-01

    The thermal behavior of trench-isolated bipolar transistors is thoroughly investigated. Fully 3D numerical simulations are performed to analyze the impact of all technological parameters of interest. Based on numerical results, a novel strategy to analytically evaluate the temperature field is proposed, which accounts for the heat propagation through the trench and the nonuniform heat flux distribution over the interface between the silicon box surrounded by trench and the underlying substrate. The resulting model is proved to compare with numerical simulations more favorably than the other approaches available from the literature. As a consequence, it can be employed for an accurate, yet fast evaluation of the thermal resistance of a trench-isolated device as well as of the temperature gradients within the silicon box.

  3. Microwave characterization and modeling of GaAs/AlGaAs heterojunction bipolar transistors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Romanofsky, Robert R.

    1987-01-01

    The characterization and modeling of a microwave GaAs/AlGaAs heterojunction Bipolar Transistor (HBT) are discussed. The de-embedded scattering parameters are used to derive a small signal lumped element equivalent circuit model using EEsof's Touchstone software package. Each element in the equivalent circuit model is shown to have its origin within the device. The model shows good agreement between the measured and modeled scattering parameters over a wide range of bias currents. Further, the MAG (maximum available power gain) and the h sub 21 (current gain) calculated from the measured data and those predicted by the model are also in good agreement. Consequently, the model should also be capable of predicting the f sub max and the f sub T of other HBTs.

  4. Microwave performance of a self-aligned GaInP/Ga heterojunction bipolar transistor

    SciTech Connect

    Liu, W.; Fan, Shoukong; Henderson, T. ); Davito, D. )

    1993-04-01

    Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor (HBT) is presented. At an operating current density of 2.08 [times] 10[sup 4] A/cm[sup 2], the measured cutoff frequency is 50 GHz, and the maximum oscillation frequency extrapolated from measured unilateral gain and the maximum available gain are 116 and 81 GHz, respectively, all using 20-dB/decade slopes. To the author's knowledge, these represent the highest reported values of HBT's based on the GaInP/GaAs material system. These results are compared with other reported high-frequency performance of GaInP HBT's. In addition, these results are compared with AlGaAs/GaAs HBT's having a similar device structure.

  5. SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication

    NASA Astrophysics Data System (ADS)

    Ruecker, H.; Heinemann, B.; Knoll, D.; Ehwald, K.-E.

    Incorporation of substitutional carbon ( ~10^20 cm^-3) into the SiGe region of a heterojunction bipolar transistor (HBT) strongly reduces boron diffusion during device processing. We describe the physical mechanism behind the suppression of B diffusion in C-rich Si and SiGe, and explain how the increased thermal stability of doping profiles in SiGe:C HBTs can be used to improve device performance. Manufacturability of SiGe:C HBTs with transit frequencies of 100 GHz and maximum oscillation frequencies of 130 GHz is demonstrated in a BiCMOS technology capable of fabricating integrated circuits for radio frequencies with high yield.

  6. Minority carrier properties of carbon-doped GaInAsN bipolar transistors

    NASA Astrophysics Data System (ADS)

    Welser, R. E.; Setzko, R. S.; Stevens, K. S.; Rehder, E. M.; Lutz, C. R.; Hill, D. S.; Zampardi, P. J.

    2004-08-01

    We have developed an InGaP/GaInAsN/GaAs double heterojunction bipolar transistor technology that substantially improves upon existing GaAs-based HBTs. Band-gap engineering with dilute nitride GaInAsN alloys is utilized to enhance a variety of key device characteristics, including lower operating voltages, improved temperature stability and increased RF performance. Furthermore, GaInAsN-based HBTs are fully compatible with existing high-volume MOVPE and IC fabrication processes. While poor lifetimes have limited the applicability of dilute nitride materials in photovoltaic applications, we achieve minority carrier characteristics that approach those of conventional GaAs HBTs. We have found that a combination of growth algorithm optimization and compositional grading are critical for improving minority carrier properties in GaInAsN. In this work, we characterize the impact of both carbon and nitrogen doping on minority carrier lifetimes in GaInAsN base layers. Minority carrier lifetimes are extracted from direct measurements on bipolar transistor device structures. Specifically, lifetime is derived from the DC current gain, or bgr, taken in the bias regime dominated by neutral base recombination. Lifetimes extracted using this technique are observed to be inversely proportional to both carbon and nitrogen doping. As with conventional C-doped GaAs HBTs, current soaking (i.e. burn-in) is found to have a significant impact on GaInAsN HBTs. While we can replicate poor as-grown lifetimes consistent with those reported in photovoltaic dilute nitride materials, our best material to date exhibits nearly 30 × higher lifetime after current soaking.

  7. Radiative recombination in GaN/InGaN heterojunction bipolar transistors

    SciTech Connect

    Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin; Ryou, Jae-Hyun; Kim, Jeomoh; Detchprohm, Theeradetch; Dupuis, Russell D.; Shen, Shyh-Chiang

    2015-12-14

    We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The I{sub B}-dependent EL intensities for these three recombination paths are discussed. The results also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.

  8. Radiative recombination in GaN/InGaN heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin; Ryou, Jae-Hyun; Kim, Jeomoh; Detchprohm, Theeradetch; Dupuis, Russell D.; Shen, Shyh-Chiang

    2015-12-01

    We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The IB-dependent EL intensities for these three recombination paths are discussed. The results also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.

  9. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    PubMed Central

    Hanna, Amir N.; Fahad, Hossain M.; Hussain, Muhammad M.

    2015-01-01

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET. PMID:25923104

  10. Annealing neutron damaged silicon bipolar transistors: Relating gain degradation to specific lattice defects

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2010-09-01

    Isochronal anneal sequences have been carried out on pnp and npn transistors irradiated with fast neutrons at a variety of fluences. The evolution of base and collector currents was utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. Various annealing biases, theoretical modeling, as well as previous deep level transient spectroscopy (DLTS) data, were used to assign the relative magnitude of each of the important defects to the total recombination current. We find that donor-vacancy pairs in the neutral n-type base of our pnp transistors are responsible for about 1/3 of the postdamage lifetime degradation, while the remaining recombination currents can be largely attributed to a cluster-related divacancylike defect which has no shallow state DLTS emission peak. This latter defect anneals gradually from 350 to 590 K. Generation/recombination currents in the base-emitter junctions in both types of devices were found to anneal in a similar, gradual fashion, suggesting that this same cluster-related intrinsic lattice defect is also responsible for the large, damage-induced base currents.

  11. Pure valley- and spin-entangled states in a MoS2-based bipolar transistor

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Zou, Yonglian; Lou, Wen-Kai; Chang, Kai

    2014-11-01

    In this study, we show that the local Andreev reflection not only can be tuned largely by the type of the normal metal electrode, it also is related to the electrostatic potential in the superconductor region in a MoS2-based n (p ) -type metal/superconductor junction. In a MoS2-based n -type metal/n (p ) -type superconductor/p -type metal (n Sp ) transistor, nonlocal pure valley- and spin-entangled current can be tuned by the length and local gate voltage of a superconductor region. In particular, switching the quasiparticle type in both structures results in a series of intriguing features. Such an effect is not attainable in a graphene-based junction where the electron-hole symmetry enables the symmetry results to be observed. Besides, we have shown that the crossed Andreev reflection exhibits a maximum around ξ /2 instead of the exponential decay behavior in conventional superconductors and a maximum around ξ in the graphene material. The proposed straightforward experimental design and pure valley- and spin-entangled state can pave the way for a wider use in the entanglement based on material group-VI dichalcogenides.

  12. Fabrication of Tunnel Junctions For Direct Detector Arrays With Single-Electron Transistor Readout Using Electron-Beam Lithography

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.

    2002-01-01

    This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.

  13. Solution-processible organic-inorganic hybrid bipolar field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chae, Gil Jo; Kim, Kang Dae; Cho, Shinuk; Walker, Bright; Seo, Jung Hwa

    2016-04-01

    Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10-2 cm2V-1s-1 while the highest electron mobility (3.64 × 10-2 cm2V-1s-1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10-2 cm2V-1s-1 and 1.98 × 10-2 cm2V-1s-1, respectively.

  14. Investigation of VLSI Bipolar Transistors Irradiated with Electrons, Ions and Neutrons for Space Application

    NASA Astrophysics Data System (ADS)

    D'Angelo, P.; Fallica, G.; Galbiati, A.; Mangoni, R.; Modica, R.; Pensotti, S.; Rancoita, P. G.

    2006-04-01

    A systematic investigation of radiation effects on a BICMOS technology manufactured by STM has been undertaken. Bipolar transistors were irradiated by neutrons, C, Ar and Kr ions, and recently by electrons. Fast neutrons, as well as other types of particles, produce defects mainly by displacing silicon atoms from their lattice positions to interstitial locations, i.e. generating vacancy-interstitial pairs (the so-called Frenkel pairs). Although imparted doses differ largely, the experimental results indicate that the gain (β) variation is mostly related to the non-ionizing energy-loss (NIEL) deposition for neutrons, ions and electrons. The variation of the inverse of the gain degradation, Δ(1/β), is found to be linearly related (as predicted by the Messenger-Spratt equation for neutron irradiations) to the concentrations of the Frenkel pairs generated independently of the kind of incoming particle. For space applications, this linear dependence on the concentration of Frenkel pairs allows to evaluate the total amount of the gain degradation of VLSI components due to the flux of charged particles during the full life of operation of any pay-load. In fact, the total amount of expected Frenkel pairs can be estimated taking into account the isotopic spectra. It has to be point out that in cosmic rays there is relevant flux of electrons and isotopes up to Ni, which are within the range of particles presently investigated.

  15. Multi-level interconnects for heterojunction bipolar transistor integrated circuit technologies

    SciTech Connect

    Patrizi, G.A.; Lovejoy, M.L.; Schneider, R.P. Jr.; Hou, H.Q.; Enquist, P.M.

    1995-12-31

    Heterojunction bipolar transistors (HBTs) are mesa structures which present difficult planarization problems in integrated circuit fabrication. The authors report a multilevel metal interconnect technology using Benzocyclobutene (BCB) to implement high-speed, low-power photoreceivers based on InGaAs/InP HBTs. Processes for patterning and dry etching BCB to achieve smooth via holes with sloped sidewalls are presented. Excellent planarization of 1.9 {micro}m mesa topographies on InGaAs/InP device structures is demonstrated using scanning electron microscopy (SEM). Additionally, SEM cross sections of both the multi-level metal interconnect via holes and the base emitter via holes required in the HBT IC process are presented. All via holes exhibit sloped sidewalls with slopes of 0.4 {micro}m/{micro}m to 2 {micro}m/{micro}m which are needed to realize a robust interconnect process. Specific contact resistances of the interconnects are found to be less than 6 {times} 10{sup {minus}8} {Omega}cm{sup 2}. Integrated circuits utilizing InGaAs/InP HBTs are fabricated to demonstrate the applicability and compatibility of the multi-level interconnect technology with integrated circuit processing.

  16. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    PubMed Central

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  17. Cathodoluminescence Microcharacterization of Radiative Recombination Centers in Lifetime-Controlled Insulated Gate Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Ryuichi Sugie,; Takeshi Mitani,; Masanobu Yoshikawa,; Yoshiharu Iwata,; Ryohei Satoh,

    2010-04-01

    Cross-sectional cathodoluminescence (CL) measurements were applied to the study of electron-irradiated punch-through insulated gate bipolar transistors (IGBTs) to investigate the relationship between radiative recombination centers and electrical characteristics. IGBTs were additionally annealed at temperatures of 200-400 °C for 1 h. As annealing temperature rose, collector-emitter saturation voltage (VCES) decreased and current fall time (tf) increased. The cross-sectional CL measurements showed sharp luminescent peaks at 1018 meV (W or I1), 1040 meV (X or I3), and 790 meV (C) and a broad band at approximately 0.90-1.05 eV. As annealing temperature rose, the intensity of the W line decreased and that of the X line increased, suggesting that small self-interstitial clusters agglomerate and form stable, large self-interstitial clusters reducing the total number of self-interstitial clusters. The C line, which originated from an interstitial oxygen and carbon complex, showed no significant change. We consider that self-interstitial clusters play important roles in the electrical characteristics of lifetime-controlled IGBTs.

  18. Working toward high-power GaN/InGaN heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Shen, Shyh-Chiang; Dupuis, Russell D.; Lochner, Zachery; Lee, Yi-Che; Kao, Tsung-Ting; Zhang, Yun; Kim, Hee-Jin; Ryou, Jae-Hyun

    2013-07-01

    III-nitride (III-N) heterojunction bipolar transistors (HBTs) are a less-explored electronic device technology due to the myriad research issues in material growth, device design and fabrication associated with these devices. For III-N HBTs, npn-GaN/InGaN heterostructures provide the benefits of mitigating the poor base electrical conductivity of p-type GaN and the problematic magnesium incorporation issues. Consequently, InGaN-base III-N HBTs are promising for next-generation high-power RF III-N systems. This paper will describe the current development status of npn GaN/InGaN HBTs grown either on sapphire or free-standing (FS) GaN substrates using optimized metalorganic chemical vapor deposition (MOCVD) and refined HBT processing techniques. Recombination current paths in GaN/InGaN HBTs are studied and small-signal equivalent circuits are developed. The extracted device model indicates that, with further device fabrication technique development, Johnson's figure of merit (JFOM) of GaN/InGaN HBTs can be as high as 5 THz V.

  19. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems

    PubMed Central

    Choi, Hojong; Yang, Hao-Chung; Shung, K. Kirk

    2013-01-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (–7.7 dB), THD (–74.6 dB) and lower RT (43 ns) at 100MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22 % and 140 %, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. PMID:24199954

  20. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

    SciTech Connect

    Dhungana, Kamal B.; Pati, Ranjit

    2014-04-21

    Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

  1. Ultra-High Voltage 4H-SiC Bi-Directional Insulated Gate Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sauvik

    4H- Silicon Carbide (4H-SiC) is an attractive material for power semiconductor devices due to its large bandgap, high critical electric field and high thermal conductivity compared to Silicon (Si). For ultra-high voltage applications (BV > 10 kV), 4H-SiC Insulated Gate Bipolar Transistors (IGBTs) are favored over unipolar transistors due to lower conduction losses. With improvements in SiC materials and processing technology, promising results have been demonstrated in the area of conventional unidirectional 4H-SiC IGBTs, with breakdown voltage ratings up to 27 kV. This research presents the experimental demonstration of the world's first high voltage bi-directional power transistors in 4H-SiC. Traditionally, four (two IGBTs and two diodes) or two (two reverse blocking IGBTs) semiconductor devices are necessary to yield a bidirectional switch. With a monolithically integrated bidirectional switch as presented here, the number of semiconductor devices is reduced to only one, which results in increased reliability and reduced cost of the overall system. Additionally, by using the unique dual gate operation of BD-IGBTs, switching losses can be reduced to a small fraction of that in conventional IGBTs, resulting in increased efficiency. First, the performance limits of SiC IGBTs are calculated by using analytical methods. The performance benefits of SiC IGBTs over SiC unipolar devices and Si IGBTs are quantified. Numerical simulations are used to optimize the unit cell and edge termination structures for a 15 kV SiC BD-IGBT. The effect of different device parameters on BD-IGBT static and switching performance are quantified. Second, the process technology necessary for the fabrication of high voltage SiC BD-IGBTs is optimized. The effect of different process steps on parameters such as breakdown voltage, carrier lifetime, gate oxide reliability, SiO2-SiC interface charge density is quantified. A carrier lifetime enhancement process has been optimized for lightly doped

  2. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions

    NASA Astrophysics Data System (ADS)

    Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip

    2007-10-01

    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.

  3. Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure

    NASA Technical Reports Server (NTRS)

    Das, Kalyan; Hall, Harvey

    1999-01-01

    Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.

  4. Improvement on the dynamical performance of a power bipolar static induction transistor with a buried gate structure

    NASA Astrophysics Data System (ADS)

    Yongshun, Wang; Jingjing, Feng; Chunjuan, Liu; Zaixing, Wang; Caizhen, Zhang; Peng, Chang

    2011-11-01

    The failure of a bipolar static induction transistor (BSIT) often occurs in the transient process between the conducting-state and the blocking-state, so a profound understanding of the physical mechanism of the switching process is of significance for designing and fabricating perfect devices. The dynamical characteristics of the transient process between conducting-state and blocking-state BSITs are represented in detail in this paper. The influences of material, structural and technological parameters on the dynamical performances of BSITs are discussed. The mechanism underlying the transient conversion process is analyzed in depth. The technological approaches are developed to improve the dynamical characteristics of BSITs.

  5. New RAD-Hard STRH3260L6 Bipolar And STRH100N10 Mosfet Power Transistors

    NASA Astrophysics Data System (ADS)

    Camonita, Giuseppe; Pintacuda, Francesco

    2011-10-01

    This article describes two new power discrete components from STMicroelectronics, specifically offered for Space applications. The STRH3260L6 is a double bipolar rad-hard transistor in an SMD package that houses two complementary devices, one NPN and one PNP. The STRH100N10 is an N-channel rad-hard power MOSFET, the first that is ESCC qualified and available in Europe without procurement restrictions. The purpose of this writing is to give details about the devices' main features, characterization for static, dynamic and radiation performances.

  6. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  7. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    NASA Astrophysics Data System (ADS)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  8. Radiation effects on silicon bipolar transistors caused by 3-10 MeV protons and 20-60 MeV bromine ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Lan, Mujie; Liu, Chaoming; Yang, Dezhuang; He, Shiyu

    2010-03-01

    The current gain degradation in silicon NPN bipolar junction transistors (BJTs) was examined under irradiation with 3-10 MeV protons and 20-60 MeV bromine (Br) ions with various dose levels. To characterize the radiation damage of the NPN BJTs, the ionizing dose D i and displacement dose D d as a function of chip depth in the NPN BJTs were calculated for both the protons and Br ions with different energies. Based on the irradiation testing and calculated results, it is shown that the current gain degradation of NPN BJTs is sensitive to the ratio of D d/( D d+ D i) in the sensitive region given by protons and Br ions. The irradiation particles (protons and Br ions), which give larger D d/( D d+ D i) at a given total dose, would generate more severe damage to the NPN BJTs. The reciprocal of the gain variation as a function of the displacement dose was compared, showing that the Messenger-Spratt equation becomes relevant to describe the experimental data, when the ratio of the D d/( D d+ D i) are larger and the displacement dose are higher than a certain value.

  9. Fabrication and characterization of micropower high-frequency Schottky junction transistor

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan

    With the scaling down of the field effect transistor (FET), power consumption becomes a more and more important factor in advanced integrated circuit (IC) applications. Micropower circuits based on sub-threshold complementary metal-oxide-silicon (CMOS) devices encounter scaling and performance limitations when the gate length is reduced below 1 mum due to poor transistor matching. A new micropower device, the Schottky Junction Transistor (SJT), has been studied in this work. The SJT resembles an enhancement mode, metal semiconductor field effect transistor (MESFET) fabricated on a silicon-on-insulator (SOI) substrate. In the SJT, the channel doping and thickness are chosen to make the device operate in the sub-threshold region. Hence, the drain and gate currents both vary exponentially with the gate voltage Vgs. Using a small gate current to control a larger drain current allows the SJT to operate as a current-controlled current source. Several SJTs with gate length of 2 and 0.5 mum have been fabricated and characterized. For a 2 mum gate length SJT, numerical simulations fit well with the measured data. The cut-off frequency of the 2 mum SJT extracted from s-parameters simulation is 140 MHz, which is close to the value calculated from d.c. measurements (126 MHz). This cut-off frequency compares very favorably to the maximum possible value of 20 MHz expected for a metal oxide silicon field effect transistor (MOSFET) of the same gate length. The higher frequency performance compared to sub-threshold CMOS is the result of the reduced gate capacitance and larger channel mobility. The d.c. characteristics of the fabricated 0.5 mum SJT are not as ideal as that of the 2 mum SJT. This is primarily due to the large effective channel thickness of the 0.5 mum SJT (1300 A) as confirmed by numerical simulations. The cut-off frequencies of the 0.5 mum SJT extracted from s-parameters simulation, show larger values (>1 GHz) compared to those of the 2 mum SJT. However, a trade

  10. Fully transparent organic transistors with junction-free metallic network electrodes

    SciTech Connect

    Pei, Ke; Wang, Zongrong; Ren, Xiaochen; Zhang, Zhichao; Peng, Boyu; Chan, Paddy K. L.

    2015-07-20

    We utilize highly transparent, junction-free metal network electrodes to fabricate fully transparent organic field effect transistors (OFETs). The patterned transparent Ag networks are developed by polymer crack template with adjustable line width and density. Sheet resistance of the network is 6.8 Ω/sq and optical transparency in the whole visible range is higher than 80%. The bottom contact OFETs with DNTT active layer and parylene-C dielectric insulator show a maximum field-effect mobility of 0.13 cm{sup 2}/V s (average mobility is 0.12 cm{sup 2}/V s) and on/off ratio is higher than 10{sup 7}. The current OFETs show great potential for applications in the next generation of transparent and flexible electronics.

  11. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  12. Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Bin; Fu, Jun; Xu, Jun; Wang, Yu-Dong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gao-Qing; Liu, Zhi-Hong

    2014-11-01

    The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV Cl, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in IC was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.

  13. Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors

    SciTech Connect

    Rajamohanan, Bijesh Mohata, Dheeraj; Hollander, Matthew; Datta, Suman; Zhu, Yan; Hudait, Mantu; Jiang, Zhengping; Klimeck, Gerhard

    2014-01-28

    In this paper, we demonstrate InAs/GaSb hetero-junction (hetJ) and GaSb homo-junction (homJ) p-channel tunneling field effect transistors (pTFET) employing a low temperature atomic layer deposited high-κ gate dielectric. HetJ pTFET exhibited drive current of 35 μA/μm in comparison to homJ pTFET, which exhibited drive current of 0.3 μA/μm at V{sub DS} = −0.5 V under DC biasing conditions. Additionally, with pulsing of 1 μs gate voltage, hetJ pTFET exhibited enhanced drive current of 85 μA/μm at V{sub DS} = −0.5 V, which is the highest reported in the category of III-V pTFET. Detailed device characterization was performed through analysis of the capacitance-voltage characteristics, pulsed current-voltage characteristics, and x-ray diffraction studies.

  14. Programmable Schottky Junctions Based on Ferroelectric Gated MoS2 Transistors

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Song, Jingfeng; Drcharme, Stephen; Hong, Xia

    We report a programmable Schottky junction based on MoS2 field effect transistors with a SiO2 back gate and a ferroelectric copolymer poly(vinylidene-fluoride-trifluorethylene) (PVDF) top gate. We fabricated mechanically exfoliated single layer MoS2 flakes into two point devices via e-beam lithography, and deposited on the top of the devices ~20 nm PVDF thin films. The polarization of the PVDF layer is controlled locally by conducting atomic force microscopy. The devices exhibit linear ID-VD characteristics when the ferroelectric gate is uniformly polarized in one direction. We then polarized the gate into two domains with opposite polarization directions, and observed that the ID-VD characteristics of the MoS2 channel can be modulated between linear and rectified behaviors depending on the back gate voltage. The nonlinear ID-VD relation emerges when half of the channel is in the semiconductor phase while the other half is in the metallic phase, and it can be well described by the thermionic emission model with a Schottky barrier of ~0.5 eV. The Schottky junction can be erased by re-write the entire channel in the uniform polarization state. Our study facilitates the development of programmable, multifunctional nanoelectronics based on layered 2D TMDs..

  15. Forward-bias tunneling - A limitation to bipolar device scaling

    NASA Technical Reports Server (NTRS)

    Del Alamo, Jesus A.; Swanson, Richard M.

    1986-01-01

    Forward-bias tunneling is observed in heavily doped p-n junctions of bipolar transistors. A simple phenomenological model suitable to incorporation in device codes is developed. The model identifies as key parameters the space-charge-region (SCR) thickness at zero bias and the reduced doping level at its edges which can both be obtained from CV characteristics. This tunneling mechanism may limit the maximum gain achievable from scaled bipolar devices.

  16. Numerical model and analysis of transistors with polysilicon emitters

    NASA Astrophysics Data System (ADS)

    Yu, Z.

    With the advent of Very Large Scale Integration (VLS) technology, innovative bipolar devices with shallow junctions and high performances are being developed both for silicon and compound semiconductor materials. In the composite structure, such as HBJT (Heterojunction Bipolar Junction Transistor), the device characteristics are controlled not only by the doping profile but also by the composition of the structure. A complete physical and numerical model was developed to handle the carrier transport in such composite structure. An analytical approach (the introduction of an effective recombination velocity) to analyze carrier transport in the emitter of the bipolar transistor is discussed. Both analytical and numerical methods are then applied to the analysis of the device characteristics of transistors with polysilicon emitters. Good agreement between simulations and experimental results is achieved, and a regime of carrier distribution in the base space charge region is revealed. The numerical implementation of the model--a general purpose, one dimensional device simulation program (SEDAN) is briefly discussed.

  17. Bipolar spin-valley diode effect in a silicene magnetic junction

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Zhang, Sihao; Zhao, Ying; Zhang, Xiaoyu; Yang, Zhihong

    2016-09-01

    Silicene has attracted much attention recently due to the electrons' multiple degrees of freedom, specifically for spin and valley. We here demonstrate that a bipolar spin-valley diode effect can be driven and controlled by applying longitudinal biases through a silicene ferromagnetic-field/interlayer-electric-field junction. This effect indicates that only one-spin (the other spin) electrons from one valley (the other valley) contribute to the conductance under positive (negative) biases, originating from the specific band-matching tunneling mechanism. All the forbidden channels are induced by either spin-mismatch or spin-valley dependent bandgaps. It is also found that, by reversing the direction of interlayer electric field, the conductive valley can be switched to the other while the spin orientation is reserved. Furthermore, all the possible spin-valley configurations of conductance, contributed by single spin and single valley, can be completely turned "on" or "off" only by tuning the bias and the electric field. These results suggest that silicene can be a good candidate for future quantum information processing in spin-valley logic circuits.

  18. Analysis of high-voltage metal–oxide–semiconductor transistors with gradual junction in the drift region

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Ai, Teng-Jen; Tsai, Yan-Lin; Hsu, Hao-Tang; Chen, Chih-Yuan; Hwang, Hann-Ping

    2016-08-01

    The device characteristics and hot-carrier-induced degradation of high-voltage n-type metal–oxide–semiconductor transistors with traditional and gradual junctions in the drift region are studied in this work. The gradual junction used in this study is realized by self-aligned N‑ implantation through dual thicknesses of screen oxide during N‑ drift implantation. Compared with traditional devices, devices with gradual junctions have improved off-state breakdown voltage (V BD) without sacrificing on-state driving current and hot-carrier-induced degradation. More improvement in V BD is observed if the dimensions of the device are larger. The mechanism responsible for V BD improvement in devices with gradual junctions is also investigated by using technology computer-aided-design simulations.

  19. Analysis of high-voltage metal-oxide-semiconductor transistors with gradual junction in the drift region

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Ai, Teng-Jen; Tsai, Yan-Lin; Hsu, Hao-Tang; Chen, Chih-Yuan; Hwang, Hann-Ping

    2016-08-01

    The device characteristics and hot-carrier-induced degradation of high-voltage n-type metal-oxide-semiconductor transistors with traditional and gradual junctions in the drift region are studied in this work. The gradual junction used in this study is realized by self-aligned N- implantation through dual thicknesses of screen oxide during N- drift implantation. Compared with traditional devices, devices with gradual junctions have improved off-state breakdown voltage (V BD) without sacrificing on-state driving current and hot-carrier-induced degradation. More improvement in V BD is observed if the dimensions of the device are larger. The mechanism responsible for V BD improvement in devices with gradual junctions is also investigated by using technology computer-aided-design simulations.

  20. Antenna-Coupled Superconducting Tunnel Junctions with Single-Electron Transistor Readout for Detection of Sub-mm Radiation

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  1. All-optical transistors and logic gates using a parity-time-symmetric Y-junction: Design and simulation

    SciTech Connect

    Ding, Shulin; Wang, Guo Ping

    2015-09-28

    Classical nonlinear or quantum all-optical transistors are dependent on the value of input signal intensity or need extra co-propagating beams. In this paper, we present a kind of all-optical transistors constructed with parity-time (PT)-symmetric Y-junctions, which perform independently on the value of signal intensity in an unsaturated gain case and can also work after introducing saturated gain. Further, we show that control signal can switch the device from amplification of peaks in time to transformation of peaks to amplified troughs. By using these PT-symmetric Y-junctions with currently available materials and technologies, we can implement interesting logic functions such as NOT and XOR (exclusive OR) gates, implying potential applications of such structures in designing optical logic gates, optical switches, and signal transformations or amplifications.

  2. Improved methods of forming monolithic integrated circuits having complementary bipolar transistors

    NASA Technical Reports Server (NTRS)

    Bohannon, R. O., Jr.; Cashion, W. F.; Stehlin, R. A.

    1971-01-01

    Two new processes form complementary transistors in monolithic semiconductor circuits, require fewer steps /infusions/ than previous methods, and eliminate such problems as nonuniform h sub FE distribution, low yield, and large device formation.

  3. Degradation of dc characteristics of InGaAs/InP single heterojunction bipolar transistors under electron irradiation

    SciTech Connect

    Bandyopadhyay, A.; Subramanian, S.; Chandrasekhar, S.; Dentai, A.G.; Goodnick, S.M.

    1999-05-01

    The effects of high-energy ({approximately}1 MeV) electron irradiation on the dc characteristics of InGaAs/InP single heterojunction bipolar transistors (SHBT`s) are investigated. The device characteristics do not show any significant change for electron doses <10{sup 15}/cm{sup 2}. For higher doses, devices show a decrease in collector current, a degradation of common-emitter current gain, an increase in collector saturation voltage and an increase in the collector output conductance. A simple SPICE-like device model is developed to describe the dc characteristics of SHBT`s. The model parameters extracted from the measured dc characteristics of the devices before and after irradiation are used to get an insight into the physical mechanisms responsible for the degradation of the devices.

  4. Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiaowen, Xi; Changchun, Chai; Xingrong, Ren; Yintang, Yang; Zhenyang, Ma; Jing, Wang

    2010-07-01

    A study on the influence of the external resistor and the external voltage source during the injection of the electromagnetic pulse (EMP) into the bipolar transistor (BJT) is carried out. Research shows that the increase of the external resistor Rb at base makes the burnout time of the device decrease slightly, the increase of the external voltage source Vbe at base can aid the damage of the device when the magnitude of the injecting voltage is relatively low and has little influence when the magnitude is sufficiently high causing the device appearing the PIN structure damage, and the increase of the external resistor Re can remarkably reduce the voltage drops added to the device and improve the durability of the device. In the final analysis, the effect of the external circuit component on the BJT damage is the influence on the condition which makes the device appear current-mode second breakdown.

  5. SEMICONDUCTOR DEVICES: EMP injection damage effects of a bipolar transistor and its relationship between the injecting voltage and energy

    NASA Astrophysics Data System (ADS)

    Xiaowen, Xi; Changchun, Chai; Xingrong, Ren; Yintang, Yang; Bing, Zhang; Xiao, Hong

    2010-04-01

    The response of a bipolar transistor (BJT) under a square-wave electromagnetic pulse (EMP) with different injecting voltages is investigated. Adopting the curve fitting method, the relationship between the burnout time, the damage energy and the injecting voltage is obtained. Research shows that the damage energy is not a constant value, but changes with the injecting voltage level. By use of the device simulator Medici, the internal behavior of the burned device is analyzed. Simulation results indicate that the variation of the damage energy with injecting voltage is caused by the distribution change of hot spot position under different injection levels. Therefore, the traditional way to evaluate the trade-off between the burnout time and the injecting voltage is not comprehensive due to the variation of the damage energy.

  6. Electrical stress-induced instability of amorphous indium-gallium-zinc oxide thin-film transistors under bipolar ac stress

    SciTech Connect

    Lee, Sangwon; Jeon, Kichan; Park, Jun-Hyun; Kim, Sungchul; Kong, Dongsik; Kim, Dong Myong; Kim, Dae Hwan; Kim, Sangwook; Kim, Sunil; Hur, Jihyun; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Park, Youngsoo; Jung, U-In

    2009-09-28

    Bipolar ac stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors is comparatively investigated with that under a positive dc gate bias stress. While the positive dc gate bias stress-induced threshold voltage shift ({delta}V{sub T}) is caused by the charge trapping into the interface/gate dielectric as reported in previous works, the dominant mechanism of the ac stress-induced {delta}V{sub T} is observed to be due to the increase in the acceptorlike deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is found that the variation of deep states in the DOS makes a parallel shift in the I{sub DS}-V{sub GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C{sub G}-V{sub G} curves.

  7. Development of a radiation hardened npn bipolar transistor for a 64K CMOS fusible-link PROM

    SciTech Connect

    Fuller, R.; Newman, W. )

    1994-12-01

    A 1.2 [mu]m CMOS production process was adapted to produce a 64K CMOS fusible-link Programmable Read-Only Memory (PROM) for space applications. The circuit requirement of less than 50 nS access time combined with the need for 9 volt single pulse programming of the fusible links and radiation tolerance to levels over 300 Krad(Si) made close collaboration between design engineering, reliability engineering, and device engineering essential for a successful project. A vertical NPN bipolar transistor was integrated into a standard CMOS process to be used for programming and reading the fuses. The device characteristics were carefully matched to the product speed and programmability requirements. The NPN device was optimized for radiation performances. Successful development required extensive use of process and device modeling, test structure design and measurement, and experimental design methods.

  8. Low-temperature characteristics of the current gain of GaN/InGaN double-heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Nishikawa, Atsushi; Kumakura, Kazuhide; Kasu, Makoto; Makimoto, Toshiki

    2009-05-01

    We investigated the temperature dependence of the current gain of npn-type GaN/InGaN double-heterojunction bipolar transistors (DHBTs) in the low-temperature region. The current gain increased with decrease in device temperature due to the reduction of the recombination current in the p-type base layer. The current gain reached as high as 5000 at 40 K, which is the highest among nitride-based HBTs. For conventional HBTs made of InP or GaAs, the current gain decreased with decreasing device temperature. However, no reduction of the current gain was observed in this study, suggesting that the minority carrier mobility in the p-type InGaN base layer has negative temperature dependence, presumably because the ionized impurity scattering is relatively unaffected owing to the carrier freezeout and the high activation energy of Mg in the p-InGaN base layer.

  9. Kirk effect mechanism in type-II InP /GaAsSb double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Tao, N. G.; Bolognesi, C. R.

    2007-09-01

    The Kirk effect mechanism is studied in type-II InP /GaAsSb/InP NpN double heterojunction bipolar transistors (DHBTs) both experimentally and through two-dimensional hydrodynamic numerical simulations. We show that the large valence band discontinuity ΔEV at the GaAsSb-InP base/collector heterojunction does not allow hole injection into the InP collector as is the case in homojunction collectors. Instead, a blocking barrier is electrostatically induced in the base layer at high collector current densities: this barrier increases base recombination and decreases the current gain. We show that tunneling transport must be considered at the base/collector heterojunction and that the induced barrier depends on the base layer doping level—effectively, InP /GaAsSb DHBTs display high-current limitations that are also controlled to some extent by the base doping level.

  10. First- and second-order electrical modelling and experiment on very high speed SiGeC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Nunez-Perez, José Cruz; Lakhdara, Maya; Bouhouche, Manel; Verdier, Jacques; Latreche, Saïda; Gontrand, Christian

    2009-04-01

    We present in this paper an electrical study centred on NPN heterojunction bipolar transistors (HBTs), realized in an industrial BiCMOS SiGe:C process, featuring high attractive performances (ft > 200 GHz) in terms of microwave behaviour and low-frequency noise; reaching this level of performance with good dc characteristics could be however a difficult challenge. Electrical modelling is investigated, using our 2D simulator, based on the drift-diffusion model (DDM). The simulations were very efficient for optimizing the devices. The dc and ac results obtained in this work are efficiently compared with electrical characteristics coming from measurements and SPICE-like parameter extractions, from simulations via a compact model (HICUM) implemented in the so-called commercial simulator ADS (advanced design system). This work was a first step for designing RF circuits like oscillators in a simple way.

  11. A model for the dependence of maximum oscillation frequency on collector to substrate capacitance in bipolar transistors

    NASA Astrophysics Data System (ADS)

    Armstrong, G. A.; French, W. D.

    1995-08-01

    Parasitic effects associated with the collector degrade the frequency performance of a bipolar transistor. These effects include collector series resistance and collector-substrate capacitance. A simple analytical model has been derived to show the dependence of the maximum oscillation frequency fmax on these parameters. The significance of using bonded SOI material to reduce collector-substrate capacitance is discussed. The analytical model is used to predict the factor of improvement of this technology over conventional diffusion isolated bulk silicon technology. By considering the impact of process optimisation, an improvement in fmax by a factor of between two and three is predicted at maximum power output. By trading off this improvement in fmax for lower power operation, it is possible to achieve a significant reduction in power-delay product.

  12. Fabrication and characterization of GaN junction field effect transistors

    SciTech Connect

    Zhang, L.; Lester, L.F.; Baca, A.G.; Shul, R.J.; Chang, P.C.; Willison, C.L.; Mishra, U.K.; Denbaars, S.P.; Zolper, J.C.

    2000-01-11

    Junction field effect transistors (JFET) were fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition. The DC and microwave characteristics, as well as the high temperature performance of the devices were studied. These devices exhibited excellent pinch-off and a breakdown voltage that agreed with theoretical predictions. An extrinsic transconductance (g{sub m}) of 48 mS/mm was obtained with a maximum drain current (I{sub D}) of 270 mA/mm. The microwave measurement showed an f{sub T} of 6 GHz and an f{sub max} of 12 GHz. Both the I{sub D} and the g{sub m} were found to decrease with increasing temperature, possibly due to lower electron mobility at elevated temperatures. These JFETs exhibited a significant current reduction after a high drain bias was applied, which was attributed to a partially depleted channel caused by trapped electrons in the semi-insulating GaN buffer layer.

  13. Monolithic integrated resonant tunneling diode and heterostructure junction field effect transistor circuits

    NASA Astrophysics Data System (ADS)

    Yen, J. C.; Zhang, Q.; Mondry, M. J.; Chavarkar, P. M.; Hu, E. L.; Long, S. I.; Mishra, U. K.

    1996-10-01

    We have developed a simple technology for monolithic integration of resonant tunneling diodes (RTDs) and heterostructure junction-modulated field effect transistors (HJFETs). We have achieved good device performance with this technology: HJFETs had transconductances of 290 mS/mm and current densities of 310 mA/mm for a 1.5 μm gate length; RTDs had room temperature peak to valley ratios greater than 20:1 with current densities of 42 kA/cm 2. With this technology, we have demonstrated a monolithically integrated RTD + HJFET state holding circuit that can serve as a building block circuit for self-timed logic units. This circuit is resistor-free and operates at room temperature. The state holding circuit showed large noise margins of 1.21 V and 0.71 V, respectively, for input low and input high, for a 1.7 V input voltage swing. We have examined the transient response of the circuit and investigated the effect of circuit design parameters on propagation delay. We identify the RTD valley current as the limiting factor on propagation delay. We discuss the suitability of RTD + HJFET circuits such as our state holding circuit for highly dense integrated circuits.

  14. Molecular beam epitaxy of gallium arsenide antimonide-based ultra-high-speed double heterojunction bipolar transistors and light emitting transistors

    NASA Astrophysics Data System (ADS)

    Wu, Bing-Ruey

    In this work, GaAsSb-based double heterojunction bipolar transistors (DHBTs) and light emitting transistors (LETs) are grown using gas source molecular beam epitaxy (GSMBE). High-speed GaAs0.5Sb0.5/InP DHBTs are developed through the exercise of GSMBE growth optimization, device fabrication, and characterization. By adjusting the growth temperature and V/III flux ratio, the optimal conditions for growing GaAs0.5Sb0.5 base are found to be at high growth temperature and low V/III ratio. The switching sequence is also optimized so that the Sb segregation effect is minimized. By using GaAs0.5Sb0.5-In0.2Ga0.8As 0.7Sb0.3 compositional grading in the base of the GaAsSb/InP DHBT, a significant improvement of fT from 380 GHz to 500 GHz was achieved compared to a uniform GaAs0.5Sb 0.5 DHBT, while maintaining a high breakdown voltage BVCEO ˜ 4V. The cutoff frequency---breakdown voltage product, fT·BVCEO, of over 2000 GHz-V, is the record value for DHBTs of any material system. Incorporating graded InAs-InGaAs emitter contact layer is also shown to effectively reduce the total emitter resistance, further improving the DHBT high speed performance. LET characteristics with quantum wells (QWs) inserted into the base region of GaAsSb/InP DHBTs are also investigated and the preliminary results are presented. An LET with a tensile strained InGaAsSb/GaAs0.65Sb 0.35 DQW in the base was designed and achieved the emission wavelength of ˜1.6 mum, despite of its low light output intensity. The potential and limitation of realizing a transistor laser with an emission wavelength of 1.55 mum using GaAsSb/InP material system will be discussed.

  15. Coupling electron-hole and electron-ion plasmas: Realization of an npn plasma bipolar junction phototransistor

    NASA Astrophysics Data System (ADS)

    Wagner, C. J.; Tchertchian, P. A.; Eden, J. G.

    2010-09-01

    Coupling e--h+ and gas phase plasmas with a strong electric field across a potential barrier yields a transistor providing photosensitivity and voltage gain but also a light-emitting collector whose radiative output can be switched and modulated. This optoelectronic device relies on the correspondence between the properties of a low temperature, nonequilibrium plasma and those for the e--h+ plasma in an n-type semiconductor. Hysteresis observed in the collector current-base current characteristics is attributed primarily to charge stored in the base, and the photogeneration of e--h+ pairs at the base-collector junction. Extinguishing the collector plasma requires an emitter-base junction reverse bias of <1 V.

  16. Comments on determination of bandgap narrowing from activation plots. [for bipolar transistors

    NASA Technical Reports Server (NTRS)

    Park, J.-S.; Neugroschel, A.; Lindholm, F. A.

    1986-01-01

    A determination is made of the temperature-dependence of emitter saturation current in bipolar devices which allows the derivation of a value for bandgap narrowing that is in better agreement with other determinations than previous results based on ohmic contact measurements of temperature dependence. The new values were obtained by varying the surface recombination velocity at the emitter surface. This improves accuracy by varying the minority carrier surface recombination velocity at the emitter contacts of otherwise indistinguishable emitters.

  17. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  18. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  19. DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications

    SciTech Connect

    Dikmen, C.T.; Dogan, N.S.; Osman, M.A. . School of Electrical Engineering and Computer Science)

    1994-02-01

    There is currently a demand for active electronic devices operating reliably over wide range of temperatures. Potential applications for the high-temperature devices and integrated circuits are in the areas of jet engine and control instrumentation for nuclear power plants. Here, the large signal dc characteristics of AlGaAs/GaAs heterojunction bipolar transistors (HBT) at high temperatures (27--300 C) are reported. A high-temperature SPICE model is developed which includes the recombination-generation current components and avalanche multiplication which become extremely important at high temperatures. The effect of avalanche breakdown is also included to model the current due to thermal generation of electron/hole pairs causing breakdown at high temperatures. A parameter extraction program is developed used to extract the model parameters of HBT's at different temperatures. Fitting functions for the model parameters as a function of temperature are developed. These parameters are then used in the SPICE Ebers-Moll model for the dc characterization of the HBT at any temperature between (27--300 C).

  20. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-04

    The authors demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub c} and negligible {triangle}E{sub v}, this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (E{sub g}=1.20eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs.

  1. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p-n junctions

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Ryzhii, M.; Shur, M. S.; Mitin, V.; Satou, A.; Otsuji, T.

    2016-08-01

    We evaluate the proposed resonant terahertz (THz) detectors on the basis of field-effect transistors (FETs) with split gates, electrically induced lateral p-n junctions, uniform graphene layer (GL) or perforated (in the p-n junction depletion region) graphene layer (PGL) channel. The perforated depletion region forms an array of the nanoconstions or nanoribbons creating the barriers for the holes and electrons. The operation of the GL-FET- and PGL-FET-detectors is associated with the rectification of the ac current across the lateral p-n junction enhanced by the excitation of bound plasmonic oscillations in the p- and n-sections of the channel. Using the developed device model, we find the GL-FET- and PGL-FET-detector characteristics. These detectors can exhibit very high voltage responsivity at the THz radiation frequencies close to the frequencies of the plasmonic resonances. These frequencies can be effectively voltage tuned. We show that in PL-FET-detectors the dominant mechanism of the current rectification is due to the tunneling nonlinearity, whereas in the PGL-FET-detector the current rectification is primarily associated with the thermionic processes. Due to much lower p-n junction conductance in the PGL-FET-detectors, their resonant response can be substantially more pronounced than in the GL-FET-detectors corresponding to fairly high detector responsivity.

  2. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p–n junctions

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Ryzhii, M.; Shur, M. S.; Mitin, V.; Satou, A.; Otsuji, T.

    2016-08-01

    We evaluate the proposed resonant terahertz (THz) detectors on the basis of field-effect transistors (FETs) with split gates, electrically induced lateral p–n junctions, uniform graphene layer (GL) or perforated (in the p–n junction depletion region) graphene layer (PGL) channel. The perforated depletion region forms an array of the nanoconstions or nanoribbons creating the barriers for the holes and electrons. The operation of the GL-FET- and PGL-FET-detectors is associated with the rectification of the ac current across the lateral p–n junction enhanced by the excitation of bound plasmonic oscillations in the p- and n-sections of the channel. Using the developed device model, we find the GL-FET- and PGL-FET-detector characteristics. These detectors can exhibit very high voltage responsivity at the THz radiation frequencies close to the frequencies of the plasmonic resonances. These frequencies can be effectively voltage tuned. We show that in PL-FET-detectors the dominant mechanism of the current rectification is due to the tunneling nonlinearity, whereas in the PGL-FET-detector the current rectification is primarily associated with the thermionic processes. Due to much lower p–n junction conductance in the PGL-FET-detectors, their resonant response can be substantially more pronounced than in the GL-FET-detectors corresponding to fairly high detector responsivity.

  3. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  4. A dc model for power switching transistors suitable for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; George, R. T., Jr.; Owen, H. A.; Wilson, T. G.

    1979-01-01

    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented.

  5. Logic gates based on ion transistors.

    PubMed

    Tybrandt, Klas; Forchheimer, Robert; Berggren, Magnus

    2012-01-01

    Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits. PMID:22643898

  6. Logic gates based on ion transistors

    NASA Astrophysics Data System (ADS)

    Tybrandt, Klas; Forchheimer, Robert; Berggren, Magnus

    2012-05-01

    Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits.

  7. Low-power exciton-based heterojunction bipolar transistors for thresholding logic applications

    NASA Astrophysics Data System (ADS)

    Goswami, Subrata; Bhattacharya, Pallab K.; Singh, Jasprit; Hong, Song-Cheol; Biswas, D.

    1991-03-01

    The principles of an integrated optoelectronic controller-modulator device, based on excitonic transitions and the enhanced Stark effect in quantum wells, are outlined. The device consists of a controller and a modulator as components. The controller is a heterojunction phototransistor with multiquantum wells incorporated in the base-collector depletion region. The amplified output of the controller enables switching of the modulator for low optical power levels. Experimental results on GaAs-AlGaAs based devices, realized by one-step molecular beam epitaxy and selective etching, are presented. The bipolar devices have current gains of about 35-40. The integrating-thresholding properties of the device are demonstrated and switching characteristics for 10 micro-W input to the controller are measured. Cascadability, optoelectronic amplification, and multistage operation are demonstrated in terms of a fan out of eight devices. The integrating-thresholding properties also lend themselves to the implementation of neurons and to the realization of decision making processes. The controller-modulator device can form a versatile basic module for optical computation architectures.

  8. Collector-up aluminum gallium arsenide/gallium arsenide heterojunction bipolar transistors using oxidized aluminum arsenide for current confinement

    NASA Astrophysics Data System (ADS)

    Massengale, Alan Ross

    1998-12-01

    The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.

  9. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  10. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20 um SiGe heterojunction bipolar transistors and circuits.

    SciTech Connect

    Fritz, Karl; Irwin, Timothy J.; Niu, Guofu; Fodness, Bryan; Carts, Martin A.; Marshall, Paul W.; Reed, Robert A.; Gilbert, Barry; Randall, Barbara; Prairie, Jason; Riggs, Pam; Pickel, James C.; LaBel, Kenneth; Cressler, John D.; Krithivasan, Ramkumar; Dodd, Paul Emerson; Vizkelethy, Gyorgy

    2003-09-01

    Combining broad-beam circuit level single-event upset (SEU) response with heavy ion microprobe charge collection measurements on single silicon-germanium heterojunction bipolar transistors improves understanding of the charge collection mechanisms responsible for SEU response of digital SiGe HBT technology. This new understanding of the SEU mechanisms shows that the right rectangular parallele-piped model for the sensitive volume is not applicable to this technology. A new first-order physical model is proposed and calibrated with moderate success.

  11. Temperature dependence of current-voltage characteristics of npn-type GaN /InGaN double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Nishikawa, Atsushi; Kumakura, Kazuhide; Makimoto, Toshiki

    2007-09-01

    We investigated the temperature dependence of the common-emitter current-voltage (I-V) characteristics of npn-type GaN /InGaN double heterojunction bipolar transistors. Although the current gain decreases with increasing measurement temperature, the current gain measured at 300°C is still as high as 308. The reduction of the current gain with temperature is attributed not only to the hole back-injection current from the base into the emitter but also to the shorter minority carrier diffusion length due to the increase in the carrier concentration of the p-InGaN base.

  12. Analytical description of the injection ratio of self-biased bipolar transistors under the very high injection conditions of ESD events

    NASA Astrophysics Data System (ADS)

    Gendron, A.; Renaud, P.; Bafleur, M.; Nolhier, N.

    2008-05-01

    This paper proposes a 1D-analytical description of the injection ratio of a self-biased bipolar transistor under very high current injection conditions. Starting from an expression of the current gain based on the stored charge into the emitter and base regions, we derive a new analytical expression of the current injection ratio. This analytical description demonstrates the presence of an asymptotic limit for the injection ratio at very high current densities, as the ratio of electron/hole mobilities in the case of an NPN transistor and to the ratio of hole/electron saturation velocities for a PNP. Moreover, for the first time, a base narrowing effect is demonstrated and explained in the case of a self-biased PNP, in contrast with the base widening effect (Kirk effect [Kirk CT, A theory of transistor cutoff frequency (fT) falloff at high current densities, IRE Trans Electr Dev 1961: p. 164-73]) reported for lower current density. These results are validated by numerical simulation and show a good agreement with experimental characterizations of transistors especially designed to operate under extreme condition such as electrostatic discharge (ESD) events.

  13. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Zheng, Yu-Zhan; Wang, Yi-Yuan; Ren, Di-Yuan; Guo, Qi; Wang, Zhi-Kuan; Wang, Jian-An

    2011-02-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types of the NPN transistors exhibit remarkable Enhanced Low-Dose-Rate Sensitivity (ELDRS). After irradiation at high or low dose rate, the excess base current of NPN transistors obviously increased, and the current gain would degrade rapidly. Moreover, the decrease of collector current was also observed. The NPN transistor with <111> orientation was more sensitive to ionizing radiation than that with <100> orientation. The underlying mechanisms of various experimental phenomena are discussed in detail in this paper.

  14. Improved physics for simulating submicron bipolar devices

    NASA Astrophysics Data System (ADS)

    Bennett, H. S.; Fuoss, D. E.

    1985-10-01

    The conventional device physics in most numerical simulations of bipolar transistors may not predict the measured electrical performance of shallow heavily doped emitters and bases. This paper summarizes improved device physics for numerical simulations of solid state devices with dopant densities up to aobut 3 x 10 to the 20th/cu cm and with junction depths as small as 0.1 micron. This improved device physics pertains to bandgap narrowing, effective intrinsic carrier concentrations, carrier mobilities, and lifetimes. When this improved physics is incorporated into device analysis codes such as SEDAN and then used to compute the electrical performance of n-p-n transistors, the predicted values agree very well with the measured values of the current-voltage characteristics and dc common emitter gains for devices with emitter-base junction depths between 10-0.16 microns.

  15. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    PubMed

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics. PMID:26771206

  16. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    PubMed

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  17. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  18. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  19. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    SciTech Connect

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

  20. Normal metal tunnel junction-based superconducting quantum interference proximity transistor

    SciTech Connect

    D'Ambrosio, Sophie Meissner, Martin; Blanc, Christophe; Ronzani, Alberto; Giazotto, Francesco

    2015-09-14

    We report the fabrication and characterization of an alternative design for a superconducting quantum interference proximity transistor (SQUIPT) based on a normal metal (N) probe. The absence of direct Josephson coupling between the proximized metal nanowire and the N probe allows us to observe the full modulation of the wire density of states around zero voltage and current via the application of an external magnetic field. This results into a drastic suppression of power dissipation which can be as low as a few ∼10{sup −17} W. In this context, the interferometer allows an improvement of up to four orders of magnitude with respect to earlier SQUIPT designs and makes it ideal for extra-low power cryogenic applications. In addition, the N-SQUIPT has been recently predicted to be the enabling candidate for the implementation of coherent caloritronic devices based on proximity effect.

  1. Procedure to derive analytical models for microwave noise performances of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Ramirez-Garcia, E.; Aniel, F. P.; Enciso-Aguilar, M. A.; Zerounian, N.

    2013-04-01

    We present a useful procedure to derive simplified expressions to model the minimum noise factor and the equivalent noise resistance of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors (HBTs). An acceptable agreement between models and measurements at operation frequencies up to 18 GHz and at several bias points is demonstrated. The development procedure includes all the significant microwave noise sources of the HBTs. These relations should be useful to model Fmin and Rn for state-of-the-art IV-IV and III-V HBTs. The method is the first step to derive noise analyses formulas valid for operation frequencies near the unitary current gain frequency (fT); however, to achieve this goal a necessary condition is to have access to HFN measurements up to this frequency regime.

  2. An analytical study of current-voltage characteristics and breakdown performance of GaInP /GaAs composite collector double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Goh, Y. L.; Ong, D. S.; Yow, H. K.

    2004-10-01

    An analytical model taking into account the nonlocal dead-space effects is developed to study the dc characteristics and avalanche multiplication of GaInP /GaAs double heterojunction bipolar transistor (DHBT) incorporating composite collector designs. The dependence of the turn-on characteristics and the multiplication onset of the HBT on the device composite layer thickness and doping densities are investigated. In this paper, optimum combinations of composite parameters are presented to obtain zero spike effect in the base-collector heterojunction conduction band and to improve output breakdown voltages. The model is then applied to the GaInP /GaAs DHBT with AlGaAs in the composite collector, which is found to have good I-V characteristics and high operating voltage range before the onset of avalanche multiplication.

  3. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  4. A New 600 V Punch Through-Insulated Gate Bipolar Transistor with the Monolithic Fault Protection Circuit Using the Floating p-Well Voltage Detection

    NASA Astrophysics Data System (ADS)

    Ji, In-Hwan; Jeon, Byung-Chul; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo

    2006-10-01

    A new fault sensing scheme of the insulated gate bipolar transistor (IGBT) employing the floating p-well, which detects the over-voltage of the floating p-well under the short circuit fault condition, is proposed and implemented by fabricating the main IGBT and gate voltage pull-down circuit using the widely used planar IGBT process. The floating p-well structure also improves the avalanche energy of IGBT in addition to detecting the fault signal. The detection of fault and gate voltage pull-down operation is achieved by the proposed fault protection scheme employing the floating p-well voltage detection. The proposed fault protection circuit was measured under the hard switching fault (HSF) and fault under load (FUL) conditions. The normal switching behavior of the main IGBT with the proposed protection circuit was also investigated under inductive load switching conditions.

  5. NpN-GaN/InxGa1-xN/GaN heterojunction bipolar transistor on free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Lochner, Zachary; Jin Kim, Hee; Lee, Yi-Che; Zhang, Yun; Choi, Suk; Shen, Shyh-Chiang; Doug Yoder, P.; Ryou, Jae-Hyun; Dupuis, Russell D.

    2011-11-01

    Data and analysis are presented for NpN-GaN/InGaN/GaN double-heterojunction bipolar transistors (HBTs) grown and fabricated on a free-standing GaN (FS-GaN) substrate in comparison to that on a sapphire substrate to investigate the effect of dislocations in III-nitride HBT epitaxial structures. The performance characteristics of HBTs on FS-GaN exhibit a maximum collector current density of ˜12.3 kA/cm2, dc current gain of ˜90, and maximum differential gain of ˜120 without surface passivation, representing a substantial improvement over similar devices grown on sapphire. This is attributed to the reduction in threading dislocation density afforded by using a homoepitaxial growth on a high-crystalline-quality substrate. The minority carrier diffusion length increases significantly owing to not only a mitigated carrier trap effect via fewer dislocations, but also possibly reduced microscopic localized states.

  6. Analytical base-collector depletion capacitance in vertical SiGe heterojunction bipolar transistors fabricated on CMOS-compatible silicon on insulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Bo; Zhang, He-Ming; Hu, Hui-Yong; Ma, Jian-Li; Xu, Li-Jun

    2011-01-01

    The base—collector depletion capacitance for vertical SiGe npn heterojunction bipolar transistors (HBTs) on silicon on insulator (SOI) is split into vertical and lateral parts. This paper proposes a novel analytical depletion capacitance model of this structure for the first time. A large discrepancy is predicted when the present model is compared with the conventional depletion model, and it is shown that the capacitance decreases with the increase of the reverse collector—base bias—and shows a kink as the reverse collector—base bias reaches the effective vertical punch-through voltage while the voltage differs with the collector doping concentrations, which is consistent with measurement results. The model can be employed for a fast evaluation of the depletion capacitance of an SOI SiGe HBT and has useful applications on the design and simulation of high performance SiGe circuits and devices.

  7. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors.

    PubMed

    Lee, Kangho; Nair, Pradeep R; Alam, Muhammad A; Janes, David B; Wampler, Heeyeon P; Zemlyanov, Dmitry Y; Ivanisevic, Albena

    2008-06-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (V(P)) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive V(P) shift (>1 V) and a steeper subthreshold slope ( approximately 80 mVdecade), whereas "dummy" RNA induced a small positive V(P) shift ( approximately 0.3 V) without a significant change in subthreshold slopes ( approximately 330 mVdecade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules.

  8. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-01-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (∼80 mV∕decade), whereas “dummy” RNA induced a small positive VP shift (∼0.3 V) without a significant change in subthreshold slopes (∼330 mV∕decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules. PMID:19484151

  9. JFET/SOS (Junction Field-Effect Transistor/Silicon-on-Sapphire) devices: Gamma-radiation-induced effects

    NASA Astrophysics Data System (ADS)

    Halle, Linda F.; Zietlow, Thomas C.; Barnes, Charles E.

    1988-03-01

    Enhancement and depletion mode JFETs have been fabricated on silicon-on-sapphire substrates. When these devices are irradiated under bias with a Co-60 source, their drain currents increase, and their threshold voltages shift in such a way that the devices become more difficult to pinch off. These effects can be explained by positive charge trapping at the silicon/sapphire interface. Gate to drain leakage currents also increase, and can be traced to interface effects at the gate edges rather than to the passivating oxide. These effects were studied as a function of dose rate and postirradiation annealing. Deep-level transient spectroscopy (DLTS) was performed prior to and following both irradiation and anneal on both the gate-drain and gate-source p-n junctions. DLTS trap bands were observed whose characteristics depended on the depth of the depletion layer and on the total gamma dose received. The DLTS spectra suggest that a continuum of levels is responsible for the bands, and that the emission kinetics are influenced by band bending at the Si/sapphire interface. The major bands corresponded in temperature with steps in capacitance-temperature curves. A correlation of these steps with the transistor characteristics suggests that channel pinch off can be influenced by capture and emission at deep centers.

  10. Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Sasaki, M.; Akiba, M.

    2002-03-01

    A GaAs junction field-effect transistor (JFET) is a promising candidate for low-frequency, low-noise, and low-power cryogenic electronics to read out high-impedance photodetectors. We report on the spectral noise characteristics of a SONY n-type GaAs JFET, operating at the depression mode, at a cryogenic temperature of 4.2 K. If the GaAs JFET is turned on at 4.2 K, a random telegraph signal (RTS) is found to be the dominant noise source at low frequencies. However, the switching rate of RTS can be drastically reduced if the GaAs JFET is heated up to 55 K and cooled down again to 4.2 K while keeping the same drain current flow. We refer to this phenomenon as the thermal cure (TC). With TC, low-frequency noise can be reduced to below 1 μV/Hz1/2 at 1 Hz. The critical temperature for TC is found to be ˜35 K for our GaAs JFET.

  11. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-06-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (˜80 mV/decade), whereas "dummy" RNA induced a small positive VP shift (˜0.3 V) without a significant change in subthreshold slopes (˜330 mV/decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules.

  12. Device characteristics of GaAs-based heterojunction bipolar transistors using an InGaAs/GaAsP strain-compensated layer as a base material

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Hsien; Su, Yan-Kuin; Chang, Shoou-Jinn; Huang, Ying-Sheng; Hsu, Hung-Pin

    2004-07-01

    An InGaAs/GaAsP strain-compensated layer has been proposed as a base material for GaAs-based double heterojunction bipolar transistors (DHBTs). As known, decreasing bandgap energy of the base layer in heterojunction bipolar transistors (HBTs) can result in a smaller turn-on voltage. Using InGaAs as a base material is one possible approach to achieve the aim. However, compressive strain induced by InGaAs diminishes the influence of indium-adding-induced bandgap energy reduction, and thus abates the advantage of turn-on voltage reduction. In this study, a 280 Å GaAs0.81P0.19 layer has been inserted below the In0.054Ga0.946As base layer to compensate the compressive strain induced by the InGaAs base layer. The result shows that the utilization of an InGaAs/GaAsP strain-compensated layer results in a reduction of the turn-on voltage by 20 mV. A turn-on voltage reduction of 190 mV over a conventional HBT with a GaAs base layer is achieved by utilizing the In0.054Ga0.946As/GaAs0.81P0.19 strain-compensated base layer. This particular DHBT has a small offset voltage of 55 mV and a knee voltage of 0.6 V. A peak current gain of 58.98, a unity-current-gain cut-off frequency fT of 22 GHz and a unilateral power gain cut-off frequency fMAX of 25 GHz are also achieved for this particular DHBT.

  13. Determination of lifetimes and recombination currents in p-n junction solar cells, diodes, and transistors

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.

    1981-01-01

    New methods are presented and illustrated that enable the accurate determination of the diffusion length of minority carriers in the narrow regions of a solar cell or a diode. Other methods now available are inaccurate for the desired case in which the width of the region is less than the diffusion length. Once the diffusion length is determined by the new methods, this result can be combined with measured dark I-V characteristics and with small-signal admittance characteristics to enable determination of the recombination currents in each quasi-neutral region of the cell - for example, in the emitter, low-doped base, and high-doped base regions of the BSF (back-surface-field) cell. This approach leads to values for the effective surface recombination velocity of the high-low junction forming the back-surface field of BSF cells or the high-low emitter junction of HLE cells. These methods are also applicable for measuring the minority-carrier lifetime in thin epitaxial layers grown on substrates with opposite conductivity type.

  14. Analysis of different tunneling mechanisms of In{sub x}Ga{sub 1−x}As/AlGaAs tunnel junction light-emitting transistors

    SciTech Connect

    Wu, Cheng-Han; Wu, Chao-Hsin

    2014-10-27

    The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x = 5% and 2.5%) of the In{sub x}Ga{sub 1−x}As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

  15. Oxide bipolar electronics: materials, devices and circuits

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; von Wenckstern, Holger

    2016-06-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo2O4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization.

  16. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  17. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  18. A silicon nanocrystal tunnel field effect transistor

    SciTech Connect

    Harvey-Collard, Patrick; Drouin, Dominique; Pioro-Ladrière, Michel

    2014-05-12

    In this work, we demonstrate a silicon nanocrystal Field Effect Transistor (ncFET). Its operation is similar to that of a Tunnelling Field Effect Transistor (TFET) with two barriers in series. The tunnelling barriers are fabricated in very thin silicon dioxide and the channel in intrinsic polycrystalline silicon. The absence of doping eliminates the problem of achieving sharp doping profiles at the junctions, which has proven a challenge for large-scale integration and, in principle, allows scaling down the atomic level. The demonstrated ncFET features a 10{sup 4} on/off current ratio at room temperature, a low 30 pA/μm leakage current at a 0.5 V bias, an on-state current on a par with typical all-Si TFETs and bipolar operation with high symmetry. Quantum dot transport spectroscopy is used to assess the band structure and energy levels of the silicon island.

  19. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  20. Comparative investigation of InGaP/GaAs/GaAsBi and InGaP/GaAs heterojunction bipolar transistors

    SciTech Connect

    Wu, Yi-Chen; Tsai, Jung-Hui; Chiang, Te-Kuang; Wang, Fu-Min

    2015-10-15

    In this article the characteristics of In{sub 0.49}Ga{sub 0.51}P/GaAs/GaAs{sub 0.975}Bi{sub 0.025} and In{sub 0.49}Ga{sub 0.51}P/GaAs heterojunction bipolar transistor (HBTs) are demonstrated and compared by two-dimensional simulated analysis. As compared to the traditional InGaP/GaAs HBT, the studied InGaP/GaAs/GaAsBi HBT exhibits a higher collector current, a lower base-emitter (B–E) turn-on voltage, and a relatively lower collector-emitter offset voltage of only 7 mV. Because the more electrons stored in the base is further increased in the InGaP/GaAs/GaAsBi HBT, it introduces the collector current to increase and the B–E turn-on voltage to decrease for low input power applications. However, the current gain is slightly smaller than the traditional InGaP/GaAs HBT attributed to the increase of base current for the minority carriers stored in the GaAsBi base.

  1. Emitter-base bias dependence of the collector current ideality factor in abrupt Pnp AlGaAs/GaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Ekbote, S.; Cahay, M.; Roenker, K.

    2000-02-01

    Starting with the 4×4 Luttinger-Kohn Hamiltonian and making use of the axial approximation, we calculate the emitter current as a function of the applied forward emitter-base bias for a typical Pnp AlGaAs/GaAs single heterojunction bipolar transistor (HBT). While including the effects of emitter series resistance and recombination in the quasi-neutral base and emitter-base space-charge region, we then calculate the collector current density versus emitter to base bias and find it to be in excellent agreement with the experimental results for a Al0.4Ga0.6As/GaAs Pnp HBT recently reported in the literature. For that structure, the collector current ideality factor is found to increase from 1.1 at low forward bias VEB to 3.0 at large applied emitter-base forward bias approaching the built-in potential. Experimental values are equal to 1.2 and 2.25 at low and large VEB, respectively.

  2. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    NASA Astrophysics Data System (ADS)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140-220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140-190 GHz respectively. The saturation output powers are -2.688 dBm at 210 GHz and -2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  3. InP/InGaAs/InP double heterojunction bipolar transistors with improved dc and microwave performance grown by solid source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ng, Geok I.; Zheng, Hai Qun; Radhakrishnan, Kaladhar; Yoon, Soon Fatt; Xiong, Yongzhong; Chua, Lye H.; Yang, Hongru; Halder, Subrata; Tan, Chee L.

    2000-10-01

    This paper describes the fabrication and characterization of the InP/InAs/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy (SSMBE). An improvement in current gain and microwave noise has been observed for the SSMBE-grown InP/InGaAs DHBTs. The HBT with a 50 nm, 2 X 19 cm-3 Be-doped base exhibits dc current gain as high as 350, which is about two times of that measured on the referenced devices grown by gas-source molecular beam epitaxy. The HBT with 5 X 5 micrometers 2 emitter shows a minimum noise figure of 1.04 dB and associated gain of 16 dB measured at 2 GHz with Ic equals 1 mA. In comparison, the HBT grown by GSMBE gives an Fmin of 1.9 dB under same measurement condition. A slight increase in fT and fmax for the SSMBE-grown HBT has also been observed. The drastic increase of current gain for the SSMBE-grown HBT could be explained by reducing base recombination due to the ful elimination of hydrogen contamination during the material growth.

  4. Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tetsuya; Nakayama, Koji; Tanaka, Atsushi; Asano, Katsunori; Ji, Shi-yang; Kojima, Kazutoshi; Ishida, Yuuki; Tsuchida, Hidekazu

    2015-08-01

    Techniques to fabricate thick multi-layer 4H-SiC epitaxial wafers were studied for very high-voltage p- and n-channel insulated gate bipolar transistors (IGBTs). Multi-layer epitaxial growth, including a thick p- drift layer (˜180 μm), was performed on a 4H-SiC n+ substrate to form a p-IGBT structure. For an n-IGBT structure, an inverted growth process was employed, in which a thick n- drift layer (˜180 μm) and a thick p++ injector layer (>55 μm) were epitaxially grown. The epitaxial growth conditions were modified to attain a low defect density, a low doping concentration, and a long carrier lifetime in the drift layers. Reduction of the forward voltage drop was attempted by using carrier lifetime enhancement processes, specifically, carbon ion implantation/annealing and thermal oxidation/annealing or hydrogen annealing. Simple PiN diodes were fabricated to demonstrate the effective conductivity modulation in the thick drift layers. The forward voltage drops of the PiN diodes with the p- and n-IGBT structures promise to obtain the extremely low-loss and very high-voltage IGBTs. The change in wafer shape during the processing of the very thick multi-layer 4H-SiC is also discussed.

  5. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    NASA Astrophysics Data System (ADS)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-01

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O7+ ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O7+ ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  6. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  7. Design and fabrication of a perpendicular magnetic tunnel junction based nonvolatile programmable switch achieving 40% less area using shared-control transistor structure

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Natsui, M.; Mochizuki, A.; Miura, S.; Honjo, H.; Kinoshita, K.; Fukami, S.; Sato, H.; Ikeda, S.; Endoh, T.; Ohno, H.; Hanyu, T.

    2014-05-01

    A compact nonvolatile programmable switch (NVPS) using 90 nm CMOS technology together with perpendicular magnetic tunnel junction (p-MTJ) devices is fabricated for zero-standby-power field-programmable gate array. Because routing information does not change once it is programmed into an NVPS, high-speed read and write accesses are not required and a write-control transistor can be shared among all the NVPSs, which greatly simplifies structure of the NVPS. In fact, the effective area of the proposed NVPS is reduced by 40% compared to that of a conventional MTJ-based NVPS. The instant on/off behavior without external nonvolatile memory access is also demonstrated using the fabricated test chip.

  8. Novel room-temperature functional analogue and digital nanoelectronic circuits based on three-terminal ballistic junctions and planar quantum-wire transistors

    NASA Astrophysics Data System (ADS)

    Sun, J.; Wallin, D.; Brusheim, P.; Maximov, I.; Xu, H. Q.

    2008-03-01

    Three-Terminal ballistic junctions (TBJs) and planar quantum-wire transistors (QWTs) are emerging nanoelectronic devices with various novel electrical properties. In this work, we realize novel nanoelectronic analogue and digital circuits with TBJs and planar QWTs made on In0.75Ga0.25As/InP two-dimensional electron gas (2DEG) material. First we show that a single TBJ can work as a frequency mixer or a phase detector. Second, we fabricate an integrated nanostructure containing two planar QWTs, which can be used as an RS flip-flop element. Third, we make a nanoelectronic circuit by the integration of two TBJs and two planar QWTs. This circuit shows the RS flip-flop functionalities with much larger noise margins in both high and low level inputs. All measurements in this work are done at room temperature.

  9. Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-off Characteristics

    SciTech Connect

    Tschumak, E.

    2010-11-01

    The growth of cubic group III-nitrides is a direct way to eliminate polarization effects, which inherently limit the fabrication of normally-off hetero-junction field-effect transistors (HFETs) in GaN technology. HFET structures were fabricated of non-polar cubic AlGaN/GaN hetero layers grown by plasma assisted molecular beam epitaxy on free standing 3C-SiC (001). The electrical insulation of 3C-SiC was realized by Ar{sup +} implantation before c-AlGaN/GaN growth. HFETs with normally-off and normally-on characteristics were fabricated of cubic AlGaN/GaN. Capacitance-voltage characteristics of the gate contact were performed to detect the electron channel at the c-AlGaN/GaN hetero-interface.

  10. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta

  11. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm{sup 2}) and low ON-resistance (0.4 mΩ cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  12. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    NASA Astrophysics Data System (ADS)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to

  13. Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals

    NASA Astrophysics Data System (ADS)

    Lu, Shang-Chun; Mohamed, Mohamed; Zhu, Wenjuan

    2016-03-01

    Vertical hetero- and homo-junction tunnel FET (TFET) based on multi-layer black phosphorus (BP) and transition metal dichalcogenides are proposed and studied by numerical simulations employing the semi-classical density gradient quantum correction model. It is found that the vertical TFET based on BP can achieve high on-current (>200 μA μm-1) and steep subthreshold swing (average value = 24.6 mV/dec) simultaneously, due to its high mobility, direct narrow bandgap, and low dielectric constant. We also found that the on-current in vertical TFETs based on MoS2/MoSe2 hetero-junction is two orders of magnitudes higher than the one in MoS2 homo-junction TFET, due to the reduced effective bandgap in heterostructure with staggered band alignment. In addition, we present various design considerations and recommendations as well as provide a qualitative comparison with published data.

  14. Interpreting Transistor Noise

    NASA Astrophysics Data System (ADS)

    Pospieszalski, M. W.

    2010-10-01

    The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.

  15. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  16. Bipolar Disorder

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Bipolar Disorder KidsHealth > For Teens > Bipolar Disorder Print A A ... Bipolar Disorder en español Trastorno bipolar What Is Bipolar Disorder? Bipolar disorders are one of several medical conditions ...

  17. Integrated ZnO Nano-Electron-Emitter with Self-Modulated Parasitic Tunneling Field Effect Transistor at the Surface of the p-Si/ZnO Junction

    NASA Astrophysics Data System (ADS)

    Cao, Tao; Luo, Laitang; Huang, Yifeng; Ye, Bing; She, Juncong; Deng, Shaozhi; Chen, Jun; Xu, Ningsheng

    2016-09-01

    The development of high performance nano-electron-emitter arrays with well reliability still proves challenging. Here, we report a featured integrated nano-electron-emitter. The vertically aligned nano-emitter consists of two segments. The top segment is an intrinsically lightly n-type doped ZnO nano-tip, while the bottom segment is a heavily p-type doped Si nano-pillar (denoted as p-Si/ZnO nano-emitter). The anode voltage not only extracted the electron emission from the emitter apex but also induced the inter-band electron tunneling at the surface of the p-Si/ZnO nano-junction. The designed p-Si/ZnO emitter is equivalent to a ZnO nano-tip individually ballasted by a p-Si/ZnO diode and a parasitic tunneling field effect transistor (TFET) at the surface of the p-Si/ZnO junction. The parasitic TFET provides a channel for the supply of emitting electron, while the p-Si/ZnO diode is benefit for impeding the current overloading and prevent the emitters from a catastrophic breakdown. Well repeatable and stable field emission current were obtained from the p-Si/ZnO nano-emitters. High performance nano-emitters was developed using diamond-like-carbon coated p-Si/ZnO tip array (500 × 500), i.e., 178 μA (4.48 mA/cm2) at 75.7 MV/m.

  18. Integrated ZnO Nano-Electron-Emitter with Self-Modulated Parasitic Tunneling Field Effect Transistor at the Surface of the p-Si/ZnO Junction

    PubMed Central

    Cao, Tao; Luo, Laitang; Huang, Yifeng; Ye, Bing; She, Juncong; Deng, Shaozhi; Chen, Jun; Xu, Ningsheng

    2016-01-01

    The development of high performance nano-electron-emitter arrays with well reliability still proves challenging. Here, we report a featured integrated nano-electron-emitter. The vertically aligned nano-emitter consists of two segments. The top segment is an intrinsically lightly n-type doped ZnO nano-tip, while the bottom segment is a heavily p-type doped Si nano-pillar (denoted as p-Si/ZnO nano-emitter). The anode voltage not only extracted the electron emission from the emitter apex but also induced the inter-band electron tunneling at the surface of the p-Si/ZnO nano-junction. The designed p-Si/ZnO emitter is equivalent to a ZnO nano-tip individually ballasted by a p-Si/ZnO diode and a parasitic tunneling field effect transistor (TFET) at the surface of the p-Si/ZnO junction. The parasitic TFET provides a channel for the supply of emitting electron, while the p-Si/ZnO diode is benefit for impeding the current overloading and prevent the emitters from a catastrophic breakdown. Well repeatable and stable field emission current were obtained from the p-Si/ZnO nano-emitters. High performance nano-emitters was developed using diamond-like-carbon coated p-Si/ZnO tip array (500 × 500), i.e., 178 μA (4.48 mA/cm2) at 75.7 MV/m. PMID:27654068

  19. Tunneling field-effect transistor with Ge/In0.53Ga0.47As heterostructure as tunneling junction

    NASA Astrophysics Data System (ADS)

    Guo, Pengfei; Yang, Yue; Cheng, Yuanbing; Han, Genquan; Pan, Jisheng; Ivana; Zhang, Zheng; Hu, Hailong; Xiang Shen, Ze; Kean Chia, Ching; Yeo, Yee-Chia

    2013-03-01

    High quality epitaxial germanium (Ge) was successfully grown on In0.53Ga0.47As substrate using a metal-organic chemical vapor deposition tool. The valence band offset ΔEV between the Ge layer and In0.53Ga0.47As determined by high-resolution x-ray photoelectron spectroscopy was found to be 0.5 ± 0.1 eV, suggesting the Ge/In0.53Ga0.47As heterojunction has a staggered band alignment at the interface. This makes the Ge/In0.53Ga0.47As heterojunction a promising tunneling junction for application in tunneling field-effect transistor (TFET). Lateral TFET with in situ doped p+ Ge-source In0.53Ga0.47As-channel using a gate-last process was demonstrated for the first time. The temperature dependence of the TFET transfer characteristics was investigated. The TFET with gate length (LG) of 8 μm exhibits an on-state tunneling current (ION) of 380 nA/μm at VGS = VDS = 2 V. The subthreshold swing (S) at the steepest part of the transfer characteristics of this device is ˜177 mV/decade. It was found that the off-state leakage current (IOFF) was determined by the Shockley-Read-Hall generation-recombination current in the Ge-source region. The temperature dependence of ION was mainly due to the change of the band gap with temperature. Furthermore, S was found to be limited by the trap-assisted tunneling at the Ge/In0.53Ga0.47As tunneling junction. The low ION and poor S can be enhanced by improving the source/channel profile and optimizing Ge epitaxial growth process.

  20. Charge separation for bipolar transistors

    SciTech Connect

    Kosier, S.L.; Schrimpf, R.D.; Wei, A.; Chai, F. ); Nowlin, R.N. ); Fleetwood, D.M. ); DeLaus, M. ); Pease, R.L. ); Combs, W.E. )

    1993-12-01

    The role of net positive oxide trapped charge and surface recombination velocity on excess base current in BJTs is identified. Although the interaction of these two radiation-induced defects is physically complex, simple approaches for estimating these quantities from measured BJT characteristics are presented. The oxide charge is estimated using a transition voltage in the plot of excess base current vs. emitter bias. Two approaches for quantifying die effects of surface recombination velocity are described; the first measures surface recombination directly using a gated diode. The second estimates its effects using an intercept current that is easily obtained from the BJT itself. The results are compared to two-dimensional simulations and measurements made on test structures. The techniques are simple to implement and provide insight into the mechanisms and magnitudes of the radiation-induced damage in BJTs.

  1. GaInP /GaAs double heterojunction bipolar transistor with GaAs /Al0.11Ga0.89As/GaInP composite collector

    NASA Astrophysics Data System (ADS)

    Poh, Z. S.; Yow, H. K.; Houston, P. A.; Krysa, A. B.; Ong, D. S.

    2006-07-01

    GaInP /GaAs/GaInP double heterojunction bipolar transistor (DHBT) with an Al0.11Ga0.89As layer within lowly doped GaAs-GaInP composite collector was characterized. In comparison to an abrupt GaInP /GaAs/GaInP DHBT with saturation voltages in excess of 20V, current gains of 25 at high biases, and breakdown voltages in the range of 22V, the DHBT incorporating GaAs -Al0.11Ga0.89As-GaInP composite collector has demonstrated lower saturation voltages of less than 6V and high current gains of 50 without compromising the breakdown voltages of the GaInP collector. Al0.11Ga0.89As layer can thus provide an alternative design to effectively minimize the potential spike effects at the GaAs /GaInP heterojunction.

  2. Growth and characterization of NpN heterojunction bipolar transistors with In 0.03Ga 0.97N and In 0.05Ga 0.95N bases

    NASA Astrophysics Data System (ADS)

    Lochner, Zachary; Jin Kim, Hee; Choi, Suk; Lee, Yi-Che; Zhang, Yun; Shen, Shyh-Chiang; Ryou, Jae-Hyun; Dupuis, Russell D.

    2011-01-01

    The material and device characteristics of InGaN/GaN heterojunction bipolar transistors (HBTs) grown by metalorganic chemical vapor deposition are examined. Two structures with different p-In xGa 1- xN base region compositions, xIn=0.03 and 0.05, are presented in a comparative study. The higher indium content base is expected to provide improvements in device performance via its higher p-type doping efficiency and lower bulk resistivity. However, the DC gain for both devices is the same at ˜37. The tradeoffs involved with using higher indium composition in the base for NpN HBTs are investigated by atomic force microscopy, Hall-effect measurement, and device characterization.

  3. Neutral base recombination in InP /GaAsSb/InP double-heterostructure bipolar transistors: Suppression of Auger recombination in p+ GaAsSb base layers

    NASA Astrophysics Data System (ADS)

    Bolognesi, C. R.; Liu, H. G.; Tao, N.; Zhang, X.; Bagheri-Najimi, S.; Watkins, S. P.

    2005-06-01

    We report on the tradeoff between current gain β and the base sheet resistance RSH in metalorganic chemical vapor deposition-grown NpN InP /GaAs1-xSbx/InP double-heterojunction bipolar transistors (DHBTs) with heavy base carbon-doping levels resulting in hole concentrations NB ranging from 4×1019 to 12×1019/cm3. In contrast to Ga0.47In0.53As and GaAs-based transistors, which both display gain variations proportional to 1/(NB×WB)2 due to Auger recombination at high doping levels, neutral base recombination in InP /GaAsSb/InP DHBTs is not limited by Auger processes, and the measured current gain is proportional to 1/(NB×WB). We show that GaAs1-xSbx base layers offer a growing lifetime advantage over Ga0.47In0.53As with increasing doping levels. Potential explanations for the observed suppression of Auger recombination in the InP-GaAsSb system are proposed.

  4. Simple phenomenological modeling of transition-region capacitance of forward-biased p-n junction diodes and transistor diodes

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1982-01-01

    The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.

  5. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  6. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152

  7. Ultra-stable oscillator with complementary transistors

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1974-01-01

    A high frequency oscillator, having both good short and long term stability, is formed by including a piezoelectric crystal in the base circuit of a first bi-polar transistor circuit, the bi-polar transistor itself operated below its transitional frequency and having its emitter load chosen so that the input impedance, looking into the base thereof, exhibits a negative resistance in parallel with a capacitive reactance. Combined with this basic circuit is an auxiliary, complementary, second bi-polar transistor circuit of the same form with the piezoelectric crystal being common to both circuits. By this configuration small changes in quiescent current are substantially cancelled by opposite variations in the second bi-polar transistor circuit, thereby achieving from the oscillator a signal having its frequency of oscillation stable over long time periods as well as short time periods.

  8. Latch-up based bidirectional npn selector for bipolar resistance-change memory

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Moon, Dong-Il; Lu, Wei; Hwan Kim, Dae; Myong Kim, Dong; Choi, Yang-Kyu; Choi, Sung-Jin

    2013-07-01

    A vertically integrated latch-up based n-p-n bidirectional diode, which is analogous to an open-base bipolar junction transistor, is demonstrated for bipolar resistance-change memory selector application. A maximum current density of >50 MA/cm2 and a selectivity of >104 are observed at a fast switching speed of within 10 ns. The high selectivity as a consequence of the sudden latch-up process is feasible owing to the positive-feedback process initiated by impact ionization. The optimization of the turn-on voltage is comprehensively investigated by numerical device simulation, which ensures the promising potential of the latch-up based selector device.

  9. New-type silicon bipolar-pixel detector with internal amplification

    NASA Astrophysics Data System (ADS)

    Chubenko, A. P.; Karmanov, D. E.; Legotin, S. A.; Mukhamedshin, R. A.; Murashev, V. N.

    2009-12-01

    New-type silicon detector of charged particles and photons with internal amplification is considered. Bipolar npn-transistor pixel placed on a high-purity n-type silicon substrate is the functional element of the detector. The range being sensitive to ionization is a low-doped ( N˜10 cm) n region of the collector with a thickness virtually coinciding with the substrate thickness. A thin base containing one or more n emitters is formed on the surface. The current-amplification gain factor of the emitterbase junction is about 30. Detector prototypes are manufactured in the form of transistor matrices of 3×3 mm and 6×6 mm dimensions with a interpixel spacing of 50 and 100 microns. Results of testing of matrices are presented. The work is supported by the International Science and Technology Center, Project # 3024.

  10. Bipolar Disorder.

    PubMed

    Miller, Thomas H

    2016-06-01

    Bipolar disorder is a chronic mental health disorder that is frequently encountered in primary care. Many patients with depression may actually have bipolar disorder. The management of bipolar disorder requires proper diagnosis and awareness or referral for appropriate pharmacologic therapy. Patients with bipolar disorder require primary care management for comorbidities such as cardiovascular and metabolic disorders. PMID:27262007

  11. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  12. Dose rate dependence of radiation-induced lattice defects and performance degradation in npn Si bipolar transistors by 2-MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hayama, K.; Takakura, K.; Ohyama, H.; Kuboyama, S.; Simoen, E.; Mercha, A.; Claeys, C.

    2007-12-01

    Total-dose response of npn Si transistors by 2-MeV electrons is presented for different dose rates. The base current increases after irradiation, whereas the collector current decreases. Therefore, the current gain ( β) decreases by irradiation. The degradation of electrical properties by 2-MeV electrons for low dose rate is higher than that for high dose rate. Similar dose rate dependence of the radiation-induced electron trap densities is observed by deep-level transient spectroscopy (DLTS) measurements.

  13. AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasers.

    PubMed

    Xiang, Y; Reuterskiöld-Hedlund, C; Yu, X; Yang, C; Zabel, T; Hammar, M; Akram, M N

    2015-06-15

    We report on the design, fabrication and analysis of vertical-cavity surface-emitting transistor-lasers (T-VCSELs) based on the homogeneous integration of an InGaAs/GaAs VCSEL and an AlGaAs/GaAs pnp-heterojunction bipolar transistor (HBT). Epitaxial regrowth confinement, modulation doping, intracavity contacting and non-conducting mirrors are used to ensure a low-loss structure, and a variety of design variations are investigated for a proper internal biasing and current injection to ensure a wide operating range. Optimized devices show mW-range output power, mA-range base threshold current and high-temperature operation to at least 60°C with the transistor in its active mode of operation for base currents well beyond threshold. Current confinement schemes based on pnp-blocking layers or a buried tunnel junction are investigated as well as asymmetric current injection for reduced extrinsic resistances.

  14. Surface treatment effect on temperature-dependent properties of InGaP /GaAs heterobipolar transistors

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Pin; Fu, Ssu-I.; Liu, Wen-Chau; Cheng, Shiou-Ying; Tsai, Jung-Hui; Guo, Der-Feng; Lour, Wen-Shiung

    2007-02-01

    Specific treatments of the base surface of InGaP /GaAs heterojunction bipolar transistors are studied experimentally. The dual treatment method, based on the combination of ledge and sulfur passivation, shows better temperature-dependent characteristics including higher dc gain, lower saturation voltage, lower base-emitter junction turn on voltage, lower leakage current, lower collector and base current ideality factors nC and nB, and wider collector current operating regimes over the measured temperature range (300-400K). Therefore, the dual surface treatment method provides promise for high-performance electronic applications.

  15. Study of In 0.49Ga 0.51P/GaAs/In 0.49Ga 0.51P double δ-doped heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chou; Chen, Jing-Yuh; Pan, Hsi-Jen; Feng, Shun-Ching; Yu, Kuo-Hui; Liu, Wen-Chau

    1999-07-01

    A lattice-matched In 0.49Ga 0.51P/GaAs/In 0.49Ga 0.51P double δ -doped heterojunction bipolar transistor, prepared by low-pressure metal organic chemical vapor deposition (LP-MOCVD), is fabricated successfully and reported. Due to the insertion of δ -doped sheets and setback layers both at base-emitter (B-E) and base-collector (B-C) heterojunctions, the potential spikes are suppressed significantly. In addition, the electron blocking effect is removed and a dramatic improvement of current gain is obtained. A modified Ebers-Moll model is employed to study and analyse the device performances. The experimental results show that the common-emitter current gain over 210 at the collector current of 35 mA and an offset voltage ΔVCE smaller than 50 mV are obtained. Also, a lower knee-shaped voltage of 1.4 V at the collector current of 40 mA is observed. These results indicate that the device studied is a good candidate for high-speed and high-power circuit applications.

  16. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  17. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems. PMID:27258859

  18. Bipolar Disorder

    MedlinePlus

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  19. Novel InGaAs contact layer growth for hetero-junction bipolar transistors (HBTs) by using the multiple group-V source molecular beam epitaxy (MBE) system

    NASA Astrophysics Data System (ADS)

    Kadoiwa, Kaoru; Izumi, Shigekazu; Yamamoto, Yoshitsugu; Hayafuji, Norio; Sonoda, Takuji

    1999-05-01

    Dependence of layer surface morphology and electrical properties on growth conditions, growth temperature and supplying conditions of group-V sources such as solid-As and AsH 3 hydride gas, has been investigated with specially designed MBE system, including both solid-As source cell and gas source cracking cell, for highly lattice-mismatched (+4%) In 0.5Ga 0.5As layer grown on GaAs. We demonstrate that utilizing of AsH 3 hydride source enables us to obtain a superior smooth surface in comparison with utilizing solid-As source. The HAZE level for the former source is reduced to one twentieth of the latter. The advantage of gas-source MBE (GS-MBE) method (hydrogen effect) was realized as suppressing In segregation. The effective hydrogen comes from AsH 3 hydride that acts as the surfactant that controls coherent small 3D islands formation during initial growth stage. The optimized GS-MBE growth method, under AsH 3 flow rate of 3 SCCM and growth temperature of 470°C, establishes that the In xGa 1- xAs ( x=0.6) layer grown on GaAs with the surface is as smooth as the surface of GaAs substrate, and also shows the contact resistance to be 4×10 -8 Ω cm 2. This value is well-fitted for nonalloy ohmic contact by using W/Si as emitter electrodes for HBTs.

  20. John Bardeen and transistor physics

    NASA Astrophysics Data System (ADS)

    Huff, Howard R.

    2001-01-01

    John Bardeen and Walter Brattain invented the point-contact semiconductor amplifier (transistor action) in polycrystalline germanium (also observed in polycrystalline silicon) on Dec. 15, 1947, for which they received a patent on Oct. 3, 1950. Bill Shockley was not a co-patent holder on Bardeen and Brattain's point-contact semiconductor amplifier patent since Julius Lilienfeld had already received a patent in 1930 for what would have been Shockley's contribution; namely, the field-effect methodology. Shockley received patents for both his minority-carrier injection concept and junction transistor theory, however, and deservedly shared the Nobel prize with Bardeen and Brattain for his seminal contributions of injection, p-n junction theory and junction transistor theory. We will review the events leading up to the invention of Bardeen and Brattain's point-contact semiconductor amplifier during the magic month of November 17-December 16, 1947 and the invention of Shockley's junction semiconductor amplifier during his magic month of December 24, 1947-January 23, 1948. It was during the course of Bardeen and Brattain's research in November, 1947 that Bardeen also patented the essence of the MOS transistor, wherein the induced minority carriers were confined to the inversion layer enroute to the collector. C. T. Sah has described this device as a sourceless MOS transistor. Indeed, John Bardeen, co-inventor of the point-contact semiconductor amplifier and inventor of the MOS transistor, may rightly be called the father of modern electronics.

  1. Effect of 50 MeV Li 3+ ion irradiation on electrical characteristics of high speed NPN power transistor

    NASA Astrophysics Data System (ADS)

    Dinesh, C. M.; Ramani; Radhakrishna, M. C.; Dutt, R. N.; Khan, S. A.; Kanjilal, D.

    2008-04-01

    Silicon NPN overlay RF power high speed commercial bipolar junction transistors (BJTs) find applications in military, space and communication equipments. Here we report the effect of 50 MeV Li3+ ion irradiation in the fluence range 1 × 1011-1.8 × 1012 ions cm-2 on NPN power transistor. The range (R), electronic energy loss (Se), nuclear energy loss (Sn), total ionizing dose (TID) and total displacement damage (Dd) in the silicon target are calculated from TRIM Monte Carlo Code. Output resistance is 3.568 × 104 Ω for unirradiated device and it increases to 6 × 107 Ω as the fluence is increased from 1 × 1011 to 1.8 × 1012 ions cm-2. The capacitance of the emitter-base junction of the transistor decreases and dielectric loss of the emitter-base junction increases with increase in ion fluence. The built in voltage of the unirradiated sample is 0.5 V and it shifts to 0.4 V after irradiation at fluence of 1.8 × 1012 ions cm-2 and the corresponding doping density reduced to 5.758 × 1016 cm-3. The charge carrier removal rate varies linearly with the increase in ion fluence.

  2. SEMICONDUCTOR DEVICES: An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    NASA Astrophysics Data System (ADS)

    Hongbin, Pu; Lin, Cao; Jie, Ren; Zhiming, Chen; Yagong, Nan

    2010-04-01

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 μm and 0.7 μm are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively.

  3. Simulating Single-Event Upsets in Bipolar RAM's

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1986-01-01

    Simulation technique saves testing. Uses interactive version of SPICE (Simulation Program with Integrated Circuit Emphasis). Device and subcircuit models available in software used to construct macromodel for an integrated bipolar transistor. Time-dependent current generators placed inside transistor macromodel to simulate charge collection from ion track. Significant finding of experiments is standard design practice of reducing power in unaddressed bipolar RAM cell increases sensitivity of cell to single-event upsets.

  4. Calculation of the base current components and determination of their relative importance in AlGaAs/GaAs and InAlAs/InGaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Liou, J. J.

    1991-03-01

    The base current density JB is an important parameter in determining the common-emitter current gain β of heterojunction bipolar transistors (HBTs). To develop an analytical β model with which a circuit designer can quickly estimate the current gain in a HBT, it is also important to identify the dominant component of JB so that minimum computations are required. Based on heterojunction device physics, the three components of JB have been calculated, namely, the recombination current density in the base JRB, the recombination current density in the space-charge region JSCR, and the injection current density from the base to the emitter JRE, and have determined their relative importance to JB for abrupt AlGaAs/GaAs and InAlAs/InGaAs HBTs under normal bias conditions. It is found that relative importance of the three current densities depends strongly on the bias condition, strongly on the density of states NtI at the emitter-base heterointerface, but weakly on the density of trapping states NtB in the bulk of the emitter-base space-charge region. Also, JB is relatively insensitive to device makeup such as doping concentration and layer thickness. Depending on NtI and on the bias condition, either JSCR or JRE is the dominant component for AlGaAs/GaAs HBTs and either JSCR or JRB is the dominant component for InAlAs/InGaAs HBTs. Effects of base and heterojunction grading on the present findings are also addressed.

  5. Design considerations for FET-gated power transistors

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chin, S. A.

    1983-01-01

    An FET-bipolar combinational power transistor configuration (tested up to 300 V, 20 A at 100 kHz) is described. The critical parameters for integrating the chips in hybrid form are examined, and an effort to optimize the overall characteristics of the configuration is discussed. Chip considerations are examined with respect to the voltage and current rating of individual chips, the FET surge capability, the choice of triple diffused transistor or epitaxial transistor for the bipolar element, the current tailing effect, and the implementation of the bipolar transistor and an FET as single chip or separate chips. Package considerations are discussed with respect to package material and geometry, surge current capability of bipolar base terminal bonding, and power losses distribution.

  6. Bipolar Disorder

    MedlinePlus

    ... or digestive problems Problems sleeping, or wanting to sleep all of the time Feeling tired all of the time Thoughts about death and suicide Causes & Risk Factors What causes bipolar disorder? Bipolar disorder may be caused by a chemical imbalance in the brain. It sometimes runs in ...

  7. Bipolar Disorder.

    ERIC Educational Resources Information Center

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  8. A New Bipolar Imaging Device (BASIS)

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuyoshi; Nakamura, Yoshio; Matsumoto, Shigeyuki; Ohmi, Tadahiro

    1989-10-01

    A bipolar imaging device consisting of a capacitor loaded emitter follower circuit for a photo-transistor has been implemented into linear image sensors, which has capabilities of charge amplification and self-noise-reduction. The linear sensors are demonstrated experimentally to exhibit excellent performance such as a linearity in a wide dynamic range and a high sensitivity.

  9. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  10. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  11. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  12. Degradation mechanisms of current gain in NPN transistors

    NASA Astrophysics Data System (ADS)

    Li, Xing-Ji; Geng, Hong-Bin; Lan, Mu-Jie; Yang, De-Zhuang; He, Shi-Yu; Liu, Chao-Ming

    2010-06-01

    An investigation of ionization and displacement damage in silicon NPN bipolar junction transistors (BJTs) is presented. The transistors were irradiated separately with 90-keV electrons, 3-MeV protons and 40-MeV Br ions. Key parameters were measured in-situ and the change in current gain of the NPN BJTS was obtained at a fixed collector current (Ic = 1 mA). To characterise the radiation damage of NPN BJTs, the ionizing dose Di and displacement dose Dd as functions of chip depth in the NPN BJTs were calculated using the SRIM and Geant4 code for protons, electrons and Br ions, respectively. Based on the discussion of the radiation damage equation for current gain, it is clear that the current gain degradation of the NPN BJTs is sensitive to both ionization and displacement damage. The degradation mechanism of the current gain is related to the ratio of Dd/(Dd + Di) in the sensitive region given by charged particles. The irradiation particles leading to lower Dd/(Dd + Di) within the same chip depth at a given total dose would mainly produce ionization damage to the NPN BJTs. On the other hand, the charged particles causing larger Dd/(Dd + Di) at a given total dose would tend to generate displacement damage to the NPN BJTs. The Messenger-Spratt equation could be used to describe the experimental data for the latter case.

  13. Bipolar disorder

    MedlinePlus

    ... Loss of self-esteem Thoughts of death or suicide Trouble getting to sleep or sleeping too much ... with bipolar disorder are at high risk of suicide . They may use alcohol or other substances . This ...

  14. Bipolar Disorder

    MedlinePlus

    ... health professional before making a commitment. Learn More Free Booklets and Brochures Bipolar Disorder: A brochure on ... in the public domain and available for use free of charge. Citation of the NIMH is appreciated. ...

  15. Bipolar battery

    DOEpatents

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  16. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    PubMed

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  17. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    PubMed Central

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-01-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391

  18. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  19. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    PubMed

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-01-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391

  20. Modeling of single-event upset in bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1983-01-01

    The results of work done on the quantitative characterization of single-event upset (SEU) in bipolar random-access memories (RAMs) have been obtained through computer simulation of SEU in RAM cells that contain circuit models for bipolar transistors. The models include current generators that emulate the charge collected from ion tracks. The computer simulation results are compared with test data obtained from a RAM in a bipolar microprocessor chip. This methodology is applicable to other bipolar integrated circuit constructions in addition to RAM cells.

  1. A comparison of the kink effect in polysilicon thin film transistors and silicon on insulator transistors

    NASA Astrophysics Data System (ADS)

    Armstrong, G. A.; Brotherton, S. D.; Ayres, J. R.

    1996-09-01

    Polysilicon thin film transistors (TFTs) differ from conventional silicon on insulator (SOI) transistors in that the TFT exhibits a fundamental gate length dependence of the voltage at which a kink occurs in the output characteristics. This difference is shown to be caused by the peak lateral electric field being strongly dependent on the doping density in an SOI transistor, but relatively insensitive to trap distribution in a TFT. Source barrier lowering which occurs in SOI transistors is absent in a TFT, where the increase in current is the result of a field redistribution along the channel. For very short gate lengths, the TFT exhibits a small pseudo-bipolar gain. Estimates of this bipolar gain can be made by simulation of TFT characteristics with and without impact ionisation. The magnitude of the gain is shown to be approximately inversely proportional to gate length.

  2. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  3. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  4. Multimode silicon nanowire transistors.

    PubMed

    Glassner, Sebastian; Zeiner, Clemens; Periwal, Priyanka; Baron, Thierry; Bertagnolli, Emmerich; Lugstein, Alois

    2014-11-12

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  5. Bipolar disorder

    PubMed Central

    Goodwin, Frederick K.; Ghaemi, S. Nassir

    1999-01-01

    Bipolar disorder's unique combination of three characteristics - clear genetic diathesis, distinctive clinical features, early availability of an effective treatment (lithium) - explains its special place in the history of psychiatry and its contribution to the current explosive growth of neuroscience. This article looks at the state of the art in bipolar disorder from the vantage point of: (i) genetics (possible linkages on chromosomes 18 and 21q, polygenic hypothesis, research into genetic markers); (ii) diagnosis (new focus on the subjective aspects of bipolar disorder to offset the current trend of underdiagnosis due to overreliance on standardized interviews and rating scales); (iii) outcome (increase in treatment-resistant forms signaling a change in the natural history of bipolar disorder); (iv) pathophysiology (research into circadian biological rhythms and the kindling hypothesis to explain recurrence); (v) treatment (emergence of the anticonvulsants, suggested role of chronic antidepressant treatment in the development of treatment resistance); (vi) neurobiology (evaluation of regulatory function in relation to affective disturbances, role of postsynaptic second-messenger mechanisms, advances in functional neuroimaging); and (vii) psychosocial research (shedding overly dualistic theories of the past to understand the mind and brain as an entity, thus emphasizing the importance of balancing the psychopharmacological and psychotherapeutic approaches). Future progress in the understanding and treatment of bipolar disorder will rely on successful integration of the biological and psychosocial lines of investigation. PMID:22033232

  6. Impact of Junction Nonabruptness on Random-Discrete-Dopant Induced Variability in Intrinsic Channel Trigate Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Wei, Kang Liang; Liu, Xiao Yan; Du, Gang

    2013-04-01

    Using full three-dimensional (3D) technology computer-aided design (TCAD) simulations, we present a comprehensive statistical study on the random discrete dopant (RDD) induced variability in state-of-the-art intrinsic channel trigate MOSFETs. This paper is focused on the RDD variability sources that are introduced by dopant diffusion from highly doped source/drain (S/D) regions into the undoped channel region, which is referred to as junction nonabruptness (JNA). By considering a realistic lateral doping profile in the channel and evaluating the impact of JNA on the variability of performance parameters such as threshold voltage (Vth), subthreshold slope (SS), drain-induced barrier lowering (DIBL), on current (Ion), and off current (Ioff), we show that the effect of JNA can lead to substantial device variations. The nonnegligible influence of JNA puts limitations on device scaling, which is also investigated in this paper.

  7. Analysis of long-channel nanotube field-effect-transistors (NT FETs)

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides an analysis of long-channel nanotube (NT) field effect transistors (FET) from NASA's Ames Research Center. The structure of such a transistor including the electrode contact, 1D junction, and the planar junction is outlined. Also mentioned are various characteristics of a nanotube tip-equipped scanning tunnel microscope (STM).

  8. Bipolar electrochemistry.

    PubMed

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution.

  9. Types of Bipolar Disorder

    MedlinePlus

    ... Research Studies Peer Support Research WeSearchTogether Types of Bipolar Disorder There are several kinds of bipolar disorder. Each ... like an illness. What is the difference between bipolar disorder and ordinary mood swings? The three main things ...

  10. Bipolar-Battery Construction

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1988-01-01

    Bipolar batteries fabricated in continuous quasi-automated process. Components of battery configured so processing steps run sequentially. Key components of battery, bipolar plate and bipolar separator, fabricated separately and later joined together.

  11. Transistor Effect in Improperly Connected Transistors.

    ERIC Educational Resources Information Center

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  12. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  13. Comparison of the degradation effects of heavy ion, electron, and cobalt-60 irradiation in an advanced bipolar process

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Goben, Charles A.; Berndt, Dale F.

    1988-01-01

    Experimental measurements are reported of the degradation effects of high-energy particles (heavy Br ions and electrons) and Co-60 gamma-rays on the current gain of minimum-geometry bipolar transistors made from an advanced process. The data clearly illustrate the total-ionizing-dose vs particle-fluence behavior of this bipolar transistor produced by an advanced process. In particular, bulk damage from Co-60 gamma rays in bipolar transistors (base transport factor degradation) and surface damage in bipolar transistors from ionizing radiation (emitter-efficiency degradation) have been observed. The true equivalence between various types of radiation for this process technology has been determined on the basis of damage from the log K1 intercepts.

  14. A simplified boron diffusion for preparing the silicon single crystal p-n junction as an educational device

    NASA Astrophysics Data System (ADS)

    Shiota, Koki; Kai, Kazuho; Nagaoka, Shiro; Tsuji, Takuto; Wakahara, Akihiro; Rusop, Mohamad

    2016-07-01

    The educational method which is including designing, making, and evaluating actual semiconductor devices with learning the theory is one of the best way to obtain the fundamental understanding of the device physics and to cultivate the ability to make unique ideas using the knowledge in the semiconductor device. In this paper, the simplified Boron thermal diffusion process using Sol-Gel material under normal air environment was proposed based on simple hypothesis and the feasibility of the reproducibility and reliability were investigated to simplify the diffusion process for making the educational devices, such as p-n junction, bipolar and pMOS devices. As the result, this method was successfully achieved making p+ region on the surface of the n-type silicon substrates with good reproducibility. And good rectification property of the p-n junctions was obtained successfully. This result indicates that there is a possibility to apply on the process making pMOS or bipolar transistors. It suggests that there is a variety of the possibility of the applications in the educational field to foster an imagination of new devices.

  15. Ionization damage in NPN transistors caused by lower energy electrons

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Xiao, Jingdong; Liu, Chaoming; Zhao, Zhiming; Geng, Hongbin; Lan, Mujie; Yang, Dezhuang; He, Shiyu

    2010-09-01

    Electrical degradation of two type NPN bipolar junction transistors (BJTs) with different emitter sizes was examined under exposures of 70 and 110 keV electrons. Base and collector currents as a function of base-emitter voltage were in-situ measured during exposure. Experimental results show that both the 70 and 110 keV electrons produce an evident ionization damage to the NPN BJTs. With increasing fluence, collector currents of the NPN BJTs hardly change in the whole range of base-emitter voltage from 0 to 1.2 V, while base currents increase in a gradually mitigative trend. Base currents vary more at lower base-emitter voltages than at higher ones for a given fluence. The change in the reciprocal of current gain at a fixed base-emitter voltage of 0.65 V increases non-linearly at lower fluences and tends to be gradually saturated at higher fluences. Sensitivity to ionization damage increases for BJTs with an emitter having a larger perimeter-to-area ratio.

  16. Switching Transistor

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  17. The growth and characterization of group III-nitride transistor devices grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wong, Michael Ming

    The InAlGaN, or III-nitride, material system has received much interest from the research community. A direct wide bandgap semiconductor, GaN offers a high breakdown field (>3 x 106 V/cm) due to its large bandgap energy of 3.4 eV, high electron saturation velocity (1.5 x 10 7 cm/s, predicted peak up to 2.7 x 107 cm/s), good thermal conductivity (≥1.7 W/cm K), and reasonable mobility (800 cm 2/V s). In an AlGaN/GaN heterostructure, the formation of a two-dimensional electron gas (2DEG) leads to a higher electron mobility (2000 cm2/V s) and a high sheet density (1--5 x 1013 cm -2). This makes transistors based on the III-nitride material system ideal for high-temperature, high-power, and high-frequency applications. Two such transistors include the heterojunction field-effect transistor (HFET) and bipolar junction transistor (BJT), which includes the heterojunction bipolar transistor (HBT). Both HFETs and HBTs were studied, and the epitaxial heterostructures were grown by the metalorganic chemical vapor deposition (MOCVD) technique. The MOCVD process and system are described, along with the growth details. As material characterization is important for the optimization of growth, several of the techniques used are discussed. An extensive study to improve the performance of AlGaN/GaN HFETs is detailed. Through the use of a delta-doped, binary barrier novel device structure, the highest reported maximum drain current and transconductance is reported: IDSmax = 1.82 A/mm and gm = 331 mS/mm. The device also exhibits excellent RF characteristics. HBTs based on the III-nitride material system face a more difficult challenge associated with p-type material. Development of HBTs is still in the early stages, although there are reports of working devices. The gain is still below its potential, but many of the issues have been identified. Two novel structures are reported for the first time, a GaN/InGaN/GaN pnp HBT and a AlGaN/GaN npn graded-base and collector-up HBT. The

  18. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  19. Principles of an atomtronic transistor

    NASA Astrophysics Data System (ADS)

    Caliga, Seth C.; Straatsma, Cameron J. E.; Zozulya, Alex A.; Anderson, Dana Z.

    2016-01-01

    A semiclassical formalism is used to investigate the transistor-like behavior of ultracold atoms in a triple-well potential. Atom current flows from the source well, held at fixed chemical potential and temperature, into an empty drain well. In steady-state, the gate well located between the source and drain is shown to acquire a well-defined chemical potential and temperature, which are controlled by the relative height of the barriers separating the three wells. It is shown that the gate chemical potential can exceed that of the source and have a lower temperature. In electronics terminology, the source-gate junction can be reverse-biased. As a result, the device exhibits regimes of negative resistance and transresistance, indicating the presence of gain. Given an external current input to the gate, transistor-like behavior is characterized both in terms of the current gain, which can be greater than unity, and the power output of the device.

  20. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  1. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  2. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He

    2016-09-01

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  3. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties. PMID:25554028

  4. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  5. Nutrition and Bipolar Depression.

    PubMed

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder.

  6. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    NASA Astrophysics Data System (ADS)

    Li, Ming-Yang; Shi, Yumeng; Cheng, Chia-Chin; Lu, Li-Syuan; Lin, Yung-Chang; Tang, Hao-Lin; Tsai, Meng-Lin; Chu, Chih-Wei; Wei, Kung-Hwa; He-Hau, Jr.; Chang, Wen-Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-07-01

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

  7. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  8. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  9. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  10. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  11. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  12. A device model for the tandem junction solar cell

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Chiang, S. Y.; Carbajal, B. G.

    1979-01-01

    A conceptual device model has been developed to explain operation of the tandem junction cell (TJC) when back contacts only are used. Operation and parameters of the cell are explained by transistor action. Experimental observations are presented which confirm that current is collected for carrier generation in the front uncontacted n(plus) region. The model should be useful as a guideline to optimize the TJC by application of transistor design principles.

  13. A transistors-based, bidirectional flowmeter for neonatal ventilation: design and experimental characterization.

    PubMed

    Giorgino, M; Morbidoni, G; Tamilia, E; Taffoni, F; Formica, D; Schena, E

    2014-01-01

    A bidirectional, low cost flowmeter for neonatal artificial ventilation, suitable for application in mono-patient breathing circuits, is described here. The sensing element consists of two nominally identical bipolar junction transistors employed as hot bodies. The sensor working principle is based on the convective heat transfer between the transistors, heated by Joule phenomenon, and the colder hitting fluid which represents the measurand. The proposed design allows the sensor to discriminate flow direction. Static calibration has been carried out in a range of flowrate values (from -8 L·min(-1) up to +8 L L·min(-1)) covering the ones employed in neonatal ventilation, at different pipe diameters (ie., 10 mm and 30 mm) and collector currents (i.e., 500 mA, 300 mA, and 100 mA) in order to assess the influence of these two parameters on sensor's response. Results show that the configuration with a pipe diameter of 10 mm at the highest collector current guarantees the highest sensitivity (i.e., 763 mV/Lmin1 at low flowrate ± 1 L-min(-1)) and ensures the minimum dead space (2 mL vs 18 mL for 30 mm of diameter). On the other hand, the 30 mm pipe diameter allows extending the range of measurement (up to ±6 L-min 1 vs ±3.5 L· min(-1) at 10 mm), and improving both the discrimination threshold (<;0.1 L·min-(1)) and the symmetry of response. These characteristics together with the low dead space and low cost foster its application to neonatal ventilation. PMID:25570406

  14. Transport properties of Nb/InAs(2DEG)/Nb Josephson field-effect transistors

    NASA Astrophysics Data System (ADS)

    Richter, A.; Koch, M.; Matsuyama, T.; Merkt, U.

    1999-11-01

    We investigate transport properties of mesoscopic semiconductor-superconductor weak links. The superconducting Nb electrodes of our junctions are coupled by the two-dimensional electron gas of an InAs heterostructure grown on a GaAs substrate. We report on the properties of Josephson field-effect transistors utilizing these junctions.

  15. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    PubMed

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology.

  16. Excellent scalability including self-heating phenomena of vertical-channel field-effect-diode type capacitor-less one transistor dynamic random access memory cell

    NASA Astrophysics Data System (ADS)

    Imamoto, Takuya; Endoh, Tetsuo

    2014-01-01

    The scalability study and the impact of the self-heating effect (SHE) on memory operation of the bulk vertical-channel field effect diode (FED) type capacitorless one transistor (1T) dynamic random access memory (DRAM) cell are investigated via device simulator for the first time. The vertical-channel FED type 1T-DRAM cell shows the excellent hold characteristics (100 ms at 358 K of ambient temperature) with large enough read current margin (1 µA/cell) even when silicon pillar diameter (D) is scaled down from 20 to 12 nm. It is also shown that by employing the vertical-channel FED type, maximum lattice temperature in the memory cell due to SHE (T_{\\text{L}}^{\\text{Max}}) can be suppressed to a negligible small value and only reach 300.6 from 300 K ambient temperature due to the low lateral electric field, while the vertical-channel bipolar junction transistor (BJT) type 1T-DRAM shows significant SHE (T_{\\text{L}}^{\\text{Max}} = 330.6 K). Moreover, this excellent thermal characteristic can be maintained even when D is scaled down from 20 to 12 nm.

  17. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  18. Schottky source/drain germanium-based metal-oxide-semiconductor field-effect transistors with self-aligned NiGe/Ge junction and aggressively scaled high-k gate stack

    NASA Astrophysics Data System (ADS)

    Hosoi, Takuji; Minoura, Yuya; Asahara, Ryohei; Oka, Hiroshi; Shimura, Takayoshi; Watanabe, Heiji

    2015-12-01

    Schottky source/drain (S/D) Ge-based metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated by combining high permittivity (high-k) gate stacks with ultrathin AlOx interlayers and Fermi level depinning process by means of phosphorous ion implantation into NiGe/Ge contacts. Improved thermal stability of the metal/high-k/Ge stacks enabled self-aligned integration scheme for Schottky S/D complementary MOS applications. Significantly reduced parasitic resistance and aggressively scaled high-k gate stacks with sub-1-nm equivalent oxide thickness were demonstrated for both p- and n-channel Schottky Ge-FETs with the proposed combined technology.

  19. Bipolar Disorder, Bipolar Depression and Comorbid Illness.

    PubMed

    Manning, J Sloan

    2015-06-01

    There is a substantial need for the early recognition and treatment of the psychiatric and medical comorbidities of bipolar disorder in primary care. If comorbid conditions are recognized and treated, serious adverse health outcomes may be averted, including substantial morbidity and mortality. PMID:26172635

  20. Bipolar Disorder, Bipolar Depression and Comorbid Illness.

    PubMed

    Manning, J Sloan

    2015-06-01

    There is a substantial need for the early recognition and treatment of the psychiatric and medical comorbidities of bipolar disorder in primary care. If comorbid conditions are recognized and treated, serious adverse health outcomes may be averted, including substantial morbidity and mortality.

  1. Development and fabrication of an augmented power transistor

    NASA Technical Reports Server (NTRS)

    Geisler, M. J.; Hill, F. E.; Ostop, J. A.

    1983-01-01

    The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.

  2. Josephson Junctions Help Measure Resonance And Dispersion

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid H. S.; Mcgrath, William R.; Bumble, Bruce; Leduc, Henry G.

    1994-01-01

    Electrical characteristics of superconducting microstrip transmission lines measured at millimeter and submillimeter wavelengths. Submicron Josephson (super-conductor/insulator/superconductor) junctions used as both voltage-controlled oscillators and detectors to measure frequencies (in range of hundreds of gigahertz) of high-order resonant electromagnetic modes of superconducting microstrip transmission-line resonators. This oscillator/detector approach similar to vacuum-tube grid dip meters and transistor dip meters used to probe resonances at much lower frequencies.

  3. Calculating drain delay in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Coffie, R.

    2015-12-01

    An expression for the signal delay (drain delay) associated with electrons traveling through the gate-drain depletion region has been obtained for nonuniform electron velocity. Due to the presence of the gate metal, the signal delay through the gate-drain depletion region was shown to be larger than the signal delay in the base-collector depletion region of a bipolar transistor when equal depletion lengths and velocity profiles were assumed. Drain delay is also shown to be larger in transistors with field plates (independent of field plate connection) compared to transistors without field plates when equal depletion lengths and velocity profiles were assumed. For the case of constant velocity, two expressions for the proportionality constant relating drain delay and electron transit time across the depletion were obtained.

  4. Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Kust, T. S.; Krampit, M. A.

    2016-08-01

    Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).

  5. Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors

    SciTech Connect

    Tolbert, Leon M; Huque, Mohammad A; Blalock, Benjamin J; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimising system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8--m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  6. Current-Induced Transistor Sensorics with Electrogenic Cells.

    PubMed

    Fromherz, Peter

    2016-04-25

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand-activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  7. Current-Induced Transistor Sensorics with Electrogenic Cells

    PubMed Central

    Fromherz, Peter

    2016-01-01

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627

  8. Simulation of ultra thin film SOI transistors using a non-local ballistic model for impact ionisation

    NASA Astrophysics Data System (ADS)

    Armstrong, G. A.; French, W. D.

    1992-12-01

    To model bipolar snapback in thin film SOI transistors accurately, it is necessary to employ a non-local model of impact ionisation. Such a model, based on the "Lucky electron" theory, has been incorporated in a two-dimensional device simulator. Accurate prediction of bipolar holding voltage has been obtained for SOI transistors with sub-micron gate lengths. The model has been applied to analyse separately the effects of both lightly doped source and lightly doped drain in maximising the holding voltage. The advantage of using ultra thin highly doped SOI films in conjunction with a lightly doped drain is discussed.

  9. Design considerations for the Tandem Junction Solar Cell

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Carbajal, B. G.; Hardy, R. W.

    1979-01-01

    Structure and operation of the tandem junction cell (TJC) are described. The impact of using only back contacts is discussed. A model is presented which explains operation of the TJC in terms of transistor action. The model is applied to predict TJC performance as a function of physical parameters.

  10. Soft switch-avalanche IGBT convertor. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Chen, K.; Stuart, T. A.

    1990-01-01

    A full bridge dc-dc converter using a zero voltage and zero current switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than those previously reported for this device. Experimental results are included for a 1.5 kW, 100 kHz converter with 94 percent efficiency.

  11. Lightweight bipolar storage battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  12. Bipolar Affective Disorder and Migraine

    PubMed Central

    Engmann, Birk

    2012-01-01

    This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet. PMID:22649454

  13. Copper oxide transistor on copper wire for e-textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Meyyappan, M.

    2011-05-01

    A Cu2O-based field effect transistor was fabricated on Cu wire. Thermal oxidation of Cu forms Cu-Cu2O core-shell structure, where the metal-semiconductor Schottky junction was used as a gate barrier with Pt Ohmic contacts for source and drain. The device was coated with polydimethylsiloxane (PDMS) to protect from contamination and demonstrated as a humidity sensor. The cylindrical structure of the Cu wire and the transistor function enable embedding of simple circuits into textile which can potentially offer smart textile for wearable computing, environmental sensing, and monitoring of human vital signs.

  14. [Neuropsychology of bipolar disorders].

    PubMed

    Rathgeber, Katrin; Gauggel, Siegfried

    2006-03-01

    In this article the contribution of neuropsychological research for a better understanding of the psychopathology of mood disorders is reviewed. First, the broad spectrum of bipolar disorders is described. Second, a selective review of important results of neuropsychological studies with patients with mood disorders is presented. Although several methodological problems limit the interpretation of the findings, there is evidence that patients with a bipolar disorder show a consistent impairment in attention, memory/learning and executive functions. The cognitive deficits are still visible during clinical recovery (euthymia) and closely associated with psychosocial limitation in daily life. Finally, the impact of neuropsychological findings is considered in relation to assessment, treatment and prognosis.

  15. Bipolar battery construction

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  16. Room temperature operational single electron transistor fabricated by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Karre, P. Santosh Kumar; Bergstrom, Paul L.; Mallick, Govind; Karna, Shashi P.

    2007-07-01

    We present the fabrication and room temperature operation of single electron transistors using 8nm tungsten islands deposited by focused ion beam deposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF, giving a charging energy of 160.6meV.

  17. Polyphosphonium‐based bipolar membranes for rectification of ionic currents

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2013-01-01

    Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e.g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules. PMID:24400035

  18. Genetics of bipolar disorder

    PubMed Central

    Craddock, N.; Jones, I.

    1999-01-01

    Bipolar disorder (also known as manic depressive illness) is a complex genetic disorder in which the core feature is pathological disturbance in mood (affect) ranging from extreme elation, or mania, to severe depression usually accompanied by disturbances in thinking and behaviour. The lifetime prevalence of 1% is similar in males and females and family, twin, and adoption studies provide robust evidence for a major genetic contribution to risk. There are methodological impediments to precise quantification, but the approximate lifetime risk of bipolar disorder in relatives of a bipolar proband are: monozygotic co-twin 40-70%; first degree relative 5-10%; unrelated person 0.5-1.5%. Occasional families may exist in which a single gene plays the major role in determining susceptibility, but the majority of bipolar disorder involves the interaction of multiple genes (epistasis) or more complex genetic mechanisms (such as dynamic mutation or imprinting). Molecular genetic positional and candidate gene approaches are being used for the genetic dissection of bipolar disorder. No gene has yet been identified but promising findings are emerging. Regions of interest identified in linkage studies include 4p16, 12q23-q24, 16p13, 21q22, and Xq24-q26. Chromosome 18 is also of interest but the findings are confusing with up to three possible regions implicated. To date most candidate gene studies have focused on neurotransmitter systems influenced by medication used in clinical management of the disorder but no robust positive findings have yet emerged. It is, however, almost certain that over the next few years bipolar susceptibility genes will be identified. This will have a major impact on our understanding of disease pathophysiology and will provide important opportunities to investigate the interaction between genetic and environmental factors involved in pathogenesis. This is likely to lead to major improvements in treatment and patient care but will also raise important

  19. Application of Silicon Selective Epitaxial Growth and Chemo-Mechanical Polishing to Bipolar and Soi Mosfet Devices.

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Tan

    1994-01-01

    Polished Epitaxy, or the combination of silicon Selective Epitaxial Growth and Chemo-Mechanical Polishing, provides new flexibility in process and device design, including optimized isolation, planar active-area definition, low-capacitance contacts, and SOI thin films. In this work, Polished Epitaxy has been developed with particular effort on overcoming junction leakage problems widely reported in devices fabricated in similar processes. It was found that in addition to careful surface preparation and defect control in the selective epitaxy process, issues such as sidewall orientation, junction passivation, crystal annealing, and surface damage removal were equally important and needed to be addressed. Coupled with the proper processing steps, Polished Epitaxy was able to deliver material of comparable quality to bulk silicon, suitable for device applications. By growing epitaxy laterally over an oxide step followed by polishing, a pedestal structure was created in which a thin film of single-crystal silicon was formed over oxide. Serving as the extrinsic base contact to a T-Pedestal bipolar transistor device, this pedestal helped minimize the parasitic extrinsic-base-collector overlap capacitance. The cut-off frequency (f_ {T}) in a device with a 1.0-mu m wide emitter stripe was found to improve from 17GHz to 22GHz when the contact overlap was reduced from a more conventional, larger size of 1.0 mu m to 0.2 mum. It is expected that the high-frequency performance of this structure can still be improved further in an optimized process with reduced emitter and collector resistances. The same pedestal structure was applied to a Pedestal -SOI (Silicon-On-Insulator) MOSFET device concept. At one extreme, a conventional bulk MOSFET structure is obtained when the pedestal is not utilized; quasi-SOI occurs when the drain and part of the channel overlap with the pedestal over buried oxide; at the other extreme, complete-SOI behavior results when source, channel, and drain

  20. From The Lab to The Fab: Transistors to Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Huff, Howard R.

    2003-09-01

    Transistor action was experimentally observed by John Bardeen and Walter Brattain in n-type polycrystalline germanium on December 16, 1947 (and subsequently polycrystalline silicon) as a result of the judicious placement of gold-plated probe tips in nearby single crystal grains of the polycrystalline material (i.e., the point-contact semiconductor amplifier, often referred to as the point-contact transistor).The device configuration exploited the inversion layer as the channel through which most of the emitted (minority) carriers were transported from the emitter to the collector. The point-contact transistor was manufactured for ten years starting in 1951 by the Western Electric Division of AT&T. The a priori tuning of the point-contact transistor parameters, however, was not simple inasmuch as the device was dependent on the detailed surface structure and, therefore, very sensitive to humidity and temperature as well as exhibiting high noise levels. Accordingly, the devices differed significantly in their characteristics and electrical instabilities leading to "burnout" were not uncommon. With the implementation of crystalline semiconductor materials in the early 1950s, however, p-n junction (bulk) transistors began replacing the point-contact transistor, silicon began replacing germanium and the transfer of transistor technology from the lab to the lab accelerated. We shall review the historical route by which single crystalline materials were developed and the accompanying methodologies of transistor fabrication, leading to the onset of the Integrated Circuit (IC) era. Finally, highlights of the early years of the IC era will be reviewed from the 256 bit through the 4M DRAM. Elements of IC scaling and the role of Moore's Law in setting the parameters by which the IC industry's growth was monitored will be discussed.

  1. SEMICONDUCTOR DEVICES: Humidity sensitive organic field effect transistor

    NASA Astrophysics Data System (ADS)

    Murtaza, I.; Karimov, Kh S.; Ahmad, Zubair; Qazi, I.; Mahroof-Tahir, M.; Khan, T. A.; Amin, T.

    2010-05-01

    This paper reports the experimental results for the humidity dependent properties of an organic field effect transistor. The organic field effect transistor was fabricated on thoroughly cleaned glass substrate, in which the junction between the metal gate and the organic channel plays the role of gate dielectric. Thin films of organic semiconductor copper phthalocynanine (CuPc) and semitransparent Al were deposited in sequence by vacuum thermal evaporation on the glass substrate with preliminarily deposited Ag source and drain electrodes. The output and transfer characteristics of the fabricated device were performed. The effect of humidity on the drain current, drain current-drain voltage relationship, and threshold voltage was investigated. It was observed that humidity has a strong effect on the characteristics of the organic field effect transistor.

  2. Physics-based stability analysis of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Steeneken, P. G.; Boksteen, B. K.; Heringa, A.; Scholten, A. J.; Schmitz, J.; Hueting, R. J. E.

    2015-11-01

    In this work, a physics-based model is derived based on a linearization procedure for investigating the electrical, thermal and electro-thermal instability of power metal-oxide-semiconductor (MOS) transistors. The proposed model can be easily interfaced with a circuit or device simulator to perform a failure analysis, making it particularly useful for power transistors. Furthermore, it allows mapping the failure points on a three-dimensional (3D) space defined by the gate-width normalized drain current, drain voltage and junction temperature. This leads to the definition of the Safe Operating Volume (SOV), a powerful frame work for making failure predictions and determining the main root of instability (electrical, thermal or electro-thermal) in different bias and operating conditions. A comparison between the modeled and the measured SOV of silicon-on-insulator (SOI) LDMOS transistors is reported to support the validity of the proposed stability analysis.

  3. Noise characteristics of single-walled carbon nanotube network transistors

    NASA Astrophysics Data System (ADS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  4. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors. PMID:21828739

  5. Single-ZnO-Nanobelt-Based Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Fan; Xu, Zheng; Cao, Shuo; Qiu, Kang-Sheng; Tang, Jing; Zhang, Xi-Tian; Xu, Xiu-Lai

    2014-06-01

    We fabricate single electron transistors based on a single ZnO nanobelt using standard micro-fabrication techniques. The transport properties of the devices are characterized at room temperature and at low temperature (4.2 K). At room temperature, the source-drain current increases linearly as the bias voltage increases, indicating a good ohmic contact in the transistors. At 4.2 K, a Coulomb blockade regime is observed up to a bias voltage of a few millivolts. With scanning the back gate voltage, Coulomb oscillations can be clearly resolved with a period around 1 V. From the oscillations, the charging energy for the single electron transistor is calculated to be about 10 meV, which suggests that confined quantum dots exist with sizes around 35 nm in diameter. The irregular Coulomb diamonds are observed due to the multi-tunneling junctions between dots in the nanobelt.

  6. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  7. Black Phosphorus RF Transistor

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wang, Xiaomu; Xia, Fengnian; Wang, Luhao; Jiang, Hao; Xia, Qiangfei; Chin, Mattew L.; Dubey, Madan; Han, Shu-Jen

    2015-03-01

    Few-layer and thin film form of layered black phosphorus (BP) has recently emerged as a promising material for applications in high performance thin film electronics and infrared optoelectronics. Layered BP offers a ~ 0.3eV bandgap and high mobility, leading to transistor devices with decent on/off ratio and high on-state current density. Here, we demonstrate the GHz frequency operation of black phosphorus field-effect transistor for the first time. BP transistors demonstrated here show excellent current saturation with an on-off ratio exceeding 2 × 103. The S-parameter characterization is performed for the first time on black phosphorus transistors, giving a 12 GHz short-circuit current-gain cut-off frequency and 20 GHz maximum oscillation frequency in 300 nm channel length devices. A current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm are achieved for hole conductions. The results reveal the promising potential of black phosphorus transistors for enabling the next generation thin film transistor technology that can operate in the multi-GHz frequency range and beyond.

  8. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2004-02-24

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  9. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  10. A comparison of radiation damage in transistors from cobalt-60 gamma rays and 2.2 MeV electrons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Gauthier, M. K.

    1982-01-01

    The total ionizing dose response of ten bipolar transistor types has been measured using Co-60 gamma rays and 2.2 MeV electrons from exposure levels of 750, 1500, and 3000 Gy(Si). Gain measurements were made for a range of collector-emitter voltages and collector currents.

  11. Preventing Simultaneous Conduction In Switching Transistors

    NASA Technical Reports Server (NTRS)

    Mclyman, William T.

    1990-01-01

    High voltage spikes and electromagnetic interference suppressed. Power-supply circuit including two switching transistors easily modified to prevent simultaneous conduction by both transistors during switching intervals. Diode connected between collector of each transistor and driving circuit for opposite transistor suppresses driving signal to transistor being turned on until transistor being turned off ceases to carry current.

  12. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  13. Bipolar and unipolar depression.

    PubMed

    Rogers, Jonathan; Agius, Mark

    2012-09-01

    Since Kraepelin grouped affective disorders under the title of 'manic-depressive insanity', there has been controversy over whether the bipolar and unipolar entities within this are distinct affective disorders or whether they are merely two ends of an affective continuum. In order to bring some clarity and goal-posts to this argument, we define the criteria that must be fulfilled by diseases in order to be considered as part of a spectrum. We analyse bipolar disorder and major depressive disorder with respect to these criteria and find the model fits in many respects but fails to account for either the poor correlation in severity of manic and depressive symptoms or for the apparent discontinuity in the distribution of familial mania. A one-dimensional spectrum is thus too simple and a two-dimensional approach is required; this also fits much better with our current understanding of the genetic picture.

  14. Epilepsy and bipolar disorder.

    PubMed

    Knott, Sarah; Forty, Liz; Craddock, Nick; Thomas, Rhys H

    2015-11-01

    It is well recognized that mood disorders and epilepsy commonly co-occur. Despite this, our knowledge regarding the relationship between epilepsy and bipolar disorder is limited. Several shared features between the two disorders, such as their episodic nature and potential to run a chronic course, and the efficacy of some antiepileptic medications in the prophylaxis of both disorders, are often cited as evidence of possible shared underlying pathophysiology. The present paper aims to review the bidirectional associations between epilepsy and bipolar disorder, with a focus on epidemiological links, evidence for shared etiology, and the impact of these disorders on both the individual and wider society. Better recognition and understanding of these two complex disorders, along with an integrated clinical approach, are crucial for improved evaluation and management of comorbid epilepsy and mood disorders.

  15. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single

  16. [Creativity and bipolar disorder].

    PubMed

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  17. Bipolar Disorder in Children and Teens

    MedlinePlus

    ... is in crisis. What do I do? Share Bipolar Disorder in Children and Teens Download PDF Download ePub ... brochure will give you more information. What is bipolar disorder? Bipolar disorder is a serious brain illness. It ...

  18. Variable Temperature High-Frequency Response of Heterostructure Transistors

    NASA Astrophysics Data System (ADS)

    Laskar, Joy

    1992-01-01

    The development of high performance heterostructure transistors is essential for emerging opto-electronic integrated circuits (OEICs) and monolithic microwave integrated circuits (MMICs). Applications for OEICs and MMICs include the rapidly growing telecommunications and personal communications markets. The key to successful OEIC and MMIC chip sets is the development of high performance, cost-effective technologies. In this work, several different transistor structures are investigated to determine the potential for high speed performance and the physical mechanisms controlling the ultimate device operation. A cryogenic vacuum microwave measurement system has been developed to study the high speed operation of modulation doped field-effect transistors (MODFETs), doped channel metal insulator field-effect transistors (MISFETs), and metal semiconductor field-effect transistors (MESFETs). This study has concluded that the high field velocity and not the low field mobility is what controls high frequency operation of GaAs based field-effect transistors. Both Al_{rm x} Ga_{rm 1-x}As/GaAs and InP/In_{rm y}Ga _{rm 1-y}As heterostructure bipolar transistors (HBTs) have also been studied at reduced lattice temperatures to understand the role of diffusive transport in the Al_{rm x} Ga_{rm 1-x}As/GaAs HBT and nonequilibrium transport in the InP/In _{rm y}Ga_ {rm 1-y}As HBT. It is shown that drift/diffusion formulation must be modified to accurately estimate the base delay time in the conventional Al _{rm x}Ga_ {rm 1-x}As/GaAs HBT. The reduced lattice temperature operation of the InP/In_ {rm y}Ga_{rm 1-y}As HBT demonstrates extreme nonequilibrium transport in the neutral base and collector space charge region with current gain cut-off frequency exceeding 300 GHz, which is the fastest reported transistor to date. Finally, the MODFET has been investigated as a three-terminal negative differential resistance (NDR) transistor. The existence of real space transfer is confirmed by

  19. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  20. Fin width and height dependence of bipolar amplification in bulk FinFETs submitted to heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Ting; Chen, Shu-Ming; Chen, Jian-Jun; Huang, Peng-Cheng

    2015-11-01

    FinFET technologies are becoming the mainstream process as technology scales down. Based on a 28-nm bulk p-FinFET device, we have investigated the fin width and height dependence of bipolar amplification for heavy-ion-irradiated FinFETs by 3D TCAD numerical simulation. Simulation results show that due to a well bipolar conduction mechanism rather than a channel (fin) conduction path, the transistors with narrower fins exhibit a diminished bipolar amplification effect, while the fin height presents a trivial effect on the bipolar amplification and charge collection. The results also indicate that the single event transient (SET) pulse width can be mitigated about 35% at least by optimizing the ratio of fin width and height, which can provide guidance for radiation-hardened applications in bulk FinFET technology. Project supported by the National Natural Science of China (Grant No. 61376109).

  1. Carrier injection dynamics in heterojunction solar cells with bipolar molecule

    SciTech Connect

    Takahashi, Yosuke; Yonezawa, Kouhei; Yasuda, Takeshi E-mail: moritomo.yutaka.gf@u.tsukuba.ac.jp; Moritomo, Yutaka E-mail: moritomo.yutaka.gf@u.tsukuba.ac.jp

    2015-03-23

    A boron subphthalocyanine chloride (SubPc) is a bipolar molecule and is used in hetero-junction organic solar cells. Here, we investigated the carrier injection dynamics from the donor α-sexithiophene (6T) or acceptor C{sub 60} layers to the bipolar SubPc layer by means of the femtosecond time-resolved spectroscopy. We observed gradual increase of the SubPc{sup –} (SubPc{sup +}) species within ≈300 ps. The increases are interpreted in terms of the exciton diffusion within the 6T (C{sub 60}) layer and subsequent electron (hole) injection at the interface. In 6T/SubPc heterojunction, the electron injection is observed even at 80 K. The robust electron injection is ascribed to the efficient charge separation within the 6T layer under photo exciation at 400 nm.

  2. An Electrochromic Bipolar Membrane Diode.

    PubMed

    Malti, Abdellah; Gabrielsson, Erik O; Crispin, Xavier; Berggren, Magnus

    2015-07-01

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the device's bistability. Such devices can be made from solution-processable materials.

  3. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔVth ˜ 15 V) and a long retention time (>105 s). The magnitude of ΔVth depended on both P/E voltages and the bias voltage (VDS): ΔVth was a cubic function to VP/E and linearly depended on VDS. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  4. VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR

    DOEpatents

    Scheele, P.F.

    1958-09-16

    This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.

  5. Tobacco Use in Bipolar Disorder

    PubMed Central

    Thomson, Daniel; Berk, Michael; Dodd, Seetal; Rapado-Castro, Marta; Quirk, Shae E.; Ellegaard, Pernille K.; Berk, Lesley; Dean, Olivia M.

    2015-01-01

    Tobacco use in mental health in general and bipolar disorder in particular remains disproportionally common, despite declining smoking rates in the community. Furthermore, interactions between tobacco use and mental health have been shown, indicating the outcomes for those with mental health disorders are impacted by tobacco use. Factors need to be explored and addressed to improve outcomes for those with these disorders and target specific interventions for people with psychiatric illness to cease tobacco smoking. In the context of bipolar disorder, this review explores; the effects of tobacco smoking on symptoms, quality of life, suicidal behaviour, the biological interactions between tobacco use and bipolar disorder, the interactions between tobacco smoking and psychiatric medications, rates and factors surrounding tobacco smoking cessation in bipolar disorder and suggests potential directions for research and clinical translation. The importance of this review is to bring together the current understanding of tobacco use in bipolar disorder to highlight the need for specific intervention. PMID:25912533

  6. Accelerating the life of transistors

    NASA Astrophysics Data System (ADS)

    Haochun, Qi; Changzhi, Lü; Xiaoling, Zhang; Xuesong, Xie

    2013-06-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 104 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 103. Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

  7. Analyses of Transistor Punchthrough Failures

    NASA Technical Reports Server (NTRS)

    Nicolas, David P.

    1999-01-01

    The failure of two transistors in the Altitude Switch Assembly for the Solid Rocket Booster followed by two additional failures a year later presented a challenge to failure analysts. These devices had successfully worked for many years on numerous missions. There was no history of failures with this type of device. Extensive checks of the test procedures gave no indication for a source of the cause. The devices were manufactured more than twenty years ago and failure information on this lot date code was not readily available. External visual exam, radiography, PEID, and leak testing were performed with nominal results Electrical testing indicated nearly identical base-emitter and base-collector characteristics (both forward and reverse) with a low resistance short emitter to collector. These characteristics are indicative of a classic failure mechanism called punchthrough. In failure analysis punchthrough refers to an condition where a relatively low voltage pulse causes the device to conduct very hard producing localized areas of thermal runaway or "hot spots". At one or more of these hot spots, the excessive currents melt the silicon. Heavily doped emitter material diffuses through the base region to the collector forming a diffusion pipe shorting the emitter to base to collector. Upon cooling, an alloy junction forms between the pipe and the base region. Generally, the hot spot (punch-through site) is under the bond and no surface artifact is visible. The devices were delidded and the internal structures were examined microscopically. The gold emitter lead was melted on one device, but others had anomalies in the metallization around the in-tact emitter bonds. The SEM examination confirmed some anomalies to be cosmetic defects while other anomalies were artifacts of the punchthrough site. Subsequent to these analyses, the contractor determined that some irregular testing procedures occurred at the time of the failures heretofore unreported. These testing

  8. Bipolar disorder in women

    PubMed Central

    Parial, Sonia

    2015-01-01

    Bipolar affective disorder in women is a challenging disorder to treat. It is unique in its presentation in women and characterized by later age of onset, seasonality, atypical presentation, and a higher degree of mixed episodes. Medical and psychiatric co-morbidity adversely affects recovery from the bipolar disorder (BD) more often in women. Co-morbidity, particularly thyroid disease, migraine, obesity, and anxiety disorders occur more frequently in women while substance use disorders are more common in men. Treatment of women during pregnancy and lactation is challenging. Pregnancy neither protects nor exacerbates BD, and many women require continuation of medication during the pregnancy. The postpartum period is a time of high risk for onset and recurrence of BD in women. Prophylaxis with mood stabilizers might be needed. Individualized risk/benefits assessments of pregnant and postpartum women with BD are required to promote the health of the women and to avoid or limit exposure of the fetus or infant to potential adverse effects of medication. PMID:26330643

  9. Bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  10. Towards the ultimate transistor

    NASA Astrophysics Data System (ADS)

    Natelson, Douglas

    2009-06-01

    The first transistor, made more than 60 years ago at Bell Labs, was a couple of inches across. Today, a typical laptop computer uses a processor chip that contains well over a billion transistors, each one with electrodes separated by less than 50 nm of silicon, which is less than a thousandth of the diameter of a human hair. This continual drive for miniaturization, with the density of transistors doubling roughly every two years, was first noted by Intel co-founder Gordon Moore in 1965, and has been such a mainstay of electronics development that it is now enshrined as "Moore's law". These billions of transistors are made by "top down" methods that involve depositing thin layers of materials, patterning nano-scale stencils and effectively carving away the unwanted bits. The incredible success of this approach is almost impossible to overstate. The end result is billions of individual components on a single chip, essentially all working perfectly and continuously for years on end. No other manufactured technology comes remotely close in reliability or cost-per-widget.

  11. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  12. Structured-gate organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  13. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    SciTech Connect

    Feng, M.; Iverson, E. W.; Wang, C. Y.; Holonyak, N.

    2015-11-02

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control.

  14. Kondo Effect in a Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Goldhaber-Gordon, David

    1998-03-01

    When a field-effect transistor is made very small, and electrons in the channel are separated from those in the leads by tunnel junctions, the transistor turns on and off every time an extra electron is added to the channel. The droplet of electrons confined in the channel of such a single-electron transistor (SET) interacts with electrons in the leads. This is in close analogy to an impurity atom interacting with the delocalized electrons in a metal, the traditional system for studying the Kondo effect.(Y. Meir, N.S. Wingreen, and P.A. Lee. PRL) 70, 2601 (1993) I will discuss measurements on a new generation of SETs that display all the aspects of the Kondo effect:(D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M.A. Kastner. To be published in Nature). a spin singlet forms between a localized electron in the channel and delocalized electrons in the leads, causing an enhancement of the zero-bias conductance, when the number of electrons on the artificial atom is odd but not when it is even. The system can be studied out of equilibrium by applying a voltage between the two leads, an impossible procedure in bulk Kondo systems. The spin singlet is altered by applying such a voltage or a magnetic field or by increasing the temperature, all in ways that agree with predictions. In addition, the tunability of an SET allows study of the system over a range of parameters not easily accessible to previous calculations or experiments.

  15. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    SciTech Connect

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun; Wu, Chao-Hsin

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  16. [Revisiting bipolar disorder].

    PubMed

    Senjyu, Yoshika; Ozawa, Hiroki

    2007-09-01

    According to the theory of evolution of Charles Darwin which is an author of The Origin of Species, human being evolves after long time to be profitable to "prosperity of a kind", and it is thought that there is the adaptive meaning. In other words, man stand on various creatures in number, and it may be said that human being building a high civilized society is the creature which was able to have an element of chosen mind and body in natural selection. However, a disease does not disappear from our daily life and tends to consider us to be "the misfortune" even if we human being is easy to suffer from a disease. "Evolution medicine" (Darwinian medicine) drop hint of meaning/the significance in aging and the process of the pathology. This paper refers to such a conception of bipolar disorder. PMID:17877000

  17. [Revisiting bipolar disorder].

    PubMed

    Senjyu, Yoshika; Ozawa, Hiroki

    2007-09-01

    According to the theory of evolution of Charles Darwin which is an author of The Origin of Species, human being evolves after long time to be profitable to "prosperity of a kind", and it is thought that there is the adaptive meaning. In other words, man stand on various creatures in number, and it may be said that human being building a high civilized society is the creature which was able to have an element of chosen mind and body in natural selection. However, a disease does not disappear from our daily life and tends to consider us to be "the misfortune" even if we human being is easy to suffer from a disease. "Evolution medicine" (Darwinian medicine) drop hint of meaning/the significance in aging and the process of the pathology. This paper refers to such a conception of bipolar disorder.

  18. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Zhang, Zheng-Xuan; Hu, Zhi-Yuan; Huang, Hui-Xiang; Ning, Bing-Xu; Bi, Da-Wei

    2013-09-01

    The total ionizing dose effects of partially depleted silicon-on-insulator (SOI) transistors in a 0.13 μm technology are studied by 60Co γ-ray irradiation. Radiation enhanced drain-induced barrier lowering (DIBL) under different bias conditions is related to the parasitic bipolar in the SOI transistor and oxide trapped charge in the buried oxide, and it is experimentally observed for short channel transistors. The enhanced DIBL effect manifests as the DIBL parameter increases with total dose. Body doping concentration is a key factor affecting the total ionizing dose effect of the transistor. The low body doping transistor exhibits not only significant front gate threshold voltage shift as a result of the coupling effect, but also great off-state leakage at high drain voltage due to the enhanced DIBL effect.

  19. Avalanche transistor selection for long term stability in streak camera sweep and pulser applications

    SciTech Connect

    Thomas, S.W.; Griffith, R.L.; Teruya, A.T.

    1990-09-05

    We have identified the Motorola 2N4014 and 2N5551 and the Raytheon RS3944 as three transistor types that exhibit avalanche characteristics and have long term collector breakdown voltage stability superior to other transistors tested. Stability on all types has been improved by power burnin. An automatic avalanche transistor burnin tester has been constructed to allow power burnin of up to 1008 transistors at a time. The tester is controlled by an IBM Personal Computer (PC) and can be programmed to acquire data, unattended, at any desired rate or period. Data are collected from each run and stored on a floppy disk in ASCII format. The data analysis software, RS/1, was used for analysis and display. Data runs were typically 3 to 4 months long, with readings taken weekly. The transistors were biased into the avalanche or Zener region by individual current sources set to about 20% of the self-avalanche current for each type of transistor. Motorola, Zetex and National transistors were operated at 100 microamperes ({mu}A), and the Raytheon units were operated at 20 {mu}A. The electric field causes migration of material in the high field region at the surface near the collector-base junction, creating the voltage instability. 7 refs., 9 figs., 1 tab.

  20. Basic Electronics II.

    ERIC Educational Resources Information Center

    Willison, Neal A.; Shelton, James K.

    Designed for use in basic electronics programs, this curriculum guide is comprised of 15 units of instruction. Unit titles are Review of the Nature of Matter and the P-N Junction, Rectifiers, Filters, Special Semiconductor Diodes, Bipolar-Junction Diodes, Bipolar Transistor Circuits, Transistor Amplifiers, Operational Amplifiers, Logic Devices,…

  1. Improved chopper circuit uses parallel transistors

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Parallel transistor chopper circuit operates with one transistor in the forward mode and the other in the inverse mode. By using this method, it acts as a single, symmetrical, bidirectional transistor, and reduces and stabilizes the offset voltage.

  2. Transistor voltage comparator performs own sensing

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1965-01-01

    Detection of the highest voltage input among a group of varying voltage inputs is accomplished by a transistorized voltage comparison circuit. The collector circuits of the transistors perform the sensing function. Input voltage levels are governed by the transistors.

  3. Gyrator employing field effect transistors

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1973-01-01

    A gyrator circuit of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 deg phase reversal is examined. All active elements are MOS field effect transistors. Each amplifier comprises a differential amplifier configuration with current limiting transistor, followed by an output transistor in cascode configuration, and two load transistors of opposite conductivity type from the other transistors. A voltage divider control circuit comprises a series string of transistors with a central voltage input to provide control, with locations on the amplifiers receiving reference voltages by connection to appropriate points on the divider. The circuit produces excellent response and is well suited for fabrication by integrated circuits.

  4. Electrical interfacing of neurotransmitter receptor and field effect transistor

    NASA Astrophysics Data System (ADS)

    Peitz, I.; Fromherz, P.

    2009-10-01

    The interfacing of a ligand-gated ion channel to a transistor is studied. It relies on the transduction of ion current to a voltage in a cell-transistor junction. For the first time, a genetically modified cell is used without external driving voltage as applied by a patch-pipette. Using a core-coat conductor model, we show that an autonomous dynamics gives rise to a signal if a driving voltage is provided by potassium channels, and if current compensation is avoided by an inhomogeneous activation of channels. In a proof-of-principle experiment, we transfect HEK293 cells with the serotonin receptor 5-HT3A and the potassium channel Kv1.3. The interfacing is characterized under voltage-clamp with a negative transistor signal for activated 5-HT3A and a positive signal for activated Kv1.3. Without patch-pipette, a biphasic transient is induced by serotonin. The positive wave is assigned to 5-HT3A receptors in the free membrane that drive a potassium outward current through the adherent membrane. The negative wave is attributed to 5-HT3A receptors in the adherent membrane that are activated with a delay due to serotonin diffusion. The implementation of a receptor-cell-transistor device is a fundamental step in the development of biosensors that combine high specificity and universal microelectronic readout.

  5. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  6. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  7. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  8. Threat sensitivity in bipolar disorder.

    PubMed

    Muhtadie, Luma; Johnson, Sheri L

    2015-02-01

    Life stress is a major predictor of the course of bipolar disorder. Few studies have used laboratory paradigms to examine stress reactivity in bipolar disorder, and none have assessed autonomic reactivity to laboratory stressors. In the present investigation we sought to address this gap in the literature. Participants, 27 diagnosed with bipolar I disorder and 24 controls with no history of mood disorder, were asked to complete a complex working memory task presented as "a test of general intelligence." Self-reported emotions were assessed at baseline and after participants were given task instructions; autonomic physiology was assessed at baseline and continuously during the stressor task. Compared to controls, individuals with bipolar disorder reported greater increases in pretask anxiety from baseline and showed greater cardiovascular threat reactivity during the task. Group differences in cardiovascular threat reactivity were significantly correlated with comorbid anxiety in the bipolar group. Our results suggest that a multimethod approach to assessing stress reactivity-including the use of physiological parameters that differentiate between maladaptive and adaptive profiles of stress responding-can yield valuable information regarding stress sensitivity and its associations with negative affectivity in bipolar disorder. (PsycINFO Database Record (c) 2015 APA, all rights reserved). PMID:25688436

  9. Threat Sensitivity in Bipolar Disorder

    PubMed Central

    Muhtadie, Luma; Johnson, Sheri L.

    2015-01-01

    Life stress is a major predictor of the course of bipolar disorder. Few studies have used laboratory paradigms to examine stress reactivity in bipolar disorder, and none have assessed autonomic reactivity to laboratory stressors. In the present investigation we sought to address this gap in the literature. Participants, 27 diagnosed with bipolar I disorder and 24 controls with no history of mood disorder, were asked to complete a complex working memory task presented as “a test of general intelligence.” Self-reported emotions were assessed at baseline and after participants were given task instructions; autonomic physiology was assessed at baseline and continuously during the stressor task. Compared to controls, individuals with bipolar disorder reported greater increases in pretask anxiety from baseline and showed greater cardiovascular threat reactivity during the task. Group differences in cardiovascular threat reactivity were significantly correlated with comorbid anxiety in the bipolar group. Our results suggest that a multimethod approach to assessing stress reactivity—including the use of physiological parameters that differentiate between maladaptive and adaptive profiles of stress responding— can yield valuable information regarding stress sensitivity and its associations with negative affectivity in bipolar disorder. PMID:25688436

  10. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  11. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  12. LTS junction technology for RSFQ and qubit circuit applications

    NASA Astrophysics Data System (ADS)

    Buchholz, F.-Im.; Balashov, D. V.; Dolata, R.; Hagedorn, D.; Khabipov, M. I.; Kohlmann, J.; Zorin, A. B.; Niemeyer, J.

    2006-10-01

    The potentials of LTS junction technology and electronics offer innovative solutions for the processing of quantum information in RSFQ and qubit circuits. We discuss forthcoming approaches based on standard SIS technology and addressed to the development of new superconducting device concepts. The challenging problem of reducing back action noise of the RSFQ circuits deteriorating coherent properties of the qubit is currently solved by implementing Josephson junctions with non-linear shunts based on LTS SIS-SIN technology. Upgraded NbAlOx trilayer technology enables the fabrication of high-quality mesoscopic Josephson junction transistors down to the nanometer range suitable for a qubit-operation regime. As applications, circuit concepts are presented which combine superconducting devices of different nature.

  13. Integrated neurobiology of bipolar disorder.

    PubMed

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity - reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition - limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional "unified field theory" of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia - the brain's primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic-pituitary-adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the

  14. Treatment of bipolar disorder.

    PubMed

    Geddes, John R; Miklowitz, David J

    2013-05-11

    We review recent developments in the acute and long-term treatment of bipolar disorder and identify promising future routes to therapeutic innovation. Overall, advances in drug treatment remain quite modest. Antipsychotic drugs are effective in the acute treatment of mania; their efficacy in the treatment of depression is variable with the clearest evidence for quetiapine. Despite their widespread use, considerable uncertainty and controversy remains about the use of antidepressant drugs in the management of depressive episodes. Lithium has the strongest evidence for long-term relapse prevention; the evidence for anticonvulsants such as divalproex and lamotrigine is less robust and there is much uncertainty about the longer term benefits of antipsychotics. Substantial progress has been made in the development and assessment of adjunctive psychosocial interventions. Long-term maintenance and possibly acute stabilisation of depression can be enhanced by the combination of psychosocial treatments with drugs. The development of future treatments should consider both the neurobiological and psychosocial mechanisms underlying the disorder. We should continue to repurpose treatments and to recognise the role of serendipity. We should also investigate optimum combinations of pharmacological and psychotherapeutic treatments at different stages of the illness. Clarification of the mechanisms by which different treatments affect sleep and circadian rhythms and their relation with daily mood fluctuations is likely to help with the treatment selection for individual patients. To be economically viable, existing psychotherapy protocols need to be made briefer and more efficient for improved scalability and sustainability in widespread implementation. PMID:23663953

  15. Polarized photocurrent response in black phosphorus field-effect transistors.

    PubMed

    Hong, Tu; Chamlagain, Bhim; Lin, Wenzhi; Chuang, Hsun-Jen; Pan, Minghu; Zhou, Zhixian; Xu, Ya-Qiong

    2014-08-01

    We investigate electrical transport and optoelectronic properties of field effect transistors (FETs) made from few-layer black phosphorus (BP) crystals down to a few nanometers. In particular, we explore the anisotropic nature and photocurrent generation mechanisms in BP FETs through spatial-, polarization-, gate-, and bias-dependent photocurrent measurements. Our results reveal that the photocurrent signals at BP-electrode junctions are mainly attributed to the photovoltaic effect in the off-state and photothermoelectric effect in the on-state, and their anisotropic feature primarily results from the directional-dependent absorption of BP crystals.

  16. Bipolar cells of the ground squirrel retina.

    PubMed

    Puller, Christian; Ondreka, Katharina; Haverkamp, Silke

    2011-03-01

    Parallel processing of an image projected onto the retina starts at the first synapse, the cone pedicle, and each cone feeds its light signal into a minimum of eight different bipolar cell types. Hence, the morphological classification of bipolar cells is a prerequisite for analyzing retinal circuitry. Here we applied common bipolar cell markers to the cone-dominated ground squirrel retina, studied the labeling by confocal microscopy and electron microscopy, and compared the resulting bipolar cell types with those of the mouse (rod dominated) and primate retina. Eight different cone bipolar cell types (three OFF and five ON) and one rod bipolar cell were distinguished. The major criteria for classifying the cells were their immunocytochemical identity, their dendritic branching pattern, and the shape and stratification level of their axons in the inner plexiform layer (IPL). Immunostaining with antibodies against Gγ13, a marker for ON bipolar cells, made it possible to separate OFF and ON bipolars. Recoverin-positive OFF bipolar cells partly overlapped with ON bipolar axon terminals at the ON/OFF border of the IPL. Antibodies against HCN4 labeled the S-cone selective (bb) bipolar cell. The calcium-binding protein CaB5 was expressed in two OFF and two ON cone bipolar cell types, and CD15 labeled a widefield ON cone bipolar cell comparable to the DB6 in primate.

  17. Quantised transistor response to ion channels revealed by nonstationary noise analysis

    NASA Astrophysics Data System (ADS)

    Becker-Freyseng, C.; Fromherz, P.

    2011-11-01

    We report on the quantised response of a field-effect transistor to molecular ion channels in a biomembrane. HEK293-type cells overexpressing the Shaker B potassium channel were cultured on a silicon chip. An enhanced noise of the transistor is observed when the ion channels are activated. The analysis of the fluctuations in terms of binomial statistics identifies voltage quanta of about 1 μV on the gate. They are attributed to the channel currents that affect the gate voltage according to the Green's function of the cell-chip junction.

  18. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors.

    PubMed

    Martin, Dominik; Heinzig, Andre; Grube, Matthias; Geelhaar, Lutz; Mikolajick, Thomas; Riechert, Henning; Weber, Walter M

    2011-11-18

    This work elucidates the role of the Schottky junction in the electronic transport of nanometer-scale transistors. In the example of Schottky barrier silicon nanowire field effect transistors, an electrical scanning probe technique is applied to examine the charge transport effects of a nanometer-scale local top gate during operation. The results prove experimentally that Schottky barriers control the charge carrier transport in these devices. In addition, a proof of concept for a reprogrammable nonvolatile memory device based on band bending at the Schottky barriers will be shown.

  19. [Bipolar disorder in the elderly].

    PubMed

    Monczor, Myriam

    2010-01-01

    Bipolar disorder is a frequent disorder in the elderly, with a prevalence of 0.1 a 0.4%; a 10% of bipolar patients have mania onset after 50 years old. It has in ageing a more heterogeneous clinical presentation. The manic episodes are less severe, mixed depression is common, as well as confusion and cognitive impairment. A first manic episode in ageing can be secondary to medical illness. Treatment for bipolar disorder in ageing is similar to treatment for young patients. The differences are due to pharmacocinetic changes because of the age, with the comorbidity and with the etiology, if it is a secondary mania. Lithium can be the first choice for treating mania in patients with antecedent of good response and have tolerance to adverse effects, but because of its toxicity and secondary effects other possibilities may be considered: divalproate, cabamazepine, antipsychotics. There are some little studies that show lamotrigine efficacy in bipolar depression in elderly. We need more specific studies about bipolar disorder treatment in aging.

  20. Targeting astrocytes in bipolar disorder.

    PubMed

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs. PMID:27015045

  1. Troubled Childhood May Boost Bipolar Risk

    MedlinePlus

    ... childhood abuse may be at increased risk for bipolar disorder, researchers report. "The link between experiencing a troubled ... said in a university news release. People with bipolar disorder experience emotional extremes -- lows and highs -- which harm ...

  2. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  3. Power transistor switching characterization

    NASA Technical Reports Server (NTRS)

    Blackburn, D. L.

    1981-01-01

    The switching properties of power transistors are investigated. The devices studied were housed in IO-3 cases and were of an n(+)-p-n(-)-n(+) vertical dopant structure. The effects of the magnitude of the reverse-base current and temperature on the reverse-bias second breakdown characteristics are discussed. Brief discussions of device degradation due to second breakdown and of a constant voltage turn-off circuit are included. A description of a vacuum tube voltage clamp circuit which reduces clamped collector voltage overshoot is given.

  4. Carbon nanotube gated lateral resonant tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Perkins, B. R.; Yin, A. J.; Zaslavsky, A.; Xu, J. M.; Beresford, R.; Snider, G. L.

    2005-10-01

    We have produced a lateral resonant tunneling field-effect transistor using a Y-junction multiwalled carbon nanotube as the dual gate on a narrow channel etched from a modulation-doped GaAs /AlGaAs heterostructure. When the Y-junction nanotube is negatively biased, electrons traveling from source to drain along the channel face a voltage-tunable electrostatic double-barrier potential. We measured the three-terminal IDS(VDS,VGS) characteristics of the device at 4.2 K and observed gate-induced structure in the transconductance and negative differential resistance in the drain current. We interpret the data in terms of resonant tunneling through one-dimensional subbands confined by a self-consistently calculated electrostatic potential.

  5. Characterizing the Switching Thresholds of Magnetophoretic Transistors.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa A; Yi, John S; Baker, Cody; Taherifard, Zohreh; Margolis, David M; Garcia, J Victor; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2015-10-28

    The switching thresholds of magnetophoretic transistors for sorting cells in microfluidic environments are characterized. The transistor operating conditions require short 20-30 mA pulses of electrical current. By demonstrating both attractive and repulsive transistor modes, a single transistor architecture is used to implement the full write cycle for importing and exporting single cells in specified array sites. PMID:26349853

  6. Chemical control over the energy-level alignment in a two-terminal junction

    NASA Astrophysics Data System (ADS)

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-07-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  7. Photocurrent generation of a single-gate graphene p-n junction fabricated by interfacial modification.

    PubMed

    Wang, S; Sekine, Y; Suzuki, S; Maeda, F; Hibino, H

    2015-09-25

    A back-gate graphene p-n junction was achieved by selective interfacial modification of a chemical vapor deposition (CVD)-grown graphene field effect transistor (FET). Silane self-assembled monolayer (SAM) patterns were used to fabricate uniform p- and n-doped regions and a sharp p-n junction in the graphene FET channel. A gate-dependent photocurrent response was observed at the graphene p-n junction, and exhibited a maximum signal between two Dirac point voltages of SAM-doped graphene regions. A spatial photocurrent map shows that the photocurrent generated at the junction region was much larger than that from graphene/electrode junctions under the same incident laser power. This single-peak characteristic photocurrent in CVD graphene is dominated by the photothermoelectric contribution, and is highly sensitive to the power of incident laser. The SAM interfacial modification method provides a feasible route for the fabrication of efficient graphene-based photodetectors. PMID:26334952

  8. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-07-26

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  9. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  10. Chemical control over the energy-level alignment in a two-terminal junction

    PubMed Central

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  11. Mathematical models of bipolar disorder

    NASA Astrophysics Data System (ADS)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  12. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  13. Microwave field effect transistor

    NASA Technical Reports Server (NTRS)

    Huang, Ho-Chung (Inventor)

    1989-01-01

    Electrodes of a high power, microwave field effect transistor are substantially matched to external input and output networks. The field effect transistor includes a metal ground plane layer, a dielectric layer on the ground plane layer, a gallium arsenide active region on the dielectric layer, and substantially coplanar spaced source, gate, and drain electrodes having active segments covering the active region. The active segment of the gate electrode is located between edges of the active segments of the source and drain electrodes. The gate and drain electrodes include inactive pads remote from the active segments. The pads are connected directly to the input and output networks. The source electrode is connected to the ground plane layer. The space between the electrodes and the geometry of the electrodes extablish parasitic shunt capacitances and series inductances that provide substantial matches between the input network and the gate electrode and between the output network and the drain electrode. Many of the devices are connected in parallel and share a common active region, so that each pair of adjacent devices shares the same source electrodes and each pair of adjacent devices shares the same drain electrodes. The gate electrodes for the parallel devices are formed by a continuous stripe that extends between adjacent devices and is connected at different points to the common gate pad.

  14. Experimental and Simulated Results of Room Temperature Single Electron Transistor Formed by Atomic Force Microscopy Nano-Oxidation Process

    NASA Astrophysics Data System (ADS)

    Gotoh, Yoshitaka; Matsumoto, Kazuhiko; Bubanja, Vladimir; Vazquez, Francisco; Maeda, Tatsuro; Harris, James S.

    2000-04-01

    A planar-type single electron transistor (SET) was fabricated by the atomic force microscopy (AFM) nano-oxidation process. The fabricated SET showed the Coulomb oscillation characteristic with the period of about 2 V at room temperature. From the three-dimensional simulation, it is found out that the smaller the SET island size, the smaller the tunnel junction capacitance, and the tunnel junction capacitance shows a weak dependence on the tunnel junction width. Using the analytical model, the reason for this weak dependence was clarified.

  15. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  16. Bipolar lead acid battery development

    NASA Technical Reports Server (NTRS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  17. Bipolar dislocation of the clavicle.

    PubMed

    Jiang, Wei; Gao, Shu-Guang; Li, Yu-Sheng; Lei, Guang-Hua

    2012-11-01

    Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup. PMID:23325981

  18. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pavlov, Y. S.; Surma, A. M.; Lagov, P. B.; Fomenko, Y. L.; Geifman, E. M.

    2016-09-01

    Radiation processing technologies for static and dynamic parameters modification of silicon bipolar semiconductor devices implemented. Devices of different classes with wide range of operating currents (from a few mA to tens kA) and voltages (from a few volts to 8 kV) were processed in large scale including power diodes and thyristors, high-frequency bipolar and IGBT transistors, fast recovery diodes, pulsed switching diodes, precise temperature- compensated Zener diodes (in general more than fifty 50 device types), produced by different enterprises. The necessary changes in electrical parameters and characteristics of devices caused by formation in the device structures of electrically active and stable in the operating temperature range sub-nanoscale recombination centres. Technologies implemented in the air with high efficiency and controllability, and are an alternative to diffusion doping of Au or Pt, γ-ray, proton and low-Z ion irradiation.

  19. Interference-based molecular transistors

    PubMed Central

    Li, Ying; Mol, Jan A.; Benjamin, Simon C.; Briggs, G. Andrew D.

    2016-01-01

    Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor. PMID:27646692

  20. Interference-based molecular transistors.

    PubMed

    Li, Ying; Mol, Jan A; Benjamin, Simon C; Briggs, G Andrew D

    2016-01-01

    Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor. PMID:27646692

  1. Contact electrification field-effect transistor.

    PubMed

    Zhang, Chi; Tang, Wei; Zhang, Limin; Han, Changbao; Wang, Zhong Lin

    2014-08-26

    Utilizing the coupled metal oxide semiconductor field-effect transistor and triboelectric nanogenerator, we demonstrate an external force triggered/controlled contact electrification field-effect transistor (CE-FET), in which an electrostatic potential across the gate and source is created by a vertical contact electrification between the gate material and a “foreign” object, and the carrier transport between drain and source can be tuned/controlled by the contact-induced electrostatic potential instead of the traditional gate voltage. With the two contacted frictional layers vertically separated by 80 μm, the drain current is decreased from 13.4 to 1.9 μA in depletion mode and increased from 2.4 to 12.1 μA in enhancement mode at a drain voltage of 5 V. Compared with the piezotronic devices that are controlled by the strain-induced piezoelectric polarization charged at an interface/junction, the CE-FET has greatly expanded the sensing range and choices of materials in conjunction with semiconductors. The CE-FET is likely to have important applications in sensors, human–silicon technology interfacing, MEMS, nanorobotics, and active flexible electronics. Based on the basic principle of the CE-FET, a field of tribotronics is proposed for devices fabricated using the electrostatic potential created by triboelectrification as a “gate” voltage to tune/control charge carrier transport in conventional semiconductor devices. By the three-way coupling among triboelectricity, semiconductor, and photoexcitation, plenty of potentially important research fields are expected to be explored in the near future. PMID:25119657

  2. Non-hysteretic superconducting quantum interference proximity transistor with enhanced responsivity

    SciTech Connect

    Jabdaraghi, R. N.; Meschke, M.; Pekola, J. P.

    2014-02-24

    This Letter presents fabrication and characterization of an optimized superconducting quantum interference proximity transistor. The present device, characterized by reduced tunnel junction area and shortened normal-metal section, demonstrates no hysteresis at low temperatures as we increased the Josephson inductance of the weak link by decreasing its cross section. It has consequently almost an order of magnitude improved magnetic field responsivity as compared to the earlier design. The modulation of both the current and the voltage across the junction have been measured as a function of magnetic flux piercing the superconducting loop.

  3. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  4. Suicidality in Bipolar I Disorder

    ERIC Educational Resources Information Center

    Johnson, Sheri L.; McMurrich, Stephanie L.; Yates, Marisa

    2005-01-01

    People with bipolar disorder are at high suicide risk. The literature suggests that suicidality is predicted by higher symptom severity and less use of pharmacological agents, but few studies have examined the joint contributions of these variables. The present study examines the conjoint contribution of symptom severity and pharmacological…

  5. The management of bipolar disorder.

    PubMed

    Saunders, Kate E A; Geddes, John R

    2016-03-01

    Bipolar disorder is a common mental disorder which is relapsing and remitting in nature. Subsyndromal symptoms are common and associated with poorer outcomes. Management of the disorder can be challenging and depends on the polarity and severity of the mood episode. PMID:26961448

  6. [Cognitive deficits in bipolar disorder].

    PubMed

    Sachs, Gabriele; Schaffer, Markus; Winklbaur, Bernadette

    2007-01-01

    Bipolar disorders are often associated with cognitive deficits which have an influence on social functioning and the course of the illness. These deficits have an impact on occupational ability and social integration. To date, specific cognitive domains have been found which characterize bipolar affective disorders. However, there is evidence of stable and lasting cognitive impairment in all phases of the disorder, including the remission phase, in the following domains: sustained attention, memory and executive functions (e.g. cognitive flexibility and problem solving). Although their cognitive deficits are comparable the deficits in patients with schizophrenia are more severe than those with bipolar disorder. Recent brain imaging findings indicate structural and functional abnormalities in the cortical and limbic networks of the brain in patients with bipolar disorder compared to healthy controls. Mood stabilizer and atypical antipsychotics may reduce cognitive deficits in certain domains (e.g. executive functions and word fluency) and may have a positive effect on quality of life and social functioning. PMID:17640495

  7. The management of bipolar disorder.

    PubMed

    Saunders, Kate E A; Geddes, John R

    2016-03-01

    Bipolar disorder is a common mental disorder which is relapsing and remitting in nature. Subsyndromal symptoms are common and associated with poorer outcomes. Management of the disorder can be challenging and depends on the polarity and severity of the mood episode.

  8. Nicotine dependence and psychosis in Bipolar disorder and Schizoaffective disorder, Bipolar Type

    PubMed Central

    Estrada, Elena; Hartz, Sarah; Tran, Jeffrey; Hilty, Donald; Sklar, Pamela; Smoller, Jordan W.; Pato, Carlos N.; Pato, Michele T.

    2016-01-01

    Objective Patients with Bipolar disorder smoke more than the general population. Smoking negatively impacts mortality and clinical course in Bipolar disorder patients. Prior studies have shown contradictory results regarding the impact of psychosis on smoking behavior in Bipolar disorder. We analyzed a large sample of Bipolar disorder and Schizoaffective disorder, Bipolar Type patients and predicted those with a history of psychosis would be more likely to be nicotine dependent. Methods Data from subjects and controls were collected from the Genomic Psychiatry Cohort (GPC). Subjects were diagnosed with Bipolar disorder without psychosis (N=610), Bipolar disorder with psychosis (N=1591), and Schizoaffective Disorder, Bipolar Type (N=1544). Participants were classified with or without nicotine dependence. Diagnostic groups were compared to controls (N=10065) using logistic regression. Results Among smokers (N=6157), those with Bipolar disorder had an increased risk of nicotine dependence (OR=2.5; p<0.0001). Patients with Bipolar disorder with psychosis were more likely to be dependent than Bipolar disorder patients without psychosis (OR=1.3; p=0.03). Schizoaffective disorder, Bipolar Type patients had more risk of nicotine dependence when compared to Bipolar disorder patients with or without psychosis (OR=1.2; p=0.02). Conclusions Bipolar disorder patients experiencing more severity of psychosis have more risk of nicotine dependence. PMID:26467098

  9. Variability study of Si nanowire FETs with different junction gradients

    NASA Astrophysics Data System (ADS)

    Yoon, Jun-Sik; Kim, Kihyun; Rim, Taiuk; Baek, Chang-Ki

    2016-01-01

    Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs) are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations of the drain currents, thus inducing greater relative variations of the drain currents. Shorter junction gradients form high potential barriers in the source-side lightly-doped extension regions at on-state, which determines the magnitude of the drain currents and fluctuates the drain currents greatly under thermionic-emission mechanism. On the other hand, longer junction gradients affect lateral field to fluctuate the drain currents greatly. These physical phenomena coincide with correlations of the variations between drain currents and electrical parameters such as threshold voltages and parasitic resistances. The nanowire FETs with relatively-larger diameters and longer junction gradients without degrading short channel characteristics are suggested to minimize the relative variations and the mismatch of the drain currents.

  10. Integrated Neurobiology of Bipolar Disorder

    PubMed Central

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  11. Variability of electrical contact properties in multilayer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2014-09-01

    We report the variability of electrical properties of Ti contacts in back-gated multilayer MoS2 thin-film transistors based on mechanically exfoliated flakes. By measuring current-voltage characteristics from room temperature to 240 °C, we demonstrate the formation of both ohmic and Schottky contacts at the Ti-MoS2 junctions of MoS2 transistors fabricated using identical electrode materials under the same conditions. While MoS2 transistors with ohmic contacts exhibit a typical signature of band transport, those with Schottky contacts indicate thermally activated transport behavior for the given temperature range. These results provide the experimental evidence of the variability of Ti metal contacts on MoS2, highlighting the importance of understanding the variability of electronic properties of naturally occurring MoS2 for further investigation.

  12. A ballistic gate-tunable contact junction in graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Quentin; Rosticher, Michael; Boukhicha, Mohamed; Inhofer, Andreas; Morfin, Pascal; Feve, Gwendal; Berroir, Jean-Marc; Placais, Bernard; Equipe de Physique Mésoscopique Team

    2015-03-01

    Field-effect control of carrier is very efficient in graphene and allows controlling the doping profile with a great accuracy and high spatial resolution. This is needed if one wants to implement Dirac fermion optics experiments or simply to improve the performance of graphene devices. In this work we realize graphene transistors equipped with a set of local back-gates that provide control of local electric fields in the 108 V / m range at the 10 nanometer scale. In particular we demonstrate ballistic contact junctions using transistors with independent channel and contact back-gates. We shall discuss the possibilities offered by this technology for ballistic electronic and opto-electronic applications.

  13. High transconductance organic electrochemical transistors

    PubMed Central

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  14. Transistorized converter provides nondissipative regulation

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A transistorized regulator converter efficiently converts fluctuating input voltages to a constant output voltage, avoiding the use of saturable reactors. It is nondissipative in operation and functions in an open loop through variable duty cycles.

  15. [Prodromal phase in bipolar disorder].

    PubMed

    Fakra, E; Kaladjian, A; Da Fonseca, D; Maurel, M; Adida, M; Besnier, N; Pringuey, D; Azorin, J-M

    2010-01-01

    The prodromal phase is generally described as a subsyndromal stage preceding the disease onset. The characterization of such phase found its main purpose in secondary prevention. Up to now, clinical research relating to this topic in mental health has primarily focus on schizophrenic disorders. Over the last years, some studies have applied similar methods in order to characterize a preclinical phase in bipolar disorders. In spite of the fact that this strategy appears less adequate in bipolar disorders, these studies have demonstrated the existence of prodromal signs in a majority of patients. However, these features appear for the moment neither sufficiently characteristic, nor sufficiently specific to allow the construction of suitable assessment instruments, or to suggest precise guidelines in the management of these subjects. Also, these prodromal features show considerable overlap with other psychiatric disorders, especially attention-deficit hyperactivity disorder (ADHD) and schizophrenia Interestingly, a limited number of studies have looked at the number of patients considered in a prodromal phase of schizophrenia which later developed a bipolar disorder and reported substantial proportions of subjects in this case, further highlighting the obvious bias in favor of schizophrenia in the actual prevention politics. In order to identify potential candidates at a prodromal phase of bipolar disorders that could benefit from early intervention, studies have relied on both high genetic risk and symptoms at the boundary of the actual classification. However, even within such approach, pharmacological treatments have not proven obvious advantage in terms of prevention. It is suggested that adopting a more longitudinal vision of the disease and, given the mean age of onset of bipolar disorder and a fortiori of its prodromal phase, a more developmental perspective of individuals, could help lowering the confusion in this field ; Also, given the considerable overlap

  16. Solder Bonding for Power Transistors

    NASA Technical Reports Server (NTRS)

    Snytsheuvel, H. A.; Mandel, H.

    1985-01-01

    Indium solder boosts power rating and facilitates circuit changes. Efficient heat conduction from power transistor to heat sink provided by layer of indium solder. Low melting point of indium solder (141 degrees C) allows power transistor to be removed, if circuit must be reworked, without disturbing other components mounted with ordinary solder that melts at 181 degrees C. Solder allows devices operated at higher power levels than does conventional attachment by screws.

  17. MOS-transistor power switches

    NASA Astrophysics Data System (ADS)

    Konev, Iu. I.; Mashukov, E. V.

    The output characteristics of vertical-channel MOS power transistors are analyzed. It is shown that it is possible to remove the basic energy and weight-volume constraints associated with the nonlinearity of the characeristics of devices with carrier injection (i.e., diodes, transistors, and thyristors). This makes it possible to increase the specific power of all types of power switches. The discussion covers switches for ac and dc power circuits, low-voltage rectifiers, and switches with pulse width modulation.

  18. Equivalent Josephson junctions

    NASA Astrophysics Data System (ADS)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt-or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is adequate to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flow. This fact may explain the improvement of the spectra of microwave radiation noted in the literature.

  19. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  20. Metallic Electrode: Semiconducting Nanotube Junction Model

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryon (Technical Monitor)

    2001-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.

  1. Single gate p-n junctions in graphene-ferroelectric devices

    NASA Astrophysics Data System (ADS)

    Hinnefeld, J. Henry; Xu, Ruijuan; Rogers, Steven; Pandya, Shishir; Shim, Moonsub; Martin, Lane W.; Mason, Nadya

    2016-05-01

    Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr0.2Ti0.8O3 substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activate and deactivate the doping, yielding an "on-demand" p-n junction in graphene controlled by a single, universal backgate.

  2. A Vertically Integrated Junctionless Nanowire Transistor.

    PubMed

    Lee, Byung-Hyun; Hur, Jae; Kang, Min-Ho; Bang, Tewook; Ahn, Dae-Chul; Lee, Dongil; Kim, Kwang-Hee; Choi, Yang-Kyu

    2016-03-01

    A vertically integrated junctionless field-effect transistor (VJ-FET), which is composed of vertically stacked multiple silicon nanowires (SiNWs) with a gate-all-around (GAA) structure, is demonstrated on a bulk silicon wafer for the first time. The proposed VJ-FET mitigates the issues of variability and fabrication complexity that are encountered in the vertically integrated multi-NW FET (VM-FET) based on an identical structure in which the VM-FET, as recently reported, harnesses a source and drain (S/D) junction for its operation and is thus based on the inversion mode. Variability is alleviated by bulk conduction in a junctionless FET (JL-FET), where current flows through the core of the SiNW, whereas it is not mitigated by surface conduction in an inversion mode FET (IM-FET), where current flows via the surface of the SiNW. The fabrication complexity is reduced by the inherent JL structure of the JL-FET because S/D formation is not required. In contrast, it is very difficult to dope the S/D when it is positioned at each floor of a tall SiNW with greater uniformity and with less damage to the crystalline structure of the SiNW in a VM-FET. Moreover, when the proposed VJ-FET is used as nonvolatile flash memory, the endurance and retention characteristics are improved due to the above-mentioned bulk conduction.

  3. A Vertically Integrated Junctionless Nanowire Transistor.

    PubMed

    Lee, Byung-Hyun; Hur, Jae; Kang, Min-Ho; Bang, Tewook; Ahn, Dae-Chul; Lee, Dongil; Kim, Kwang-Hee; Choi, Yang-Kyu

    2016-03-01

    A vertically integrated junctionless field-effect transistor (VJ-FET), which is composed of vertically stacked multiple silicon nanowires (SiNWs) with a gate-all-around (GAA) structure, is demonstrated on a bulk silicon wafer for the first time. The proposed VJ-FET mitigates the issues of variability and fabrication complexity that are encountered in the vertically integrated multi-NW FET (VM-FET) based on an identical structure in which the VM-FET, as recently reported, harnesses a source and drain (S/D) junction for its operation and is thus based on the inversion mode. Variability is alleviated by bulk conduction in a junctionless FET (JL-FET), where current flows through the core of the SiNW, whereas it is not mitigated by surface conduction in an inversion mode FET (IM-FET), where current flows via the surface of the SiNW. The fabrication complexity is reduced by the inherent JL structure of the JL-FET because S/D formation is not required. In contrast, it is very difficult to dope the S/D when it is positioned at each floor of a tall SiNW with greater uniformity and with less damage to the crystalline structure of the SiNW in a VM-FET. Moreover, when the proposed VJ-FET is used as nonvolatile flash memory, the endurance and retention characteristics are improved due to the above-mentioned bulk conduction. PMID:26885948

  4. A novel Tunneling Graphene Nano Ribbon Field Effect Transistor with dual material gate: Numerical studies

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza; Moravvej-farshi, Mohammad Kazem

    2016-09-01

    In this work, we present Dual Material Gate Tunneling Graphene Nano-Ribbon Field Effect Transistors (DMG-T-GNRFET) mainly to suppress the am-bipolar current with assumption that sub-threshold swing which is one of the important characteristics of tunneling transistors must not be degraded. In the proposed structure, dual material gates with different work functions are used. Our investigations are based on numerical simulations which self-consistently solves the 2D Poisson based on an atomistic mode-space approach and Schrodinger equations, within the Non-Equilibrium Green's (NEGF). The proposed device shows lower off-current and on-off ratio becomes 5order of magnitude greater than the conventional device. Also two different short channel effects: Drain Induced Barrier Shortening (DIBS) and hot-electron effect are improved in the proposed device compare to the main structure.

  5. Unsplit bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  6. [Poststroke-bipolar affective disorder].

    PubMed

    Bengesser, S A; Wurm, W E; Lackner, N; Birner, A; Reininghaus, B; Kapfhammer, H-P; Reininghaus, E

    2013-08-01

    A few weeks after suffering from a basal ganglia infarction (globus pallidus) with left-sided hemiplegia, a 23-year-old woman exhibited for the first time a pronounced mania with self-endangerment. The use of oral contraceptives was the only determinable risk factor. During the further course, the mother also developed a depressive disorder. Thus a certain genetic predisposition for affective disorders may be relevant, although this would not explain the outbreak by itself. An association between the right-sided basal ganglia infarction and the occurrence of a bipolar affective disorder has been described in the literature. Vascular or, respectively, inflammatory risk factors in synopsis with the aetiopathogenesis of bipolar affective disorders are also discussed in depth in this case report. PMID:23939559

  7. Graphene/Carbon Nanotube Cross-Junction Devices

    NASA Astrophysics Data System (ADS)

    Blees, Melina; Xu, Xiaodong; van der Zande, Arend; Zhong, Zhaohui; Gabor, Nathan; Pham, Phi; McEuen, Paul

    2010-03-01

    We have built crossed carbon nanotube/graphene junctions from CVD graphene and aligned arrays of carbon nanotubes. Large-area single-layer graphene was grown on a copper film and transferred to silicon oxide, then lithographically patterned and electrically contacted. Highly aligned arrays of single-walled carbon nanotubes were CVD-grown on quartz and transferred to complete the devices. We probed these new geometries using electrical measurements, studied their optoelectronic response with scanning photocurrent microscopy, and explored the temperature and gate dependence of the junctions. We found that graphene acts as a very good electrode for carbon nanotubes, pointing to the possibility of creating fully-integrated, transparent, flexible transistors purely from carbon nanomaterials.

  8. Passivated ambipolar black phosphorus transistors

    NASA Astrophysics Data System (ADS)

    Yue, Dewu; Lee, Daeyeong; Jang, Young Dae; Choi, Min Sup; Nam, Hye Jin; Jung, Duk-Young; Yoo, Won Jong

    2016-06-01

    We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ~83 cm2 V-1 s-1 from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ~10 nm thick BP flake was used.We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ~83 cm2 V-1 s-1 from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ~10 nm thick BP flake was used. Electronic supplementary information (ESI) available: Transfer characteristics of BP field effect transistors (BV1-BV4) (Fig. S1 and S2 and Table S1); output characteristics of BP field effect transistors in different directions (Fig. S3

  9. Bipolar hemiarthroplasty in femoral neck fractures.

    PubMed

    Malhotra, R; Arya, R; Bhan, S

    1995-01-01

    Thirty-two elderly patients with a femoral neck fracture treated by bipolar hemiarthroplasty and 36 patients (matched for age) with an Austin-Moore hemiarthroplasty were followed-up and compared. Bipolar replacement resulted in a higher percentage of satisfactory results, less postoperative pain, greater range of movement, more rapid return to unassisted activity, fewer unsatisfactory results and no acetabular erosion. The device functioned as bipolar in all the cases studied for inner-bearing motion.

  10. Major Ups and Downs: Bipolar Disorder Brings Extreme Mood Swings

    MedlinePlus

    ... our exit disclaimer . Subscribe Major Ups and Downs Bipolar Disorder Brings Extreme Mood Swings Most people feel happy ... Strike Out Stroke Wise Choices Links Dealing with Bipolar Disorder If you have bipolar disorder, get treatment and ...

  11. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S. ); Kosier, S.L.; Schrimpf, R.D.; Wei, A. . ECE Dept.); Nowlin, R.N. ); DeLaus, M. ); Combs, W.E. ); Pease, R.L. )

    1994-12-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of [approximately]25 C, the net trapped-positive-charge density (N[sub ox]) inferred from midgap C-V shifts is [approximately]25--40% greater for low-dose-rate (< 10 rad(SiO[sub 2])/s) than for high-dose-rate (> 100 rad(SiO[sub 2])/s) exposure. Device modeling shows that such a difference in screen-oxide N[sub ox] is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the [approximately] exp(N[sub ox][sup 2]) dependence of the excess base current. At the higher rates, TSC measurements reveal a [approximately]10% decrease in trapped-hole density over low rates. Also, at high rates, up to [approximately]2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in E[delta][prime] centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO[sub 2])/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications.

  12. Course of Subthreshold Bipolar Disorder in Youth: Diagnostic Progression from Bipolar Disorder Not Otherwise Specified

    ERIC Educational Resources Information Center

    Axelson, David A.; Birmaher, Boris; Strober, Michael A.; Goldstein, Benjamin I.; Ha, Wonho; Gill, Mary Kay; Goldstein, Tina R.; Yen, Shirley; Hower, Heather; Hunt, Jeffrey I.; Liao, Fangzi; Iyengar, Satish; Dickstein, Daniel; Kim, Eunice; Ryan, Neal D.; Frankel, Erica; Keller, Martin B.

    2011-01-01

    Objective: To determine the rate of diagnostic conversion from an operationalized diagnosis of bipolar disorder not otherwise specified (BP-NOS) to bipolar I disorder (BP-I) or bipolar II disorder (BP-II) in youth over prospective follow-up and to identify factors associated with conversion. Method: Subjects were 140 children and adolescents…

  13. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  14. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  15. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-06-30

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  16. [Oxidative stress in bipolar affective disorder].

    PubMed

    Reininghaus, E Z; Zelzer, S; Reininghaus, B; Lackner, N; Birner, A; Bengesser, S A; Fellendorf, F T; Kapfhammer, H-P; Mangge, H

    2014-09-01

    The results of mortality studies have indicated that medical conditions, such as cardiovascular disease, obesity and diabetes are the most important causes of mortality among patients with bipolar disorder. The reasons for the increased incidence and mortality are not fully understood. Oxidative stress and an inadequate antioxidative system might be one missing link and could also help to further elucidate the pathophysiological basis of bipolar disorder. This article provides a comprehensive review of oxidative stress in general and about the existing data for bipolar disorder. In addition information is given about possible therapeutic strategies to reduce oxidative stress and the use in bipolar disorder. PMID:24441847

  17. Treatment of Bipolar Depression: Evolving Recommendations.

    PubMed

    Post, Robert M

    2016-03-01

    Bipolar depression is the most common and difficult-to-treat phase of bipolar disorder. Antidepressants for unipolar depression are among the most widely used drugs, but recent data and meta-analyses indicate a lack of efficacy. Many of the drugs discussed here are graded provisionally for the strength of the findings in the literature, safety and tolerability, and likely utility of use in patients with bipolar disorder. Successful long-term treatment of bipolar depression is critical to preventing illness-related morbidity, disability, cognitive decline, suicide, and premature loss of years of life expectancy largely from the excess medical mortality associated with cardiovascular disorders.

  18. Quantum Hall effect in a gate-controlled p-n junction of graphene.

    PubMed

    Williams, J R; Dicarlo, L; Marcus, C M

    2007-08-01

    The unique band structure of graphene allows reconfigurable electric-field control of carrier type and density, making graphene an ideal candidate for bipolar nanoelectronics. We report the realization of a single-layer graphene p-n junction in which carrier type and density in two adjacent regions are locally controlled by electrostatic gating. Transport measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 32 times the quantum of conductance, e(2)/h, consistent with recent theory. Beyond enabling investigations in condensed-matter physics, the demonstrated local-gating technique sets the foundation for a future graphene-based bipolar technology.

  19. Carbon Nanotube Gated Lateral Resonant Tunneling Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Wang, D. P.

    2005-03-01

    Carbon nanotubes have generated a great deal of interest for use in novel devices due to their small size and high current densities. We have produced a new type of lateral resonant tunneling field-effect transistor using a Y-junction multiwalled carbon nanotube as the dual gate on a narrow wire etched from a modulation-doped GaAs/AlGaAs heterostructure. The two branches of the Y-junction nanotube produced in an alumina nanotemplate array ootnotetextLi, J., Papadopoulos, C. and Xu, J. M., ``Growing Y- Junction Carbon Nanotubes" Nature 402, 253-254, 2000. are used as gates to produce a voltage-tunable double-barrier potential for the carriers traveling from source to drain along the wire. The three terminal I-V characteristics of the device have been measured at 4.2K. Conductance oscillation is observed as a function of dual gate potential, indicating electron resonant tunneling through the energy states between the barriers. Detailed measurement and comparison with self-consistent potential simulations will be presented.

  20. Passivated ambipolar black phosphorus transistors.

    PubMed

    Yue, Dewu; Lee, Daeyeong; Jang, Young Dae; Choi, Min Sup; Nam, Hye Jin; Jung, Duk-Young; Yoo, Won Jong

    2016-07-01

    We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ∼83 cm(2) V(-1) s(-1) from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ∼10 nm thick BP flake was used. PMID:27283027

  1. High current gain transistor laser.

    PubMed

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-10

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  2. High current gain transistor laser

    NASA Astrophysics Data System (ADS)

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  3. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  4. Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Reiss, Günter; Schmalhorst, Jan; Thomas, Andre; Hütten, Andreas; Yuasa, Shinji

    In magnetoelectronic devices large opportunities are opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on the relative orientation of the magnetization of the electrodes is found. Within a short time, the amplitude of the resistance change of the junctions increased dramatically. We will cover Al-O and MgO based junctions and present highly spin-polarized electrode materials such as Heusler alloys. Furthermore, we will give a short overview on applications such as read heads in hard disk drives, storage cells in MRAMs, field programmable logic circuits and biochips. Finally, we will discuss the currently growing field of current induced magnetization switching.

  5. Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2013-01-01

    Previous studies have suggested that photoreceptor synaptic inputs to depolarizing bipolar cells (DBCs or ON bipolar cells) are mediated by mGluR6 receptors and those to hyperpolarizing bipolar cells (HBCs or OFF bipolar cells) are mediated by AMPA/kainate receptors. Here we show that in addition to mGluR6 receptors which mediate the sign-inverting, depolarizing light responses, subpopulations of cone-dominated and rod/cone mixed DBCs use GluR4 AMPA receptors to generate a transient sign-preserving OFF response under light adapted conditions. These AMPA receptors are located at the basal junctions postsynaptic to rods and they are silent under dark-adapted conditions, as tonic glutamate release in darkness desensitizes these receptors. Light adaptation enhances rod-cone coupling and thus allows cone photocurrents with an abrupt OFF depolarization to enter the rods. The abrupt rod depolarization triggers glutamate activation of unoccupied AMPA receptors, resulting in a transient OFF response in DBCs. It has been widely accepted that the DNQX-sensitive, OFF transient responses in retinal amacrine cells and ganglion cells are mediated exclusively by HBCs. Our results suggests that this view needs revision as AMPA receptors in subpopulations of DBCs are likely to significantly contribute to the DNQX-sensitive OFF transient responses in light-adapted third- and higher-order visual neurons. PMID:22842089

  6. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  7. Phonon thermoelectric transistors and rectifiers

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Kulkarni, Manas; Segal, Dvira; Imry, Yoseph

    2015-07-01

    We describe nonlinear phonon-thermoelectric devices where charge current and electronic and phononic heat currents are coupled, driven by voltage and temperature biases, when phonon-assisted inelastic processes dominate the transport. Our thermoelectric transistors and rectifiers can be realized in a gate-tunable double quantum-dot system embedded in a nanowire which is realizable within current technology. The inelastic electron-phonon scattering processes are found to induce pronounced charge, heat, and cross rectification effects, as well as a thermal transistor effect that, remarkably, can appear in the present model even in the linear-response regime without relying on the onset of negative differential thermal conductance.

  8. Programmable, automated transistor test system

    NASA Technical Reports Server (NTRS)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  9. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  10. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  11. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    PubMed

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor.

  12. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    PubMed

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor. PMID:26632273

  13. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  14. Brain barriers: Crosstalk between complex tight junctions and adherens junctions

    PubMed Central

    Tietz, Silvia

    2015-01-01

    Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function. PMID:26008742

  15. Analysing organic transistors based on interface approximation

    SciTech Connect

    Akiyama, Yuto; Mori, Takehiko

    2014-01-15

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region.

  16. Developmental staging models in bipolar disorder.

    PubMed

    Passos, Ives C; Jansen, Karen; Kapczinski, Flavio

    2015-12-01

    The previous contribution of Duffy and colleagues suggests that a chain of behavioral events starting during childhood precedes the development of full-blown bipolar disorder. In this vein, the recent contribution of Keown-Stoneman and colleagues brings a new perspective to the study of prodromal symptoms of bipolar disorder.

  17. Screening for bipolar disorder during pregnancy.

    PubMed

    Merrill, Lindsay; Mittal, Leena; Nicoloro, Jennifer; Caiozzo, Christina; Maciejewski, Paul K; Miller, Laura J

    2015-08-01

    Bipolar disorder is a high-risk condition during pregnancy. In women receiving prenatal care, this study addresses the proportion screening positive for bipolar disorder with or without also screening positive for depression. This is a pilot study using chart abstraction of Edinburgh Postnatal Depression Scale (EPDS) and Mood Disorder Questionnaire (MDQ) scores from patients' initial prenatal visits. Among 342 participants, 289 (87.1 %) completed the EPDS, 277 (81.0 %) completed the MDQ, and 274 (80.1 %) completed both. Among EPDS screens, 49 (16.4 %) were positive. Among MDQ screens, 14 (5.1 %) were positive. Nine (21.4 %) of the 42 participants with a positive EPDS also had a positive MDQ. Of the 14 patients with a positive MDQ, five (35.7 %) had a negative EPDS. The prevalence of positive screens for bipolar disorder in an obstetric population is similar to gestational diabetes and hypertension, which are screened for routinely. Without screening for bipolar disorder, there is a high risk of misclassifying bipolar depression as unipolar depression. If only women with current depressive symptoms are screened for bipolar disorder, approximately one third of bipolar disorder cases would be missed. If replicated, these findings support simultaneous screening for both depression and bipolar disorder during pregnancy.

  18. Bipolar Disorder and Cognitive Therapy: A Commentary

    ERIC Educational Resources Information Center

    Riskind, John H.

    2005-01-01

    This article comments on the three articles (Leahy, 2005; Newman, 2005; and Reilly-Harrington & Knauz, 2005) that deal with the applications of cognitive therapy to treatment of bipolar disorder. They focus on the uses of cognitive therapy in treating three important facets of the special problems of bipolar patients: rapid cycling, severe…

  19. Swimming in Deep Water: Childhood Bipolar Disorder

    ERIC Educational Resources Information Center

    Senokossoff, Gwyn W.; Stoddard, Kim

    2009-01-01

    The authors focused on one parent's struggles in finding a diagnosis and intervention for a child who had bipolar disorder. The authors explain the process of identification, diagnosis, and intervention of a child who had bipolar disorder. In addition to the personal story, the authors provide information on the disorder and outline strategies…

  20. Bipolar Disorder in School-Age Children

    ERIC Educational Resources Information Center

    Olson, Patricia M.; Pacheco, Mary Rae

    2005-01-01

    This article examines the individual components of bipolar disorder in children and the behaviors that can escalate as a result of misdiagnosis and treatment. The brain/behavior relationship in bipolar disorders can be affected by genetics, developmental failure, or environmental influences, which can cause an onset of dramatic mood swings and…

  1. Optimization of electron cooling by SIN tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuzmin, L.; Agulo, I.; Fominsky, M.; Savin, A.; Tarasov, M.

    2004-05-01

    We report on the optimization of electron cooling by SIN tunnel junctions due to the advanced geometry of superconducting electrodes and very effective normal metal traps for more efficient removal of quasiparticles at temperatures from 25 to 500 mK. The maximum decrease in electron temperature of about 200 mK has been observed at bath temperatures 300-350 mK. We used four-junction geometry with Al-AlOx-Cr/Cu tunnel junctions and Au traps. Efficient electron cooling was realized due to the improved geometry of the cooling tunnel junctions (quadrant shape of the superconducting electrode) and optimized Au traps just near the junctions ({\\approx }0.5~\\micmu {\\mathrm {m}} ) to reduce reabsorption of quasiparticles after removing them from normal metal. The maximum cooling effect was increased from a temperature drop of d T = -56 mK (ordinary cross geometry) to -130 mK (improved geometry of superconducting electrodes) and to d T = -200 mK (improved geometry of superconducting electrodes and effective Au traps). The heating peak (instead of cooling) near the zero voltage across cooling junctions has been observed in practice for all samples at temperatures below 150 mK. For higher cooling voltages close to the superconducting gap, the heating was converted to cooling with decreased amplitude. The leakage resistance of the tunnel junctions gives a reasonable explanation of the heating peak. The phonon reabsorption due to the recombination of quasiparticles in superconducting electrodes gives an additional improvement in the theoretical fitting but could not explain the heating peak. An anomalous zero-bias resistance peak has been observed for all tested structures. The peak is explained by Coulomb blockade of tunnelling in transistor-type structures with relatively small tunnel junctions. The work on electron cooling is devoted to the development of a cold-electron bolometer (CEB) with capacitive coupling by SIN tunnel junctions to the antenna for sensitive detection

  2. Understanding electronic structure and transport properties in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Dhungana, Kamal B.

    Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder for theorist to interpret the experimental results. To identify the junction configuration that possibly exists during the experimental measurement of conductance in molecular junction, we created an ensemble of Ruthanium-bis(terpyridine) molecular devices, and studied the transport behavior in these molecular junctions. This helps us identifying the junction geometry that yields the experimentally measured current-voltage characteristics. Today's electronic devices mostly ignore the spin effect of an electron. The inclusion of spin effect of an electron on solid-state transistor allows us to build more efficient electronic devices; this also alleviates the problem of huge heat dissipation in the nanoscale electronic devices. Different materials have been utilized to build three terminals spin transistor since its inception in 1950. In search of suitable candidates for the molecular spin transistor, we have recently designed a spin-valve transistor based on an organometallic molecule; a large amplification (320 %) in tunnel magneto-resistance (TMR) is found to occur at an experimentally accessible gate field. This suggests that the organic molecules can be utilized for making the next generation three terminal spintronic devices. Similarly, we have designed a

  3. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  4. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  5. Black phosphorus nonvolatile transistor memory.

    PubMed

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-28

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (10(4) s), and cyclic endurance (1000 cycles). PMID:27074903

  6. The four-gate transistor

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Cristoveanu, S.; Allibert, F.; France, G.; Blalock, B.; Durfrene, B.

    2002-01-01

    The four-gate transistor or G4-FET combines MOSFET and JFET principles in a single SOI device. Experimental results reveal that each gate can modulate the drain current. Numerical simulations are presented to clarify the mechanisms of operation. The new device shows enhanced functionality, due to the combinatorial action of the four gates, and opens rather revolutionary applications.

  7. Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Chai; Yeung, T. C. Au; Sun, Qing-Feng

    2010-06-01

    The longitudinal resistances of a six-terminal graphene p-n junction under a perpendicular magnetic field are investigated. Because of the chirality of the Hall edge states, the longitudinal resistances on top and bottom edges of the graphene ribbon are not equal. In the presence of suitable disorder, the top-edge and bottom-edge resistances well show the plateau structures in the both unipolar and bipolar regimes, and the plateau values are determined by the Landau filling factors only. These plateau structures are in excellent agreement with the recent experiment. For the unipolar junction, the resistance plateaus emerge in the absence of impurity and they are destroyed by strong disorder. But for the bipolar junction, the resistances are very large without the plateau structures in the clean junction. The disorder can strongly reduce the resistances and leads the formation of the resistance plateaus due to the mixture of the Hall edge states in virtue of the disorder. In addition, the size effect of the junction on the resistances is studied and some extra resistance plateaus are found in the long graphene junction case. This is explained by the fact that only part of the edge states participate in the full mixing.

  8. Viruses, schizophrenia, and bipolar disorder.

    PubMed Central

    Yolken, R H; Torrey, E F

    1995-01-01

    The hypothesis that viruses or other infectious agents may cause schizophrenia or bipolar disorder dates to the 19th century but has recently been revived. It could explain many clinical, genetic, and epidemiologic aspects of these diseases, including the winter-spring birth seasonality, regional differences, urban birth, household crowding, having an older sibling, and prenatal exposure to influenza as risk factors. It could also explain observed immunological changes such as abnormalities of lymphocytes, proteins, autoantibodies, and cytokines. However, direct studies of viral infections in individuals with these psychiatric diseases have been predominantly negative. Most studies have examined antibodies in blood or cerebrospinal fluid, and relatively few studies have been done on viral antigens, genomes, cytopathic effect on cell culture, and animal transmission experiments. Viral research on schizophrenia and bipolar disorder is thus comparable to viral research on multiple sclerosis and Parkinson's disease: an attractive hypothesis with scattered interesting findings but no clear proof. The application of molecular biological techniques may allow the identification of novel infectious agents and the associations of these novel agents with serious mental diseases. PMID:7704891

  9. [Dislocation-disassembly of bipolar hip arthroplasty--case report].

    PubMed

    Gagała, Jacek; Blacha, Jan

    2005-01-01

    Bipolar hip arthroplasty dislocation is rare. A case of bipolar hip arthroplasty dislocation in patient treated because of femoral neck fracture was described. Patient had neurological problems. The arthroplasty was made with posterolateral approach. Disassembly of bipolar prosthesis occurred during closed reduction. Open reduction with bipolar head exchange was necessary. To avoid this complication reduction should be made in anesthesia with muscles relaxation.

  10. Holliday Junction Resolvases

    PubMed Central

    Wyatt, Haley D.M.; West, Stephen C.

    2014-01-01

    Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes. PMID:25183833

  11. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  12. Improved performance of graphene transistors by strain engineering.

    PubMed

    Nguyen, V Hung; Nguyen, Huy-Viet; Dollfus, P

    2014-04-25

    By means of numerical simulation, in this work we study the effects of uniaxial strain on the transport properties of strained graphene heterojunctions and explore the possibility of achieving good performance of graphene transistors using these hetero-channels. It is shown that a finite conduction gap can open in the strain junctions due to strain-induced deformation of the graphene bandstructure. These hetero-channels are then demonstrated to significantly improve the operation of graphene field-effect transistors (FETs). In particular, the ON/OFF current ratio can reach a value of over 10(5). In graphene normal FETs, the transconductance, although reduced compared to the case of unstrained devices, is still high, while good saturation of current can be obtained. This results in a high voltage gain and a high transition frequency of a few hundreds of GHz for a gate length of 80 nm. In graphene tunneling FETs, subthreshold swings lower than 30 mV /dec, strong nonlinear effects such as gate-controllable negative differential conductance, and current rectification are observed.

  13. Tuning electron transport through a single molecular junction by bridge modification

    SciTech Connect

    Li, Xiao-Fei Qiu, Qi; Luo, Yi

    2014-07-07

    The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

  14. Bipolar plates for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  15. Bipolar Janus particle assembly in microdevice.

    PubMed

    Hossan, Mohammad R; Gopmandal, Partha P; Dillon, Robert; Dutta, Prashanta

    2015-03-01

    In recent years, there are significant interests in the manipulation of bipolar Janus particles. In this article, we investigate the transient behavior of the electro-orientation process and particle-particle interaction of ellipsoidal bipolar Janus particles in the presence and absence of a DC electric field. The bipolar particle dynamics is modeled with a body force term in the fluid flow equations based on the Maxwell stress tensor. This force is due to presence of bipolar surface charges on the particles as well as their interactions with an imposed field. An interface resolved numerical scheme that consider the finite size of the particle is adopted for computation of the electric and flow fields. Our numerical results show that in the absence of an electric field, particles can undergo self-orientation to reach an equilibrium position. The time taken to reach a stable orientation depends on the initial configuration and inter-particle separation distance. Bipolar particles experience forces only on their polar ends, a phenomena that is difficult to capture with noninterface resolved methods. When bipolar particles are exposed to an external electric field, they rotate to align along the external electric field direction. Depending upon the initial configuration, particles orient via clockwise or counter clockwise rotations to form head to tail chains. The time required to form particle assembly strongly depends on particle size and bipolar charge density. The present numerical algorithm can be applied to a wider class of dual-faced Janus particles.

  16. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion. PMID:17303718

  17. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  18. Brief Report: A Family Risk Study Exploring Bipolar Spectrum Problems and Cognitive Biases in Adolescent Children of Bipolar Parents

    ERIC Educational Resources Information Center

    Espie, Jonathan; Jones, Steven H.; Vance, Yvonne H.; Tai, Sara J.

    2012-01-01

    Children of parents with bipolar disorder are at increased risk of bipolar spectrum diagnoses. This cross-sectional study explores cognitive factors in the prediction of vulnerability to bipolar disorder. Adolescents at high-risk (with a parent with bipolar disorder; n = 23) and age and gender matched adolescents (n = 24) were recruited. Parent…

  19. Long-Term Characterization of 6H-SiC Transistor Integrated Circuit Technology Operating at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith Roger D.; Ferrier, Terry L.; Krasowski, Michael J.; Prokop, Norman F.

    2008-01-01

    NASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters.

  20. 1.1-μm InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy.

    PubMed

    Wu, Cheng-Han; Chen, Hsuan-An; Lin, Shih-Yen; Wu, Chao-Hsin

    2015-08-15

    In this Letter, we report the enhanced radiative recombination output from an AlGaAs/GaAs heterojunction bipolar transistor with InAs quantum dots embedded in the base region to form a quantum-dot light-emitting transistor (QDLET) grown by molecular beam epitaxy systems. For the device with a 100  μm×100  μm emitter area, we demonstrate the dual output characteristics with an electrical output and an optical output when the device is operating in the common-emitter configuration. The quantum-dot light-emitting transistor exhibits a base recombination radiation in the near-infrared spectral range with a dominant peak at λ of 1100 nm.