Sample records for bird evolution testing

  1. Evolution of olfaction in non-avian theropod dinosaurs and birds

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.

    2011-01-01

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. PMID:21490022

  2. A statistical test of unbiased evolution of body size in birds.

    PubMed

    Bokma, Folmer

    2002-12-01

    Of the approximately 9500 bird species, the vast majority is small-bodied. That is a general feature of evolutionary lineages, also observed for instance in mammals and plants. The avian interspecific body size distribution is right-skewed even on a logarithmic scale. That has previously been interpreted as evidence that body size evolution has been biased. However, a procedure to test for unbiased evolution from the shape of body size distributions was lacking. In the present paper unbiased body size evolution is defined precisely, and a statistical test is developed based on Monte Carlo simulation of unbiased evolution. Application of the test to birds suggests that it is highly unlikely that avian body size evolution has been unbiased as defined. Several possible explanations for this result are discussed. A plausible explanation is that the general model of unbiased evolution assumes that population size and generation time do not affect the evolutionary variability of body size; that is, that micro- and macroevolution are decoupled, which theory suggests is not likely to be the case.

  3. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.

    PubMed

    Lind, O; Delhey, K

    2015-03-01

    Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Dynamics of genome size evolution in birds and mammals.

    PubMed

    Kapusta, Aurélie; Suh, Alexander; Feschotte, Cédric

    2017-02-21

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.

  6. Widespread correlations between climatic niche evolution and species diversification in birds.

    PubMed

    Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A

    2016-07-01

    The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  7. Dynamics of genome size evolution in birds and mammals

    PubMed Central

    Feschotte, Cédric

    2017-01-01

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified “accordion” model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives. PMID:28179571

  8. Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin

    PubMed Central

    2011-01-01

    Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses. PMID:21711553

  9. Bone-associated gene evolution and the origin of flight in birds.

    PubMed

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  10. Sexual selection accelerates signal evolution during speciation in birds.

    PubMed

    Seddon, Nathalie; Botero, Carlos A; Tobias, Joseph A; Dunn, Peter O; Macgregor, Hannah E A; Rubenstein, Dustin R; Uy, J Albert C; Weir, Jason T; Whittingham, Linda A; Safran, Rebecca J

    2013-09-07

    Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male-male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.

  11. Does allopreening control avian ectoparasites?

    PubMed

    Villa, Scott M; Goodman, Graham B; Ruff, James S; Clayton, Dale H

    2016-07-01

    For birds, the first line of defence against ectoparasites is preening. The effectiveness of self-preening for ectoparasite control is well known. By contrast, the ectoparasite control function of allopreening-in which one birds preens another-has not been rigorously tested. We infested captive pigeons with identical numbers of parasitic lice, and then compared rates of allopreening to the abundance of lice on the birds over time. We documented a negative relationship between rates of allopreening and the number of lice on birds. Moreover, we found that allopreening was a better predictor of louse abundance than self-preening. Our data suggest that allopreening may be a more important means of ectoparasite defence than self-preening when birds live in groups. Our results have important implications for the evolution of social behaviour. © 2016 The Author(s).

  12. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.

    PubMed

    Moen, Daniel; Morlon, Hélène

    2014-05-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.

  13. Mosaic and Concerted Evolution in the Visual System of Birds

    PubMed Central

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N.; Moore, Bret A.; Fernández-Juricic, Esteban; Corfield, Jeremy R.; Krilow, Justin M.; Kolominsky, Jeffrey; Wylie, Douglas R.

    2014-01-01

    Two main models have been proposed to explain how the relative size of neural structures varies through evolution. In the mosaic evolution model, individual brain structures vary in size independently of each other, whereas in the concerted evolution model developmental constraints result in different parts of the brain varying in size in a coordinated manner. Several studies have shown variation of the relative size of individual nuclei in the vertebrate brain, but it is currently not known if nuclei belonging to the same functional pathway vary independently of each other or in a concerted manner. The visual system of birds offers an ideal opportunity to specifically test which of the two models apply to an entire sensory pathway. Here, we examine the relative size of 9 different visual nuclei across 98 species of birds. This includes data on interspecific variation in the cytoarchitecture and relative size of the isthmal nuclei, which has not been previously reported. We also use a combination of statistical analyses, phylogenetically corrected principal component analysis and evolutionary rates of change on the absolute and relative size of the nine nuclei, to test if visual nuclei evolved in a concerted or mosaic manner. Our results strongly indicate a combination of mosaic and concerted evolution (in the relative size of nine nuclei) within the avian visual system. Specifically, the relative size of the isthmal nuclei and parts of the tectofugal pathway covary across species in a concerted fashion, whereas the relative volume of the other visual nuclei measured vary independently of one another, such as that predicted by the mosaic model. Our results suggest the covariation of different neural structures depends not only on the functional connectivity of each nucleus, but also on the diversity of afferents and efferents of each nucleus. PMID:24621573

  14. An ecoimmunological approach to study evolutionary and ancient links between coagulation, complement and Innate immunity

    PubMed Central

    Kasetty, Gopinath; Alyafei, Saud; Smeds, Emanuel; Salo-Ahen, Outi M. H.; Hansson, Stefan R.; Egesten, Arne; Herwald, Heiko

    2018-01-01

    ABSTRACT Coagulation, complement, and innate immunity are tightly interwoven and form an alliance that can be traced back to early eukaryotic evolution. Here we employed an ecoimmunological approach using Tissue Factor Pathway Inhibitor (TFPI)-1-derived peptides from the different classes of vertebrates (i.e. fish, reptile, bird, and mammals) and tested whether they can boost killing of various human bacterial pathogens in plasma. We found signs of species-specific conservation and diversification during evolution in these peptides that significantly impact their antibacterial activity. Though all peptides tested executed bactericidal activity in mammalian plasma (with the exception of rodents), no killing was observed in plasma from birds, reptiles, and fish, pointing to a crucial role for the classical pathway of the complement system. We also observed an interference of these peptides with the human intrinsic pathway of coagulation though, unlike complement activation, this mechanism appears not to be evolutionary conserved. PMID:29473457

  15. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    PubMed

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  16. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.

    PubMed

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2014-12-12

    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  17. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

    PubMed Central

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2015-01-01

    To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  18. From Dinosaurs to Modern Bird Diversity: Extending the Time Scale of Adaptive Radiation

    PubMed Central

    Moen, Daniel; Morlon, Hélène

    2014-01-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a “deep-time” adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an “early burst” in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations. PMID:24802950

  19. The evolution of cerebellum structure correlates with nest complexity.

    PubMed

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  20. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    PubMed

    Dececchi, T Alexander; Larsson, Hans C E

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  1. Evolution of the hippocampus in reptiles and birds.

    PubMed

    Striedter, Georg F

    2016-02-15

    Although the hippocampus is structurally quite different among reptiles, birds, and mammals, its function in spatial memory is said to be highly conserved. This is surprising, given that structural differences generally reflect functional differences. Here I review this enigma in some detail, identifying several evolutionary changes in hippocampal cytoarchitecture and connectivity. I recognize a lepidosaurid pattern of hippocampal organization (in lizards, snakes, and the tuatara Sphenodon) that differs substantially from the pattern of organization observed in the turtle/archosaur lineage, which includes crocodilians and birds. Although individual subdivisions of the hippocampus are difficult to homologize between these two patterns, both lack a clear homolog of the mammalian dentate gyrus. The strictly trilaminar organization of the ancestral amniote hippocampus was gradually lost in the lineage leading to birds, and birds expanded the system of intrahippocampal axon collaterals, relative to turtles and lizards. These expanded collateral axon branches resemble the extensive collaterals in CA3 of the mammalian hippocampus but probably evolved independently of them. Additional examples of convergent evolution between birds and mammals are the loss of direct inputs to the hippocampus from the primary olfactory cortex and the general expansion of telencephalic regions that communicate reciprocally with the hippocampus. Given this structural convergence, it seems likely that some similarities in the function of the hippocampus between birds and mammals, notably its role in the ability to remember many different locations without extensive training, likewise evolved convergently. The currently available data do not allow for a strong test of this hypothesis, but the hypothesis itself suggests some promising new research directions. © 2015 Wiley Periodicals, Inc.

  2. Heterospecific eavesdropping in ant-following birds of the Neotropics is a learned behaviour.

    PubMed

    Pollock, Henry S; Martínez, Ari E; Kelley, J Patrick; Touchton, Janeene M; Tarwater, Corey E

    2017-10-25

    Animals eavesdrop on other species to obtain information about their environments. Heterospecific eavesdropping can yield tangible fitness benefits by providing valuable information about food resources and predator presence. The ability to eavesdrop may therefore be under strong selection, although extensive research on alarm-calling in avian mixed-species flocks has found only limited evidence that close association with another species could select for innate signal recognition. Nevertheless, very little is known about the evolution of eavesdropping behaviour and the mechanism of heterospecific signal recognition, particularly in other ecological contexts, such as foraging. To understand whether heterospecific eavesdropping was an innate or learned behaviour in a foraging context, we studied heterospecific signal recognition in ant-following birds of the Neotropics, which eavesdrop on vocalizations of obligate ant-following species to locate and recruit to swarms of the army ant Eciton burchellii , a profitable food resource. We used a playback experiment to compare recruitment of ant-following birds to vocalizations of two obligate species at a mainland site (where both species are present) and a nearby island site (where one species remains whereas the other went extinct approx. 40 years ago). We found that ant-following birds recruited strongly to playbacks of the obligate species present at both island and mainland sites, but the island birds did not recruit to playbacks of the absent obligate species. Our results strongly suggest that (i) ant-following birds learn to recognize heterospecific vocalizations from ecological experience and (ii) island birds no longer recognize the locally extinct obligate species after eight generations of absence from the island. Although learning appears to be the mechanism of heterospecific signal recognition in ant-following birds, more experimental tests are needed to fully understand the evolution of eavesdropping behaviour. © 2017 The Author(s).

  3. Global Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral Diversity

    PubMed Central

    Machalaba, Catherine C.; Elwood, Sarah E.; Forcella, Simona; Smith, Kristine M.; Hamilton, Keith; Jebara, Karim B.; Swayne, David E.; Webby, Richard J.; Mumford, Elizabeth; Mazet, Jonna A.K.; Gaidet, Nicolas; Daszak, Peter

    2015-01-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health–administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008–2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  4. Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage

    PubMed Central

    Benson, Roger B. J.; Campione, Nicolás E.; Carrano, Matthew T.; Mannion, Philip D.; Sullivan, Corwin; Upchurch, Paul; Evans, David C.

    2014-01-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages. PMID:24802911

  5. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage.

    PubMed

    Benson, Roger B J; Campione, Nicolás E; Carrano, Matthew T; Mannion, Philip D; Sullivan, Corwin; Upchurch, Paul; Evans, David C

    2014-05-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.

  6. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds.

    PubMed

    Vincze, Orsolya

    2016-09-01

    Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the "energetic trade-off hypothesis" claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the "behavioral flexibility hypothesis" argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade-off hypothesis, by showing the validity of the trade-off among long-distance migratory species alone. Third, using resident and short-distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade-off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Evolution of bird genomes-a transposon's-eye view.

    PubMed

    Kapusta, Aurélie; Suh, Alexander

    2017-02-01

    Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes. © 2016 New York Academy of Sciences.

  8. The skull roof tracks the brain during the evolution and development of reptiles including birds.

    PubMed

    Fabbri, Matteo; Mongiardino Koch, Nicolás; Pritchard, Adam C; Hanson, Michael; Hoffman, Eva; Bever, Gabriel S; Balanoff, Amy M; Morris, Zachary S; Field, Daniel J; Camacho, Jasmin; Rowe, Timothy B; Norell, Mark A; Smith, Roger M; Abzhanov, Arhat; Bhullar, Bhart-Anjan S

    2017-10-01

    Major transformations in brain size and proportions, such as the enlargement of the brain during the evolution of birds, are accompanied by profound modifications to the skull roof. However, the hypothesis of concerted evolution of shape between brain and skull roof over major phylogenetic transitions, and in particular of an ontogenetic relationship between specific regions of the brain and the skull roof, has never been formally tested. We performed 3D morphometric analyses to examine the deep history of brain and skull-roof morphology in Reptilia, focusing on changes during the well-documented transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds. Non-avialan taxa cluster tightly together in morphospace, whereas Archaeopteryx and crown birds occupy a separate region. There is a one-to-one correspondence between the forebrain and frontal bone and the midbrain and parietal bone. Furthermore, the position of the forebrain-midbrain boundary correlates significantly with the position of the frontoparietal suture across the phylogenetic breadth of Reptilia and during the ontogeny of individual taxa. Conservation of position and identity in the skull roof is apparent, and there is no support for previous hypotheses that the avian parietal is a transformed postparietal. The correlation and apparent developmental link between regions of the brain and bony skull elements are likely to be ancestral to Tetrapoda and may be fundamental to all of Osteichthyes, coeval with the origin of the dermatocranium.

  9. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals

    PubMed Central

    Willemet, Romain

    2013-01-01

    Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behavior of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. “Brain” and “cognition” are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behavior are limited by the complexity of these differences. Indeed, behavioral differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behavior appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists' preconceptions. The theoretical framework on the evolution of brain, cognition, and behavior in birds and mammals should be reconsidered with these biases in mind. PMID:23847570

  10. Dinosaur evolution. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds.

    PubMed

    Lee, Michael S Y; Cau, Andrea; Naish, Darren; Dyke, Gareth J

    2014-08-01

    Recent discoveries have highlighted the dramatic evolutionary transformation of massive, ground-dwelling theropod dinosaurs into light, volant birds. Here, we apply Bayesian approaches (originally developed for inferring geographic spread and rates of molecular evolution in viruses) in a different context: to infer size changes and rates of anatomical innovation (across up to 1549 skeletal characters) in fossils. These approaches identify two drivers underlying the dinosaur-bird transition. The theropod lineage directly ancestral to birds undergoes sustained miniaturization across 50 million years and at least 12 consecutive branches (internodes) and evolves skeletal adaptations four times faster than other dinosaurs. The distinct, prolonged phase of miniaturization along the bird stem would have facilitated the evolution of many novelties associated with small body size, such as reorientation of body mass, increased aerial ability, and paedomorphic skulls with reduced snouts but enlarged eyes and brains. Copyright © 2014, American Association for the Advancement of Science.

  11. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    PubMed Central

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  12. Improvement of individual camouflage through background choice in ground-nesting birds.

    PubMed

    Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K; Spottiswoode, Claire N

    2017-09-01

    Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.

  13. Improvement of individual camouflage through background choice in ground-nesting birds

    PubMed Central

    Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K.; Spottiswoode, Claire N.

    2017-01-01

    Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales. PMID:28890937

  14. Positive selection drives faster-Z evolution in silkmoths

    PubMed Central

    Sackton, Timothy B.; Corbett-Detig, Russell B.; Nagaraju, Javaregowda; Vaishna, R. Lakshmi; Arunkumar, Kallare P.; Hartl, Daniel L.

    2014-01-01

    Genes linked to X or Z chromosomes, which are hemizygous in the heterogametic sex, are predicted to evolve at different rates than those on autosomes. This “faster-X effect” can arise either as a consequence of hemizygosity, which leads to more efficient selection for recessive beneficial mutations in the heterogametic sex, or as a consequence of reduced effective population size of the hemizygous chromosome, which leads to increased fixation of weakly deleterious mutations due to genetic drift. Empirical results to date suggest that, while the overall pattern across taxa is complicated, systems with male-heterogamy show a faster-X effect attributable to more efficient selection, while the faster-Z effect in female-heterogametic taxa is attributable to increased drift. To test the generality of the faster-Z pattern seen in birds and snakes, we sequenced the genome of the Lepidopteran silkmoth Bombyx huttoni. We show that silkmoths experience faster-Z evolution, but unlike in birds and snakes, the faster-Z effect appears to be attributable to more efficient positive selection. These results suggest that female-heterogamy alone is unlikely to explain the reduced efficacy of selection on the bird Z chromosome. It is likely that many factors, including differences in overall effective population size, influence Z chromosome evolution. PMID:24826901

  15. Genetic characterization of low-pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution.

    PubMed

    Nakagawa, Hiroko; Okuya, Kosuke; Kawabata, Toshiko; Matsuu, Aya; Takase, Kozo; Kuwahara, Masakazu; Toda, Shigehisa; Ozawa, Makoto

    2018-04-01

    The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site of endangered cranes (hooded cranes and white-naped cranes) and of many other migratory birds (including wild ducks) that are considered carriers of avian influenza viruses (AIVs). To assess the risks of a highly pathogenic avian influenza outbreak in the crane populations, we tested various environmental samples for AIVs in this area. In the 2014-2015 winter season, we isolated one AIV of the H6N2 subtype from the cranes' roost water and two AIVs of the H11N9 subtype from a crane fecal sample and a cloacal swab of a dead spot-billed duck. Genetic analysis of these AIV isolates indicated that our H6N2 isolate is genetically close to AIVs isolated from wild birds in Southeast Asian countries, except that the PB1 and NS genes belong to the North American virus lineage. All genes of the two H11N9 isolates are related to AIVs belonging to the Eurasian virus lineage. Notably, in our phylogenetic trees, H11 HA and N9 NA genes showing high sequence similarity to the corresponding genes of isolates from wild birds in South Africa and Spain, respectively, did not cluster in the major groups with recent wild-bird isolates from East Asia. These results suggest that AIVs with viral gene segments derived from various locations and bird species have been brought to the Izumi plain. These findings imply a possible association of dynamic movements of wild birds with AIV evolution.

  16. Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds.

    PubMed

    Riede, Tobias; Eliason, Chad M; Miller, Edward H; Goller, Franz; Clarke, Julia A

    2016-08-01

    Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  18. An integrative approach to understanding bird origins.

    PubMed

    Xu, Xing; Zhou, Zhonghe; Dudley, Robert; Mackem, Susan; Chuong, Cheng-Ming; Erickson, Gregory M; Varricchio, David J

    2014-12-12

    Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model. Copyright © 2014, American Association for the Advancement of Science.

  19. The influence of capture-recapture methodology on the evolution of the North American Bird Banding Program

    USGS Publications Warehouse

    Tautin, J.; Lebreton, J.-D.; North, P.M.

    1993-01-01

    Capture-recapture methodology has advanced greatly in the last twenty years and is now a major factor driving the continuing evolution of the North American bird banding program. Bird banding studies are becoming more scientific with improved study designs and analytical procedures. Researchers and managers are gaining more reliable knowledge which in turn betters the conservation of migratory birds. The advances in capture-recapture methodology have benefited gamebird studies primarily, but nongame bird studies will benefit similarly as they expand greatly in the next decade. Further theoretical development of capture-recapture methodology should be encouraged, and, to maximize benefits of the methodology, work on practical applications should be increased.

  20. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  1. A phenology of the evolution of endothermy in birds and mammals.

    PubMed

    Lovegrove, Barry G

    2017-05-01

    Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three-phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy - increased metabolism and body temperature (T b ) - complemented large-body-size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body-size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle-powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals. © 2016 Cambridge Philosophical Society.

  2. Reconstructing the Phylogenetic History of Long-Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in Mitochondrial Genomes of Mammals and Birds

    PubMed Central

    Nabholz, Benoit; Lartillot, Nicolas

    2013-01-01

    The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more comprehensive phylogenetic reconstruction of the evolution of life-history and of the population-genetics environment. PMID:23711670

  3. Evolution: How Some Birds Survived When All Other Dinosaurs Died.

    PubMed

    Brusatte, Stephen L

    2016-05-23

    The end-Cretaceous mass extinction wiped out the dinosaurs, including many birds. But some bird lineages survived. May seed-eating have been the key? Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A global analysis of bird plumage patterns reveals no association between habitat and camouflage

    PubMed Central

    Marshall, Kate L.A.; Gluckman, Thanh-Lan

    2016-01-01

    Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types—mottled (irregular), scales, bars and spots (regular)—and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species’ geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world’s birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world’s eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis. PMID:27867762

  5. A global analysis of bird plumage patterns reveals no association between habitat and camouflage.

    PubMed

    Somveille, Marius; Marshall, Kate L A; Gluckman, Thanh-Lan

    2016-01-01

    Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types-mottled (irregular), scales, bars and spots (regular)-and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species' geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world's birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world's eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  6. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.

    PubMed

    Dececchi, T Alexander; Larsson, Hans C E; Habib, Michael B

    2016-01-01

    Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can't reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Using our first principles approach we find that "near flight" locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this separation is critical for our understanding of the origin of powered flight and avian evolution.

  7. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    PubMed Central

    Larsson, Hans C.E.; Habib, Michael B.

    2016-01-01

    Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this separation is critical for our understanding of the origin of powered flight and avian evolution. PMID:27441115

  8. Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds.

    PubMed

    Freeman, Benjamin G; Montgomery, Graham A; Schluter, Dolph

    2017-09-01

    Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This "song learning" hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54-79%) that requires song-learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to "a downside of learning" for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds.

    PubMed

    Dumont, Maïtena; Tafforeau, Paul; Bertin, Thomas; Bhullar, Bhart-Anjan; Field, Daniel; Schulp, Anne; Strilisky, Brandon; Thivichon-Prince, Béatrice; Viriot, Laurent; Louchart, Antoine

    2016-09-23

    The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these 'last' toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the 'last' toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution.

  10. From dinosaurs to birds: a tail of evolution

    PubMed Central

    2014-01-01

    A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events. PMID:25621146

  11. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population.

    PubMed

    Pulido, Francisco; Berthold, Peter

    2010-04-20

    Global warming is impacting biodiversity by altering the distribution, abundance, and phenology of a wide range of animal and plant species. One of the best documented responses to recent climate change is alterations in the migratory behavior of birds, but the mechanisms underlying these phenotypic adjustments are largely unknown. This knowledge is still crucial to predict whether populations of migratory birds will adapt to a rapid increase in temperature. We monitored migratory behavior in a population of blackcaps (Sylvia atricapilla) to test for evolutionary responses to recent climate change. Using a common garden experiment in time and captive breeding we demonstrated a genetic reduction in migratory activity and evolutionary change in phenotypic plasticity of migration onset. An artificial selection experiment further revealed that residency will rapidly evolve in completely migratory bird populations if selection for shorter migration distance persists. Our findings suggest that current alterations of the environment are favoring birds wintering closer to the breeding grounds and that populations of migratory birds have strongly responded to these changes in selection. The reduction of migratory activity is probably an important evolutionary process in the adaptation of migratory birds to climate change, because it reduces migration costs and facilitates the rapid adjustment to the shifts in the timing of food availability during reproduction.

  12. MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds

    PubMed Central

    Goh, Chul Jun; Choi, Dongjin; Park, Dong-Bin; Kim, Hyein; Hahn, Yoonsoo

    2016-01-01

    Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds. PMID:27074048

  13. MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds.

    PubMed

    Goh, Chul Jun; Choi, Dongjin; Park, Dong-Bin; Kim, Hyein; Hahn, Yoonsoo

    2016-01-01

    Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds.

  14. Rapid Evolution of Beta-Keratin Genes Contribute to Phenotypic Differences That Distinguish Turtles and Birds from Other Reptiles

    PubMed Central

    Li, Yang I.; Kong, Lesheng; Ponting, Chris P.; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles. PMID:23576313

  15. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds

    PubMed Central

    Wylie, Douglas R.; Gutiérrez-Ibáñez, Cristian; Iwaniuk, Andrew N.

    2015-01-01

    The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” whereby one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size. PMID:26321905

  16. Natural selection in avian protein-coding genes expressed in brain.

    PubMed

    Axelsson, Erik; Hultin-Rosenberg, Lina; Brandström, Mikael; Zwahlén, Martin; Clayton, David F; Ellegren, Hans

    2008-06-01

    The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.

  17. Predictable evolution toward flightlessness in volant island birds.

    PubMed

    Wright, Natalie A; Steadman, David W; Witt, Christopher C

    2016-04-26

    Birds are prolific colonists of islands, where they readily evolve distinct forms. Identifying predictable, directional patterns of evolutionary change in island birds, however, has proved challenging. The "island rule" predicts that island species evolve toward intermediate sizes, but its general applicability to birds is questionable. However, convergent evolution has clearly occurred in the island bird lineages that have undergone transitions to secondary flightlessness, a process involving drastic reduction of the flight muscles and enlargement of the hindlimbs. Here, we investigated whether volant island bird populations tend to change shape in a way that converges subtly on the flightless form. We found that island bird species have evolved smaller flight muscles than their continental relatives. Furthermore, in 366 populations of Caribbean and Pacific birds, smaller flight muscles and longer legs evolved in response to increasing insularity and, strikingly, the scarcity of avian and mammalian predators. On smaller islands with fewer predators, birds exhibited shifts in investment from forelimbs to hindlimbs that were qualitatively similar to anatomical rearrangements observed in flightless birds. These findings suggest that island bird populations tend to evolve on a trajectory toward flightlessness, even if most remain volant. This pattern was consistent across nine families and four orders that vary in lifestyle, foraging behavior, flight style, and body size. These predictable shifts in avian morphology may reduce the physical capacity for escape via flight and diminish the potential for small-island taxa to diversify via dispersal.

  18. GIS and path analysis: examining associations between the birds, the bees, and plant sex in Echinocereus coccineus (Cactaceae)

    Treesearch

    Summer Scobell; Stewart Schultz

    2005-01-01

    We tested hypotheses of how pollinators and water resource gradients influence the evolution of dioecy using Echinocereus coccineus, a cactus with both hermaphroditic and dioecious populations growing over wide climatic and biotic gradients in the Madrean Archipelago. A GIS database was compiled from herbarium specimens, rainfall data, and...

  19. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury

    PubMed Central

    Jimenez, Ana Gabriela; Harper, James M.; Queenborough, Simon A.; Williams, Joseph B.

    2013-01-01

    SUMMARY A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H2O2, paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD50) from tropical birds were significantly higher for H2O2 and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD50, we found that cells from tropical birds had greater tolerance for Cd, H2O2, paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species. PMID:23264487

  20. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury.

    PubMed

    Jimenez, Ana Gabriela; Harper, James M; Queenborough, Simon A; Williams, Joseph B

    2013-04-15

    A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.

  1. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution.

    PubMed

    Galván, Ismael; Solano, Francisco

    2016-04-08

    Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.

  2. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    PubMed

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.

  3. A new time tree reveals Earth history's imprint on the evolution of modern birds.

    PubMed

    Claramunt, Santiago; Cracraft, Joel

    2015-12-01

    Determining the timing of diversification of modern birds has been difficult. We combined DNA sequences of clock-like genes for most avian families with 130 fossil birds to generate a new time tree for Neornithes and investigated their biogeographic and diversification dynamics. We found that the most recent common ancestor of modern birds inhabited South America around 95 million years ago, but it was not until the Cretaceous-Paleogene transition (66 million years ago) that Neornithes began to diversify rapidly around the world. Birds used two main dispersion routes: reaching the Old World through North America, and reaching Australia and Zealandia through Antarctica. Net diversification rates increased during periods of global cooling, suggesting that fragmentation of tropical biomes stimulated speciation. Thus, we found pervasive evidence that avian evolution has been influenced by plate tectonics and environmental change, two basic features of Earth's dynamics.

  4. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  5. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds.

    PubMed

    Botero, Carlos A; Rubenstein, Dustin R

    2012-01-01

    Environmentally-induced fluctuation in the form and strength of natural selection can drive the evolution of morphology, physiology, and behavior. Here we test the idea that fluctuating climatic conditions may also influence the process of sexual selection by inducing unexpected reversals in the relative quality or sexual attractiveness of potential breeding partners. Although this phenomenon, known as 'ecological cross-over', has been documented in a variety of species, it remains unclear the extent to which it has driven the evolution of major interspecific differences in reproductive behavior. We show that after controlling for potentially influential life history and demographic variables, there are significant positive associations between the variability and predictability of annual climatic cycles and the prevalence of infidelity and divorce within populations of a taxonomically diverse array of socially monogamous birds. Our results are consistent with the hypothesis that environmental factors have shaped the evolution of reproductive flexibility and suggest that in the absence of severe time constraints, secondary mate choice behaviors can help prevent, correct, or minimize the negative consequences of ecological cross-overs. Our findings also illustrate how a basic evolutionary process like sexual selection is susceptible to the increasing variability and unpredictability of climatic conditions that is resulting from climate change.

  6. Interval singing links to phenotypic quality in a songbird

    PubMed Central

    2016-01-01

    Darwin was fascinated by melodic performances of insects, fish, birds, mammals, and men. He considered the ability to produce musical notes without direct use the most mysterious endowment of mankind. Bird song is attributed to sexual selection, but it remains unknown how the expected relationship between melodic performance and phenotypic quality arises. Melodies consist of sequences of notes, and both Pythagoras and music theorists in the Middle Ages found that their tonal frequencies form simple ratios that correspond to small-integer proportions derived from the harmonic series. Harmonics are acoustically predictable, and thus form the basis of the natural, just tuning system in music. Here I analyze the songs of the great tit (Parus major), a bird with a stereotyped song of typically two notes, and test the prediction that the deviations of the intervals from small-integer frequency ratios based on the harmonic series are related to the quality of the singer. I show that the birds with the smallest deviations from small-integer ratios possess the largest melanin-based black ventral tie, a signal that has been demonstrated to indicate social status and dominance, past exposure to parasites, and reproductive potential. The singing of notes with exact frequency relationships requires high levels of motor control and auditory sensory feedback. The finding provides a missing link between melodic precision and phenotypic quality of individuals, which is key for understanding the evolution of vocal melodic expression in animals, and elucidates pathways for the evolution of melodic expression in music. PMID:27791124

  7. Predictable evolution toward flightlessness in volant island birds

    PubMed Central

    Wright, Natalie A.; Steadman, David W.; Witt, Christopher C.

    2016-01-01

    Birds are prolific colonists of islands, where they readily evolve distinct forms. Identifying predictable, directional patterns of evolutionary change in island birds, however, has proved challenging. The “island rule” predicts that island species evolve toward intermediate sizes, but its general applicability to birds is questionable. However, convergent evolution has clearly occurred in the island bird lineages that have undergone transitions to secondary flightlessness, a process involving drastic reduction of the flight muscles and enlargement of the hindlimbs. Here, we investigated whether volant island bird populations tend to change shape in a way that converges subtly on the flightless form. We found that island bird species have evolved smaller flight muscles than their continental relatives. Furthermore, in 366 populations of Caribbean and Pacific birds, smaller flight muscles and longer legs evolved in response to increasing insularity and, strikingly, the scarcity of avian and mammalian predators. On smaller islands with fewer predators, birds exhibited shifts in investment from forelimbs to hindlimbs that were qualitatively similar to anatomical rearrangements observed in flightless birds. These findings suggest that island bird populations tend to evolve on a trajectory toward flightlessness, even if most remain volant. This pattern was consistent across nine families and four orders that vary in lifestyle, foraging behavior, flight style, and body size. These predictable shifts in avian morphology may reduce the physical capacity for escape via flight and diminish the potential for small-island taxa to diversify via dispersal. PMID:27071105

  8. The Evolution of the Snellen E to the Blackbird. (Blackbird Preschool Vision Screening Program).

    ERIC Educational Resources Information Center

    Sato-Viacrucis, Kiyo

    Comparison of a variety of vision screening methods used with preschool children led to modification of the standard Snellen E test called the Blackbird Vision Screening System. An instructional story using an "E-bird" was developed to teach children the various possible positions of the E. The visual confusion caused by the chart was…

  9. Song convergence in multiple urban populations of silvereyes (Zosterops lateralis)

    PubMed Central

    Potvin, Dominique A; Parris, Kirsten M

    2012-01-01

    Recent studies have revealed differences between urban and rural vocalizations of numerous bird species. These differences include frequency shifts, amplitude shifts, altered song speed, and selective meme use. If particular memes sung by urban populations are adapted to the urban soundscape, “urban-typical” calls, memes, or repertoires should be consistently used in multiple urban populations of the same species, regardless of geographic location. We tested whether songs or contact calls of silvereyes (Zosterops lateralis) might be subject to such convergent cultural evolution by comparing syllable repertoires of geographically dispersed urban and rural population pairs throughout southeastern Australia. Despite frequency and tempo differences between urban and rural calls, call repertoires were similar between habitat types. However, certain song syllables were used more frequently by birds from urban than rural populations. Partial redundancy analysis revealed that both geographic location and habitat characteristics were important predictors of syllable repertoire composition. These findings suggest convergent cultural evolution: urban populations modify both song and call syllables from their local repertoire in response to noise. PMID:22957198

  10. Song convergence in multiple urban populations of silvereyes (Zosterops lateralis).

    PubMed

    Potvin, Dominique A; Parris, Kirsten M

    2012-08-01

    Recent studies have revealed differences between urban and rural vocalizations of numerous bird species. These differences include frequency shifts, amplitude shifts, altered song speed, and selective meme use. If particular memes sung by urban populations are adapted to the urban soundscape, "urban-typical" calls, memes, or repertoires should be consistently used in multiple urban populations of the same species, regardless of geographic location. We tested whether songs or contact calls of silvereyes (Zosterops lateralis) might be subject to such convergent cultural evolution by comparing syllable repertoires of geographically dispersed urban and rural population pairs throughout southeastern Australia. Despite frequency and tempo differences between urban and rural calls, call repertoires were similar between habitat types. However, certain song syllables were used more frequently by birds from urban than rural populations. Partial redundancy analysis revealed that both geographic location and habitat characteristics were important predictors of syllable repertoire composition. These findings suggest convergent cultural evolution: urban populations modify both song and call syllables from their local repertoire in response to noise.

  11. Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders

    PubMed Central

    Pacheco, M. Andreína; Battistuzzi, Fabia U.; Lentino, Miguel; Aguilar, Roberto F.; Kumar, Sudhir; Escalante, Ananias A.

    2011-01-01

    Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds. PMID:21242529

  12. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles

    PubMed Central

    Eo, Soo Hyung; DeWoody, J. Andrew

    2010-01-01

    Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427

  13. Cognitive skills and bacterial load: comparative evidence of costs of cognitive proficiency in birds

    NASA Astrophysics Data System (ADS)

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Martín-Vivaldi, Manuel; Martín-Platero, Antonio Manuel; Flensted-Jensen, Einar; Møller, Anders Pape

    2012-02-01

    Parasite-mediated selection may affect the evolution of cognitive abilities because parasites may influence development of the brain, but also learning capacity. Here, we tested some predictions of this hypothesis by analyzing the relationship between complex behaviours (feeding innovations (as a measure of behavioural flexibility) and ability to detect foreign eggs in their nests (i.e. a measure of discriminatory ability)) and abundance of microorganisms in different species of birds. A positive relationship would be predicted if these cognitive abilities implied a larger number of visited environments, while if these skills favoured detection and avoidance of risky environments, a negative relationship would be the prediction. Bacterial loads of eggshells, estimated for mesophilic and potentially pathogenic bacteria (i.e. Enterococcus, Staphylococcus and Enterobacteriaceae), were used as a surrogate of probability of contact with pathogenic bacteria. We found that bird species with higher feeding innovation rates and rejection rates of experimental brood parasitic eggs had higher density of bacteria on their eggshells than the average species. Since the analysed groups of microorganisms include pathogenic bacteria, these results suggest that both feeding innovation and ability to recognize foreign eggs are costly and highlight the importance of parasite-mediated selection in explaining the evolution of cognitive abilities in animals.

  14. A new basal bird from China with implications for morphological diversity in early birds

    PubMed Central

    Wang, Min; Wang, Xiaoli; Wang, Yan; Zhou, Zhonghe

    2016-01-01

    The Chinese Lower Cretaceous Jehol Group is the second oldest fossil bird-bearing deposit, only surpassed by Archaeopteryx from the German Upper Jurassic Solnhofen Limestones. Here we report a new bird, Chongmingia zhengi gen. et sp. nov., from the Jehol Biota. Phylogenetic analyses indicate that Chongmingia zhengi is basal to the dominant Mesozoic avian clades Enantiornithes and Ornithuromorpha, and represents a new basal avialan lineage. This new discovery adds to our knowledge regarding the phylogenetic differentiation and morphological diversity in early avian evolution. The furcula of Chongmingia is rigid (reducing its efficiency), consequently requiring more power for flight. However, the elongated forelimb and the large deltopectoral crest on the humerus might indicate that the power was available. The unique combination of features present in this species demonstrates that numerous evolutionary experimentations took place in the early evolution of powered flight. The occurrence of gastroliths further confirms that herbivory was common among basal birds. The Jehol birds faced competition with pterosaurs, and occupied sympatric habitats with non-avian theropods, some of which consumed birds. Thus, avialan herbivory may have reduced ecological competition from carnivorous close relatives and other volant vertebrates early in their evolutionary history. PMID:26806355

  15. Pollinator shifts drive petal epidermal evolution on the Macaronesian Islands bird-flowered species.

    PubMed

    Ojeda, Dario I; Valido, Alfredo; Fernández de Castro, Alejandro G; Ortega-Olivencia, Ana; Fuertes-Aguilar, Javier; Carvalho, José A; Santos-Guerra, Arnoldo

    2016-04-01

    Pollinator shifts are considered to drive floral trait evolution, yet little is still known about the modifications of petal epidermal surface at a biogeographic region scale. Here we investigated how independent shifts from insects to passerine birds in the Macaronesian Islands consistently modified this floral trait (i.e. absence of papillate cells). Using current phylogenies and extensive evidence from field observations, we selected a total of 81 plant species and subspecies for petal microscopy and comparative analysis, including 19 of the 23 insular species pollinated by opportunistic passerine birds (Macaronesian bird-flowered element). Species relying on passerine birds as the most effective pollinators (bird-pollinated) independently evolved at least five times and in all instances associated with a loss of papillate cells, whereas species with a mixed pollination system (birds plus insects and/or other vertebrates) evolved at least five times in Macaronesia and papillate cells were lost in only 25% of these transitions. Our findings suggest that petal micromorphology is a labile trait during pollinator shifts and that papillate cells tend to be absent on those species where pollinators have limited mechanical interaction with flowers, including opportunistic passerine birds that forage by hovering or from the ground. © 2016 The Author(s).

  16. Family living sets the stage for cooperative breeding and ecological resilience in birds

    PubMed Central

    Drobniak, Szymon M.; Nakagawa, Shinichi; Botero, Carlos A.

    2017-01-01

    Cooperative breeding is an extreme form of cooperation that evolved in a range of lineages, including arthropods, fish, birds, and mammals. Although cooperative breeding in birds is widespread and well-studied, the conditions that favored its evolution are still unclear. Based on phylogenetic comparative analyses on 3,005 bird species, we demonstrate here that family living acted as an essential stepping stone in the evolution of cooperative breeding in the vast majority of species. First, families formed by prolonging parent–offspring associations beyond nutritional independency, and second, retained offspring began helping at the nest. These findings suggest that assessment of the conditions that favor the evolution of cooperative breeding can be confounded if this process is not considered to include 2 steps. Specifically, phylogenetic linear mixed models show that the formation of families was associated with more productive and seasonal environments, where prolonged parent–offspring associations are likely to be less costly. However, our data show that the subsequent evolution of cooperative breeding was instead linked to environments with variable productivity, where helpers at the nest can buffer reproductive failure in harsh years. The proposed 2-step framework helps resolve current disagreements about the role of environmental forces in the evolution of cooperative breeding and better explains the geographic distribution of this trait. Many geographic hotspots of cooperative breeding have experienced a historical decline in productivity, suggesting that a higher proportion of family-living species could have been able to avoid extinction under harshening conditions through the evolution of cooperative breeding. These findings underscore the importance of considering the potentially different factors that drive different steps in the evolution of complex adaptations. PMID:28636615

  17. Family living sets the stage for cooperative breeding and ecological resilience in birds.

    PubMed

    Griesser, Michael; Drobniak, Szymon M; Nakagawa, Shinichi; Botero, Carlos A

    2017-06-01

    Cooperative breeding is an extreme form of cooperation that evolved in a range of lineages, including arthropods, fish, birds, and mammals. Although cooperative breeding in birds is widespread and well-studied, the conditions that favored its evolution are still unclear. Based on phylogenetic comparative analyses on 3,005 bird species, we demonstrate here that family living acted as an essential stepping stone in the evolution of cooperative breeding in the vast majority of species. First, families formed by prolonging parent-offspring associations beyond nutritional independency, and second, retained offspring began helping at the nest. These findings suggest that assessment of the conditions that favor the evolution of cooperative breeding can be confounded if this process is not considered to include 2 steps. Specifically, phylogenetic linear mixed models show that the formation of families was associated with more productive and seasonal environments, where prolonged parent-offspring associations are likely to be less costly. However, our data show that the subsequent evolution of cooperative breeding was instead linked to environments with variable productivity, where helpers at the nest can buffer reproductive failure in harsh years. The proposed 2-step framework helps resolve current disagreements about the role of environmental forces in the evolution of cooperative breeding and better explains the geographic distribution of this trait. Many geographic hotspots of cooperative breeding have experienced a historical decline in productivity, suggesting that a higher proportion of family-living species could have been able to avoid extinction under harshening conditions through the evolution of cooperative breeding. These findings underscore the importance of considering the potentially different factors that drive different steps in the evolution of complex adaptations.

  18. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution

    PubMed Central

    Galván, Ismael; Solano, Francisco

    2016-01-01

    Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models. PMID:27070583

  19. Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China.

    PubMed

    Li, Zhiheng; Clarke, Julia A; Eliason, Chad M; Stidham, Thomas A; Deng, Tao; Zhou, Zhonghe

    2018-05-25

    Modifications to the upper vocal tract involving hyper-elongated tracheae have evolved many times within crown birds, and their evolution has been linked to a 'size exaggeration' hypothesis in acoustic signaling and communication, whereby smaller-sized birds can produce louder sounds. A fossil skeleton of a new extinct species of wildfowl (Galliformes: Phasianidae) from the late Miocene of China, preserves an elongated, coiled trachea that represents the oldest fossil record of this vocal modification in birds and the first documentation of its evolution within pheasants. The phylogenetic position of this species within Phasianidae has not been fully resolved, but appears to document a separate independent origination of this vocal modification within Galliformes. The fossil preserves a coiled section of the trachea and other remains supporting a tracheal length longer than the bird's body. This extinct species likely produced vocalizations with a lower fundamental frequency and reduced harmonics compared to similarly-sized pheasants. The independent evolution of this vocal feature in galliforms living in both open and closed habitats does not appear to be correlated with other factors of biology or its open savanna-like habitat. Features present in the fossil that are typically associated with sexual dimorphism suggest that sexual selection may have resulted in the evolution of both the morphology and vocalization mechanism in this extinct species.

  20. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.

    PubMed

    Nudds, Robert L; Dyke, Gareth J

    2009-04-01

    Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.

  1. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test.

    PubMed

    Berlin, Sofia; Smith, Nick G C

    2005-11-10

    Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.

  2. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  3. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  4. Can Foraging Ecology Drive the Evolution of Body Size in a Diving Endotherm?

    PubMed Central

    Cook, Timothée R.; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes. PMID:23409169

  5. Can foraging ecology drive the evolution of body size in a diving endotherm?

    PubMed

    Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  6. Death feigning by ducks in response to predation by red foxes (Vulpes fulva)

    USGS Publications Warehouse

    Sargeant, A.B.; Eberhardt, L.E.

    1975-01-01

    Predation by captive red foxes (Vulpes fulva) on approximately 50 ducks comprised of five species was observed in tests conducted at the Northern Prairie Wildlife Research Center, Jamestown, North Dakota. Most ducks were attacked from a rear or lateral position and seized in the cervical or thoracic region. All birds became immobile (death-feigned) immediately when seized and with few exceptions remained motionless during prey-handling and for varying lengths of time thereafter. Initial death feints lasted from 20 sec to 14 min. Recovery was delayed by tactile, visual and, possibly, auditory cues from the foxes. Death-feigning birds appeared alert and often took advantage of escape opportunities. Twenty-nine birds survived initial capture and handling by the foxes. Naive foxes were wary of ducks during initial confrontations, but experienced foxes showed little hesitation in attacking them. After capture, most ducks were taken alive to lay-down sites where they were mouthed and often killed. Then the ducks were usually cached or taken to dens or pups. Several birds were cached alive. Red foxes appear to have adapted to the escape of death-feigning ducks by learning to kill some birds soon after capture and by the evolution of an appendage-severing behavior. Death feigning appears to be a highly developed antipredator behavior of ducks that facilitates the escape of some birds after capture by red foxes.

  7. What Pinnipeds Have to Say about Human Speech, Music, and the Evolution of Rhythm.

    PubMed

    Ravignani, Andrea; Fitch, W Tecumseh; Hanke, Frederike D; Heinrich, Tamara; Hurgitsch, Bettina; Kotz, Sonja A; Scharff, Constance; Stoeger, Angela S; de Boer, Bart

    2016-01-01

    Research on the evolution of human speech and music benefits from hypotheses and data generated in a number of disciplines. The purpose of this article is to illustrate the high relevance of pinniped research for the study of speech, musical rhythm, and their origins, bridging and complementing current research on primates and birds. We briefly discuss speech, vocal learning, and rhythm from an evolutionary and comparative perspective. We review the current state of the art on pinniped communication and behavior relevant to the evolution of human speech and music, showing interesting parallels to hypotheses on rhythmic behavior in early hominids. We suggest future research directions in terms of species to test and empirical data needed.

  8. What Pinnipeds Have to Say about Human Speech, Music, and the Evolution of Rhythm

    PubMed Central

    Ravignani, Andrea; Fitch, W. Tecumseh; Hanke, Frederike D.; Heinrich, Tamara; Hurgitsch, Bettina; Kotz, Sonja A.; Scharff, Constance; Stoeger, Angela S.; de Boer, Bart

    2016-01-01

    Research on the evolution of human speech and music benefits from hypotheses and data generated in a number of disciplines. The purpose of this article is to illustrate the high relevance of pinniped research for the study of speech, musical rhythm, and their origins, bridging and complementing current research on primates and birds. We briefly discuss speech, vocal learning, and rhythm from an evolutionary and comparative perspective. We review the current state of the art on pinniped communication and behavior relevant to the evolution of human speech and music, showing interesting parallels to hypotheses on rhythmic behavior in early hominids. We suggest future research directions in terms of species to test and empirical data needed. PMID:27378843

  9. Bird embryos uncover homology and evolution of the dinosaur ankle.

    PubMed

    Ossa-Fuentes, Luis; Mpodozis, Jorge; Vargas, Alexander O

    2015-11-13

    The anklebone (astragalus) of dinosaurs presents a characteristic upward projection, the 'ascending process' (ASC). The ASC is present in modern birds, but develops a separate ossification centre, and projects from the calcaneum in most species. These differences have been argued to make it non-comparable to dinosaurs. We studied ASC development in six different orders of birds using traditional techniques and spin-disc microscopy for whole-mount immunofluorescence. Unexpectedly, we found the ASC derives from the embryonic intermedium, an ancient element of the tetrapod ankle. In some birds it comes in contact with the astragalus, and, in others, with the calcaneum. The fact that the intermedium fails to fuse early with the tibiale and develops an ossification centre is unlike any other amniotes, yet resembles basal, amphibian-grade tetrapods. The ASC originated in early dinosaurs along changes to upright posture and locomotion, revealing an intriguing combination of functional innovation and reversion in its evolution.

  10. Bird embryos uncover homology and evolution of the dinosaur ankle

    PubMed Central

    Ossa-Fuentes, Luis; Mpodozis, Jorge; Vargas, Alexander O

    2015-01-01

    The anklebone (astragalus) of dinosaurs presents a characteristic upward projection, the ‘ascending process' (ASC). The ASC is present in modern birds, but develops a separate ossification centre, and projects from the calcaneum in most species. These differences have been argued to make it non-comparable to dinosaurs. We studied ASC development in six different orders of birds using traditional techniques and spin–disc microscopy for whole-mount immunofluorescence. Unexpectedly, we found the ASC derives from the embryonic intermedium, an ancient element of the tetrapod ankle. In some birds it comes in contact with the astragalus, and, in others, with the calcaneum. The fact that the intermedium fails to fuse early with the tibiale and develops an ossification centre is unlike any other amniotes, yet resembles basal, amphibian-grade tetrapods. The ASC originated in early dinosaurs along changes to upright posture and locomotion, revealing an intriguing combination of functional innovation and reversion in its evolution. PMID:26563435

  11. Cognitive ornithology: the evolution of avian intelligence

    PubMed Central

    Emery, Nathan J

    2005-01-01

    Comparative psychologists interested in the evolution of intelligence have focused their attention on social primates, whereas birds tend to be used as models of associative learning. However, corvids and parrots, which have forebrains relatively the same size as apes, live in complex social groups and have a long developmental period before becoming independent, have demonstrated ape-like intelligence. Although, ornithologists have documented thousands of hours observing birds in their natural habitat, they have focused their attention on avian behaviour and ecology, rather than intelligence. This review discusses recent studies of avian cognition contrasting two different approaches; the anthropocentric approach and the adaptive specialization approach. It is argued that the most productive method is to combine the two approaches. This is discussed with respects to recent investigations of two supposedly unique aspects of human cognition; episodic memory and theory of mind. In reviewing the evidence for avian intelligence, corvids and parrots appear to be cognitively superior to other birds and in many cases even apes. This suggests that complex cognition has evolved in species with very different brains through a process of convergent evolution rather than shared ancestry, although the notion that birds and mammals may share common neural connectivity patterns is discussed. PMID:16553307

  12. The increased risk of predation enhances cooperation

    PubMed Central

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  13. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae).

    PubMed

    Seeholzer, Glenn F; Claramunt, Santiago; Brumfield, Robb T

    2017-03-01

    Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic-niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic-niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic-niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic-niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes.

    PubMed

    Figuet, Emeric; Nabholz, Benoît; Bonneau, Manon; Mas Carrio, Eduard; Nadachowska-Brzyska, Krystyna; Ellegren, Hans; Galtier, Nicolas

    2016-06-01

    The nearly neutral theory of molecular evolution predicts that small populations should accumulate deleterious mutations at a faster rate than large populations. The analysis of nonsynonymous (dN) versus synonymous (dS) substitution rates in birds versus mammals, however, has provided contradictory results, questioning the generality of the nearly neutral theory. Here we analyzed the impact of life history traits, taken as proxies of the effective population size, on molecular evolutionary and population genetic processes in amniotes, including the so far neglected reptiles. We report a strong effect of species body mass, longevity, and age of sexual maturity on genome-wide patterns of polymorphism and divergence across the major groups of amniotes, in agreement with the nearly neutral theory. Our results indicate that the rate of protein evolution in amniotes is determined in the first place by the efficiency of purifying selection against deleterious mutations-and this is true of both radical and conservative amino acid changes. Interestingly, the among-species distribution of dN/dS in birds did not follow this general trend: dN/dS was not higher in large, long-lived than in small, short-lived species of birds. We show that this unexpected pattern is not due to a more narrow range of life history traits, a lack of correlation between traits and Ne, or a peculiar distribution of fitness effects of mutations in birds. Our analysis therefore highlights the bird dN/dS ratio as a molecular evolutionary paradox and a challenge for future research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.

    PubMed

    Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild

    2013-10-01

    We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Cloning, expression of, and evidence of positive selection for, the prolactin receptor gene in Chinese giant salamander (Andrias davidianus).

    PubMed

    Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Chen, Songlin; Xiao, Hanbing

    2015-12-01

    Prolactin receptor (PRLR) is a protein associated with reproduction in mammals and with osmoregulation in fish. In this study, the complete length of Chinese giant salamander Andrias davidianus prolactin receptor (AD-prlr) was cloned. Andrias davidianus prlr expression was high in the kidney, pituitary, and ovary and low in other examined tissues. The AD-prlr levels were higher in ovary than in testis, and increased in ovaries with age from 1 to 6 years. To determine effect of exogenous androgen and aromatase inhibitor on AD-prlr expression, methyltestosterone (MT) and letrozole (LE) were injected, resulting in decreased AD-prlr in both brain and ovary, with MT repressing prlr transcription more rapidly than did LE. The molecular evolution of prlr was assessed, and found to have undergone a complex evolution process. The obranch-site test detected four positively selected sites in ancestral lineages prior to the separation of mammals and birds. Fourteen sites underwent positive selection in ancestral lineages of birds and six were positively selected in amphibians. The site model showed that 16, 7, and 30 sites underwent positive selection in extant mammals, amphibians, and birds, respectively. The positively selected sites in amphibians were located outside the transmembrane domain, with four in the extracellular and three in the intracellular domain, indicating that the transmembrane region might be conserved and essential for protein function. Our findings provide a basis for further studies of AD-prlr function and molecular evolution in Chinese giant salamander. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 707-719, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.

    PubMed

    Bellott, Daniel W; Skaletsky, Helen; Pyntikova, Tatyana; Mardis, Elaine R; Graves, Tina; Kremitzki, Colin; Brown, Laura G; Rozen, Steve; Warren, Wesley C; Wilson, Richard K; Page, David C

    2010-07-29

    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

  18. Further and Higher Education Partnerships. The Future for Collaboration.

    ERIC Educational Resources Information Center

    Abramson, Mike, Ed.; And Others

    The following papers are included: "Introduction" (Mike Abramson, John Bird, Anne Stennett); "Partnership Imperatives: A Critical Appraisal" (Mike Abramson); "Further and Higher Education Partnerships: The Evolution of a National Policy Framework" (John Bird); "Finance: The Bedrock of Good Partnerships"…

  19. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    PubMed

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  20. Bone density and the lightweight skeletons of birds.

    PubMed

    Dumont, Elizabeth R

    2010-07-22

    The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.

  1. Cooperative breeding and monogamy in mammalian societies

    PubMed Central

    Lukas, Dieter; Clutton-Brock, Tim

    2012-01-01

    Comparative studies of social insects and birds show that the evolution of cooperative and eusocial breeding systems has been confined to species where females mate completely or almost exclusively with a single male, indicating that high levels of average kinship between group members are necessary for the evolution of reproductive altruism. In this paper, we show that in mammals, the evolution of cooperative breeding has been restricted to socially monogamous species which currently represent 5 per cent of all mammalian species. Since extra-pair paternity is relatively uncommon in socially monogamous and cooperatively breeding mammals, our analyses support the suggestion that high levels of average kinship between group members have played an important role in the evolution of cooperative breeding in non-human mammals, as well as in birds and insects. PMID:22279167

  2. Phylogenetics of modern birds in the era of genomics

    PubMed Central

    Edwards, Scott V; Bryan Jennings, W; Shedlock, Andrew M

    2005-01-01

    In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a ‘community genomics’ approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era—with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters—will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics. PMID:16024355

  3. HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS

    PubMed Central

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David

    2014-01-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891

  4. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    PubMed

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  5. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: a comparative analysis.

    PubMed

    Rolland, C; Danchin, E; de Fraipont, M

    1998-06-01

    Coloniality in birds has been intensively studied under the cost and benefit approach, but no general conclusion can be given concerning its evolutionary function. Here, we report on a comparative analysis carried out on 320 species of birds using the general method of comparative analysis for discrete variables and the contrast method to analyze the evolution of coloniality. Showing a mean of 23 convergences and 10 reversals, coloniality appears to be a rather labile trait. Colonial breeding appears strongly correlated with the absence of feeding territory, the aquatic habitat, and nest exposure to predators but was not correlated with changes in life-history traits (body mass and clutch size). The correlation of coloniality with the aquatic habitat is in fact explained by a strong correlation with the marine habitat. Unexpectedly, we found that the evolution toward a marine habitat in birds was contingent on coloniality and that coloniality evolved before the passage to a marine life. These results-along with the lack of transitions from the nonmarine to marine habitat in solitary species and the precedence of the loss of feeding territoriality on the passage to a marine life-contradict most of the hypotheses classically accepted to explain coloniality and suggest that we use a different framework to study this evolutionary enigma.

  6. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Cross-species transmission and emergence of novel viruses from birds.

    PubMed

    Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Yuen, Kwok-Yung

    2015-02-01

    Birds, the only living member of the Dinosauria clade, are flying warm-blooded vertebrates displaying high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system. Birds provide the natural reservoir for numerous viral species and therefore gene source for evolution, emergence and dissemination of novel viruses. The intrusions of human into natural habitats of wild birds, the domestication of wild birds as pets or racing birds, and the increasing poultry consumption by human have facilitated avian viruses to cross species barriers to cause zoonosis. Recently, a novel adenovirus was exclusively found in birds causing an outbreak of Chlamydophila psittaci infection among birds and humans. Instead of being the primary cause of an outbreak by jumping directly from bird to human, a novel avian virus can be an augmenter of another zoonotic agent causing the outbreak. A comprehensive avian virome will improve our understanding of birds' evolutionary dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Biological cycle of Cyrnea (Procyrnea) mansoni Seurat, 1914, a habronemid nematode parasite of birds of prey in Togo].

    PubMed

    Quentin, J C; Seureau, C; Railhac, C

    1983-01-01

    A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.

  9. Migration and the evolution of duetting in songbirds.

    PubMed

    Logue, David M; Hall, Michelle L

    2014-05-07

    Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration-duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability.

  10. Migration and the evolution of duetting in songbirds

    PubMed Central

    Logue, David M.; Hall, Michelle L.

    2014-01-01

    Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration–duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability. PMID:24619447

  11. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.

    PubMed

    Benson, Roger B J; Butler, Richard J; Carrano, Matthew T; O'Connor, Patrick M

    2012-02-01

    Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large-bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non-avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This 'common pattern' was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird-like feature among non-avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non-volant, maniraptorans resulted in energetic savings as part of a multi-system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small-bodied maniraptorans may indicate avian-like high-performance endothermy. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  12. Storms drive altitudinal migration in a tropical bird

    PubMed Central

    Boyle, W. Alice; Norris, D. Ryan; Guglielmo, Christopher G.

    2010-01-01

    Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals. PMID:20375047

  13. Storms drive altitudinal migration in a tropical bird.

    PubMed

    Boyle, W Alice; Norris, D Ryan; Guglielmo, Christopher G

    2010-08-22

    Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals.

  14. Structure, ontogeny and evolution of the patellar tendon in emus (Dromaius novaehollandiae) and other palaeognath birds

    PubMed Central

    Pitsillides, Andrew A.; Hutchinson, John R.

    2014-01-01

    The patella (kneecap) exhibits multiple evolutionary origins in birds, mammals, and lizards, and is thought to increase the mechanical advantage of the knee extensor muscles. Despite appreciable interest in the specialized anatomy and locomotion of palaeognathous birds (ratites and relatives), the structure, ontogeny and evolution of the patella in these species remains poorly characterized. Within Palaeognathae, the patella has been reported to be either present, absent, or fused with other bones, but it is unclear how much of this variation is real, erroneous or ontogenetic. Clarification of the patella’s form in palaeognaths would provide insight into the early evolution of the patella in birds, in addition to the specialized locomotion of these species. Findings would also provide new character data of use in resolving the controversial evolutionary relationships of palaeognaths. In this study, we examined the gross and histological anatomy of the emu patellar tendon across several age groups from five weeks to 18 months. We combined these results with our observations and those of others regarding the patella in palaeognaths and their outgroups (both extant and extinct), to reconstruct the evolution of the patella in birds. We found no evidence of an ossified patella in emus, but noted its tendon to have a highly unusual morphology comprising large volumes of adipose tissue contained within a collagenous meshwork. The emu patellar tendon also included increasing amounts of a cartilage-like tissue throughout ontogeny. We speculate that the unusual morphology of the patellar tendon in emus results from assimilation of a peri-articular fat pad, and metaplastic formation of cartilage, both potentially as adaptations to increasing tendon load. We corroborate previous observations of a ‘double patella’ in ostriches, but in contrast to some assertions, we find independent (i.e., unfused) ossified patellae in kiwis and tinamous. Our reconstructions suggest a single evolutionary origin of the patella in birds and that the ancestral patella is likely to have been a composite structure comprising a small ossified portion, lost by some species (e.g., emus, moa) but expanded in others (e.g., ostriches). PMID:25551026

  15. An unexpectedly long history of sexual selection in birds-of-paradise

    PubMed Central

    Irestedt, Martin; Jønsson, Knud A; Fjeldså, Jon; Christidis, Les; Ericson, Per GP

    2009-01-01

    Background The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group. Results The phylogenetic results confirm some traditionally recognized relationships but also suggest novel ones. Furthermore, we find that species pairs are geographically more closely linked than previously assumed. The divergence time estimates suggest that speciation within the birds-of-paradise mainly took place during the Miocene and the Pliocene, and that several polygynous and morphologically homogeneous genera are several million years old. Diversification rates further suggest that the speciation rate within birds-of-paradise is comparable to that of the enitre core Corvoidea. Conclusion The estimated ages of morphologically homogeneous and polygynous genera within the birds-of-paradise suggest that there is no need to postulate a particularly rapid evolution of sexually selected morphological traits. The calculated divergence rates further suggest that the speciation rate in birds-of-paradise has not been excessively high. Thus the idea that sexual selection could generate high speciation rates and rapid changes in sexual ornamentations is not supported by our birds-of-paradise data. Potentially, hybridization and long generation times in polygynous male birds-of-paradise have constrained morphological diversification and speciation, but external ecological factors on New Guinea may also have allowed the birds-of-paradise to develop and maintain magnificent male plumages. We further propose that the restricted but geographically complex distributions of birds-of-paradise species may be a consequence of the promiscuous breeding system. PMID:19758445

  16. Egg Speckling Patterns Do Not Advertise Offspring Quality or Influence Male Provisioning in Great Tits

    PubMed Central

    Stoddard, Mary Caswell; Fayet, Annette L.; Kilner, Rebecca M.; Hinde, Camilla A.

    2012-01-01

    Many passerine birds lay white eggs with reddish brown speckles produced by protoporphyrin pigment. However, the function of these spots is contested. Recently, the sexually selected eggshell coloration (SSEC) hypothesis proposed that eggshell color is a sexually selected signal through which a female advertises her quality (and hence the potential quality of her future young) to her male partner, thereby encouraging him to contribute more to breeding attempts. We performed a test of the SSEC hypothesis in a common passerine, the great tit Parus major. We used a double cross-fostering design to determine whether males change their provisioning behavior based on eggshell patterns they observe at the nest. We also tested the assumption that egg patterning reflects female and/or offspring quality. Because birds differ from humans in their color and pattern perception, we used digital photography and models of bird vision to quantify egg patterns objectively. Neither male provisioning nor chick growth was related to the pattern of eggs males observed during incubation. Although heavy females laid paler, less speckled eggs, these eggs did not produce chicks that grew faster. Therefore, we conclude that the SSEC hypothesis is an unlikely explanation for the evolution of egg speckling in great tits. PMID:22815730

  17. Care, food consumption, and behavior of bald eagles used in DDT tests

    USGS Publications Warehouse

    Chura, N.J.; Stewart, P.A.

    1967-01-01

    Twenty-seven Bald Eagles captured in southeastern Alaska were used in feeding tests to determine the effects of DDT in the diet.....Trapping and housing of eagles are discussed. Various aspects of eagle behavior and handling techniques are also presented. Recommendations are made for preventing injuries and increasing the comfort of captive birds.....The 1962 test birds consumed an average of 274 grams per bird day with a range of 109 to 401 grams per day between birds. Average food intake was 254 grams per bird day for the 1963 test birds with a range of 194 to 324 grams per day between birds.....Weight losses varied from 23 to 49 per cent of normal body weight for the 7 birds which died in the 1962 tests. Tremors and death occurred first for birds on the highest dosage and progressively later for birds on the lower dosages.

  18. Apes, Wolves, Birds, and Humans: Toward a Comparative Foundation for a Functional Theory of Language Evolution

    ERIC Educational Resources Information Center

    Hill, Jane H.

    1977-01-01

    This article reviews the possibilities that a comparative, functionally oriented view of communication evolution offers to a linguist interested in the evolution of human languages and suggests a wide variety of areas which might be further investigated with profit. (CFM)

  19. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting.

    PubMed

    Pokorná, Martina; Giovannotti, Massimo; Kratochvíl, Lukáš; Caputo, Vincenzo; Olmo, Ettore; Ferguson-Smith, Malcolm A; Rens, Willem

    2012-08-01

    In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.

  20. Effects of mixed housing of birds from two genetic lines of laying hens on open field and manual restraint responses.

    PubMed

    Uitdehaag, K A; Rodenburg, T B; van Hierden, Y M; Bolhuis, J E; Toscano, M J; Nicol, C J; Komen, J

    2008-09-01

    Birds from Rhode Island Red (RIR) origin show a lower fear response and less feather pecking than birds from White Leghorn (WL) origin. This study investigated whether responses in fear eliciting tests were affected if RIR and WL birds were housed together. Experimental groups contained either birds from one line only ('pure' groups) or an equal number of RIR and WL birds ('mixed' groups). These arrangements were maintained from hatch onwards, throughout the rearing and laying period. Birds were subjected to open field tests at 5-6 weeks and 17-18 weeks of age and to manual restraint tests at 7-8 weeks and 24 weeks of age. RIR birds were more active in both open field tests and in the manual restraint test at 24 weeks of age as compared with WL birds. RIR birds from pure groups were more active in the open field test at 17-18 weeks and in the manual restraint test at 24 weeks of age than RIR birds from mixed groups. These results suggest that otherwise low fearful RIR birds may adopt a higher fear response if they are housed together with more fearful conspecifics. These effects do not emerge until after 8 weeks of age.

  1. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks.

    PubMed

    Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo R; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez

    2011-09-01

    In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 ± 0.09, C = 0.30 ± 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 ± 0.07, C = 0.22 ± 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 ± 0.13) than in bat-fruit networks (R = 0.54 ± 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.

  2. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America.

    PubMed

    Ramey, Andrew M; Goraichuk, Iryna V; Hicks, Joseph T; Dimitrov, Kiril M; Poulson, Rebecca L; Stallknecht, David E; Bahl, Justin; Afonso, Claudio L

    2017-03-03

    Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007-2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America. Our results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes. We identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral dynamics for this infectious agent in wild bird populations.

  3. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America

    USGS Publications Warehouse

    Ramey, Andy M.; Goraichuk, Iryna V.; Hicks, Joseph T.; Dimitrov, Kiril M.; Poulson, Rebecca L.; Stallknecht, David E.; Bahl, Justin; Afonso, Claudio L.

    2017-01-01

    BackgroundAvian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health.MethodsIn this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007–2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America.ResultsOur results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes.ConclusionsWe identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral dynamics for this infectious agent in wild bird populations.

  4. Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds.

    PubMed

    McNamara, Maria E; Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Toulouse, André; Foley, Tara; Hone, David W E; Rogers, Chris S; Benton, Michael J; Johnson, Diane; Xu, Xing; Zhou, Zhonghe

    2018-05-25

    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic.

  5. Convergence of biannual moulting strategies across birds and mammals

    PubMed Central

    Burns, Jennifer M.; Breed, Greg A.

    2018-01-01

    Birds and mammals have developed numerous strategies for replacing worn feathers and hair. Moulting usually occurs on an annual basis; however, moults that take place twice per year (biannual moults) also occur. Here, we review the forces driving the evolution of various moult strategies, focusing on the special case of the complete biannual moult as a convergence of selection pressures across birds and mammals. Current evidence suggests that harsh environmental conditions or seasonality (e.g. larger variation in temperatures) drive evolution of a biannual moult. In turn, the biannual moult can respond to secondary selection that results in phenotypic alteration such as colour changes for mate choice dynamics (sexual selection) or camouflage requirements (natural selection). We discuss the contributions of natural and sexual selection to the evolution of biannual moulting strategies in the contexts of energetics, niche selection, functionality and physiological mechanisms. Finally, we suggest that moult strategies are directly related to species niche because environmental attributes drive the utility (e.g. thermoregulation, camouflage, social dynamics) of the hair or feathers. Functional efficiency of moult may be undermined if the pace of evolution fails to match that of the changing climate. Thus, future research should seek to understand the plasticity of moult duration and phenology, especially in the context of annual cycles. PMID:29769361

  6. Nasal conchae function as aerodynamic baffles: Experimental computational fluid dynamic analysis in a turkey nose (Aves: Galliformes).

    PubMed

    Bourke, Jason M; Witmer, Lawrence M

    2016-12-01

    We tested the aerodynamic function of nasal conchae in birds using CT data from an adult male wild turkey (Meleagris gallopavo) to construct 3D models of its nasal passage. A series of digital "turbinectomies" were performed on these models and computational fluid dynamic analyses were performed to simulate resting inspiration. Models with turbinates removed were compared to the original, unmodified control airway. Results revealed that the four conchae found in turkeys, along with the crista nasalis, alter the flow of inspired air in ways that can be considered baffle-like. However, these baffle-like functions were remarkably limited in their areal extent, indicating that avian conchae are more functionally independent than originally hypothesized. Our analysis revealed that the conchae of birds are efficient baffles that-along with potential heat and moisture transfer-serve to efficiently move air to specific regions of the nasal passage. This alternate function of conchae has implications for their evolution in birds and other amniotes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    PubMed

    de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A

    2007-12-01

    Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.

  9. Evolution of iris colour in relation to cavity nesting and parental care in passerine birds.

    PubMed

    Davidson, Gabrielle L; Thornton, Alex; Clayton, Nicola S

    2017-01-01

    Strong selection pressures are known to act on animal coloration. Although many animals vary in eye colour, virtually no research has investigated the functional significance of these colour traits. Passeriformes have a range of iris colours, making them an ideal system to investigate how and why iris colour has evolved. Using phylogenetic comparative methods, we tested the hypothesis that conspicuous iris colour in passerine birds evolved in response to (a) coordination of offspring care and (b) cavity nesting, two traits thought to be involved in intra-specific gaze sensitivity. We found that iris colour and cooperative offspring care by two or more individuals evolved independently, suggesting that bright eyes are not important for coordinating parental care through eye gaze. Furthermore, we found that evolution between iris colour and nesting behaviour did occur in a dependent manner, but contrary to predictions, transitions to coloured eyes were not more frequent in cavity nesters than non-cavity nesters. Instead, our results indicate that selection away from having bright eyes was much stronger in non-cavity nesters than cavity nesters, perhaps because conspicuous eye coloration in species not concealed within a cavity would be more visible to predators. © 2017 The Authors.

  10. Evolution of iris colour in relation to cavity nesting and parental care in passerine birds

    PubMed Central

    Thornton, Alex

    2017-01-01

    Strong selection pressures are known to act on animal coloration. Although many animals vary in eye colour, virtually no research has investigated the functional significance of these colour traits. Passeriformes have a range of iris colours, making them an ideal system to investigate how and why iris colour has evolved. Using phylogenetic comparative methods, we tested the hypothesis that conspicuous iris colour in passerine birds evolved in response to (a) coordination of offspring care and (b) cavity nesting, two traits thought to be involved in intra-specific gaze sensitivity. We found that iris colour and cooperative offspring care by two or more individuals evolved independently, suggesting that bright eyes are not important for coordinating parental care through eye gaze. Furthermore, we found that evolution between iris colour and nesting behaviour did occur in a dependent manner, but contrary to predictions, transitions to coloured eyes were not more frequent in cavity nesters than non-cavity nesters. Instead, our results indicate that selection away from having bright eyes was much stronger in non-cavity nesters than cavity nesters, perhaps because conspicuous eye coloration in species not concealed within a cavity would be more visible to predators. PMID:28077686

  11. From the Cover: Environmental and biotic controls on the evolutionary history of insect body size

    NASA Astrophysics Data System (ADS)

    Clapham, Matthew E.; Karr, Jered A.

    2012-07-01

    Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.

  12. The ecology and evolution of avian alarm call signaling systems

    NASA Astrophysics Data System (ADS)

    Billings, Alexis Chandon

    Communication is often set up as a simple dyadic exchange between one sender and one receiver. However, in reality, signaling systems have evolved and are used with many forms and types of information bombarding multiple senders, who in turn send multiple signals of different modalities, through various environmental spaces, finally reaching multiple receivers. In order to understand both the ecology and evolution of a signaling system, we must examine all the facets of the signaling system. My dissertation focused on the alarm call signaling system in birds. Alarm calls are acoustic signals given in response to danger or predators. My first two chapters examine how information about predators alters alarm calls. In chapter one I found that chickadees make distinctions between predators of different hunting strategies and appear to encode information about predators differently if they are heard instead of seen. In my second chapter, I test these findings more robustly in a non-model bird, the Steller's jay. I again found that predator species matters, but that how Steller's jays respond if they saw or heard the predator depends on the predator species. In my third chapter, I tested how habitat has influenced the evolution of mobbing call acoustic structure. I found that habitat is not a major contributor to the variation in acoustic structure seen across species and that other selective pressures such as body size may be more important. In my fourth chapter I present a new framework to understand the evolution of multimodal communication across species. I identify a unique constraint, the need for overlapping sensory systems, thresholds and cognitive abilities between sender and receiver in order for different forms of interspecific communication to evolve. Taken together, these chapters attempt to understand a signaling system from both an ecological and evolutionary perspective by examining each piece of the communication scheme.

  13. The evolution of blood pressure and the rise of mankind.

    PubMed

    Schulte, Kevin; Kunter, Uta; Moeller, Marcus J

    2015-05-01

    Why is it that only human beings continuously perform acts of heroism? Looking back at our evolutionary history can offer us some potentially useful insight. This review highlights some of the major steps in our evolution-more specifically, the evolution of high blood pressure. When we were fish, the first kidney was developed to create a standardized internal 'milieu' preserving the primordial sea within us. When we conquered land as amphibians, the evolution of the lung required a low systemic blood pressure, which explains why early land vertebrates (amphibians, reptiles) are such low performers. Gaining independence from water required the evolution of an impermeable skin and a water-retaining kidney. The latter was accomplished twice with two different solutions in the two major branches of vertebrate evolution: mammals excrete nitrogenous waste products as urea, which can be utilized by the kidney as an osmotic agent to produce more concentrated urine. Dinosaurs and birds have a distinct nitrogen metabolism and excrete nitrogen as water-insoluble uric acid-therefore, their kidneys cannot use urea to concentrate as well. Instead, some birds have developed the capability to reabsorb water from their cloacae. The convergent development of a separate small circulation of the lung in mammals and birds allowed for the evolution of 'high blood-pressure animals' with better capillarization of the peripheral tissues allowing high endurance performance. Finally, we investigate why mankind outperforms any other mammal on earth and why, to this day, we continue to perform acts of heroism on our eternal quest for personal bliss. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  14. The evolution of morphological diversity in continental assemblages of passerine birds.

    PubMed

    Jønsson, Knud Andreas; Lessard, Jean-Philippe; Ricklefs, Robert E

    2015-04-01

    Understanding geographic variation in the species richness and lineage composition of regional biotas is a long-standing goal in ecology. Why do some evolutionary lineages proliferate while others do not, and how do new colonists fit into an established fauna? Here, we analyze the morphological structure of assemblages of passerine birds in four biogeographic regions to examine the relative influence of colonization history and niche-based processes on continental communities of passerine birds. Using morphological traits related to habitat choice, foraging technique, and movement, we quantify the morphological spaces occupied by different groups of passerine birds. We further quantify morphological overlap between groups by multivariate discriminant analysis and null model analyses of trait dispersion. Finally, we use subclade disparity through time to assess the temporal component of morphological evolution. We find mixed support for the prediction, based on priority, that first colonizers constrain subsequent colonizers. Indeed, our results show that the assembly of continental communities is idiosyncratic with regards to the diversification of new clades and the filling of morphospace. © 2015 The Author(s).

  15. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    PubMed

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  16. The Origin and Diversification of Birds.

    PubMed

    Brusatte, Stephen L; O'Connor, Jingmai K; Jarvis, Erich D

    2015-10-05

    Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two decades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dinosaurs during the Jurassic (around 165-150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis.

    PubMed

    Nespolo, Roberto F; González-Lagos, César; Solano-Iguaran, Jaiber J; Elfwing, Magnus; Garitano-Zavala, Alvaro; Mañosa, Santiago; Alonso, Juan Carlos; Altimiras, Jordi

    2018-01-09

    Flight capacity is one of the most important innovations in animal evolution; it only evolved in insects, birds, mammals and the extinct pterodactyls. Given that powered flight represents a demanding aerobic activity, an efficient cardiovascular system is essential for the continuous delivery of oxygen to the pectoral muscles during flight. It is well known that the limiting step in the circulation is stroke volume (the volume of blood pumped from the ventricle to the body during each beat), which is determined by the size of the ventricle. Thus, the fresh mass of the heart represents a simple and repeatable anatomical measure of the aerobic power of an animal. Although several authors have compared heart masses across bird species, a phylogenetic comparative analysis is still lacking. By compiling heart sizes for 915 species and applying several statistical procedures controlling for body size and/or testing for adaptive trends in the dataset (e.g. model selection approaches, phylogenetic generalized linear models), we found that (residuals of) heart size is consistently associated with four categories of flight capacity. In general, our results indicate that species exhibiting continuous hovering flight (i.e. hummingbirds) have substantially larger hearts than other groups, species that use flapping flight and gliding show intermediate values, and that species categorized as poor flyers show the smallest values. Our study reveals that on a broad scale, routine flight modes seem to have shaped the energetic requirements of birds sufficiently to be anatomically detected at the comparative level. © 2018. Published by The Company of Biologists Ltd.

  18. Concerted evolution of body mass and cell size: similar patterns among species of birds (Galliformes) and mammals (Rodentia)

    PubMed Central

    Dragosz-Kluska, Dominika; Pis, Tomasz; Pawlik, Katarzyna; Kapustka, Filip; Kilarski, Wincenty M.; Kozłowski, Jan

    2018-01-01

    ABSTRACT Cell size plays a role in body size evolution and environmental adaptations. Addressing these roles, we studied body mass and cell size in Galliformes birds and Rodentia mammals, and collected published data on their genome sizes. In birds, we measured erythrocyte nuclei and basal metabolic rates (BMRs). In birds and mammals, larger species consistently evolved larger cells for five cell types (erythrocytes, enterocytes, chondrocytes, skin epithelial cells, and kidney proximal tubule cells) and evolved smaller hepatocytes. We found no evidence that cell size differences originated through genome size changes. We conclude that the organism-wide coordination of cell size changes might be an evolutionarily conservative characteristic, and the convergent evolutionary body size and cell size changes in Galliformes and Rodentia suggest the adaptive significance of cell size. Recent theory predicts that species evolving larger cells waste less energy on tissue maintenance but have reduced capacities to deliver oxygen to mitochondria and metabolize resources. Indeed, birds with larger size of the abovementioned cell types and smaller hepatocytes have evolved lower mass-specific BMRs. We propose that the inconsistent pattern in hepatocytes derives from the efficient delivery system to hepatocytes, combined with their intense involvement in supracellular function and anabolic activity. PMID:29540429

  19. The relationship between annual survival rate and migration distance in mallards: an examination of the time-allocation hypothesis for the evolution of migration

    USGS Publications Warehouse

    Hestbeck, J.B.; Nichols, J.D.; Hines, J.E.

    1992-01-01

    Predictions of the time-allocation hypothesis were tested with several a posteriori analyses of banding data for the mallard (Anas platyrhynchos). The time-allocation hypothesis states that the critical difference between resident and migrant birds is their allocation of time to reproduction on the breeding grounds and survival on the nonbreeding grounds. Residents have higher reproduction and migrants have higher survival. Survival and recovery rates were estimated by standard band-recovery methods for banding reference areas in the central United States and central Canada. A production-rate index was computed for each reference area with data from the U.S. Fish and Wildlife Service May Breeding Population Survey and July Production Survey. An analysis of covariance was used to test for the effects of migration distance and time period (decade) on survival, recovery, and production rates. Differences in migration chronology were tested by comparing direct-recovery distributions for different populations during the fall migration. Differences in winter locations were tested by comparing distributions of direct recoveries reported during December and January. A strong positive relationship was found between survival rate, and migration distance for 3 of the 4 age and sex classes. A weak negative relationship was found between recovery rate and migration distance. No relationship was found between production rate and migration distance. During the fall migration, birds from the northern breeding populations were located north of birds from the southern breeding populations. No pattern could be found in the relative locations of breeding and wintering areas. Although our finding that survival rate increased with migration distance was consistent with the time-allocation hypothesis, our results on migration chronology and location of wintering areas were not consistent with the mechanism underlying the time-allocation hypothesis. Neither this analysis nor other recent studies of life-history characteristics of migratory and resident birds supported the timeallocation hypothesis.

  20. Evolution of parental incubation behaviour in dinosaurs cannot be inferred from clutch mass in birds.

    PubMed

    Birchard, Geoffrey F; Ruta, Marcello; Deeming, D Charles

    2013-08-23

    A recent study proposed that incubation behaviour (i.e. type of parental care) in theropod dinosaurs can be inferred from an allometric analysis of clutch volume in extant birds. However, the study in question failed to account for factors known to affect egg and clutch size in living bird species. A new scaling analysis of avian clutch mass demonstrates that type of parental care cannot be distinguished by conventional allometry because of the confounding effects of phylogeny and hatchling maturity. Precociality of young but not paternal care in the theropod ancestors of birds is consistent with the available data.

  1. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    PubMed

    Hasegawa, Masami; Kuroda, Sayako

    2017-12-01

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Epidemiology of low pathogenic avian influenza viruses in wild birds.

    PubMed

    Fouchier, R A M; Munster, V J

    2009-04-01

    Although extensive data are available on low pathogenic avian influenza (LPAI) virus surveillance in wild birds in North America and Europe, data are scarce for other parts of the world, and our understanding of LPAI virus ecology in the natural reservoir is still far from complete. The outbreak of highly pathogenic avian influenza (HPAI) of the H5N1 subtype in the eastern hemisphere has put an increased focus on the role of wild birds in influenza virus transmission. Here, the authors review the current knowledge of the (molecular) epidemiology, genetics and evolution of LPAI viruses in wild birds, and identify some important gaps in current knowledge.

  3. Snake and Bird Predation Drive the Repeated Convergent Evolution of Correlated Life History Traits and Phenotype in the Izu Island Scincid Lizard (Plestiodon latiscutatus)

    PubMed Central

    Brandley, Matthew C.; Kuriyama, Takeo; Hasegawa, Masami

    2014-01-01

    Predation may create strong natural selection pressure on the phenotype and life history characteristics of prey species. The Izu scincid lizards (Plestiodon latiscutatus) that inhabit the four Japanese Izu Islands with only bird predators are drab brown, mature later, lay small clutches of large eggs, and hatch large neonates. In contrast, skinks on seven islands with both snake and bird predators are conspicuously colored, mature early, lay large clutches of small eggs, and hatch small neonates. We test the hypothesis that these suites of traits have evolved independently on each island via natural selection pressures from one of two predator regimes – birds-only and birds + snakes. Using two mtDNA genes and a nuclear locus, we infer a time-calibrated phylogeny of P. latiscutatus that reveals a basal split between Mikura and all islands south, and Miyake, all islands north, and the Izu Peninsula. Populations inhabiting Miyake, Niijima, Shikine, and Toshima are not monophyletic, suggesting either multiple colonizations or an artifact of incomplete lineage sorting (ILS). We therefore developed novel phylogenetic comparative analyses that assume either a multiple colonization or more restrictive single colonization ILS scenario and found 1) statistically significant support for the of different suites of phenotypic and life history characteristics with the presence of bird-only or bird + snake predator assemblages, and 2) strong phylogenetic support for at least two independent derivations of either the “bird-only” or “snakes + birds” phenotypes regardless of colonization scenario. Finally, our time-calibrated phylogeographic analysis supports the conclusion that the ancestor to modern Izu Island P. latiscutatus dispersed from the mainland to the Izu proto-islands between 3–7.6 million years ago (Ma). These lineages remained present in the area during successive formation of the islands, with one lineage re-colonizing the mainland 0.24-0.7 Ma. PMID:24667496

  4. Sleep-Related Electrophysiology and Behavior of Tinamous (Eudromia elegans): Tinamous Do Not Sleep Like Ostriches.

    PubMed

    Tisdale, Ryan K; Vyssotski, Alexei L; Lesku, John A; Rattenborg, Niels C

    2017-01-01

    The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique "mixed" sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in tinamous. The absence of a mixed REM sleep state in tinamous calls into question the idea that this state is primitive among Palaeognath birds and therefore birds in general. © 2017 S. Karger AG, Basel.

  5. Female song is widespread and ancestral in songbirds.

    PubMed

    Odom, Karan J; Hall, Michelle L; Riebel, Katharina; Omland, Kevin E; Langmore, Naomi E

    2014-03-04

    Bird song has historically been considered an almost exclusively male trait, an observation fundamental to the formulation of Darwin's theory of sexual selection. Like other male ornaments, song is used by male songbirds to attract females and compete with rivals. Thus, bird song has become a textbook example of the power of sexual selection to lead to extreme neurological and behavioural sex differences. Here we present an extensive survey and ancestral state reconstruction of female song across songbirds showing that female song is present in 71% of surveyed species including 32 families, and that females sang in the common ancestor of modern songbirds. Our results reverse classical assumptions about the evolution of song and sex differences in birds. The challenge now is to identify whether sexual selection alone or broader processes, such as social or natural selection, best explain the evolution of elaborate traits in both sexes.

  6. Visual and acoustic components of courtship in the bird-of-paradise genus Astrapia (Aves: Paradisaeidae)

    PubMed Central

    Gillis, Julia M.; Laman, Timothy G.

    2017-01-01

    The distinctive and divergent courtship phenotypes of the birds-of-paradise make them an important group for gaining insights into the evolution of sexually selected phenotypic evolution. The genus Astrapia includes five long-tailed species that inhabit New Guinea’s montane forests. The visual and acoustic components of courtship among Astrapia species are very poorly known. In this study, we use audiovisual data from a natural history collection of animal behavior to fill gaps in knowledge about the visual and acoustic components of Astrapia courtship. We report seven distinct male behaviors and two female specific behaviors along with distinct vocalizations and wing-produced sonations for all five species. These results provide the most complete assessment of courtship in the genus Astrapia to date and provide a valuable baseline for future research, including comparative and evolutionary studies among these and other bird-of-paradise species. PMID:29134145

  7. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  8. Nest destruction elicits indiscriminate con- versus heterospecific brood parasitism in a captive bird.

    PubMed

    Shaw, Rachael C; Feeney, William E; Hauber, Mark E

    2014-12-01

    Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con- and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.

  9. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    PubMed Central

    2010-01-01

    Background Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Results Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Conclusion Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters. PMID:20546608

  10. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    PubMed

    Hipfner, J Mark; Gorman, Kristen B; Vos, Rutger A; Joy, Jeffrey B

    2010-06-14

    Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters.

  11. Bird fruit preferences match the frequency of fruit colours in tropical Asia

    PubMed Central

    Duan, Qiong; Goodale, Eben; Quan, Rui-chang

    2014-01-01

    While many factors explain the colour of fleshy fruits, it is thought that black and red fruits are common in part because frugivorous birds prefer these colours. We examined this still controversial hypothesis at a tropical Asian field site, using artificial fruits, fresh fruits, four wild-caught resident frugivorous bird species, and hand-raised naïve birds from three of the same species. We demonstrate that all birds favored red artificial fruits more than yellow, blue, black and green, although the artificial black colour was found subsequently to be similar to the artificial blue colour in its spectral reflectance. Wild-caught birds preferred both black and red fleshy natural fruits, whereas hand-raised naïve birds preferred black to red natural fleshy fruits and to those of other colours. All birds avoided artificial and naturally ripe green fruits. The inter-individual variation in colour choice was low and the preferences were constant over time, supporting the hypothesis that bird colour preferences are a contributing factor driving fruit colour evolution in tropical Asia. PMID:25033283

  12. Deadly hairs, lethal feathers--convergent evolution of poisonous integument in mammals and birds.

    PubMed

    Plikus, Maksim V; Astrowski, Aliaksandr A

    2014-07-01

    Hairs and feathers are textbook examples of the convergent evolution of the follicular appendage structure between mammals and birds. While broadly recognized for their convergent thermoregulatory, camouflage and sexual display functions, hairs and feathers are rarely thought of as deadly defence tools. Several recent studies, however, show that in some species of mammals and birds, the integument can, in fact, be a de facto lethal weapon. One mammalian example is provided by African crested rats, which seek for and chew on the bark of plants containing the highly potent toxin, ouabain. These rats then coat their fur with ouabain-containing saliva. For efficient toxin retention, the rodents have evolved highly specialized fenestrated and mostly hollow hair shafts that soak up liquids, which essentially function as wicks. On the avian side of the vertebrate integumental variety spectrum, several species of birds of New Guinea have evolved resistance to highly potent batrachotoxins, which they acquire from their insect diet. While the mechanism of bird toxicity remains obscure, in a recently published issue of the journal, Dumbacher and Menon explore the intriguing idea that to achieve efficient storage of batrachotoxins in their skin, some birds exploit the basic permeability barrier function of their epidermis. Batrachotoxins become preferentially sequestered in their epidermis and are then transferred to feathers, likely through the exploitation of specialized avian lipid-storing multigranular body organelles. Here, we discuss wider implications of this intriguing concept. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ecology of influenza A and Newcastle disease viruses in wild birds and poultry in Eastern Siberia (2012-2014)

    USDA-ARS?s Scientific Manuscript database

    The Russian Territory covering a large part of Northern Eurasia is of special interest for influenza virus ecology and evolution, for it is situated in the center of Eurasia and covers three major migration routes, combining bird populations from Asia, Africa, and Europe. During surveillance for av...

  14. Variability in avian eggshell colour: a comparative study of museum eggshells.

    PubMed

    Cassey, Phillip; Portugal, Steven J; Maurer, Golo; Ewen, John G; Boulton, Rebecca L; Hauber, Mark E; Blackburn, Tim M

    2010-08-09

    The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.

  15. Fossil evidence of avian crops from the Early Cretaceous of China

    PubMed Central

    Zheng, Xiaoting; Martin, Larry D.; Zhou, Zhonghe; Burnham, David A.; Zhang, Fucheng; Miao, Desui

    2011-01-01

    The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis, demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds. PMID:21896733

  16. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny

    PubMed Central

    Corfield, Jeremy R.; Price, Kasandra; Iwaniuk, Andrew N.; Gutierrez-Ibañez, Cristian; Birkhead, Tim; Wylie, Douglas R.

    2015-01-01

    The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well understood. In this study, we use the relative size of OBs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of OBs with brain size across avian orders, determine likely ancestral states and test for correlations between OB sizes and habitat, ecology, and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large OBs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi-aquatic environment was the strongest variable driving the evolution of large OBs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is an important sensory modality for all avian species. PMID:26283931

  17. Contemporary morphological diversification of passerine birds introduced to the Hawaiian archipelago.

    PubMed

    Mathys, Blake A; Lockwood, Julie L

    2011-08-07

    Species that have been introduced to islands experience novel and strong selection pressures after establishment. There is evidence that exotic species diverge from their native source populations; further, a few studies have demonstrated adaptive divergence across multiple exotic populations of a single species. Exotic birds provide a good study system, as they have been introduced to many locations worldwide, and we often know details concerning the propagule origin, time of introduction, and dynamics of establishment and dispersal within the introduced range. These data make them especially conducive to the examination of contemporary evolution. Island faunas have received intense scrutiny, therefore we have expectations concerning the patterns of diversification for exotic species. We examine six passerine bird species that were introduced to the Hawaiian archipelago less than 150 years ago. We find that five of these show morphological divergence among islands from the time since they were established. We demonstrate that some of this divergence cannot be accounted for by genetic drift, and therefore we must consider adaptive evolution to explain it. We also evaluate evolutionary divergence rates and find that these species are diverging at similar rates to those found in published studies of contemporary evolution in native species.

  18. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    PubMed

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Omnivory in birds is a macroevolutionary sink

    PubMed Central

    Burin, Gustavo; Kissling, W. Daniel; Guimarães, Paulo R.; Şekercioğlu, Çağan H.; Quental, Tiago B.

    2016-01-01

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750

  1. Worldwide patterns of bird colouration on islands.

    PubMed

    Doutrelant, Claire; Paquet, Matthieu; Renoult, Julien P; Grégoire, Arnaud; Crochet, Pierre-André; Covas, Rita

    2016-05-01

    Island environments share distinctive characteristics that offer unique opportunities to investigate parallel evolution. Previous research has produced evidence of an island syndrome for morphological traits, life-history strategies and ecological niches, but little is known about the response to insularity of other important traits such as animal signals. Here, we tested whether birds' plumage colouration is part of the island syndrome. We analysed with spectrophotometry the colouration of 116 species endemic to islands and their 116 closest mainland relatives. We found a pattern of reduced brightness and colour intensity for both sexes on islands. In addition, we found a decrease in the number of colour patches on islands that, in males, was associated with a decrease in the number of same-family sympatric species. These results demonstrate a worldwide pattern of parallel colour changes on islands and suggest that a relaxation of selection on species recognition may be one of the mechanisms involved. © 2016 John Wiley & Sons Ltd/CNRS.

  2. Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds

    PubMed Central

    Dean, Rebecca; Harrison, Peter W.; Wright, Alison E.; Zimmer, Fabian; Mank, Judith E.

    2015-01-01

    The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. PMID:26067773

  3. Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies

    PubMed Central

    Zlotina, Anna; Dedukh, Dmitry; Krasikova, Alla

    2017-01-01

    Amphibian and bird karyotypes typically have a complex organization, which makes them difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large, enriched with repetitive elements, and characterized by the absence of informative banding patterns. The majority of avian karyotypes comprise a small number of relatively large macrochromosomes and numerous tiny morphologically undistinguishable microchromosomes. A good progress in investigation of amphibian and avian chromosome evolution became possible with the usage of giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities of organization and enrichment with cytological markers, lampbrush chromosomes can serve as an opportune model for comprehensive high-resolution cytogenetic and cytological investigations. Here, we review the main findings on chromosome evolution in amphibians and birds that were obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes as well as chromosomal changes during clonal reproduction of interspecies hybrids. PMID:29117127

  4. Herbivore diet breadth mediates the cascading effects of carnivores in food webs

    PubMed Central

    Singer, Michael S.; Lichter-Marck, Isaac H.; Farkas, Timothy E.; Aaron, Eric; Whitney, Kenneth D.; Mooney, Kailen A.

    2014-01-01

    Predicting the impact of carnivores on plants has challenged community and food web ecologists for decades. At the same time, the role of predators in the evolution of herbivore dietary specialization has been an unresolved issue in evolutionary ecology. Here, we integrate these perspectives by testing the role of herbivore diet breadth as a predictor of top-down effects of avian predators on herbivores and plants in a forest food web. Using experimental bird exclosures to study a complex community of trees, caterpillars, and birds, we found a robust positive association between caterpillar diet breadth (phylodiversity of host plants used) and the strength of bird predation across 41 caterpillar and eight tree species. Dietary specialization was associated with increased enemy-free space for both camouflaged (n = 33) and warningly signaled (n = 8) caterpillar species. Furthermore, dietary specialization was associated with increased crypsis (camouflaged species only) and more stereotyped resting poses (camouflaged and warningly signaled species), but was unrelated to caterpillar body size. These dynamics in turn cascaded down to plants: a metaanalysis (n = 15 tree species) showed the beneficial effect of birds on trees (i.e., reduced leaf damage) decreased with the proportion of dietary specialist taxa composing a tree species’ herbivore fauna. We conclude that herbivore diet breadth is a key functional trait underlying the trophic effects of carnivores on both herbivores and plants. PMID:24979778

  5. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    PubMed

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  6. Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation.

    PubMed

    Balanoff, Amy M; Smaers, Jeroen B; Turner, Alan H

    2016-08-01

    Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight. The origins of modern avian neuroanatomy are obscured by the more than 100 million years of evolution along their phylogenetic stem (from the origin of the modern radiation in the Middle Jurassic to the split from crocodile-line archosaurs). Here we use phylogenetic comparative approaches to explore which evolutionary scenarios best explain variation in measured volumes of digitally partitioned endocasts of modern birds and their non-avian ancestors. Our analyses suggest that variation in the relative volumes of the endocranium and cerebrum explain most of the structural variation in this lineage. Generalized multi-regime Ornstein-Uhlenbeck (OU) models suggest that powered flight does not appear to be a driver of observed variation, reinforcing the hypothesis that the deep history of the avian brain is complex, with nuances still to be discovered. © 2015 Anatomical Society.

  7. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America

    USDA-ARS?s Scientific Manuscript database

    Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gen...

  8. A brief history of fruits and frugivores

    NASA Astrophysics Data System (ADS)

    Fleming, Theodore H.; John Kress, W.

    2011-11-01

    In this paper we briefly review the evolutionary history of the mutualistic interaction between angiosperms that produce fleshy fruits and their major consumers: frugivorous birds and mammals. Fleshy fruits eaten by these vertebrates are widely distributed throughout angiosperm phylogeny. Similarly, a frugivorous diet has evolved independently many times in birds and mammals. Bird dispersal is more common than mammal-dispersal in all lineages of angiosperms, and we suggest that the evolution of bird fruits may have facilitated the evolution of frugivory in primates. The diets of fruit-eating bats overlap less with those of other kinds of frugivorous vertebrates. With a few exceptions, most families producing vertebrate-dispersed fruit appeared substantially earlier in earth history than families of their vertebrate consumers. It is likely that major radiations of these plants and animals have occurred in the past 30 Ma, in part driven by geological changes and also by the foraging behavior of frugivores in topographically complex landscapes. Overall, this mutualistic interaction has had many evolutionary and ecological consequences for tropical plants and animals for most of the Cenozoic Era. Loss of frugivores and their dispersal services will have a strong negative impact on the ecological and evolutionary dynamics of tropical and subtropical communities.

  9. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    PubMed Central

    Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676

  10. Effects of toxaphene and endrin at very low dietary concentrations on discrimination acquisition and reversal in bobwhite quail, Colinus virginianus

    USGS Publications Warehouse

    Kreitzer, J.F.

    1980-01-01

    Adult male bobwhite quail Colinus virginianus were fed toxaphene (chlorinated camphene, 67?69% chlorine) at 10 and 50 ppm or endrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo,5,8-dimethanonaphalene) at 0?1 and 1?0 ppm and their performance on non-spatial discrimination reversal tasks was measured. The birds were on dosage for 138 days (beginning at the age of 3 days) prior to testing. Two tests (with different pairs of patterns) were conducted with toxaphene-treated birds and five with endrin-treated birds. The toxaphene-treated birds made 50% more errors than did controls (p < 0?02). There was no difference between the effects of the two treatment levels. The performance of the treated birds on a second test equalled that of the controls, indicating that the birds were able to adjust to the pesticide whilst on treatment. Endrin-treated birds made from 36 to 139% more errors than did controls (p < 0?025). The difference between the number of errors made by the controls and the number made by the treated birds on the acquisition, or initial problem of each test, increased exponentially over the first four tests. The 0?1 ppm birds made significantly more errors than the 1?0 ppm birds after reversal 3 or 4 in the first three tests. The endrin effects were reversed after 50 days of untreated feed. The principal effect of endrin was to impair the birds' ability to solve a novel problem. The effects of toxaphene in birds treated as adults appeared after about 30 days of treatment and those of endrin after about 40 days of treatment. Mean brain residues in endrin-treated birds were 0?075 ppm (wet weight basis) for the 0?1 ppm level birds and 0?35 ppm for the 1?0 ppm level birds.

  11. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China.

    PubMed

    Liu, Haizhou; Xiong, Chaochao; Chen, Jing; Chen, Guang; Zhang, Jun; Li, Yong; Xiong, Yanping; Wang, Runkun; Cao, Ying; Chen, Quanjiao; Liu, Di; Wang, Hanzhong; Chen, Jianjun

    2018-04-11

    After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.

  12. Fleshy fruit characteristics in a temperate deciduous forest of Japan: how unique are they?

    PubMed

    Masaki, Takashi; Takahashi, Kazuaki; Sawa, Ayako; Kado, Tomoyuki; Naoe, Shoji; Koike, Shinsuke; Shibata, Mitsue

    2012-01-01

    This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.

  13. On the origin of avian air sacs.

    PubMed

    Farmer, C G

    2006-11-01

    For many vertebrates the lung is the largest and lightest organ in the body cavity and for these reasons can greatly affect an organism's shape, density, and its distribution of mass; characters that are important to locomotion. In this paper non-respiratory functions of the lung are considered along with data on the respiratory capacities and gas exchange abilities of birds and crocodilians to infer the evolutionary history of the respiratory systems of dinosaurs, including birds. From a quadrupedal ancestry theropod dinosaurs evolved a bipedal posture. Bipedalism is an impressive balancing act, especially for tall animals with massive heads. During this transition selection for good balance and agility may have helped shape pulmonary morphology. Respiratory adaptations arising for bipedalism are suggested to include a reduction in costal ventilation and the use of cuirassal ventilation with a caudad expansion of the lung into the dorsal abdominal cavity. The evolution of volant animals from bipeds required yet again a major reorganization in body form. With this transition avian air sacs may have been favored because they enhanced balance and agility in flight. Finally, I propose that these hypotheses can be tested by examining the importance of the air sacs to balance and agility in extant animals and that these data will enhance our understanding of the evolution of the respiratory system in archosaurs.

  14. Evolution of sperm structure and energetics in passerine birds

    PubMed Central

    Rowe, Melissah; Laskemoen, Terje; Johnsen, Arild; Lifjeld, Jan T.

    2013-01-01

    Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage. PMID:23282997

  15. Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting

    PubMed Central

    Ferguson-Smith, Malcolm A.

    2018-01-01

    In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds. PMID:29584697

  16. Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting.

    PubMed

    Kretschmer, Rafael; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Correa

    2018-03-27

    In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus , which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.

  17. Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds.

    PubMed

    Dean, Rebecca; Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Mank, Judith E

    2015-10-01

    The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  19. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa

    PubMed Central

    Engel, Dimitri; Jöst, Hanna; Wink, Michael; Börstler, Jessica; Bosch, Stefan; Garigliany, Mutien-Marie; Jöst, Artur; Czajka, Christina; Lühken, Renke; Ziegler, Ute; Groschup, Martin H.; Pfeffer, Martin; Becker, Norbert; Schmidt-Chanasit, Jonas

    2016-01-01

    ABSTRACT Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. PMID:26838717

  20. A Passerine Bird's evolution corroborates the geologic history of the island of New Guinea.

    PubMed

    Deiner, Kristy; Lemmon, Alan R; Mack, Andrew L; Fleischer, Robert C; Dumbacher, John P

    2011-05-06

    New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.

  1. A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea

    PubMed Central

    Deiner, Kristy; Lemmon, Alan R.; Mack, Andrew L.; Fleischer, Robert C.; Dumbacher, John P.

    2011-01-01

    New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history. PMID:21573115

  2. Evolution of long-term coloration trends with biochemically unstable ingredients

    PubMed Central

    Davis, Sarah N.; Andrews, John E.; Badyaev, Alexander V.

    2016-01-01

    The evolutionarily persistent and widespread use of carotenoid pigments in animal coloration contrasts with their biochemical instability. Consequently, evolution of carotenoid-based displays should include mechanisms to accommodate or limit pigment degradation. In birds, this could involve two strategies: (i) evolution of a moult immediately prior to the mating season, enabling the use of particularly fast-degrading carotenoids and (ii) evolution of the ability to stabilize dietary carotenoids through metabolic modification or association with feather keratins. Here, we examine evolutionary lability and transitions between the two strategies across 126 species of birds. We report that species that express mostly unmodified, fast-degrading, carotenoids have pre-breeding moults, and a particularly short time between carotenoid deposition and the subsequent breeding season. Species that expressed mostly slow-degrading carotenoids in their plumage accomplished this through increased metabolic modification of dietary carotenoids, and the selective expression of these slow-degrading compounds. In these species, the timing of moult was not associated with carotenoid composition of plumage displays. Using repeated samples from individuals of one species, we found that metabolic modification of dietary carotenoids significantly slowed their degradation between moult and breeding season. Thus, the most complex and colourful ornamentation is likely the most biochemically stable in birds, and depends less on ecological factors, such as moult timing and migration tendency. We suggest that coevolution of metabolic modification, selective expression and biochemical stability of plumage carotenoids enables the use of unstable pigments in long-term evolutionary trends in plumage coloration. PMID:27194697

  3. Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence.

    PubMed

    Feduccia, Alan; Lingham-Soliar, Theagarten; Hinchliffe, J Richard

    2005-11-01

    The origin of birds and avian flight from within the archosaurian radiation has been among the most contentious issues in paleobiology. Although there is general agreement that birds are related to theropod dinosaurs at some level, debate centers on whether birds are derived directly from highly derived theropods, the current dogma, or from an earlier common ancestor lacking suites of derived anatomical characters. Recent discoveries from the Early Cretaceous of China have highlighted the debate, with claims of the discovery of all stages of feather evolution and ancestral birds (theropod dinosaurs), although the deposits are at least 25 million years younger than those containing the earliest known bird Archaeopteryx. In the first part of the study we examine the fossil evidence relating to alleged feather progenitors, commonly referred to as protofeathers, in these putative ancestors of birds. Our findings show no evidence for the existence of protofeathers and consequently no evidence in support of the follicular theory of the morphogenesis of the feather. Rather, based on histological studies of the integument of modern reptiles, which show complex patterns of the collagen fibers of the dermis, we conclude that "protofeathers" are probably the remains of collagenous fiber "meshworks" that reinforced the dinosaur integument. These "meshworks" of the skin frequently formed aberrant patterns resembling feathers as a consequence of decomposition. Our findings also draw support from new paleontological evidence. We describe integumental structures, very similar to "protofeathers," preserved within the rib area of a Psittacosaurus specimen from Nanjing, China, an ornithopod dinosaur unconnected with the ancestry of birds. These integumental structures show a strong resemblance to the collagenous fiber systems in the dermis of many animals. We also report the presence of scales in the forearm of the theropod ornithomimid (bird mimic) dinosaur, Pelecanimimus, from Spain. In the second part of the study we examine evidence relating to the most critical character thought to link birds to derived theropods, a tridactyl hand composed of digits 1-2-3. We maintain the evidence supports interpretation of bird wing digit identity as 2,3,4, which appears different from that in theropod dinosaurs. The phylogenetic significance of Chinese microraptors is also discussed, with respect to bird origins and flight origins. We suggest that a possible solution to the disparate data is that Aves plus bird-like maniraptoran theropods (e.g., microraptors and others) may be a separate clade, distinctive from the main lineage of Theropoda, a remnant of the early avian radiation, exhibiting all stages of flight and flightlessness. J. Morphol. (c) Wiley-Liss, Inc.

  4. FoxP2 in song-learning birds and vocal-learning mammals.

    PubMed

    Webb, D M; Zhang, J

    2005-01-01

    FoxP2 is the first identified gene that is specifically involved in speech and language development in humans. Population genetic studies of FoxP2 revealed a selective sweep in recent human history associated with two amino acid substitutions in exon 7. Avian song learning and human language acquisition share many behavioral and neurological similarities. To determine whether FoxP2 plays a similar role in song-learning birds, we sequenced exon 7 of FoxP2 in multiple song-learning and nonlearning birds. We show extreme conservation of FoxP2 sequences in birds, including unusually low rates of synonymous substitutions. However, no amino acid substitutions are shared between the song-learning birds and humans. Furthermore, sequences from vocal-learning whales, dolphins, and bats do not share the human-unique substitutions. While FoxP2 appears to be under strong functional constraints in mammals and birds, we find no evidence for its role during the evolution of vocal learning in nonhuman animals as in humans.

  5. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    PubMed

    Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  6. Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism

    PubMed Central

    Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. PMID:19223979

  7. Avian genomics lends insights into endocrine function in birds.

    PubMed

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 14 CFR 35.36 - Bird impact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bird impact. 35.36 Section 35.36... STANDARDS: PROPELLERS Tests and Inspections § 35.36 Bird impact. The applicant must demonstrate, by tests or... 4-pound bird at the critical location(s) and critical flight condition(s) of a typical installation...

  9. 14 CFR 35.36 - Bird impact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Bird impact. 35.36 Section 35.36... STANDARDS: PROPELLERS Tests and Inspections § 35.36 Bird impact. The applicant must demonstrate, by tests or... 4-pound bird at the critical location(s) and critical flight condition(s) of a typical installation...

  10. Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment.

    PubMed

    Di Giallonardo, Francesca; Geoghegan, Jemma L; Docherty, Douglas E; McLean, Robert G; Zody, Michael C; Qu, James; Yang, Xiao; Birren, Bruce W; Malboeuf, Christine M; Newman, Ruchi M; Ip, Hon S; Holmes, Edward C

    2016-01-15

    The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  12. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.

    PubMed

    Friedman, Nicholas R; Harmáčková, Lenka; Economo, Evan P; Remeš, Vladimír

    2017-08-01

    Birds' beaks play a key role in foraging, and most research on their size and shape has focused on this function. Recent findings suggest that beaks may also be important for thermoregulation, and this may drive morphological evolution as predicted by Allen's rule. However, the role of thermoregulation in the evolution of beak size across species remains largely unexplored. In particular, it remains unclear whether the need for retaining heat in the winter or dissipating heat in the summer plays the greater role in selection for beak size. Comparative studies are needed to evaluate the relative importance of these functions in beak size evolution. We addressed this question in a clade of birds exhibiting wide variation in their climatic niche: the Australasian honeyeaters and allies (Meliphagoidea). Across 158 species, we compared species' climatic conditions extracted from their ranges to beak size measurements in a combined spatial-phylogenetic framework. We found that winter minimum temperature was positively correlated with beak size, while summer maximum temperature was not. This suggests that while diet and foraging behavior may drive evolutionary changes in beak shape, changes in beak size can also be explained by the beak's role in thermoregulation, and winter heat retention in particular. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Primate feedstock for the evolution of consonants.

    PubMed

    Lameira, Adriano R; Maddieson, Ian; Zuberbühler, Klaus

    2014-02-01

    The evolution of speech remains an elusive scientific problem. A widespread notion is that vocal learning, underlined by vocal-fold control, is a key prerequisite for speech evolution. Although present in birds and non-primate mammals, vocal learning is ostensibly absent in non-human primates. Here we argue that the main road to speech evolution has been through controlling the supralaryngeal vocal tract, for which we find evidence for evolutionary continuity within the great apes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The ornithologist Alfred Russel Wallace and the controversy surrounding the dinosaurian origin of birds.

    PubMed

    Ibrahim, Nizar; Kutschera, Ulrich

    2013-12-01

    Over many years of his life, the British naturalist Alfred Russel Wallace (1823-1913) explored the tropical forests of Malaysia, collecting numerous specimens, including hundreds of birds, many of them new to science. Subsequently, Wallace published a series of papers on systematic ornithology, and discovered a new species on top of a volcano on Ternate, where he wrote, in 1858, his famous essay on natural selection. Based on this hands-on experience, and an analysis of an Archaeopteryx fossil, Wallace suggested that birds may have descended from dinosaurian ancestors. Here, we describe the "dinosaur-bird hypothesis" that originated with the work of Thomas H. Huxley (1825-1895). We present the strong evidence linking theropod dinosaurs to birds, and briefly outline the long and ongoing controversy around this concept. Dinosaurs preserving plumage, nesting sites and trace fossils provide overwhelming evidence for the dinosaurian origin of birds. Based on these recent findings of paleontological research, we conclude that extant birds indeed descended, with some modifications, from small, Mesozoic theropod dinosaurs. In the light of Wallace's view of bird origins, we critically evaluate recent opposing views to this idea, including Ernst Mayr's (1904-2005) arguments against the "dinosaur-bird hypothesis", and document that this famous ornithologist was not correct in his assessment of this important aspect of vertebrate evolution.

  15. Apple orchard pest control strategies affect bird communities in southeastern France.

    PubMed

    Bouvier, Jean-Charles; Ricci, Benoît; Agerberg, Julia; Lavigne, Claire

    2011-01-01

    Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds. © 2010 SETAC.

  16. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013

    PubMed Central

    Li, Chong; Wang, Shuoguo; Bing, Guoxia; Carter, Robert A; Wang, Zejiang; Wang, Jinliang; Wang, Chenxi; Wang, Lan; Wu, Gang; Webster, Robert G; Wang, Yongqiang; Sun, Honglei; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2017-01-01

    Influenza H9N2 subtype viruses and their reassortants (such as H7N9) are posing increasing threats to birds and humans in China. During 2009–2013, multiple novel subtype viruses with H9N2 original genes emerged in China. Yet, the genetic evolution of H9N2 viruses in various host organisms in China has not been systematically investigated since 2009. In the present study, we performed large-scale sequence analysis of H9N2 viral genomes from public databases, representing the spectrum of viruses isolated from birds, mammals and humans in China from 1994 to 2013, and updated the clade classification for each segment. We identified 117 distinct genotypes in 730 H9N2 viruses. We analyzed the sequences of all eight segments in each virus and found three important time points: the years 2000, 2006 and 2010. In the periods divided by these years, genotypic diversity, geographic distribution and host range changed considerably. Genotypic diversity fluctuated greatly in 2000 and 2006. Since 2010, a single genotype became predominant in poultry throughout China, and the eastern coastal region became the newly identified epidemic center. Throughout their 20-year prevalence in China, H9N2 influenza viruses have emerged and adapted from aquatic birds to chickens. The minor avian species and wild birds exacerbated H9N2 genotypes by providing diversified genes, and chickens were the most prevalent vector in which the viruses evolved and expanded their prevalence. It is the necessity for surveillance and disease control on live-bird markets, poultry farms and wild-bird habitats in China. PMID:29184157

  17. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013.

    PubMed

    Li, Chong; Wang, Shuoguo; Bing, Guoxia; Carter, Robert A; Wang, Zejiang; Wang, Jinliang; Wang, Chenxi; Wang, Lan; Wu, Gang; Webster, Robert G; Wang, Yongqiang; Sun, Honglei; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2017-11-29

    Influenza H9N2 subtype viruses and their reassortants (such as H7N9) are posing increasing threats to birds and humans in China. During 2009-2013, multiple novel subtype viruses with H9N2 original genes emerged in China. Yet, the genetic evolution of H9N2 viruses in various host organisms in China has not been systematically investigated since 2009. In the present study, we performed large-scale sequence analysis of H9N2 viral genomes from public databases, representing the spectrum of viruses isolated from birds, mammals and humans in China from 1994 to 2013, and updated the clade classification for each segment. We identified 117 distinct genotypes in 730 H9N2 viruses. We analyzed the sequences of all eight segments in each virus and found three important time points: the years 2000, 2006 and 2010. In the periods divided by these years, genotypic diversity, geographic distribution and host range changed considerably. Genotypic diversity fluctuated greatly in 2000 and 2006. Since 2010, a single genotype became predominant in poultry throughout China, and the eastern coastal region became the newly identified epidemic center. Throughout their 20-year prevalence in China, H9N2 influenza viruses have emerged and adapted from aquatic birds to chickens. The minor avian species and wild birds exacerbated H9N2 genotypes by providing diversified genes, and chickens were the most prevalent vector in which the viruses evolved and expanded their prevalence. It is the necessity for surveillance and disease control on live-bird markets, poultry farms and wild-bird habitats in China.

  18. Identification of a Transcriptionally Forward α Gene and Two υ Genes within the Pigeon (Columba livia) IgH Gene Locus.

    PubMed

    Huang, Tian; Wang, Xifeng; Si, Run; Chi, Hao; Han, Binyue; Han, Haitang; Cao, Gengsheng; Zhao, Yaofeng

    2018-06-01

    Compared with mammals, the bird Ig genetic system relies on gene conversion to create an Ab repertoire, with inversion of the IgA-encoding gene and very few cases of Ig subclass diversification. Although gene conversion has been studied intensively, class-switch recombination, a mechanism by which the IgH C region is exchanged, has rarely been investigated in birds. In this study, based on the published genome of pigeon ( Columba livia ) and high-throughput transcriptome sequencing of immune-related tissues, we identified a transcriptionally forward α gene and found that the pigeon IgH gene locus is arranged as μ-α-υ1-υ2. In this article, we show that both DNA deletion and inversion may result from IgA and IgY class switching, and similar junction patterns were observed for both types of class-switch recombination. We also identified two subclasses of υ genes in pigeon, which share low sequence identity. Phylogenetic analysis suggests that divergence of the two pigeon υ genes occurred during the early stage of bird evolution. The data obtained in this study provide new insight into class-switch recombination and Ig gene evolution in birds. Copyright © 2018 by The American Association of Immunologists, Inc.

  19. Phylogeny and species traits predict bird detectability

    USGS Publications Warehouse

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  20. Migratory behavior of birds affects their coevolutionary relationship with blood parasites.

    PubMed

    Jenkins, Tania; Thomas, Gavin H; Hellgren, Olof; Owens, Ian P F

    2012-03-01

    Host traits, such as migratory behavior, could facilitate the dispersal of disease-causing parasites, potentially leading to the transfer of infections both across geographic areas and between host species. There is, however, little quantitative information on whether variation in such host attributes does indeed affect the evolutionary outcome of host-parasite associations. Here, we employ Leucocytozoon blood parasites of birds, a group of parasites closely related to avian malaria, to study host-parasite coevolution in relation to host behavior using a phylogenetic comparative approach. We reconstruct the molecular phylogenies of both the hosts and parasites and use cophylogenetic tools to assess whether each host-parasite association contributes significantly to the overall congruence between the two phylogenies. We find evidence for a significant fit between host and parasite phylogenies in this system, but show that this is due only to associations between nonmigrant parasites and their hosts. We also show that migrant bird species harbor a greater genetic diversity of parasites compared with nonmigrant species. Taken together, these results suggest that the migratory habits of birds could influence their coevolutionary relationship with their parasites, and that consideration of host traits is important in predicting the outcome of coevolutionary interactions. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  1. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  3. Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

    PubMed Central

    Erickson, Gregory M.; Rauhut, Oliver W. M.; Zhou, Zhonghe; Turner, Alan H.; Inouye, Brian D.; Hu, Dongyu; Norell, Mark A.

    2009-01-01

    Background Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. Conclusions/Significance The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history. PMID:19816582

  4. A basal dromaeosaurid and size evolution preceding avian flight.

    PubMed

    Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A

    2007-09-07

    Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.

  5. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  6. A genetic signature of the evolution of loss of flight in the Galapagos cormorant

    USGS Publications Warehouse

    Burga, Alejandro; Wang, Weiguang; Ben-David, Eyal; Wolf, Paul C.; Ramey, Andy M.; Verdugo, Claudio; Lyons, Karen; Parker, Patricia G.; Kruglyak, Leonid

    2017-01-01

    INTRODUCTIONChanges in the size and proportion of limbs and other structures have played a key role in the evolution of species. One common class of limb modification is recurrent wing reduction and loss of flight in birds. Indeed, Darwin used the occurrence of flightless birds as an argument in favor of his theory of natural selection. Loss of flight has evolved repeatedly and is found among 26 families of birds in 17 different orders. Despite the frequency of these modifications, we have a limited understanding of their underpinnings at the genetic and molecular levels.RATIONALETo better understand the evolution of changes in limb size, we studied a classic case of recent loss of flight in the Galapagos cormorant (Phalacrocorax harrisi). Cormorants are large water birds that live in coastal areas or near lakes, and P. harrisi is the only flightless cormorant among approximately 40 extant species. The entire population is distributed along the coastlines of Isabela and Fernandina islands in the Galapagos archipelago. P. harrisi has a pair of short wings, which are smaller than those of any other cormorant. The extreme reduction of the wings and pectoral skeleton observed in P. harrisi is an attractive model for studying the evolution of loss of flight because it occurred very recently; phylogenetic evidence suggests that P. harrisi diverged from its flighted relatives within the past 2 million years. We developed a comparative and predictive genomics approach that uses the genome sequences of P. harrisi and its flighted relatives to find candidate genetic variants that likely contributed to the evolution of loss of flight.RESULTSWe sequenced and de novo assembled the whole genomes of P. harrisi and three closely related flighted cormorant species. We identified thousands of coding variants exclusive to P. harrisi and classified them according to their probability of altering protein function based on conservation. Variants most likely to alter protein function were significantly enriched in genes mutated in human skeletal ciliopathies, including Ofd1, Evc, Wdr34, and Ift122. We carried out experiments in Caenorhabditis elegans to confirm that a missense variant present in the Galapagos cormorant IFT122 protein is sufficient to affect ciliary function. The primary cilium is essential for Hedgehog (Hh) signaling in vertebrates, and individuals affected by ciliopathies have small limbs and ribcages, mirroring the phenotype of P. harrisi. We also identified a 4–amino acid deletion in the regulatory domain of Cux1, a highly conserved transcription factor that has been experimentally shown to regulate limb growth in chicken. The four missing amino acids are perfectly conserved in all birds and mammals sequenced to date. We tested the consequences of this deletion in a chondrogenic cell line and showed that it impairs the ability of CUX1 to transcriptionally up-regulate cilia-related genes (some of which contain function-altering variants in P. harrisi) and to promote chondrogenic differentiation. Finally, we show that positive selection may have played a role in the fixation of the variants associated with loss of flight in P. harrisi.CONCLUSIONOur results indicate that the combined effect of variants in genes necessary for the correct transcriptional regulation and function of the primary cilium likely contributed to the evolution of highly reduced wings and other skeletal adaptations associated with loss of flight in P. harrisi. Our approach may be generally useful for identification of variants underlying evolutionary novelty from genomes of closely related species.

  7. The Evolutionary Fate of the Genes Encoding the Purine Catabolic Enzymes in Hominoids, Birds, and Reptiles

    PubMed Central

    Keebaugh, Alaine C.; Thomas, James W.

    2010-01-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes. PMID:20106906

  8. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles.

    PubMed

    Keebaugh, Alaine C; Thomas, James W

    2010-06-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes.

  9. Evolution of reproductive life histories in island birds worldwide

    PubMed Central

    Covas, Rita

    2012-01-01

    Island environments typically share characteristics such as impoverished biotas and less-seasonal climates, which should be conducive to specific adaptations by organisms. However, with the exception of morphological studies, broad-scale tests of patterns of adaptation on islands are rare. Here, I examine reproductive patterns in island birds worldwide. Reproductive life histories are influenced by latitude, which could affect the response to insularity; therefore, I additionally test this hypothesis. Island colonizers showed mostly bi-parental care, but there was a significant increase in cooperative breeding on islands. Additionally, I found support for previous suggestions of reduced fecundity, longer developmental periods and increased investment in young on islands. However, clutch size increased with latitude at a rate nearly five times faster on the mainland than on the islands revealing a substantially stronger effect of insularity at higher latitudes. Latitude and insularity may also interact to determine egg volume and incubation periods, but these effects were less clear. Analyses of reproductive success did not support an effect of reduced nest predation as a driver of reproductive change, but this requires further study. The effect of latitude detected here suggests that the evolutionary changes associated with insularity relate to environmental stability and improved adult survival. PMID:22072609

  10. Detectability matters: conspicuous nestling mouth colours make prey transfer easier for parents in a cavity nesting bird.

    PubMed

    Dugas, Matthew B

    2015-11-01

    An often underappreciated function of signals is to notify receivers of the presence and position of senders. The colours that ornament the mouthparts of nestling birds, for example, have been hypothesized to evolve via selective pressure generated by parents' inability to efficiently detect and feed nestlings without such visually conspicuous targets. This proposed mechanism has primarily been evaluated with comparative studies and experimental tests for parental allocation bias, leaving untested the central assumption of this detectability hypothesis, that provisioning offspring is a visually challenging task for avian parents and conspicuous mouths help. To test this assumption, I manipulated the mouths of nestling house sparrows to appear minimally and maximally conspicuous, and quantified prey transfer difficulty as the total duration of a feeding event and the number of transfer attempts required. Prey transfer to inconspicuous nestlings was, as predicted, more difficult. While this suggests that detectability constraints could shape nestling mouth colour evolution, even minimally conspicuous nestlings were not prohibitively difficult for parents to feed, indicating that a more nuanced explanation for interspecific diversity in this trait is needed. © 2015 The Author(s).

  11. Evaluation of the limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    NASA Astrophysics Data System (ADS)

    Scotter, Susan L.; Wood, Roger; McWeeny, David J.

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjuction with a Gram negative bacteria (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15°C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment and during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeasts and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds.

  12. Avian binocular vision: It's not just about what birds can see, it's also about what they can't.

    PubMed

    Tyrrell, Luke P; Fernández-Juricic, Esteban

    2017-01-01

    With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to avian binocularity than meets the eye.

  13. Sources of variation in breeding-ground fidelity of mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Doherty, P.F.; Nichols, J.D.; Tautin, J.; Voelzer, J.E.; Smith, G.W.; Benning, D.S.; Bentley, V.R.; Bidwell, J.K.; Bollinger, K.S.; Brazda, A.R.; Buelna, E.K.; Goldsberry, J.R.; King, R.J.; Roetker, F.H.; Solberg, J.W.; Thorpe, P.P.; Wortham, J.S.

    2002-01-01

    Generalizations used to support hypotheses about the evolution of fidelity to breeding areas in birds include the tendency for fidelity to be greater in adult birds than in yearlings. In ducks, in contrast to most bird species, fidelity is thought to be greater among females than males. Researchers have suggested that fidelity in ducks is positively correlated with pond availability. However, most estimates of fidelity on which these inferences have been based represent functions of survival and recapture-resighting probabilities in addition to fidelity. We applied the modeling approach developed by Burnham to recapture and band recovery data of mallard ducks to test the above hypotheses about fidelity. We found little evidence of sex differences in adult philopatry, with females being slightly more philopatric than males in one study area, but not in a second study area. However, yearling females were more philopatric than yearling males in both study areas. We found that adults were generally more philopatric than yearlings. We could find no relationship between fidelity and pond availability. Our results, while partially supporting current theory concerning sex and age differences in philopatry, suggest that adult male mallards are more philopatric than once thought, and we recommend that other generalizations about philopatry be revisited with proper estimation techniques.

  14. The shapes of bird beaks are highly controlled by nondietary factors

    PubMed Central

    Bright, Jen A.; Marugán-Lobón, Jesús; Cobb, Samuel N.

    2016-01-01

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations. PMID:27125856

  15. The shapes of bird beaks are highly controlled by nondietary factors.

    PubMed

    Bright, Jen A; Marugán-Lobón, Jesús; Cobb, Samuel N; Rayfield, Emily J

    2016-05-10

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.

  16. Human preferences for colorful birds: Vivid colors or pattern?

    PubMed

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  17. Morphological adaptation influences the evolution of a mating signal.

    PubMed

    Ballentine, Barbara

    2006-09-01

    Theory predicts that forces of natural selection can reduce the intensity of sexually selected traits. In this study, I investigate how morphological adaptation to feeding ecology influences a mating signal. In birds, changes in feeding ecology can cause rapid divergence in bill morphology. Because bills are also important for song production, feeding ecology may influence song divergence. During song, birds can rapidly change vocal tract resonance using bill movement, yet are constrained in rate and magnitude of bill movements resulting in a trade-off between trill rate and frequency bandwidth. Male swamp sparrows vary in their ability to produce rapid, broad-band trills and females prefer more physically demanding songs. Populations of swamp sparrows adapted to the feeding ecology of tidal marshes have larger bills than inland populations. Larger bills should increase the constraints of producing rapid, broad-band trills allowing for a test of how changes in feeding ecology affect a feature of song used in mate choice. I found significant differences in acoustic features of song consistent with the hypothesis that coastal males are less able to meet the physical demands of song production because of the constraints of having larger bills. As possible compensation for decreases in song performance, coastal populations exhibit an increase in song complexity. These changes support the current model of how motor constraints influence song production and suggest a mechanism by which feeding ecology can influence signal evolution.

  18. Concealed by darkness: interactions between predatory bats and nocturnally migrating songbirds illuminated by DNA sequencing.

    PubMed

    Ibáñez, Carlos; Popa-Lisseanu, Ana G; Pastor-Beviá, David; García-Mudarra, Juan L; Juste, Javier

    2016-10-01

    Recently, several species of aerial-hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather-containing scats of the bird-feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub-Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats' diet, indicating that birds are solely captured on the wing during night-time passage. Additional to a generalist feeding strategy, we found that bats selected medium-sized bird species, thereby assumingly optimizing their energetic cost-benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals' behavioural and mechanical abilities. Considering the bats' generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour. © 2016 John Wiley & Sons Ltd.

  19. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    PubMed

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  20. DEVELOPMENT OF A BIRD INTEGRITY INDEX: USING BIRD ASSEMBLAGES AS INDICATORS OF RIPARIAN CONDITION

    EPA Science Inventory

    We describe the development of a Bird Integrity Index (BII) that uses bird assemblage information to assess human impacts on 13 stream reaches in the Willamette Valley, Oregon. We used bird survey field data to test 62 candidate metrics representing aspects of bird taxonomic ric...

  1. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    PubMed

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups

    PubMed Central

    Ord, Terry J.; Garcia-Porta, Joan

    2012-01-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820

  3. Phytoestrogens and avian reproduction: Exploring the evolution and function of phytoestrogens and possible role of plant compounds in the breeding ecology of wild birds.

    PubMed

    Rochester, Johanna R; Millam, James R

    2009-11-01

    Phytoestrogens are secondary plant compounds, which can act to mimic estrogen and cause the disruption of estrogenic responses in organisms. Although there is a substantial body of research studying phytoestrogens, including their mechanisms of estrogenic effects, evolution, and detection in biological systems, little is known about their ecological significance. There is evidence, however, that an ecological relationship involving phytoestrogens exists between plants and animals-plants may produce phytoestrogens to reduce fecundity of organisms that eat them. Birds and other vertebrates may also exploit phytoestrogens to regulate their own reproduction-there are well known examples of phytoestrogens inhibiting reproduction in higher vertebrates, including birds. Also, common plant stressors (e.g., high temperature) increase the production of secondary plant compounds, and, as evidence suggests, also induce phytoestrogen biosynthesis. These observations are consistent with the single study ever done on phytoestrogens and reproduction in wild birds [Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens adverse effects on reproduction in California quail. Science 191, 98-100.], which found that drought stress correlated with increased levels of phytoestrogens in plants, and that increased phytoestrogen levels correlated with decreased young. This review discusses the hypothesis that plants may have an effect on the reproduction of avian species by producing phytoestrogens as a plant defense against herbivory, and that birds may "use" changing levels of phytoestrogens in the vegetation to ensure that food resources will support potential young produced. Evidence from our laboratory and others appear to support this hypothesis.

  4. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D; Georges, Arthur; Graves, Jennifer A M; Valenzuela, Nicole; Literman, Robert A; Rutherford, Kim; Gemmell, Neil; Iverson, John B; Tamplin, Jeffrey W; Edwards, Scott V; Ezaz, Tariq

    2014-12-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. A bizarre theropod from the Early Cretaceous of Japan highlighting mosaic evolution among coelurosaurians

    PubMed Central

    Azuma, Yoichi; Xu, Xing; Shibata, Masateru; Kawabe, Soichiro; Miyata, Kazunori; Imai, Takuya

    2016-01-01

    Our understanding of coelurosaurian evolution, particularly of bird origins, has been greatly improved, mainly due to numerous recently discovered fossils worldwide. Nearly all these discoveries are referable to the previously known coelurosaurian subgroups. Here, we report a new theropod, Fukuivenator paradoxus, gen. et sp. nov., based on a nearly complete specimen from the Lower Cretaceous Kitadani Formation of the Tetori Group, Fukui, Japan. While Fukuivenator possesses a large number of morphological features unknown in any other theropod, it has a combination of primitive and derived features seen in different theropod subgroups, notably dromaeosaurid dinosaurs. Computed-tomography data indicate that Fukuivenator possesses inner ears whose morphology is intermediate between those of birds and non-avian dinosaurs. Our phylogenetic analysis recovers Fukuivenator as a basally branching maniraptoran theropod, yet is unable to refer it to any known coelurosaurian subgroups. The discovery of Fukuivenator considerably increases the morphological disparity of coelurosaurian dinosaurs and highlights the high levels of homoplasy in coelurosaurian evolution. PMID:26908367

  6. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  7. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?

    PubMed Central

    Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.

    2014-01-01

    Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. Conclusions Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant–Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination. PMID:24071499

  8. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs.

    PubMed

    Charles Deeming, D; Mayr, Gerald

    2018-05-01

    Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  9. A Comparative Morphological Study of the Jugal and Quadratojugal in Early Birds and Their Dinosaurian Relatives.

    PubMed

    Wang, Min; Hu, Han

    2017-01-01

    The zygoma (called jugal bar) in modern birds accounts for a large portion of the ventral margin of the cranium. As a delicate and rod-like element, the jugal bar is functionally integrated into the avian cranial kinesis, a unique property that allows the beak to be elevated or depressed with respect to the braincase and thus distinguishes birds from all other modern vertebrates. Developmental studies show that the jugal bar of modern birds is formed by the fusion of the jugal and quadratojugal that are ossified from separated centers. However, those two bones are unfused and exhibit complicated morphological variations in basal birds and their dinosaurian relatives. Moreover, the jugal and quadratojugal form rigid articulations with the postorbital and squamosal, respectively, consequently hindering the movement of the upper jaw in most non-avian dinosaurs and some basal birds. A comparative study of the jugal and quadratojugal morphology of basal birds and their close relatives such as dromaeosaurids and oviraptorids elucidates how modern birds has achieved its derived jugal bar morphology, and sheds light on the evolution of the postorbital configuration of birds. We propose that numerous morphological modifications of those two elements (morphology changes and reduced articulation with other elements) took place in early bird history, and some of them pertinent to the refinement of the cranial kinesis. Anat Rec, 300:62-75, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    PubMed

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  11. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.

  12. Sexy birds are superior at solving a foraging problem

    PubMed Central

    Mateos-Gonzalez, Fernando; Quesada, Javier; Senar, Juan Carlos

    2011-01-01

    Yellow, red or orange carotenoid-based colorations in male birds are often a signal to prospecting females about body condition, health status and ability to find food. However, this general ‘ability to find food’ has never been defined. Here we show that more brightly ornamented individuals may also be more efficient when foraging in novel situations. The results highlight the fact that evolution may have provided females tools to evaluate cognitive abilities of the males. PMID:21450725

  13. Sexy birds are superior at solving a foraging problem.

    PubMed

    Mateos-Gonzalez, Fernando; Quesada, Javier; Senar, Juan Carlos

    2011-10-23

    Yellow, red or orange carotenoid-based colorations in male birds are often a signal to prospecting females about body condition, health status and ability to find food. However, this general 'ability to find food' has never been defined. Here we show that more brightly ornamented individuals may also be more efficient when foraging in novel situations. The results highlight the fact that evolution may have provided females tools to evaluate cognitive abilities of the males.

  14. Extremely Low Frequency (ELF) Communications System Ecological Monitoring Program: Plan and Summary of 1982 Progress.

    DTIC Science & Technology

    1983-08-01

    Program Acquisition Schedule A-8 LIST OF TABLES TABLE TITLE Page 1 Evolution of the ELF Communications Ecological 2 Moni tori ng Program 2 Summary of...performed on plots in maple-dominant, mixed hardwood stands in Michigan. NATIVE BEES Bees are important pollinators of flowering plants and are...SMALL MAMMALS AND NESTING BIRDS Small mammals and nesting birds represent an ecological level inter- mediate between plants and strict carnivores

  15. The relative roles of cultural drift and acoustic adaptation in shaping syllable repertoires of island bird populations change with time since colonization.

    PubMed

    Potvin, Dominique A; Clegg, Sonya M

    2015-02-01

    In birds, song divergence often precedes and facilitates divergence of other traits. We assessed the relative roles of cultural drift, innovation, and acoustic adaptation in divergence of island bird dialects, using silvereyes (Zosterops lateralis). In recently colonized populations, syllable diversity was not significantly lower than source populations, shared syllables between populations decreased with increasing number of founder events, and dialect variation displayed contributions from both habitat features and drift. The breadth of multivariate space occupied by recently colonized Z. l. lateralis populations was comparable to evolutionarily old forms that have diverged over thousands to hundreds of thousands of years. In evolutionarily old subspecies, syllable diversity was comparable to the mainland and the amount of variation in syllable composition explained by habitat features increased by two- to threefold compared to recently colonized populations. Together these results suggest that cultural drift influences syllable repertoires in recently colonized populations, but innovation likely counters syllable loss from colonization. In evolutionarily older populations, the influence of acoustic adaptation increases, possibly favoring a high diversity of syllables. These results suggest that the relative importance of cultural drift and acoustic adaptation changes with time since colonization in island bird populations, highlighting the value of considering multiple mechanisms and timescale of divergence when investigating island song divergence. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Mitochondria-targeted molecules determine the redness of the zebra finch bill.

    PubMed

    Cantarero, Alejandro; Alonso-Alvarez, Carlos

    2017-10-01

    The evolution and production mechanisms of red carotenoid-based ornaments in animals are poorly understood. Recently, it has been suggested that enzymes transforming yellow carotenoids to red pigments (ketolases) in animal cells may be positioned in the inner mitochondrial membrane (IMM) intimately linked to the electron transport chain. These enzymes may mostly synthesize coenzyme Q 10 (coQ 10 ), a key redox-cycler antioxidant molecularly similar to yellow carotenoids. It has been hypothesized that this shared pathway favours the evolution of red traits as sexually selected individual quality indices by revealing a well-adjusted oxidative metabolism. We administered mitochondria-targeted molecules to male zebra finches ( Taeniopygia guttata ) measuring their bill redness, a trait produced by transforming yellow carotenoids. One molecule included coQ 10 (mitoquinone mesylate, MitoQ) and the other one (decyl-triphenylphosphonium; dTPP) has the same structure without the coQ 10 aromatic ring. At the highest dose, the bill colour of MitoQ and dTPP birds strongly differed: MitoQ birds' bills were redder and dTPP birds showed paler bills even compared to birds injected with saline only. These results suggest that ketolases are indeed placed at the IMM and that coQ 10 antioxidant properties may improve their efficiency. The implications for evolutionary theories of sexual signalling are discussed. © 2017 The Author(s).

  17. Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    PubMed Central

    Sereno, Paul C.; Martinez, Ricardo N.; Wilson, Jeffrey A.; Varricchio, David J.; Alcober, Oscar A.; Larsson, Hans C. E.

    2008-01-01

    Background Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the Jurassic. In addition, we conclude: (5) The advent of avian unidirectional lung ventilation is not possible to pinpoint, as osteological correlates have yet to be identified for uni- or bidirectional lung ventilation. (6) The origin and evolution of avian air sacs may have been driven by one or more of the following three factors: flow-through lung ventilation, locomotory balance, and/or thermal regulation. PMID:18825273

  18. 9 CFR 82.5 - Interstate movement of live birds and live poultry from a quarantined area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (END) § 82.5 Interstate movement of live birds and live poultry from a quarantined area. (a) Pet birds. An individual may move his or her pet birds interstate from a quarantined area only if the birds are...) Epidemiological and testing requirements. For all pet birds moved interstate, epidemiological evidence must...

  19. 9 CFR 82.5 - Interstate movement of live birds and live poultry from a quarantined area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... movement of live birds and live poultry from a quarantined area. (a) Pet birds. An individual may move his or her pet birds interstate from a quarantined area only if the birds are not known to be infected... and testing requirements. For all pet birds moved interstate, epidemiological evidence must indicate...

  20. 9 CFR 82.5 - Interstate movement of live birds and live poultry from a quarantined area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (END) § 82.5 Interstate movement of live birds and live poultry from a quarantined area. (a) Pet birds. An individual may move his or her pet birds interstate from a quarantined area only if the birds are...) Epidemiological and testing requirements. For all pet birds moved interstate, epidemiological evidence must...

  1. Avian models for toxicity testing

    USGS Publications Warehouse

    Hill, E.F.; Hoffman, D.J.

    1984-01-01

    The use of birds as test models in experimental and environmental toxicology as related to health effects is reviewed, and an overview of descriptive tests routinely used in wildlife toxicology is provided. Toxicologic research on birds may be applicable to human health both directly by their use as models for mechanistic and descriptive studies and indirectly as monitors of environmental quality. Topics include the use of birds as models for study of teratogenesis and embryotoxicity, neurotoxicity, behavior, trends of environmental pollution, and for use in predictive wildlife toxicology. Uses of domestic and wild-captured birds are discussed.

  2. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation.

    PubMed

    Derryberry, Elizabeth Perrault; Seddon, Nathalie; Claramunt, Santiago; Tobias, Joseph Andrew; Baker, Adam; Aleixo, Alexandre; Brumfield, Robb Thomas

    2012-09-01

    Mating signals may diversify as a byproduct of morphological adaptation to different foraging niches, potentially driving speciation. Although many studies have focused on the direct influence of ecological and sexual selection on signal divergence, the role of indirect mechanisms remains poorly understood. Using phenotypic and molecular datasets, we explored the interplay between morphological and vocal evolution in an avian radiation characterized by dramatic beak variation, the Neotropical woodcreepers (Dendrocolaptinae). We found evidence of a trade-off between the rate of repetition of song syllables and frequency bandwidth: slow paced songs had either narrow or wide frequency bandwidths, and bandwidth decreased as song pace increased. This bounded phenotypic space for song structure supports the hypothesis that passerine birds face a motor constraint during song production. Diversification of acoustic characters within this bounded space was correlated with diversification of beak morphology. In particular, species with larger beaks produced slower songs with narrower frequency bandwidths, suggesting that ecological selection on beak morphology influences the diversification of woodcreeper songs. Because songs in turn mediate mate choice and species recognition in birds, these results indicate a broader role for ecology in avian diversification. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida.

    PubMed

    Khan, Imran; Yang, Zhikai; Maldonado, Emanuel; Li, Cai; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2015-11-01

    Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990-2007 in the US alone [1]. As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a non-rotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various nonrotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the pre-stress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a suitable manner. This paper describes the various non-rotating concepts analyzed, and demonstrates the effect believed to be gyroscopic in nature on the results.

  6. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a suitable manner. This paper describes the various non-rotating concepts analyzed, and demonstrates the effect believed to be gyroscopic in nature on the results

  7. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation.

    PubMed

    Badenhorst, Daleen; Hillier, LaDeana W; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E; Warren, Wesley C; Edwards, Scott V; Valenzuela, Nicole

    2015-06-24

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds

    USGS Publications Warehouse

    Lam, Tommy Tsan-Yuk; Ip, Hon S.; Ghedin, Elodie; Wentworth, David E.; Halpin, Rebecca A.; Stockwell, Timothy B.; Spiro, David J.; Dusek, Robert J.; Bortner, James B.; Hoskins, Jenny; Bales, Bradley D.; Yparraguirre, Dan R.; Holmes, Edward C.

    2012-01-01

    Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway.

  9. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds.

    PubMed

    Chen, Rubing; Holmes, Edward C

    2009-01-05

    Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.

  10. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany.

    PubMed

    Michel, Friederike; Fischer, Dominik; Eiden, Martin; Fast, Christine; Reuschel, Maximilian; Müller, Kerstin; Rinder, Monika; Urbaniak, Sylvia; Brandes, Florian; Schwehn, Rebekka; Lühken, Renke; Groschup, Martin H; Ziegler, Ute

    2018-01-22

    By systematically setting up a unique nation-wide wild bird surveillance network, we monitored migratory and resident birds for zoonotic arthropod-borne virus infections, such as the flaviviruses West Nile virus (WNV) and Usutu virus (USUV). More than 1900 wild bird blood samples, from 20 orders and 136 different bird species, were collected between 2014 and 2016. Samples were investigated by WNV and USUV-specific real-time polymerase chain reactions as well as by differentiating virus neutralization tests. Dead bird surveillance data, obtained from organ investigations in 2016, were also included. WNV-specific RNA was not detected, whereas four wild bird blood samples tested positive for USUV-specific RNA. Additionally, 73 USUV-positive birds were detected in the 2016 dead bird surveillance. WNV neutralizing antibodies were predominantly found in long-distance, partial and short-distance migrants, while USUV neutralizing antibodies were mainly detected in resident wild bird species, preferentially with low seroprevalences. To date, WNV-specific RNA has neither been detected in wild birds, nor in mosquitoes, thus, we conclude that WNV is not yet present in Germany. Continued wild bird and mosquito monitoring studies are essential to detect the incursion of zoonotic viruses and to allow risk assessments for zoonotic pathogens.

  11. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    USGS Publications Warehouse

    Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  12. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    PubMed

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.

  13. A refined model of the genomic basis for phenotypic variation in vertebrate hemostasis.

    PubMed

    Ribeiro, Ângela M; Zepeda-Mendoza, M Lisandra; Bertelsen, Mads F; Kristensen, Annemarie T; Jarvis, Erich D; Gilbert, M Thomas P; da Fonseca, Rute R

    2015-06-30

    Hemostasis is a defense mechanism that enhances an organism's survival by minimizing blood loss upon vascular injury. In vertebrates, hemostasis has been evolving with the cardio-vascular and hemodynamic systems over the last 450 million years. Birds and mammals have very similar vascular and hemodynamic systems, thus the mechanism that blocks ruptures in the vasculature is expected to be the same. However, the speed of the process varies across vertebrates, and is particularly slow for birds. Understanding the differences in the hemostasis pathway between birds and mammals, and placing them in perspective to other vertebrates may provide clues to the genetic contribution to variation in blood clotting phenotype in vertebrates. We compiled genomic data corresponding to key elements involved in hemostasis across vertebrates to investigate its genetic basis and understand how it affects fitness. We found that: i) fewer genes are involved in hemostasis in birds compared to mammals; and ii) the largest differences concern platelet membrane receptors and components from the kallikrein-kinin system. We propose that lack of the cytoplasmic domain of the GPIb receptor subunit alpha could be a strong contributor to the prolonged bleeding phenotype in birds. Combined analysis of laboratory assessments of avian hemostasis with the first avian phylogeny based on genomic-scale data revealed that differences in hemostasis within birds are not explained by phylogenetic relationships, but more so by genetic variation underlying components of the hemostatic process, suggestive of natural selection. This work adds to our understanding of the evolution of hemostasis in vertebrates. The overlap with the inflammation, complement and renin-angiotensin (blood pressure regulation) pathways is a potential driver of rapid molecular evolution in the hemostasis network. Comparisons between avian species and mammals allowed us to hypothesize that the observed mammalian innovations might have contributed to the diversification of mammals that give birth to live young.

  14. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals

    PubMed Central

    García-de Blas, Esther; Mateo, Rafael

    2016-01-01

    Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual’s capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids). Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa), the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein) and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat) developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin) in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring higher oxidative damage in plasma lipids. Thus, higher color production would be linked to higher oxidative stress, supporting the biotransformation hypothesis. The recent discovery of an avian oxygenase enzyme involved in converting yellow to red carotenoids may support our results. Nonetheless, the effect could also depend on the abundance of specific substrate carotenoids in the diet. Birds fed with proportionally higher levels of zeaxanthin showed the reddest ornaments with the highest astaxanthin concentrations. Moreover, these birds tended to show the strongest diquat-mediated effect. Therefore, in the evolution of carotenoid-based sexual signals, a biotransformation cost derived from maintaining a well-adjusted redox machinery could coexist with a cost linked to carotenoid acquisition and allocation (i.e. a resource allocation trade-off). PMID:27635308

  15. Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion.

    PubMed

    Carrano, M T; Biewener, A A

    1999-06-01

    Extant birds represent the only diverse living bipeds, and can be informative for investigations into the life-history parameters of their extinct dinosaurian relatives. However, morphological changes that occurred during early avian evolution, including the unique adoption of a nearly horizontal femoral orientation associated with a shift in center of mass (CM), suggest that caution is warranted in the use of birds as analogs for nonavian dinosaur locomotion. In this study, we fitted a group of white leghorn chickens (Gallus gallus) with a weight suspended posterior to the hip in order to examine the effects on loading and morphology. This caused a CM shift that necessitated a change in femoral posture (by 35 degrees towards the horizontal, P < 0.001), and resulted in reorientation of the ground reaction force (GRF) vector relative to the femur (from 41 degrees to 82 degrees, P < 0.001). Despite similar strain magnitudes, an overall increase in torsion relative to bending (from 1.70 to 1.95 times bending, P < 0.001) was observed, which was weakly associated with a tendency for increased femoral cross-sectional dimensions (P = 0.1). We suggest that a relative increase in torsion is consistent with a change in femoral posture towards the horizontal, since this change increases the degree to which the bone axis and the GRF vector produce mediolateral long-axis rotation of the bone. These results support the hypothesis that a postural change during early avian evolution could underlie the allometric differences seen between bird and nonavian dinosaur femora by requiring more robust femoral dimensions in birds due to an increase in torsion.

  16. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.

    PubMed

    Vanderwerf, Eric A

    2012-10-01

    The majority of bird extinctions since 1800 have occurred on islands, and non-native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life-history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non-native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16-year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest-building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long-term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population. ©2012 Society for Conservation Biology.

  17. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  18. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  19. Whole-genome analysis of mycobacteria from birds at the San Diego Zoo.

    PubMed

    Pfeiffer, Wayne; Braun, Josephine; Burchell, Jennifer; Witte, Carmel L; Rideout, Bruce A

    2017-01-01

    Mycobacteria isolated from more than 100 birds diagnosed with avian mycobacteriosis at the San Diego Zoo and its Safari Park were cultured postmortem and had their whole genomes sequenced. Computational workflows were developed and applied to identify the mycobacterial species in each DNA sample, to find single-nucleotide polymorphisms (SNPs) between samples of the same species, to further differentiate SNPs between as many as three different genotypes within a single sample, and to identify which samples are closely clustered genomically. Nine species of mycobacteria were found in 123 samples from 105 birds. The most common species were Mycobacterium avium and Mycobacterium genavense, which were in 49 and 48 birds, respectively. Most birds contained only a single mycobacterial species, but two birds contained a mixture of two species. The M. avium samples represent diverse strains of M. avium avium and M. avium hominissuis, with many pairs of samples differing by hundreds or thousands of SNPs across their common genome. By contrast, the M. genavense samples are much closer genomically; samples from 46 of 48 birds differ from each other by less than 110 SNPs. Some birds contained two, three, or even four genotypes of the same bacterial species. Such infections were found in 4 of 49 birds (8%) with M. avium and in 11 of 48 birds (23%) with M. genavense. Most were mixed infections, in which the bird was infected by multiple mycobacterial strains, but three infections with two genotypes differing by ≤ 10 SNPs were likely the result of within-host evolution. The samples from 31 birds with M. avium can be grouped into nine clusters within which any sample is ≤ 12 SNPs from at least one other sample in the cluster. Similarly, the samples from 40 birds with M. genavense can be grouped into ten such clusters. Information about these genomic clusters is being used in an ongoing, companion study of mycobacterial transmission to help inform management of bird collections.

  20. Whole-genome analysis of mycobacteria from birds at the San Diego Zoo

    PubMed Central

    Pfeiffer, Wayne; Braun, Josephine; Burchell, Jennifer; Witte, Carmel L.; Rideout, Bruce A.

    2017-01-01

    Methods Mycobacteria isolated from more than 100 birds diagnosed with avian mycobacteriosis at the San Diego Zoo and its Safari Park were cultured postmortem and had their whole genomes sequenced. Computational workflows were developed and applied to identify the mycobacterial species in each DNA sample, to find single-nucleotide polymorphisms (SNPs) between samples of the same species, to further differentiate SNPs between as many as three different genotypes within a single sample, and to identify which samples are closely clustered genomically. Results Nine species of mycobacteria were found in 123 samples from 105 birds. The most common species were Mycobacterium avium and Mycobacterium genavense, which were in 49 and 48 birds, respectively. Most birds contained only a single mycobacterial species, but two birds contained a mixture of two species. The M. avium samples represent diverse strains of M. avium avium and M. avium hominissuis, with many pairs of samples differing by hundreds or thousands of SNPs across their common genome. By contrast, the M. genavense samples are much closer genomically; samples from 46 of 48 birds differ from each other by less than 110 SNPs. Some birds contained two, three, or even four genotypes of the same bacterial species. Such infections were found in 4 of 49 birds (8%) with M. avium and in 11 of 48 birds (23%) with M. genavense. Most were mixed infections, in which the bird was infected by multiple mycobacterial strains, but three infections with two genotypes differing by ≤ 10 SNPs were likely the result of within-host evolution. The samples from 31 birds with M. avium can be grouped into nine clusters within which any sample is ≤ 12 SNPs from at least one other sample in the cluster. Similarly, the samples from 40 birds with M. genavense can be grouped into ten such clusters. Information about these genomic clusters is being used in an ongoing, companion study of mycobacterial transmission to help inform management of bird collections. PMID:28267758

  1. It Not a Bird or a Plane

    NASA Image and Video Library

    2005-05-31

    Since its launch in 2003, NASA Galaxy Evolution Explorer the space telescope originally designed to observe galaxies across the universe in ultraviolet light has discovered a festive sky blinking with flaring and erupting stars.

  2. Setback Distances as a Conservation Tool in Wildlife-Human Interactions: Testing Their Efficacy for Birds Affected by Vehicles on Open-Coast Sandy Beaches

    PubMed Central

    Schlacher, Thomas A.; Weston, Michael A.; Lynn, David; Connolly, Rod M.

    2013-01-01

    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviour. PMID:24039711

  3. How safe is the use of chlorpyrifos: Revelations through its effect on layer birds.

    PubMed

    Singh, P P; Kumar, Ashok; Chauhan, R S; Pankaj, P K

    2016-07-01

    The present study was aimed to investigate the immunological competence of chlorpyrifos (CPF) insecticide after oral administration in layer chickens. A total of 20 White Leghorn birds were given CPF in drinking water at 0.3 ppm/bird/day (no observable effect level dose) for a period of 3-month. Immune competence status of layer birds and chicks hatched from CPF-treated birds were estimated at 15 days interval in layer birds and monthly interval in chicks using immunological and biochemical parameters. There was a significant decrease in values of total leukocytes count, absolute lymphocyte count, absolute heterophil count, total serum protein, serum albumin, serum globulin, and serum gamma globulin in the birds treated with CPF as compared to control. Similarly, immune competence tests such as lymphocyte stimulation test, oxidative burst assay, and enzyme-linked immunosorbent assay tests indicated lower immunity in birds treated with CPF as compared to control. Subsequently, chicks produced from CPF-treated birds were also examined for immune competence, but no significant difference was observed between chicks of both the groups. The exposure to CPF produced hemo-biochemical and other changes that could be correlated with changes in the immunological profile of layer chickens suggesting total stoppage of using CPF in poultry sheds.

  4. Effect of endosulfan on immunological competence of layer birds.

    PubMed

    Singh, P P; Kumar, Ashok; Chauhan, R S; Pankaj, P K

    2016-07-01

    The present study was aimed to investigate the immunological competence of endosulfan insecticide after limited oral administration in White Leghorn layer chickens. A total of 20 White Leghorn birds were given endosulfan in drinking water at 30 ppm/bird/day (no observable effect level dose) for a period of 3-months. Immune competence status of layer birds and chicks hatched from endosulfan offered birds were estimated at 15-day interval in layer birds and at monthly interval in chicks using immunological, biochemical parameters, and teratological estimates. There was a significant decrease in levels of total leukocytes count, absolute lymphocyte count, absolute heterophil count, total serum protein, serum albumin, serum globulin, and serum gamma globulin in the birds fed with endosulfan as compared to control. Similarly, immune competence tests such as lymphocyte stimulation test, oxidative burst assay, and enzyme-linked immunosorbent assay tests indicated lower immunity in birds treated with endosulfan as compared to control. Subsequently, chicks produced from endosulfan-treated birds were also examined for immune competence, but no significant difference was observed between chicks of both the groups. The exposure to endosulfan in limited oral dosage was able to exhibit hemo-biochemical and other changes that could be correlated with changes in the immunological profile of layer chickens suggesting cautious usage of endosulfan insecticide in poultry sheds.

  5. Multi-locus sequence typing of Salmonella enterica serovar Typhimurium isolates from wild birds in northern England suggests host-adapted strain.

    PubMed

    Hughes, L A; Wigley, P; Bennett, M; Chantrey, J; Williams, N

    2010-10-01

    Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi-locus sequence typing (MLST)to investigate evolutionary relationships between them. Multi-locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Host-pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird-feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird-feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host-adapted strain with increased virulence.

  6. DEVELOPMENT OF A BIRD INTEGRITY INDEX: USING BIRD ASSEMBLAGES AS INDICATORS OF RIPARIAN CONDITION

    EPA Science Inventory

    We describe the development of a Bird Integrity Index (Bll) that uses bird assemblage information to assess human impacts on 13 stream reaches in the Willamette Valley, Oregon. We used bird survey field data to test 62 candidate metrics that were expected to respond positively or...

  7. Big-brained birds survive better in nature

    PubMed Central

    Sol, Daniel; Székely, Tamás; Liker, András; Lefebvre, Louis

    2007-01-01

    Big brains are hypothesized to enhance survival of animals by facilitating flexible cognitive responses that buffer individuals against environmental stresses. Although this theory receives partial support from the finding that brain size limits the capacity of animals to behaviourally respond to environmental challenges, the hypothesis that large brains are associated with reduced mortality has never been empirically tested. Using extensive information on avian adult mortality from natural populations, we show here that species with larger brains, relative to their body size, experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains. PMID:17251112

  8. Migratory connectivity of a widely distributed songbird, the American redstart (Setophaga ruticilla)

    USGS Publications Warehouse

    Norris, D.R.; Marra, P.P.; Bowen, G.J.; Ratcliffe, L.M.; Royle, J. Andrew; Kyser, T.K.; Boulet, Marylene; Norris, D. Ryan

    2006-01-01

    Determining the degree of connectivity between breeding and wintering populations is critical for understanding the ecology and evolution of migratory systems. We analyzed stable hydrogen isotopic compositions in tail feathers ($Dw) collected from 26 sites in 11 countries throughout the wintering range of the American Redstart (Setophaga ruticilla), a Nearctic- Neotropical migratory passerine bird. Feathers were assumed to have molted on the breeding grounds, and $Dw was used to estimate breeding origin. Values of $Dw were highly correlated with longitude of sampling location, indicating that breeding populations were generally distributed along the east-west axis of the wintering grounds. Within the Caribbean region, Florida, and Bahamas, $Dw values were negatively correlated with winter latitude, which suggests that American Redstarts exhibit a pattern of chain migration in which individuals wintering at northern latitudes are also the most northern breeders. To identify the most probable breeding regions, we used a likelihood-assignment test incorporated with a prior probability of breeding abundance using Bayes?s rule. Expected $D values of feathers from five breeding regions were based on interpolated $D values from a model of continent-wide growing-season $D values in precipitation ($Dp) and were adjusted to account for a discrimination factor between precipitation and feathers. At most wintering locations, breeding assignments were significantly different from expected frequencies based on relative breeding abundance. Birds wintering in eastern and western Mexico had a high probability of breeding in northwest and midwest North America, whereas birds in the Greater and Lesser Antilles were likely to have originated from breeding regions in the northeast and southeast, respectively. Migratory connectivity, such as we report here, implies that the dynamics of breeding and nonbreeding populations may be linked at a regional scale. These results provide a key opportunity for studying the year-round ecology and evolution of spatially connected populations in a migratory species.

  9. Evolutionary Divergence in Brain Size between Migratory and Resident Birds

    PubMed Central

    Sol, Daniel; Garcia, Núria; Iwaniuk, Andrew; Davis, Katie; Meade, Andrew; Boyle, W. Alice; Székely, Tamás

    2010-01-01

    Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better. PMID:20224776

  10. Do shade-grown coffee plantations pose a disease risk for wild birds?

    PubMed

    Hernandez, Sonia M; Peters, Valerie E; Weygandt, P Logan; Jimenez, Carlos; Villegas, Pedro; O'Connor, Barry; Yabsley, Michael J; Garcia, Maricarmen; Riblet, Sylva M; Carroll, C Ron

    2013-06-01

    Shade-grown coffee plantations are often promoted as a conservation strategy for wild birds. However, these agro-ecosystems are actively managed for food production, which may alter bird behaviors or interactions that could change bird health, compared to natural forest. To examine whether there is a difference between the health parameters of wild birds inhabiting shade-grown coffee plantations and natural forest, we evaluated birds in Costa Rica for (1) their general body condition, (2) antibodies to pathogens, (paramyxovirus and Mycoplasma spp.), and (3) the prevalence and diversity of endo-, ecto-, and hemoparasites. We measured exposure to Mycoplasma spp. and paramyxovirus because these are pathogens that could have been introduced with domestic poultry, one mechanism by which these landscapes could be detrimental to wild birds. We captured 1,561 birds representing 75 species. Although seasonal factors influenced body condition, we did not find bird general body condition to be different. A total of 556 birds of 31 species were tested for antibodies against paramyxovirus-1. Of these, five birds tested positive, four of which were from shade coffee. Out of 461 other tests for pathogens (for antibodies and nucleotide detection), none were positive. Pterolichus obtusus, the feather mite of chickens, was found on 15 birds representing two species and all were from shade-coffee plantations. Larvated eggs of Syngamus trachea, a nematode typically associated with chickens, were found in four birds captured in shade coffee and one captured in forest. For hemoparasites, a total of 1,121 blood smears from 68 bird species were examined, and only one species showed a higher prevalence of infection in shade coffee. Our results indicate that shade-coffee plantations do not pose a significant health risk to forest birds, but at least two groups of pathogens may deserve further attention: Haemoproteus spp. and the diversity and identity of endoparasites.

  11. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  12. Sexual imprinting misguides species recognition in a facultative interspecific brood parasite

    PubMed Central

    Sorenson, Michael D.; Hauber, Mark E.; Derrickson, Scott R.

    2010-01-01

    Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods. PMID:20484239

  13. Sexual imprinting misguides species recognition in a facultative interspecific brood parasite.

    PubMed

    Sorenson, Michael D; Hauber, Mark E; Derrickson, Scott R

    2010-10-22

    Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.

  14. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

    PubMed

    Fletcher, Robert J; Robertson, Ellen P; Wilcox, Rebecca C; Reichert, Brian E; Austin, James D; Kitchens, Wiley M

    2015-09-07

    Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals. © 2015 The Author(s).

  15. Coping with Uncertainty: Woodpecker Finches (Cactospiza pallida) from an Unpredictable Habitat Are More Flexible than Birds from a Stable Habitat

    PubMed Central

    Tebbich, Sabine; Teschke, Irmgard

    2014-01-01

    Behavioural flexibility is thought to be a major factor in evolution. It may facilitate the discovery and exploitation of new resources, which in turn may expose populations to novel selective forces and facilitate adaptive radiation. Darwin's finches are a textbook example of adaptive radiation. They are fast learners and show a range of unusual foraging techniques, probably as a result of their flexibility. In this study we aimed to test whether variability of the environment is correlated with flexibility. We compared woodpecker finches from a dry area (hereafter, Arid Zone), where food availability is variable, with individuals from a cloud forest (hereafter, Scalesia zone) where food abundance is stable. As parameters for flexibility, we measured neophilia and neophobia, which are two aspects of reaction to novelty, reversal learning and problem-solving. We found no differences in performance on a problem-solving task but, in line with our prediction, individuals from the Arid Zone were significantly faster reversal learners and more neophilic than their conspecifics from the Scalesia zone. The latter result supports the notion that environmental variability drives flexibility. In contrast to our prediction, Arid Zone birds were even more neophobic than birds from the Scalesia Zone. The latter result could be the consequence of differences in predation pressure between the two vegetation zones. PMID:24638107

  16. Serological Evidence for Influenza A Virus Exposure in Wild Birds in Trinidad & Tobago.

    PubMed

    Brown Jordan, Arianne; Narang, Darshan; Essen, Steve C; Brookes, Sharon M; Brown, Ian H; Oura, Christopher

    2018-05-09

    Migratory waterfowl and shorebirds are known to be important reservoirs for influenza A viruses (IAV) and they have been repeatedly implicated as causing avian influenza virus (AIV) outbreaks in domestic poultry flocks worldwide. In recent years, wild birds have been implicated in spreading zoonotic H5 influenza viruses to many countries, which has generated high levels of public health concern. Trinidad and Tobago (T&T) is positioned along the wintering route of migratory birds from the Americas; every year, many species of wild birds stopover on the islands of T&T, potentially carrying AIVs and exposing local populations of wild and domestic birds, including commercial poultry, to infection. The aim of this study was to trap, sample, and test as many wild bird species as possible to see whether they were actively infected or previously exposed to AIV. A total of 38 wild birds were trapped, sampled, and tested for IAV RNA, antibodies specific for influenza A nucleoprotein (NP) and antibodies that were specific for H5 and H7 subtypes. Five of the samples tested antibody positive for IAV, while three of these samples had positive titres (≥16) for the H5 subtype, indicating that they were likely to have been previously infected with an H5 IAV subtype. One of the samples tested positive for IAV (M gene) RNA. These results highlight the potential threat that is posed by wild birds to backyard and commercial poultry in T&T and emphasise the importance of maintaining high levels of biosecurity on poultry farms, ensuring that domestic and wild birds are not in direct or indirect contact. The results also underline the need to carry out routine surveillance for AIV in domestic and wild birds in T&T and the wider Caribbean region.

  17. MOLECULAR SYSTEMATICS OF THE AVIAN SCHISTOSOME GENUS TRICHOBILHARZIA (TREMATODA: SCHISTOSOMATIDAE) IN NORTH AMERICA

    PubMed Central

    Brant, Sara V.; Loker, Eric S.

    2010-01-01

    Trichobilharzia is a genus of thread-like schistosomes with a cosmopolitan distribution in birds. Species of Trichobilharzia achieve notoriety as major etiological agents of cercarial dermatitis, or swimmer’s itch. There are 40 species described in the literature, for which the majority lacks molecular sequence information. To better understand the phylogenetic relationships, diversity, species boundaries, host use, and geographic distribution of this genus, we surveyed 378 birds and over 10,000 snails from North America. The phylogenetic analysis was based on nuclear 18S, 28S rDNA, internal transcribed spacer region and mitochondrial cytochrome oxidase I sequence data. Specimens were recovered that could be related to 6 of the 14 described species of Trichobilharzia from North America (T. physellae, T. querquedulae, T. szidati, T. stagnicolae, T. franki, and T. brantae). An additional 5 lineages were found that could not be related directly to previously described species. Trichobilharzia brantae, transmitted by Gyraulus parvus, grouped outside the clade containing the recognized species of Trichobilharzia. A subgroup of the Trichobilharzia clade designated Clade Q was comprised of closely related species whose adults and eggs are similar, yet the European species use lymnaeids whereas the North American species use physids as snail hosts. This molecular phylogeny provides a useful framework to: 1) facilitate identification of worms, including those involved in dermatitis outbreaks; 2) test hypotheses about the evolution, diversification, host-parasite interactions and character evolution of Trichobilharzia; and 3) guide future taxonomic revision of Trichobilharzia. PMID:20049999

  18. A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakhaii, Peyman; Bermel, Wolfgang

    2015-10-01

    A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of 13C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD]r,x element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear 1JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed.

  19. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany

    PubMed Central

    Michel, Friederike; Fast, Christine; Reuschel, Maximilian; Müller, Kerstin; Urbaniak, Sylvia; Brandes, Florian; Schwehn, Rebekka; Groschup, Martin H.; Ziegler, Ute

    2018-01-01

    By systematically setting up a unique nation-wide wild bird surveillance network, we monitored migratory and resident birds for zoonotic arthropod-borne virus infections, such as the flaviviruses West Nile virus (WNV) and Usutu virus (USUV). More than 1900 wild bird blood samples, from 20 orders and 136 different bird species, were collected between 2014 and 2016. Samples were investigated by WNV and USUV-specific real-time polymerase chain reactions as well as by differentiating virus neutralization tests. Dead bird surveillance data, obtained from organ investigations in 2016, were also included. WNV-specific RNA was not detected, whereas four wild bird blood samples tested positive for USUV-specific RNA. Additionally, 73 USUV-positive birds were detected in the 2016 dead bird surveillance. WNV neutralizing antibodies were predominantly found in long-distance, partial and short-distance migrants, while USUV neutralizing antibodies were mainly detected in resident wild bird species, preferentially with low seroprevalences. To date, WNV-specific RNA has neither been detected in wild birds, nor in mosquitoes, thus, we conclude that WNV is not yet present in Germany. Continued wild bird and mosquito monitoring studies are essential to detect the incursion of zoonotic viruses and to allow risk assessments for zoonotic pathogens. PMID:29361762

  20. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    NASA Astrophysics Data System (ADS)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady pressure data for different try geometries is done against experimental and other published theoretical results, which yielded a geometry which best reflects the load values as in a real bird impact event.

  1. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing

    PubMed Central

    2014-01-01

    Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear. PMID:24725625

  2. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing.

    PubMed

    Salinas-Saavedra, Miguel; Gonzalez-Cabrera, Cristian; Ossa-Fuentes, Luis; Botelho, Joao F; Ruiz-Flores, Macarena; Vargas, Alexander O

    2014-04-12

    The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear.

  3. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    PubMed Central

    2009-01-01

    Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282

  4. The role of birds in arboviral disease surveillance in Harris County and the City of Houston, Texas.

    PubMed

    Wilkerson, Lauren; Reyna Nava, Martin; Battle-Freeman, Cheryl; Travassos da Rosa, Amelia; Guzman, Hilda; Tesh, Robert; Debboun, Mustapha

    2017-01-01

    Avian arboviral surveillance is an integral part of any disease-based integrated mosquito control program. The Harris County Public Health Mosquito and Vector Control Division has performed arboviral surveillance in the wild birds of Harris County and the City of Houston since 1965. Blood samples from live trapped birds were tested for arboviral antibodies to West Nile virus (WNV), St. Louis encephalitis, Eastern equine encephalitis, and Western equine encephalitis. A dead bird surveillance program was created in 2002 with the arrival of WNV in Harris County. Since implementation, the program has detected considerable variability in viral activity with annual WNV seroprevelance rates ranging from 2.9% to 17.7%, while the percentage of positive dead birds has ranged from 0.3% to 57.2%. In 2015, 1,345 live birds were sampled and 253 dead birds were tested, with WNV incidence rates of 16.5% and 5.9%, respectively.

  5. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction.

    PubMed

    Ksepka, Daniel T; Stidham, Thomas A; Williamson, Thomas E

    2017-07-25

    Evidence is accumulating for a rapid diversification of birds following the K-Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221-62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recovered Tsidiiyazhi abini gen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery of Tsidiiyazhi pushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post-K-Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously, Tsidiiyazhi provides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly.

  6. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction

    NASA Astrophysics Data System (ADS)

    Ksepka, Daniel T.; Stidham, Thomas A.; Williamson, Thomas E.

    2017-07-01

    Evidence is accumulating for a rapid diversification of birds following the K-Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221-62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recovered Tsidiiyazhi abini gen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery of Tsidiiyazhi pushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post-K-Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously, Tsidiiyazhi provides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly.

  7. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction

    PubMed Central

    Ksepka, Daniel T.; Stidham, Thomas A.; Williamson, Thomas E.

    2017-01-01

    Evidence is accumulating for a rapid diversification of birds following the K–Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221–62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recovered Tsidiiyazhi abini gen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery of Tsidiiyazhi pushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post–K–Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously, Tsidiiyazhi provides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly. PMID:28696285

  8. Deimatic display in the European swallowtail butterfly as a secondary defence against attacks from great tits.

    PubMed

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey's primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly's startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. We conclude that the swallowtail's startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey.

  9. The evolution of colour polymorphism in British winter-active Lepidoptera in response to search image use by avian predators.

    PubMed

    Weir, Jamie C

    2018-05-10

    Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency-dependent selection on intraspecific colour morphs, 'apostatic selection'. Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti-search image adaptation against birds. To test (a) for search image-driven apostatic selection, dimorphic populations of artificial moth-like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter-active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilizing search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image-driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  10. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-07

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.

  11. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  12. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3

    PubMed Central

    Alcaide, Miguel; Liu, Mark

    2013-01-01

    Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds. PMID:23781408

  13. A Phororhacoid bird from the Eocene of Africa

    NASA Astrophysics Data System (ADS)

    Mourer-Chauviré, Cécile; Tabuce, Rodolphe; Mahboubi, M'hammed; Adaci, Mohammed; Bensalah, Mustapha

    2011-10-01

    The bird fossil record is globally scarce in Africa. The early Tertiary evolution of terrestrial birds is virtually unknown in that continent. Here, we report on a femur of a large terrestrial new genus discovered from the early or early middle Eocene (between ˜52 and 46 Ma) of south-western Algeria. This femur shows all the morphological features of the Phororhacoidea, the so-called Terror Birds. Most of the phororhacoids were indeed large, or even gigantic, flightless predators or scavengers with no close modern analogs. It is likely that this extinct group originated in South America, where they are known from the late Paleocene to the late Pleistocene (˜59 to 0.01 Ma). The presence of a phororhacoid bird in Africa cannot be explained by a vicariant mechanism because these birds first appeared in South America well after the onset of the mid-Cretaceous Gondwana break up (˜100 million years old). Here, we propose two hypotheses to account for this occurrence, either an early dispersal of small members of this group, which were still able of a limited flight, or a transoceanic migration of flightless birds from South America to Africa during the Paleocene or earliest Eocene. Paleogeographic reconstructions of the South Atlantic Ocean suggest the existence of several islands of considerable size between South America and Africa during the early Tertiary, which could have helped a transatlantic dispersal of phororhacoids.

  14. Genome evolution in Reptilia, the sister group of mammals.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Fujita, Matthew K; Shedlock, Andrew M; Edwards, Scott V

    2010-01-01

    The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.

  15. Simulated Birdwatchers’ Playback Affects the Behavior of Two Tropical Birds

    PubMed Central

    Harris, J. Berton C.; Haskell, David G.

    2013-01-01

    Although recreational birdwatchers may benefit conservation by generating interest in birds, they may also have negative effects. One such potentially negative impact is the widespread use of recorded vocalizations, or “playback,” to attract birds of interest, including range-restricted and threatened species. Although playback has been widely used to test hypotheses about the evolution of behavior, no peer-reviewed study has examined the impacts of playback in a birdwatching context on avian behavior. We studied the effects of simulated birdwatchers’ playback on the vocal behavior of Plain-tailed Wrens Thryothorus euophrys and Rufous Antpittas Grallaria rufula in Ecuador. Study species’ vocal behavior was monitored for an hour after playing either a single bout of five minutes of song or a control treatment of background noise. We also studied the effects of daily five minute playback on five groups of wrens over 20 days. In single bout experiments, antpittas made more vocalizations of all types, except for trills, after playback compared to controls. Wrens sang more duets after playback, but did not produce more contact calls. In repeated playback experiments, wren responses were strong at first, but hardly detectable by day 12. During the study, one study group built a nest, apparently unperturbed, near a playback site. The playback-induced habituation and changes in vocal behavior we observed suggest that scientists should consider birdwatching activity when selecting research sites so that results are not biased by birdwatchers’ playback. Increased vocalizations after playback could be interpreted as a negative effect of playback if birds expend energy, become stressed, or divert time from other activities. In contrast, the habituation we documented suggests that frequent, regular birdwatchers’ playback may have minor effects on wren behavior. PMID:24147094

  16. Simulated birdwatchers' playback affects the behavior of two tropical birds.

    PubMed

    Harris, J Berton C; Haskell, David G

    2013-01-01

    Although recreational birdwatchers may benefit conservation by generating interest in birds, they may also have negative effects. One such potentially negative impact is the widespread use of recorded vocalizations, or "playback," to attract birds of interest, including range-restricted and threatened species. Although playback has been widely used to test hypotheses about the evolution of behavior, no peer-reviewed study has examined the impacts of playback in a birdwatching context on avian behavior. We studied the effects of simulated birdwatchers' playback on the vocal behavior of Plain-tailed Wrens Thryothorus euophrys and Rufous Antpittas Grallaria rufula in Ecuador. Study species' vocal behavior was monitored for an hour after playing either a single bout of five minutes of song or a control treatment of background noise. We also studied the effects of daily five minute playback on five groups of wrens over 20 days. In single bout experiments, antpittas made more vocalizations of all types, except for trills, after playback compared to controls. Wrens sang more duets after playback, but did not produce more contact calls. In repeated playback experiments, wren responses were strong at first, but hardly detectable by day 12. During the study, one study group built a nest, apparently unperturbed, near a playback site. The playback-induced habituation and changes in vocal behavior we observed suggest that scientists should consider birdwatching activity when selecting research sites so that results are not biased by birdwatchers' playback. Increased vocalizations after playback could be interpreted as a negative effect of playback if birds expend energy, become stressed, or divert time from other activities. In contrast, the habituation we documented suggests that frequent, regular birdwatchers' playback may have minor effects on wren behavior.

  17. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers

    PubMed Central

    Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.

    2014-01-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  18. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum.

    PubMed

    Lovegrove, Barry Gordon

    2012-02-01

    The evolution of endothermy in birds and mammals was one of the most important events in the evolution of the vertebrates. Past tests of hypotheses on the evolution of endothermy in mammals have relied largely on analyses of the relationship between basal and maximum metabolic rate, and artificial selection experiments. I argue that components of existing hypotheses, as well as new hypotheses, can be tested using an alternative macrophysiological modeling approach by examining the development of endothermy during the Cenozoic. Recent mammals display a 10°C range in body temperature which is sufficiently large to identify the selective forces that have driven the development of endothermy from a plesiomorphic (ancestral) Cretaceous or Jurassic condition. A model is presented (the Plesiomorphic-Apomorphic Endothermy Model, PAE Model) which proposes that heterothermy, i.e. bouts of normothermy (constant body temperature) interspersed with adaptive heterothermy (e.g. daily torpor and/or hibernation), was the ancestral condition from which apomorphic (derived), rigid homeothermy evolved. All terrestrial mammal lineages are examined for existing data to test the model, as well as for missing data that could be used to test the model. With the exception of Scandentia and Dermoptera, about which little is known, all mammalian orders that include small-sized mammals (<500 g), have species which are heterothermic and display characteristics of endothermy which fall somewhere along a plesiomorphic-apomorphic continuum. Orders which do not have heterothermic representatives (Cetartiodactyla, Perissodactyla, Pholidota, and Lagomorpha) are comprised of medium- to large-sized mammals that have either lost the capacity for heterothermy, or in which heterothermy has yet to be measured. Mammalian heterothermy seems to be plesiomorphic and probably evolved once in the mammalian lineage. Several categories of endothermy are identified (protoendothermy, plesioendothermy, apoendothermy, basoendothermy, mesoendothermy, supraendothermy, and reversed mesoendothermy) to describe the evolution of endothermy during the Cenozoic. The PAE Model should facilitate the testing of hypotheses using a range of macrophysiological methods (e.g. the comparative method and the reconstruction of ancestral states). © 2011 The Author. Biological Reviews © 2011 Cambridge Philosophical Society.

  19. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

    PubMed Central

    O’Connor, Jingmai K.; Chiappe, Luis M.; Chuong, Cheng-ming; Bottjer, David J.; You, Hailu

    2013-01-01

    At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. PMID:24003379

  20. Estimation of Unsteady Aerodynamics in the Wake of a Freely Flying European Starling (Sturnus vulgaris)

    PubMed Central

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

  1. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds.

    PubMed

    Falkenberg, Gerald; Fleissner, Gerta; Schuchardt, Kirsten; Kuehbacher, Markus; Thalau, Peter; Mouritsen, Henrik; Heyers, Dominik; Wellenreuther, Gerd; Fleissner, Guenther

    2010-02-16

    The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula) and a non-migratory bird, the domestic chicken (Gallus gallus). In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III) may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.

  2. Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community

    PubMed Central

    Martínez-Ortega, Cristina; Santos, Eduardo SA; Gil, Diego

    2014-01-01

    Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes. PMID:25614788

  3. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).

    PubMed

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  4. Guidelines for evaluation and treatment of lead poisoning of wild raptors

    USGS Publications Warehouse

    Fallon, Jesse A.; Redig, Patrick; Miller, Tricia A.; Lanzone, Michael J.; Katzner, Todd

    2017-01-01

    Lead poisoning is a threat to birds, particularly scavenging birds of prey. With the availability of portable lead-testing kits, an increasing number of field researchers are testing wild-caught birds, in situ, for lead poisoning. We describe guidelines for evaluation of lead toxicity in wild raptors by outlining field testing of blood-lead concentrations, presenting criteria for removing a lead-poisoned bird from the wild for treatment, and suggesting strategies for effective treatment of lead intoxicated raptors. Field testing of birds is most commonly accomplished via portable electrochemical analysis of blood; visual observation of condition alone may provide insufficient evidence upon which to make a decision about lead poisoning. Our intended audience is not only the avian research community, but also rehabilitation facilities that may receive apparently uninjured birds. Best practices suggest that birds whose blood-lead levels are <40 μg/dL be released back to the wild as soon as possible after capture. The decision to release or treat birds with blood-lead levels between 40 μg/dL and 60 μg/dL should be made based on the presence of clinical signs of poisoning and relevant biological characteristics (e.g., breeding status). Finally, birds with blood-lead levels >60 μg/dL are potentially lethally poisoned and best served if removed from the wild for appropriate treatment at a licensed rehabilitation facility and later released. We present guidelines for decision-making when treating lead poisoning of wild raptors. Future work based on experimental studies will clarify the role of lead poisoning for specific species and be important to refine these guidelines to improve effectiveness.

  5. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  6. Biogeography predicts macro-evolutionary patterning of gestural display complexity in a passerine family.

    PubMed

    Miles, Meredith C; Cheng, Samantha; Fuxjager, Matthew J

    2017-05-01

    Gestural displays are incorporated into the signaling repertoire of numerous animal species. These displays range from complex signals that involve impressive and challenging maneuvers, to simpler displays or no gesture at all. The factors that drive this evolution remain largely unclear, and we therefore investigate this issue in New World blackbirds by testing how factors related to a species' geographical distribution and social mating system predict macro-evolutionary patterns of display elaboration. We report that species inhabiting temperate regions produce more complex displays than species living in tropical regions, and we attribute this to (i) ecological factors that increase the competitiveness of the social environment in temperate regions, and (ii) different evolutionary and geological contexts under which species in temperate and tropical regions evolved. Meanwhile, we find no evidence that social mating system predicts species differences in display complexity, which is consistent with the idea that gestural displays evolve independently of social mating system. Together, these results offer some of the first insight into the role played by geographic factors and evolutionary context in the evolution of the remarkable physical displays of birds and other vertebrates. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  7. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  8. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  9. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections

    USGS Publications Warehouse

    Jarvi, S.I.; Farias, M.E.M.; Atkinson, C.T.

    2008-01-01

    Background: The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with nai??ve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods: A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results: RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion: Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study shows that clonal diversity of Hawaiian isolates of P. relictum is much higher than previously recognized. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct implications for host demographics, disease management strategies, and evolution of virulence. The results of this study indicate a widespread presence of multiple-genotype malaria infections with high clonal diversity in native birds of Hawaii, which when coupled with concurrent infection with Avipoxvirus, may significantly influence evolution of virulence. ?? 2008 Jarvi et al; licensee BioMed Central Ltd.

  10. Both Palatable and Unpalatable Butterflies Use Bright Colors to Signal Difficulty of Capture to Predators.

    PubMed

    Pinheiro, C E G; Freitas, A V L; Campos, V C; DeVries, P J; Penz, C M

    2016-04-01

    Birds are able to recognize and learn to avoid attacking unpalatable, chemically defended butterflies after unpleasant experiences with them. It has also been suggested that birds learn to avoid prey that are efficient at escaping. This, however, remains poorly documented. Here, we argue that butterflies may utilize a variety of escape tactics against insectivorous birds and review evidence that birds avoid attacking butterflies that are hard to catch. We suggest that signaling difficulty of capture to predators is a widespread phenomenon in butterflies, and this ability may not be limited to palatable butterflies. The possibility that both palatable and unpalatable species signal difficulty of capture has not been fully explored, but helps explain the existence of aposematic coloration and escape mimicry in butterflies lacking defensive chemicals. This possibility may also change the role that putative Müllerian and Batesian mimics play in a variety of classical mimicry rings, thus opening new perspectives in the evolution of mimicry in butterflies.

  11. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    USGS Publications Warehouse

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  12. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America.

    PubMed

    Grear, Daniel A; Hall, Jeffrey S; Dusek, Robert J; Ip, Hon S

    2018-04-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number ( R 0 ) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds ( R 0  > 1) and poultry ( R 0  ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R 0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  13. Distinctive courtship phenotype of the Vogelkop Superb Bird-of-Paradise Lophorina niedda Mayr, 1930 confirms new species status.

    PubMed

    Scholes, Edwin; Laman, Timothy G

    2018-01-01

    The birds-of-paradise (Aves: Paradisaeidae) are a quintessential example of elaborate ornamental diversification among animals. Ornamental evolution in the birds-of-paradise is exemplified by the presence of a highly integrated courtship phenotype, which is the whole package of plumage ornaments, behaviors and sounds that each species uses during courtship. Characterizing a species' courtship phenotype is therefore a key part of evolutionary and taxonomic investigation in the group. With its unprecedented transmogrification from bird-like form into something abstract and otherworldly, the courtship phenotype of the Superb Bird-of-Paradise, Lophorina superba, is one of the most remarkable of all. Recent research by Irestedt et al. (2017) suggests that the genus Lophorina is not a single species but is likely a complex of three allopatric species spanning the island of New Guinea: L. niedda in the Bird's Head Peninsula of the west, L. superba throughout the central cordillera and L. minor in the Papuan Peninsula of the east. Of these, niedda is the most phenotypically divergent with plumage traits hypothesized to possibly produce differences in ornamental appearance during display. However, the whole courtship phenotype of niedda has not been documented and so the actual extent of differences in ornamental appearance during courtship remain unknown. Here we analyze the first audiovisual recordings of niedda and compare its courtship phenotype with superba to test the hypothesis of potential differences in ornamental appearance . Our main goals are to: (1) provide the first description of the courtship phenotype of niedda in the wild, (2) determine if and how the niedda courtship phenotype differs from superba and (3) evaluate any uncovered differences in light of niedda's newly recognized species status. Our secondary goal is to provide a more thorough characterization of courtship phenotype diversity within the genus Lophorina to facilitate future comparative study within the genus and family . Results show that the niedda courtship phenotype differs substantially from superba in numerous aspects of ornamental appearance, display behavior and sound. We highlight six key differences and conclude that the new species status of niedda is corroborated by the distinctly differentiated ornamental features documented here . With full species status, niedda becomes the fourth endemic bird-of-paradise to the Bird's Head region of Indonesian New Guinea (i.e., the Vogelkop Peninsula), a fact that underscores the importance of this region as a center of endemic biodiversity worthy of enhanced conservation protection.

  14. Bee Dances, Bird Songs, Monkey Calls, and Cetacean Sonar: Is Speech Unique?

    ERIC Educational Resources Information Center

    Liska, Jo

    1993-01-01

    Examines to what extent, and in what ways, speech is unusual and how it compares to other semiotic systems. Discusses language and speech, neurolinguistic processing, comparative vocal/auditory abilities, primate evolution, and semiogenesis. (SR)

  15. Reptilian heart development and the molecular basis of cardiac chamber evolution.

    PubMed

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G

    2009-09-03

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.

  16. Reptilian heart development and the molecular basis of cardiac chamber evolution

    PubMed Central

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.

    2009-01-01

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199

  17. DEVELOPMENT OF A BIRD INTEGRITY INDEX: MEASURING AVIAN RESPONSE TO DISTURBANCE IN THE BLUE MOUNTAINS OF OREGON, USA

    EPA Science Inventory

    The Bird Integrity Index (BII) presented here uses bird assemblage information to assess human impacts to 28 stream reaches in the Blue Mountains of eastern Oregon. Eighty-one candidate metrics were extracted from bird survey data for testing. The metrics represented aspects of ...

  18. Sex chromosomes and speciation in birds and other ZW systems.

    PubMed

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  19. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z.

    PubMed

    Rens, Willem; O'Brien, Patricia C M; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2007-01-01

    Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.

  20. Molecular development of fibular reduction in birds and its evolution from dinosaurs

    PubMed Central

    Botelho, João Francisco; Smith‐Paredes, Daniel; Soto‐Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O.

    2016-01-01

    Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity. PMID:26888088

  1. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    PubMed Central

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  2. Searching for evidence of selection in avian DNA barcodes.

    PubMed

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  3. Attribution of antibacterial and antioxidant activity of Cassia tora extract toward its growth promoting effect in broiler birds.

    PubMed

    Sahu, Jyoti; Koley, K M; Sahu, B D

    2017-02-01

    The study was conducted to evaluate the attribution of antibacterial and antioxidant activity of methanolic extract of Cassia tora toward its growth promoting effect in broiler birds. A limit test was conducted for C. tora extract in Wistar albino rats. Phytochemical screening of methanolic extract of leaves of C. tora was carried out. In-vitro antibacterial activity was measured by disc diffusion method. 1-day-old Ven Cobb broiler birds (n=90) were randomly allocated into three groups consisting of three replicates with 10 birds in each group. The birds of group T1 (Control) received basal diet, whereas birds of group T2 (Standard) received an antibiotic (Lincomycin at 0.05% in feed). The birds of group T3 (Test) received Cassia tora extract (CSE) at 0.4 g/L in drinking water in addition to basal diet. The treatment was given to birds of all the groups for 6 weeks. Antioxidant activity of C. tora was determined in blood of broiler birds. Cumulative body weight gain, feed intake, feed conversion ratio (FCR), dressing percent, and organ weight factor were evaluated to determine growth performance in broiler birds. Phytochemicals in C. tora were screened. Sensitivity to Escherichia coli and resistant to Staphylococcus aureus and Pseudomonas aeruginosa was observed in in-vitro antibacterial activity test. At the end of 6 th week, antioxidant activity reflected significantly (p≤0.05) lower level of erythrocyte malondialdehyde and higher levels of reduced glutathione (GSH) and GSH peroxidase in broiler birds of group T2 and T3 as compared to broiler of group T1. Mean cumulative body weight gain of birds of T2 and T3 were significantly (p≤0.05) higher as compared to T1. Mean FCR of birds of group T3 decreased significantly than group T1. Supplementation of C. tora leaves extract at 0.4 g/L in drinking water improved growth performance in broiler birds due to its antimicrobial and antioxidant activity. Therefore, it could be used as an alternative to antibiotic growth promoter in poultry ration.

  4. A statistical framework for genetic association studies of power curves in bird flight

    PubMed Central

    Lin, Min; Zhao, Wei

    2006-01-01

    How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution. PMID:17066123

  5. Distinctive convergence in Australian floral colours seen through the eyes of Australian birds.

    PubMed

    Burd, Martin; Stayton, C Tristan; Shrestha, Mani; Dyer, Adrian G

    2014-04-22

    We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.

  6. Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis

    PubMed Central

    Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.

    2013-01-01

    The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957

  7. The evolution of sex roles in birds is related to adult sex ratio.

    PubMed

    Liker, András; Freckleton, Robert P; Székely, Tamás

    2013-01-01

    Sex-role reversal represents a formidable challenge for evolutionary biologists, since it is not clear which ecological, life-history or social factors facilitated conventional sex roles (female care and male-male competition for mates) to be reversed (male care and female-female competition). Classic theories suggested ecological or life-history predictors of role reversal, but most studies failed to support these hypotheses. Recent theory however predicts that sex-role reversal should be driven by male-biased adult sex ratio (ASR). Here we test this prediction for the first time using phylogenetic comparative analyses. Consistent with theory, both mating system and parental care are strongly related to ASR in shorebirds: conventional sex roles are exhibited by species with female-biased ASR, whereas sex-role reversal is associated with male-biased ASR. These results suggest that social environment has a strong influence on breeding systems and therefore revealing the causes of ASR variation in wild populations is essential for understanding sex role evolution.

  8. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.

  9. EVALUATION OF A COMMERCIAL COMPETITIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETECTION OF AVIAN INFLUENZA VIRUS SUBTYPE H5 ANTIBODIES IN ZOO BIRDS.

    PubMed

    Jensen, Trine Hammer; Andersen, Jannie Holmegaard; Hjulsager, Charlotte Kristiane; Chriél, Mariann; Bertelsen, Mads Frost

    2017-09-01

    The hemagglutination inhibition (HI) test is the current gold standard for detecting antibodies to avian influenza virus (AIV). Enzyme-linked immunosorbent assays (ELISAs) have been explored for use in poultry and certain wild bird species because of high efficiency and lower cost. This study compared a commercial ELISA for detection of AIV subtype H5 antibodies with HI test of 572 serum samples from zoo birds. There was no significant difference between the results of the two tests when statistically compared by a McNemar χ 2 test (P = 0.86) and assessment of κ (κ = 0.87). With a specificity of 94.2% (95% confidence interval [CI], 0.92-0.97), a sensitivity of 93.9% (95% CI, 0.91-0.97), and an excellent correlation between the two tests, this ELISA can be recommended as an alternative to the HI test for preliminary screening of zoo bird sera for antibodies to AIV subtype H5.

  10. Health evaluation of free-ranging and captive blue-fronted Amazon parrots (Amazona aestiva) in the Gran chaco, Bolivia.

    PubMed

    Deem, Sharon L; Noss, Andrew J; Cuéllar, Rosa Leny; Karesh, William B

    2005-12-01

    Bolivia has a total of 47 species of Psittacidae, seven of which have been identified in our study site, the semiarid Gran Chaco of the Isoso. One species, the blue-fronted parrot (Amazona aestiva), is frequently captured by local Isoseño Guaraní Indians for exploitation on the national and international market. These birds are often temporarily housed in small villages under unhygienic conditions with poultry and other domestic species. On occasion, these parrots escape back to the wild. Additionally, many of these birds are kept as pets or are used to lure wild. parrots within slingshot range for subsequent capture. In this study, we evaluated the health status, including the level of exposure to selected infectious agents, in the wild-caught captive birds and free-ranging birds. Physical examinations were performed, and blood was collected, from 54 live birds (20 captive and 34 free-ranging). Feces were collected from 15 birds (seven captive and eight free-ranging). Necropsies were also performed on four recently dead wild-caught birds. On serologic testing, no birds were found to have antibodies to avian influenza virus, Chlamydophila psittaci, infectious bronchitis virus, infectious bursal disease virus, infectious laryngotracheitis virus, Marek's disease virus, paramyxovirus-1, paramyxovirus-2, paramyxovirus-3, polyomavirus, eastern equine encephalitis virus, western equine encephalitis virus, or Venezuelan equine encephalitis virus. Positive antibody titers were found for psittacine herpesvirus (8/44, 18.2%), Aspergillus spp. (3/51, 5.9%), and Salmonella pullorum (33/49, 67.3%). All three of the birds that tested antibody positive for Aspergillus spp. were captive, whereas six of the eight and 15 of the 33 birds that tested positive for psittacine herpesvirus and S. pullorum, respectively, were wild.

  11. Sero-survey of Avian Influenza in backyard poultry and wild bird species in Iran-2014.

    PubMed

    Fallah Mehrabadi, M H; Bahonar, A R; Vasfi Marandi, M; Sadrzadeh, A; Tehrani, F; Salman, M D

    2016-06-01

    In almost all villages in Iran backyard birds, especially chickens, are kept for egg and meat production. AI H9N2 subtype is endemic in Iran. Therefore, estimation of AI prevalence among these birds is important to determine the risk of transmission of infection to commercial farms. The aim of this study was to estimate subclinical infections or previous exposure to H5, H7, and H9 subtypes and to identify potentially important determinants of prevalence of this infectious at premises level in backyard poultry, bird gardens, zoos, and wild bird markets in Iran. A survey was conducted using a cross-sectional design throughout the entire country. A total of 329 villages, seven bird gardens, three zoos and five wild bird markets were included. In each village four families that kept birds were included in the collection of biological samples and background information. The Enzyme-Linked Immunosorbent Assay (ELISA) was used as the screening test and all ELISA-positive samples were examined with the HI test to differentiate H5, H7, and H9. Among the bird gardens, eight of 15 premises (53.3%) were positive in both the ELISA test and HI for H9N2. Testing of samples collected in the villages revealed that 296 out of 329 villages (90%) had positive ELISA tests and also HI tests for H9. The HI-H9 mean titers in positive units were significantly higher than negative units (P<.001). This study revealed no significant statistical differences between risk variables in seropositive and seronegative bird gardens in the case of H9 (P>.05). The results of this study showed that among the risk variables, mountainous area was a protective factor and lack of hygienic disposal of dead birds was a risk factor for AI; this was also observed in rural poultry. The high sero-prevalence of influenza H9N2 in rural domestic poultry indicates that the disease is endemic. It is necessary to include backyard poultry in any surveillance system and control strategy due to the existence of AIV in backyard poultry and the possibility of transmission of infection to commercial poultry farms. Implementation of an AI surveillance program and biosecurity measures can be useful to control this infection and prevent AI from spreading to commercial farms. Furthermore in Iran there is no program for destruction of birds infected with the H9N2, so an effective vaccination program with regard to issues such as acceptability and cost-benefit must play an important role in reducing infections in backyard poultry. Copyright © 2016. Published by Elsevier B.V.

  12. Detection of avian paramyxoviruses in migratory and resident birds in the state of Rio de Janeiro, Brazil.

    PubMed

    Fornells, Luz Alba M G; Travassos, Carlos E P F; Costa, Claudia M; Novelli, Ronaldo; Petrucci, Melissa P; Soffiati, Flavio L; Bianchi, Iliani; de Souza, Luiz F Lino; Veiga, Venício F; Liberal, Maíra H T; Couceiro, José Nelson S S

    2013-12-01

    Paramyxoviruses and avian influenza viruses are present worldwide, and wild birds are known natural reservoirs of these viruses. This study monitored the circulation of these viruses in migratory and resident coastal birds captured in the state of Rio de Janeiro, Brazil. In total, 494 birds were trapped, and their fecal samples were collected and inoculated into embryonated chicken eggs. The allantoic fluids were evaluated using a hemagglutination test and PCR amplification of the genes of the M and L proteins of influenza A virus and paramyxovirus, respectively. Avian paramyxovirus was detected in 5 (1.01%) of the birds. The majority of these viruses were isolated from migratory birds classified into the order Charadriiformes (families Scolopacidae and Charadriidae). Four samples were characterized as avian paramyxovirus serotype-2 (APMV-2) by a hemagglutination inhibition test. These results reinforce the importance of continuous surveillance of wild species in Brazil.

  13. Conserved syntenic clusters of protein coding genes are missing in birds.

    PubMed

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  14. Wild Birds Use an Ordering Rule to Decode Novel Call Sequences.

    PubMed

    Suzuki, Toshitaka N; Wheatcroft, David; Griesser, Michael

    2017-08-07

    The generative power of human language depends on grammatical rules, such as word ordering, that allow us to produce and comprehend even novel combinations of words [1-3]. Several species of birds and mammals produce sequences of calls [4-6], and, like words in human sentences, their order may influence receiver responses [7]. However, it is unknown whether animals use call ordering to extract meaning from truly novel sequences. Here, we use a novel experimental approach to test this in a wild bird species, the Japanese tit (Parus minor). Japanese tits are attracted to mobbing a predator when they hear conspecific alert and recruitment calls ordered as alert-recruitment sequences [7]. They also approach in response to recruitment calls of heterospecific individuals in mixed-species flocks [8, 9]. Using experimental playbacks, we assess their responses to artificial sequences in which their own alert calls are combined into different orderings with heterospecific recruitment calls. We find that Japanese tits respond similarly to mixed-species alert-recruitment call sequences and to their own alert-recruitment sequences. Importantly, however, tits rarely respond to mixed-species sequences in which the call order is reversed. Thus, Japanese tits extract a compound meaning from novel call sequences using an ordering rule. These results demonstrate a new parallel between animal communication systems and human language, opening new avenues for exploring the evolution of ordering rules and compositionality in animal vocal sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ontogeny of lift and drag production in ground birds.

    PubMed

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  16. Use of multiple modes of flight subsidy by a soaring terrestrial bird, the golden eagle Aquila chrysaetos, when on migration

    PubMed Central

    Katzner, Todd E.; Turk, Philip J.; Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael J.; Cooper, Jeff L.; Brandes, David; Tremblay, Junior A.; Lemaître, Jérôme

    2015-01-01

    Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite–global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% ± 1.5 (, range: 18–56%) of their subsidized northbound migration using thermal soaring, 45.2% ± 2.1 (12–65%) of time gliding between thermals, and 12.9% ± 2.2 (1–55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight. PMID:26538556

  17. SEXUAL SELECTION THROUGH FEMALE CHOICE IN LAWES' PAROTIA, A LEK-MATING BIRD OF PARADISE.

    PubMed

    Pruett-Jones, S G; Pruett-Jones, M A

    1990-05-01

    We studied sexual selection in Lawes' Parotia, a lek-mating bird of paradise, during 1981-1983 in Papua New Guinea. There was a high variance in mating success among males, with fewer than half of the individuals mating in any one year. This variance was independent of male-male interactions and disruptions. A role of female choice in sexual selection was suggested by the patterns of female visitation to courts and statistical correlations across males between phenotypic traits and mating success. Females repeatedly visited most males in their home ranges and began visiting males up to six weeks before mating. In one or more years, six aspects of male behavior and one morphological variable were positively correlated with mating success, but the probability values were not significant using a simultaneous inference test. Calculation of combined probability values across all three years revealed that one aspect of male display behavior, the probability of display, positively and significantly influenced mating status. The probability of display was also significantly correlated with relative mating success among males. Females showed strong fidelity to mates, both within and between seasons. Display sites of male Lawes' Parotia are variably dispersed, but mating success did not differ for grouped and solitary males. These data confirm an important role of female choice in sexual selection in birds of paradise but also suggest that female choice may be unrelated to the process of lek-initiation in this species. © 1990 The Society for the Study of Evolution.

  18. Controlling light with freeform optics: recent progress in computational methods for optical design of freeform lenses with prescribed irradiance properties

    NASA Astrophysics Data System (ADS)

    Oliker, Vladimir I.; Cherkasskiy, Boris

    2014-09-01

    Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.

  19. Structural color and its interaction with other color-producing elements: perspectives from spiders

    NASA Astrophysics Data System (ADS)

    Hsiung, Bor-Kai; Blackledge, Todd A.; Shawkey, Matthew D.

    2014-09-01

    Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.

  20. Convergent evolution of complex brains and high intelligence

    PubMed Central

    Roth, Gerhard

    2015-01-01

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  1. Bird-nest puzzle: can the study of unisexual flowers such as cucumber solve the problem of plant sex determination?

    PubMed

    Bai, Shu-Nong; Xu, Zhi-Hong

    2012-06-01

    Unisexual flower development has long been used as a model system to understand the mechanism of plant sex determination. However, based on our investigation of the mechanisms regulating the development of unisexual cucumber flowers, we have realized that understanding how organ development is inhibited may not necessarily reveal how an organ is formed. We refer to this problem as a "bird-nest puzzle," meaning one cannot understand how a bird lays and hatches its eggs by understanding how its nest is ruined. To understand the biological significance of unisexual flowers, we reexamine the original meaning of sex and its application in plants. Additionally, we propose that the fundamental biological advantage for the selection and maintenance of unisexual flowers during evolution is to promote cross pollination.

  2. Automatic identification of bird targets with radar via patterns produced by wing flapping.

    PubMed

    Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix

    2008-09-06

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.

  3. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Ginsberg, Howard S.; Buckley, P.A.; Balmforth, Maxon G.; Zhioua, Elyes; Mitra, Shaibal; Buckley, Francine G.

    2005-01-01

    Reservoir competence for the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American robin, gray catbird, brown thrasher, eastern towhee, song sparrow, and northern cardinal. Wild birds collected by mist netting on Fire Island, NY, were held in a field laboratory in cages over water and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by direct fluorescent-antibody staining after molting to the nymphal stage. American robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared with 0% of control ticks placed on uninfected laboratory mice. Robins that were previously infected in the laboratory by nymphal feeding infected 81.8% of applied larvae. Wild-caught song sparrows infected 4.8% of applied larvae and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for northern cardinals, lower levels for gray catbirds, and little evidence of reservoir competence for eastern towhees or brown thrashers. Lower infection rates in larvae applied to wild-caught birds compared with birds infected in the laboratory suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.

  4. Prevalence of Campylobacter species in wild birds of South Korea.

    PubMed

    Kwon, Yong-Kuk; Oh, Jae-Young; Jeong, Ok-Mi; Moon, Oun-Kyoung; Kang, Min-Su; Jung, Byeong-Yeal; An, Byung-Ki; Youn, So-Youn; Kim, Hye-Ryoung; Jang, Il; Lee, Hee-Soo

    2017-10-01

    Campylobacter species cause human gastrointestinal infections worldwide. They commonly inhabit intestines of avian species including wild birds. They might play a role in the spread of infections to humans and other bird species. The prevalence of Campylobacter species in 2164 faecal samples of wild birds (representing 71 species and 28 families) captured across the Korean peninsula was evaluated in this study. The overall prevalence was 15.3% (332/2164). Bird species belonging to the family Charadriidae had the highest isolation rate (30.0%), followed by those belonging to the families Ardeidae (26.4%), Turdidae (21.9%), and Anatidae (15.3%). The prevalence of Campylobacter spp. differed significantly according to migratory habit. Stopover birds were the most commonly infected (19.0%), followed by winter migratory (16.7%) and summer migratory birds (12.3%). However, indigenous birds showed very low prevalence (2.7%). Antimicrobial susceptibility tests were performed for 213 isolates. Results showed that Campylobacter jejuni isolates (n = 169) exhibited resistance to nalidixic acid (5.3%), ciprofloxacin (3.0%), and tetracycline (1.8%), while Campylobacter lari (n = 1) displayed resistance to nalidixic acid and ciprofloxacin. However, all Campylobacter coli isolates (n = 20) were susceptible to all antimicrobials tested. This is the first report on the prevalence of Campylobacter species in wild birds that seasonally or indigenously inhabit the Korean peninsula. Our results indicate that the overall prevalence of Campylobacter in wild birds is moderate. Therefore, birds might serve as significant reservoirs for Campylobacter pathogens.

  5. Implications of mitochondrial DNA polyphyly in two ecologically undifferentiated but morphologically distinct migratory birds, the masked and white-browed woodswallows Artamus spp. of inland Australia

    USGS Publications Warehouse

    Joseph, Leo; Wilke, Thomas; Ten Have, Jose; Chesser, R. Terry

    2006-01-01

    The white-browed woodswallow Artamus superciliosus and masked woodswallow A. personatus(Passeriformes: Artamidae) are members of Australia's diverse arid- and semi-arid zone avifauna. Widely sympatric and among Australia's relatively few obligate long-distance temperate-tropical migrants, the two are well differentiated morphologically but not ecologically and vocally. They are pair breeders unlike other Artamus species, which are at least facultative cooperative breeders. For these reasons they are an excellent case in which to use molecular data in integrative study of their evolution from ecological and biogeographical perspectives. We used mitochondrial DNA (mtDNA) to test whether they are each other's closest relatives, whether they evolved migration independently, whether they have molecular signatures of population expansions like some other Australian arid zone birds, and to estimate the timing of any inferred population expansions. Their mtDNAs are monophyletic with respect to other species of Artamusbut polyphyletic with respect to each other. The two species appear not to have evolved migration independently of each other but their morphological and mtDNA evolution have been strongly decoupled. Some level of hybridization and introgression cannot be dismissed outright as being involved in their mtDNA polyphyly but incomplete sorting of their most recent common ancestor's mtDNA is a simpler explanation consistent with their ecology. Bayesian phylogenetic inference and analyses of diversity within the two species (n=77) with conventional diversity statistics, statistical parsimony, and tests for population expansion vs stability (Tajima's D, Fu's Fsand Ramos-Onsin and Rozas's R2) all favour recent population increases. However, a non-starlike network suggests expansion(s) relatively early in the Pleistocene. Repeated population bottlenecks corresponding with multiple peaks of Pleistocene aridity could explain our findings, which add a new dimension to accruing data on the effects of Pleistocene aridity on the Australian biota.

  6. [The origin of homoiothermy--unsolved problem].

    PubMed

    Dol'nik, V P

    2003-01-01

    The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.

  7. Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch.

    PubMed

    Han, Binyue; Li, Yan; Han, Haitang; Zhao, Yaofeng; Pan, Qingjie; Ren, Liming

    2017-01-01

    Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.

  8. Fear and Exploration in European Starlings (Sturnus vulgaris): A Comparison of Hand-Reared and Wild-Caught Birds

    PubMed Central

    Feenders, Gesa; Klaus, Kristel; Bateson, Melissa

    2011-01-01

    The revision of EU legislation will ban the use of wild-caught animals in scientific procedures. This change is partially predicated on the assumption that captive-rearing produces animals with reduced fearfulness. Previously, we have shown that hand-reared starlings (Sturnus vulgaris) indeed exhibit reduced fear of humans compared to wild-caught conspecifics. Here, we asked whether this reduction in fear in hand-reared birds is limited to fear of humans or extends more generally to fear of novel environments and novel objects. Comparing 6–8 month old birds hand-reared in the lab with age-matched birds caught from the wild as fledged juveniles a minimum of 1 month previously, we examined the birds' initial reactions in a novel environment (a small cage) and found that wild-caught starlings were faster to initiate movement compared to the hand-reared birds. We interpret this difference as evidence for greater escape motivation in the wild-caught birds. In contrast, we found no differences between hand-reared and wild-caught birds when tested in novel object tests assumed to measure neophobia and exploratory behaviour. Moreover, we found no correlations between individual bird's responses in the different tests, supporting the idea that these measure different traits (e.g. fear and exploration). In summary, our data show that developmental origin affects one measure of response to novelty in young starlings, indicative of a difference in either fear or coping style in a stressful situation. Our data contribute to a growing literature demonstrating effects of early-life experience on later behaviour in a range of species. However, since we did not find consistent evidence for reduced fearfulness in hand-reared birds, we remain agnostic about the welfare benefits of hand-rearing as a method for sourcing wild birds for behavioural and physiological research. PMID:21526000

  9. Testing the environmental Kuznets curve hypothesis with bird populations as habitat-specific environmental indicators: evidence from Canada.

    PubMed

    Lantz, Van; Martínez-Espiñeira, Roberto

    2008-04-01

    The traditional environmental Kuznets curve (EKC) hypothesis postulates that environmental degradation follows an inverted U-shaped relationship with gross domestic product (GDP) per capita. We tested the EKC hypothesis with bird populations in 5 different habitats as environmental quality indicators. Because birds are considered environmental goods, for them the EKC hypothesis would instead be associated with a U-shaped relationship between bird populations and GDP per capita. In keeping with the literature, we included other variables in the analysis-namely, human population density and time index variables (the latter variable captured the impact of persistent and exogenous climate and/or policy changes on bird populations over time). Using data from 9 Canadian provinces gathered over 37 years, we used a generalized least-squares regression for each bird habitat type, which accounted for the panel structure of the data, the cross-sectional dependence across provinces in the residuals, heteroskedasticity, and fixed- or random-effect specifications of the models. We found evidence that supports the EKC hypothesis for 3 of the 5 bird population habitat types. In addition, the relationship between human population density and the different bird populations varied, which emphasizes the complex nature of the impact that human populations have on the environment. The relationship between the time-index variable and the different bird populations also varied, which indicates there are other persistent and significant influences on bird populations over time. Overall our EKC results were consistent with those found for threatened bird species, indicating that economic prosperity does indeed act to benefit some bird populations.

  10. 14 CFR 35.36 - Bird impact.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.36 Bird impact. The applicant must demonstrate, by tests or analysis based on tests or experience on similar designs, that the propeller can withstand the impact of a... without causing a major or hazardous propeller effect. This section does not apply to fixed-pitch wood...

  11. 14 CFR 35.36 - Bird impact.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.36 Bird impact. The applicant must demonstrate, by tests or analysis based on tests or experience on similar designs, that the propeller can withstand the impact of a... without causing a major or hazardous propeller effect. This section does not apply to fixed-pitch wood...

  12. 14 CFR 35.36 - Bird impact.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: PROPELLERS Tests and Inspections § 35.36 Bird impact. The applicant must demonstrate, by tests or analysis based on tests or experience on similar designs, that the propeller can withstand the impact of a... without causing a major or hazardous propeller effect. This section does not apply to fixed-pitch wood...

  13. Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests

    DTIC Science & Technology

    1977-04-01

    Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight

  14. Evaluation of Nucleic Acid Preservation Cards for West Nile Virus Testing in Dead Birds

    PubMed Central

    Foss, Leslie; Reisen, William K.; Fang, Ying; Kramer, Vicki; Padgett, Kerry

    2016-01-01

    The California West Nile virus (WNV) Dead Bird Surveillance Program (DBSP) is an important component of WNV surveillance in the state. We evaluated FTA™ and RNASound™ cards as an alternative method for sampling dead birds for WNV molecular testing as these cards allow for more cost effective, rapid, and safer diagnostic sampling than the shipment of bird carcasses. To evaluate accuracy of results among avian sampling regimes, Reverse-Transcription Polymerase Chain Reaction (RT-PCR) results from FTA™ and RNASound™ cards were compared with results from kidney tissue, brain tissue, or oral swabs in lysis buffer in 2012–2013. In addition, RT-PCR results were compared with results from oral swabs tested by rapid antigen tests (RAMP™ and VecTOR™). While test results from the cards were not as sensitive as kidney tissue testing, they were more likely to provide accurate results than rapid antigen tests, and detected WNV in corvids as well as in other passerines, raptors, and waterfowl. Overall, WNV RT-PCR cycle threshold (Ct) scores from the cards were higher than those from tissue testing, but both card products displayed high sensitivity and specificity. American Crow samples provided the highest sensitivity. The cards also proved to be easier and more convenient vehicles for collecting and shipping samples, and in 2014 our program launched use of RNASound™ cards in the DBSP. Both FTA™ and RNASound™ products displayed 96% agreement with tissue results and are an adequate alternative sampling method for WNV dead bird testing. PMID:27341492

  15. Personality matters: individual variation in reactions of naive bird predators to aposematic prey.

    PubMed

    Exnerová, Alice; Svádová, Katerina Hotová; Fucíková, Eva; Drent, Pieter; Stys, Pavel

    2010-03-07

    Variation in reactions to aposematic prey is common among conspecific individuals of bird predators. It may result from different individual experience but it also exists among naive birds. This variation may possibly be explained by the effect of personality--a complex of correlated, heritable behavioural traits consistent across contexts. In the great tit (Parus major), two extreme personality types have been defined. 'Fast' explorers are bold, aggressive and routine-forming; 'slow' explorers are shy, non-aggressive and innovative. Influence of personality type on unlearned reaction to aposematic prey, rate of avoidance learning and memory were tested in naive, hand-reared great tits from two opposite lines selected for exploration (slow against fast). The birds were subjected to a sequence of trials in which they were offered aposematic adult firebugs (Pyrrhocoris apterus). Slow birds showed a greater degree of unlearned wariness and learned to avoid the firebugs faster than fast birds. Although birds of both personality types remembered their experience, slow birds were more cautious in the memory test. We conclude that not only different species but also populations of predators that differ in proportions of personality types may have different impacts on survival of aposematic insects under natural conditions.

  16. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation

    PubMed Central

    Badenhorst, Daleen; Hillier, LaDeana W.; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E.; Warren, Wesley C.; Edwards, Scott V.; Valenzuela, Nicole

    2015-01-01

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta—CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms. PMID:26108489

  17. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochondrial gene orders in Passeriformes.

    PubMed

    Caparroz, Renato; Rocha, Amanda V; Cabanne, Gustavo S; Tubaro, Pablo; Aleixo, Alexandre; Lemmon, Emily M; Lemmon, Alan R

    2018-06-01

    At least four mitogenome arrangements occur in Passeriformes and differences among them are derived from an initial tandem duplication involving a segment containing the control region (CR), followed by loss or reduction of some parts of this segment. However, it is still unclear how often duplication events have occurred in this bird order. In this study, the mitogenomes from two species of Neotropical passerines (Sicalis olivascens and Lepidocolaptes angustirostris) with different gene arrangements were first determined. We also estimated how often duplication events occurred in Passeriformes and if the two CR copies demonstrate a pattern of concerted evolution in Sylvioidea. One tissue sample for each species was used to obtain the mitogenomes as a byproduct using next generation sequencing. The evolutionary history of mitogenome rearrangements was reconstructed mapping these characters onto a mitogenome Bayesian phylogenetic tree of Passeriformes. Finally, we performed a Bayesian analysis for both CRs from some Sylvioidea species in order to evaluate the evolutionary process involving these two copies. Both mitogenomes described comprise 2 rRNAs, 22 tRNAs, 13 protein-codon genes and the CR. However, S. olivascens has 16,768 bp showing the ancestral avian arrangement, while L. angustirostris has 16,973 bp and the remnant CR2 arrangement. Both species showed the expected gene order compared to their closest relatives. The ancestral state reconstruction suggesting at least six independent duplication events followed by partial deletions or loss of one copy in some lineages. Our results also provide evidence that both CRs in some Sylvioidea species seem to be maintained in an apparently functional state, perhaps by concerted evolution, and that this mechanism may be important for the evolution of the bird mitogenome.

  18. The Origin and Evolutionary Consequences of Skeletal Traits Shaped by Embryonic Muscular Activity, from Basal Theropods to Modern Birds.

    PubMed

    Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente

    2017-12-01

    Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the sky islands of southern India.

    PubMed

    Robin, V V; Sinha, Anindya; Ramakrishnan, Uma

    2010-10-13

    Sky islands, formed by the highest reaches of mountain tracts physically isolated from one another, represent one of the biodiversity-rich regions of the world. Comparative studies of geographically isolated populations on such islands can provide valuable insights into the biogeography and evolution of species on these islands. The Western Ghats mountains of southern India form a sky island system, where the relationship between the island structure and the evolution of its species remains virtually unknown despite a few population genetic studies. We investigated how ancient geographic gaps and glacial cycles have partitioned genetic variation in modern populations of a threatened endemic bird, the White-bellied Shortwing Brachypteryx major, across the montane Shola forests on these islands and also inferred its evolutionary history. We used bayesian and maximum likelihood-based phylogenetic and population-genetic analyses on data from three mitochondrial markers and one nuclear marker (totally 2594 bp) obtained from 33 White-bellied Shortwing individuals across five islands. Genetic differentiation between populations of the species correlated with the locations of deep valleys in the Western Ghats but not with geographical distance between these populations. All populations revealed demographic histories consistent with population founding and expansion during the Last Glacial Maximum. Given the level of genetic differentiation north and south of the Palghat Gap, we suggest that these populations be considered two different taxonomic species. Our results show that the physiography and paleo-climate of this region historically resulted in multiple glacial refugia that may have subsequently driven the evolutionary history and current population structure of this bird. The first avian genetic study from this biodiversity hotspot, our results provide insights into processes that may have impacted the speciation and evolution of the endemic fauna of this region.

  20. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew B.; Ogawa, Haruko; Ip, Hon S.; Imai, Kunitoshi; Bui, V. N.; Yamaguchi, Emi; Silko, N. Y.; Afonso, C.L.

    2013-01-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  1. The Manú Gradient as a study system for bird pollination.

    PubMed

    Boehm, Mannfred Ma; Scholer, Micah N; Kennedy, Jeremiah Jc; Heavyside, Julian M; Daza, Aniceto; Guevara-Apaza, David; Jankowski, Jill E

    2018-01-01

    This study establishes an altiudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination. Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a 'snapshot' of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú .

  2. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; Ogawa, Haruko; Ip, Hon S; Imai, Kunitoshi; Bui, Vuong Nghia; Yamaguchi, Emi; Silko, Nikita Y; Afonso, Claudio L

    2013-12-01

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.

  3. Epidemic Spread of Usutu Virus in Southwest Germany in 2011 to 2013 and Monitoring of Wild Birds for Usutu and West Nile Viruses.

    PubMed

    Ziegler, Ute; Jöst, Hanna; Müller, Kerstin; Fischer, Dominik; Rinder, Monika; Tietze, Dieter Thomas; Danner, Klaus-Jürgen; Becker, Norbert; Skuballa, Jasmin; Hamann, Hans-Peter; Bosch, Stefan; Fast, Christine; Eiden, Martin; Schmidt-Chanasit, Jonas; Groschup, Martin H

    2015-08-01

    Mosquito-borne viruses are becoming an increasing threat for Europe. One of these viruses is Usutu virus (USUV), a single-stranded RNA virus belonging to the Japanese encephalitis virus group within the family Flaviviridae. Since the occurrence of USUV among wild birds in June, 2011, infected Blackbirds (Turdus merula) have frequently been found dead in southwest Germany, cumulating in a massive die-off. Moreover, other bird species (Strigiformes) in this region have been affected. In a first study, 209 of over 600 dead birds (wild birds and birds kept in aviaries) collected from 2011 to 2013 carried USUV, more than 88% of them Blackbirds. USUV had already been detected in 2010, one year before the epizooty, in a mosquito-based surveillance program in Germany. The main epidemic area of the USUV outbreak in wild birds in southwest Germany has been similar for the last three years. In a second study during 2011 to 2013, 902 live migratory and resident birds (representing 87 bird species belonging to 14 bird orders) from four different sampling sites were bled and tested serologically and by qPCR for West Nile virus (WNV) and USUV infections. No USUV or WNV genomes were detected. Some migratory birds (mainly long-distance migrants and some partial migrants) carried neutralizing antibodies against WNV as discriminated by USUV and WNV cross-neutralization tests. Only few resident birds showed relevant USUV-specific neutralizing antibodies. The occurrence of USUV in the Upper Rhine valley area of southwest Germany is a proof of principle for the incursion and spread of other arthropod-borne (arbo)-viruses along these routes. Therefore, monitoring studies in birds and mosquitoes for the presence of arboviruses in these areas are indispensable.

  4. Evolution of sexual dichromatism in relation to nesting habits in European passerines: a test of Wallace's hypothesis.

    PubMed

    Soler, J J; Moreno, J

    2012-08-01

    Wallace proposed in 1868 that natural rather than sexual selection could explain the striking differences in avian plumage dichromatism. Thus, he predicted that nesting habits, through their association with nest predation, could drive changes in sexual dichromatism by enabling females in cavity nesters to become as conspicuous as males, whereas Darwin (1871, The Descent of Man and Selection in Relation to Sex, John Murray, London) argued that sexual selection was the sole explanation for dichromatism. Sexual dichromatism is currently used as indicating the strength of sexual selection, and therefore testing Wallace's claim with modern phylogentically controlled methodologies is of prime interest for comparing the roles of natural and sexual selection in affecting the evolution of avian coloration. Here, we have related information on nest attendance, sexual dichromatism and nesting habits (open and cavity nesting) to male and female plumage conspicuousness in European passerines. Nest incubation attendance does not explain male or female plumage conspicuousness but nest type does. Moreover, although females of monochromatic and cavity nesting species are more conspicuous than females of other species, males of monochromatic and open nesting species are those with more cryptic plumage. Finally, analyses of character evolution suggest that changes in nesting habits influence the probability of changes in both dichromatism and plumage conspicuousness of males but do not significantly affect those in females. These results strongly suggest a role of nesting habits in the evolution of plumage conspicuousness of males, and a role for sexual selection also in females, both factors affecting the evolution of sexual dichromatism. We discuss our findings in relation to the debate that Darwin and Wallace maintained more than one century ago on the importance of natural and sexual selection in driving the evolution of plumage conspicuousness and sexual dichromatism in birds, and conclude that our results partly support the evolutionary scenarios envisaged by both extraordinary scientists. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Dinosaur origin of egg color: oviraptors laid blue-green eggs

    PubMed Central

    Yang, Tzu-Ruei; Sander, Philipp N.; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E.; Sander, P. Martin

    2017-01-01

    Protoporphyrin (PP) and biliverdin (BV) give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds with our reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource. PMID:28875070

  6. Dinosaur origin of egg color: oviraptors laid blue-green eggs.

    PubMed

    Wiemann, Jasmina; Yang, Tzu-Ruei; Sander, Philipp N; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E; Sander, P Martin

    2017-01-01

    Protoporphyrin (PP) and biliverdin (BV) give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds with our reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource.

  7. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  8. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians

    PubMed Central

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-01-01

    Ornithischia (the ‘bird-hipped’ dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian–bird functional convergence. PMID:22211275

  9. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    PubMed

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian-bird functional convergence. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  10. The ability of laying pullets to negotiate two ramp designs as measured by bird preference and behaviour

    PubMed Central

    Weeks, Claire A.; Norman, Kate I.; Nicol, Christine J.

    2017-01-01

    Background Laying hens are often kept in barn or free-range systems where they must negotiate level changes in the house to access resources. However, collisions and resultant keel fractures are commonplace. Producers sometimes add ramps to make raised areas more accessible but designs vary and very little research has investigated bird preference or behaviour when using different ramp designs, or the effect of ramp design on falls and collisions. Methods Two ramp designs were studied in an experimental setting—a ramp made of plastic poultry slats (grid ramp, GR) and a ramp made of wooden rungs (ladder ramp, LR). Sixty-four young female hens were trained to move to a food reward and this was used to test their behavioural responses when first negotiating the two different ramps during individual tests. Both upward and downward transitions were studied. Ramp preference was also tested using a room that replicated a commercial single-tier system with both types of ramp available. Birds were placed in this room in groups of 16 for three days and their use of the ramps studied. Results A greater percentage of birds successfully completed (reached the reward bowl) on the GR than the LR during both upward (58% vs 37%) and downward (83% vs 73%) transitions, and a smaller percentage of birds made zero attempts to use the GR than the LR (upwards: 13% vs 56%, downwards: 8% vs 26%). When making a downward transition, more hesitation behaviours were seen (head orientations, stepping on the spot, moving away) for the LR. However, more head orientations were seen for the GR during the upward transition. Birds were more likely to abort attempts (an attempt began when a bird placed both feet on the ramp) to move up the GR than the LR. Birds took longer to negotiate the LR than the GR in both directions, and more pauses were seen during a successful upward transition on the LR. Birds were more likely to move down the GR by walking/running whereas birds tended to jump over the entire LR. More collisions with the food reward bowl were seen for the LR. In the group tests, birds preferred to use the GR, with more transitions seen at all timepoints. However, in these tests, birds preferred to rest on the LR with greater numbers of birds counted on this type of ramp during scan sampling at all timepoints. Discussion Behavioural results suggest that the GR was easier for the birds to use than the LR, particularly on the downward transition. The GR was also less likely to result in collisions. However, the upward transition may be more difficult on the GR for some birds, potentially because of the inability to pause on a level surface during the transition. The results suggest that the GR was preferred by pullets for moving between a raised area and the ground but the LR was preferred for resting. PMID:29177116

  11. Urban noise and the cultural evolution of bird songs.

    PubMed

    Luther, David; Baptista, Luis

    2010-02-07

    In urban environments, anthropogenic noise can interfere with animal communication. Here we study the influence of urban noise on the cultural evolution of bird songs. We studied three adjacent dialects of white-crowned sparrow songs over a 30-year time span. Urban noise, which is louder at low frequencies, increased during our study period and therefore should have created a selection pressure for songs with higher frequencies. We found that the minimum frequency of songs increased both within and between dialects during the 30-year time span. For example, the dialect with the highest minimum frequency is in the process of replacing another dialect that has lower frequency songs. Songs with the highest minimum frequency were favoured in this environment and should have the most effective transmission properties. We suggest that one mechanism that influences how dialects, and cultural traits in general, are selected and transmitted from one generation to the next is the dialect's ability to be effectively communicated in the local environment.

  12. alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny.

    PubMed

    de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M

    1985-11-01

    The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.

  13. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  14. Specialized impulse conduction pathway in the alligator heart

    PubMed Central

    Crossley, Dane A; Conner, Justin; Mohan, Rajiv A; van Duijvenboden, Karel; Postma, Alex V; Gloschat, Christopher R; Elsey, Ruth M; Sedmera, David; Efimov, Igor R

    2018-01-01

    Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness) and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy. PMID:29565246

  15. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  16. Reweaving the Tapestry: a Supertree of Birds

    PubMed Central

    Davis, Katie E; Page, Roderic D. M.

    2014-01-01

    Our knowledge of the avian tree of life remains uncertain, particularly at deeper levels due to the rapid diversification early in their evolutionary history. They are the most abundant land vertebrate on the planet and have been of great historical interest to systematists. Birds are also economically and ecologically important and as a result are intensively studied, yet despite their importance and interest to humans around 13% of taxa currently on the endangered species list perhaps as a result of human activity. Despite all this no comprehensive phylogeny that includes both extinct and extant species currently exists. Here we present a species-level supertree, constructed using the Matrix Representation with Parsimony method, of Aves containing approximately two thirds of all species from nearly 1000 source phylogenies with a broad taxonomic coverage. The source data for the tree were collected and processed according to a strict protocol to ensure robust and accurate data handling. The resulting tree topology is largely consistent with molecular hypotheses of avian phylogeny. We identify areas that are in broad agreement with current views on avian systematics and also those that require further work. We also highlight the need for leaf-based support measures to enable the identification of rogue taxa in supertrees. This is a first attempt at a supertree of both extinct and extant birds, it is not intended to be utilised in an overhaul of avian systematics or as a basis for taxonomic re-classification but provides a strong basis on which to base further studies on macroevolution, conservation, biodiversity, comparative biology and character evolution, in particular the inclusion of fossils will allow the study of bird evolution and diversification throughout deep time. PMID:24944845

  17. Ecological divergence of two sympatric lineages of Buggy Creek virus, an arbovirus associated with birds.

    PubMed

    Brown, Charles R; Padhi, Abinash; Moore, Amy T; Brown, Mary Bomberger; Foster, Jerome E; Pfeffer, Martin; O'Brien, Valerie A; Komar, Nicholas

    2009-11-01

    Most arthropod-borne viruses (arboviruses) show distinct serological subtypes or evolutionary lineages, with the evolution of different strains often assumed to reflect differences in ecological selection pressures. Buggy Creek virus (BCRV) is an unusual RNA virus (Togaviridae, Alphavirus) that is associated primarily with a cimicid swallow bug (Oeciacus vicarius) as its vector and the Cliff Swallow (Petrochelidon pyrrhonota) and the introduced House Sparrow (Passer domesticus) as its amplifying hosts. There are two sympatric lineages of BCRV (lineages A and B) that differ from each other by > 6% at the nucleotide level. Analysis of 385 BCRV isolates all collected from bug vectors at a study site in southwestern Nebraska, USA, showed that the lineages differed in their peak times of seasonal occurrence within a summer. Lineage A was more likely to be found at recently established colonies, at those in culverts (rather than on highway bridges), and at those with invasive House Sparrows, and in bugs on the outsides of nests. Genetic diversity of lineage A increased with bird colony size and at sites with House Sparrows, while that of lineage B decreased with colony size and was unaffected by House Sparrows. Lineage A was more cytopathic on mammalian cells than was lineage B. These two lineages have apparently diverged in their transmission dynamics, with lineage A possibly more dependent on birds and lineage B perhaps more a bug virus. The long-standing association between Cliff Swallows and BCRV may have selected for immunological resistance to the virus by swallows and thus promoted the evolution of the more bug-adapted lineage B. In contrast, the recent arrival of the introduced House Sparrow and its high competence as a BCRV amplifying host may be favoring the more bird-dependent lineage A.

  18. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2013-09-01

    The archosauria consist of two living groups, crocodilians, and birds. Here we compare the structure, expression, and phylogeny of the beta (β)-keratins in two crocodilian genomes and two avian genomes to gain a better understanding of the evolutionary origin of the feather β-keratins. Unlike squamates such as the green anole with 40 β-keratins in its genome, the chicken and zebra finch genomes have over 100 β-keratin genes in their genomes, while the American alligator has 20 β-keratin genes, and the saltwater crocodile has 21 β-keratin genes. The crocodilian β-keratins are similar to those of birds and these structural proteins have a central filament domain and N- and C-termini, which contribute to the matrix material between the twisted β-sheets, which form the 2-3 nm filament. Overall the expression of alligator β-keratin genes in the integument increases during development. Phylogenetic analysis demonstrates that a crocodilian β-keratin clade forms a monophyletic group with the avian scale and feather β-keratins, suggesting that avian scale and feather β-keratins along with a subset of crocodilian β-keratins evolved from a common ancestral gene/s. Overall, our analyses support the view that the epidermal appendages of basal archosaurs used a diverse array of β-keratins, which evolved into crocodilian and avian specific clades. In birds, the scale and feather subfamilies appear to have evolved independently in the avian lineage from a subset of archosaurian claw β-keratins. The expansion of the avian specific feather β-keratin genes accompanied the diversification of birds and the evolution of feathers. Copyright © 2013 Wiley Periodicals, Inc.

  19. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird

    PubMed Central

    Bonneaud, Camille; Balenger, Susan L.; Russell, Andrew F.; Zhang, Jiangwen; Hill, Geoffrey E.; Edwards, Scott V.

    2011-01-01

    Wild organisms are under increasing pressure to adapt rapidly to environmental changes. Predicting the impact of these changes on natural populations requires an understanding of the speed with which adaptive phenotypes can arise and spread, as well as of the underlying mechanisms. However, our understanding of these parameters is poor in natural populations. Here we use experimental and molecular approaches to investigate the recent emergence of resistance in eastern populations of North American house finches (Carpodacus mexicanus) to Mycoplasma galliseptum (MG), a severe conjunctivitis-causing bacterium. Two weeks following an experimental infection that took place in 2007, finches from eastern US populations with a 12-y history of exposure to MG harbored 33% lower MG loads in their conjunctivae than finches from western US populations with no prior exposure to MG. Using a cDNA microarray, we show that this phenotypic difference in resistance was associated with differences in splenic gene expression, with finches from the exposed populations up-regulating immune genes postinfection and those from the unexposed populations generally down-regulating them. The expression response of western US birds to experimental infection in 2007 was more similar to that of the eastern US birds studied in 2000, 7 y earlier in the epizootic, than to that of eastern birds in 2007. These results support the hypothesis that resistance has evolved by natural selection in the exposed populations over the 12 y of the epizootic. We hypothesize that host resistance arose and spread from standing genetic variation in the eastern US and highlight that natural selection can lead to rapid phenotypic evolution in populations when acting on such variation. PMID:21525409

  20. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species

    PubMed Central

    Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  1. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017.

    PubMed

    Tsunekuni, Ryota; Yaguchi, Yuji; Kashima, Yuki; Yamashita, Kaoru; Takemae, Nobuhiro; Mine, Junki; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2018-05-01

    From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.

  2. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres)

    NASA Astrophysics Data System (ADS)

    Worthy, Trevor H.; Degrange, Federico J.; Handley, Warren D.; Lee, Michael S. Y.

    2017-10-01

    The extinct dromornithids, gastornithids and phorusrhacids are among the most spectacular birds to have ever lived, with some giants exceeding 500 kg. The affinities and evolution of these and other related extinct birds remain contentious, with previous phylogenetic analyses being affected by widespread convergence and limited taxon sampling. We address these problems using both parsimony and tip-dated Bayesian approaches on an expansive taxon set that includes all key extinct flightless and flighted (e.g. Vegavis and lithornithids) forms, an extensive array of extant fowl (Galloanseres), representative Neoaves and palaeognaths. The Paleogene volant Lithornithidae are recovered as stem palaeognaths in the Bayesian analyses. The Galloanseres comprise four clades inferred to have diverged in the Late Cretaceous on Gondwana. In addition to Anseriformes and Galliformes, we recognize a robust new clade (Gastornithiformes) for the giant flightless Dromornithidae (Australia) and Gastornithidae (Eurasia, North America). This clade exhibits parallels to ratite palaeognaths in that flight presumably was lost and giant size attained multiple times. A fourth clade is represented by the Cretaceous Vegavis (Antarctica), which was strongly excluded from Anseriformes; thus, a crucial molecular calibration point needs to be reconsidered. The presbyornithids Wilaru (Australia) and Presbyornis (Northern Hemisphere) are robustly found to be the sister group to Anatoidea (Anseranatidae + Anatidae), a relatively more basal position than hitherto recognized. South America's largest bird, Brontornis, is not a galloansere, but a member of Neoaves related to Cariamiformes; therefore, giant Galloanseres remain unknown from this continent. Trait analyses showed that while gigantism and flightlessness evolved repeatedly in groups, diet is constrained by phylogeny: all giant Galloanseres and palaeognaths are herbivores or mainly herbivorous, and giant neoavians are zoophagous or omnivorous.

  3. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z

    PubMed Central

    Rens, Willem; O'Brien, Patricia CM; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer AM; Ferguson-Smith, Malcolm A

    2007-01-01

    Background Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Results Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Conclusion Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z. PMID:18021405

  4. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  5. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  6. Zebra finches have a light-dependent magnetic compass similar to migratory birds.

    PubMed

    Pinzon-Rodriguez, Atticus; Muheim, Rachel

    2017-04-01

    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.

  7. Breeding bird assemblages of hurricane-created gaps and adjacent closed canopy forest in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; J. Drew Lanham

    2001-01-01

    We studied breeding bird assemblages in forest gaps created in 1995 by Hurricane Opal at the Bent Creek Experimental Forest in Asheville, NC. We hypothesized that forest gaps and adjacent closed-canopy forest would differ in bird density, richness, diversity, and relative abundances of some species. To test this hypothesis we censused breeding bird assemblages for 2...

  8. Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays

    USGS Publications Warehouse

    Brown, Justin D.; Luttrell, M. Page; Berghaus, Roy D.; Kistler, Whitney; Keeler, Shamus P.; Howey, Andrea; Wilcox, Benjamin; Hall, Jeffrey S.; Niles, Larry; Dey, Amanda; Knutsen, Gregory; Fritz, Kristen; Stallknecht, David E.

    2010-01-01

    Serologic testing to detect antibodies to avian influenza (AI) virus has been an underused tool for the study of these viruses in wild bird populations, which traditionally has relied on virus isolation and reverse transcriptase-polymerase chain reaction (RT-PCR). In a preliminary study, a recently developed commercial blocking enzyme-linked immunosorbent assay (bELISA) had sensitivity and specificity estimates of 82% and 100%, respectively, for detection of antibodies to AI virus in multiple wild bird species after experimental infection. To further evaluate the efficacy of this commercial bELISA and the agar gel immunodiffusion (AGID) test for AI virus antibody detection in wild birds, we tested 2,249 serum samples collected from 62 wild bird species, representing 10 taxonomic orders. Overall, the bELISA detected 25.4% positive samples, whereas the AGID test detected 14.8%. At the species level, the bELISA detected as many or more positive serum samples than the AGID in all 62 avian species. The majority of positive samples, detected by both assays, were from species that use aquatic habitats, with the highest prevalence from species in the orders Anseriformes and Charadriiformes. Conversely, antibodies to AI virus were rarely detected in the terrestrial species. The serologic data yielded by both assays are consistent with the known epidemiology of AI virus in wild birds and published reports of host range based on virus isolation and RT-PCR. The results of this research are also consistent with the aforementioned study, which evaluated the performance of the bELISA and AGID test on experimental samples. Collectively, the data from these two studies indicate that the bELISA is a more sensitive serologic assay than the AGID test for detecting prior exposure to AI virus in wild birds. Based on these results, the bELISA is a reliable species-independent assay with potentially valuable applications for wild bird AI surveillance.

  9. Testing bird response to roads on a rural environment: A case study from Central Italy

    NASA Astrophysics Data System (ADS)

    Morelli, Federico; Jerzak, Leszek; Pruscini, Fabio; Santolini, Riccardo; Benedetti, Yanina; Tryjanowski, Piotr

    2015-11-01

    The construction of roads is currently well spread in many parts of our world and impacts strongly on wildlife distribution. Some bird species avoid, while other prefer to be in the vicinity of these human structures. However, studies on roads effects on birds, in terms of strength or direction of these effects, are scarce. Therefore, in a study carried out in Central Italy we tested the responses of different bird species to roads at a local spatial scale, using generalized linear models (GLM). Analysis were conducted on a large dataset (more than 1400 sampled sites, mainly on rural environments). Both positive and negative effects of roads on birds were found for bird species of close or semi-close environments, while the negative effects of roads were negligible for bird species of open and semi-open environments. This fact suggest that roads can be a source of "functional heterogeneity" on semi-open environments, providing marginal habitats, hedgerows and residual vegetation typical of roadsides, offering breeding and feeding habitat for some bird species. The proposed methodology provide a useful explorative tool, in order to develop conservation policies to preserve the biodiversity, mainly in rural landscapes. The outputs of GLM can be used as inputs in ecological planning: direction and strength of the effects of roads on bird species are adequate to estimate the response of bird community, up front to the presence of new structures, or identifying which of them should be mitigated to reduce negative effects on the biodiversity.

  10. Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution.

    PubMed

    Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei

    2016-12-01

    Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections

    PubMed Central

    Jarvi, Susan I; Farias, Margaret EM; Atkinson, Carter T

    2008-01-01

    Background The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with naïve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study shows that clonal diversity of Hawaiian isolates of P. relictum is much higher than previously recognized. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct implications for host demographics, disease management strategies, and evolution of virulence. The results of this study indicate a widespread presence of multiple-genotype malaria infections with high clonal diversity in native birds of Hawaii, which when coupled with concurrent infection with Avipoxvirus, may significantly influence evolution of virulence. Reviewers This article was reviewed by Joseph Schall (nominated by Laura Landweber), Daniel Jeffares (nominated by Anthony Poole) and Susan Perkins (nominated by Eugene Koonin). PMID:18578879

  12. Ontogeny of aerial righting and wing flapping in juvenile birds.

    PubMed

    Evangelista, Dennis; Cam, Sharlene; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-08-01

    Mechanisms of aerial righting in juvenile chukar partridge (Alectoris chukar) were studied from hatching to 14 days-post-hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose-down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e. wing-assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development and are potentially relevant to understanding the origins of avian flight. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. The Far East taiga forest: unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds?

    PubMed

    Wang, Xin; Cao, Lei; Bysykatova, Inga; Xu, Zhenggang; Rozenfeld, Sonia; Jeong, Wooseog; Vangeluwe, Didier; Zhao, Yunlin; Xie, Tianhe; Yi, Kunpeng; Fox, Anthony David

    2018-01-01

    The degree of inhospitable terrain encountered by migrating birds can dramatically affect migration strategies and their evolution as well as influence the way we develop our contemporary flyway conservation responses to protect them. We used telemetry data from 44 tagged individuals of four large-bodied, Arctic breeding waterbird species (two geese, a swan and one crane species) to show for the first time that these birds fly non-stop over the Far East taiga forest, despite their differing ecologies and migration routes. This implies a lack of suitable taiga refuelling habitats for these long-distance migrants. These results underline the extreme importance of northeast China spring staging habitats and of Arctic areas prior to departure in autumn to enable birds to clear this inhospitable biome, confirming the need for adequate site safeguard to protect these populations throughout their annual cycle.

  14. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling

    PubMed Central

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2014-01-01

    Birds-of-paradise are nature’s prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes’ parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system. PMID:24591592

  15. The Far East taiga forest: unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds?

    PubMed Central

    Wang, Xin; Bysykatova, Inga; Xu, Zhenggang; Rozenfeld, Sonia; Jeong, Wooseog; Vangeluwe, Didier; Zhao, Yunlin; Xie, Tianhe; Yi, Kunpeng; Fox, Anthony David

    2018-01-01

    The degree of inhospitable terrain encountered by migrating birds can dramatically affect migration strategies and their evolution as well as influence the way we develop our contemporary flyway conservation responses to protect them. We used telemetry data from 44 tagged individuals of four large-bodied, Arctic breeding waterbird species (two geese, a swan and one crane species) to show for the first time that these birds fly non-stop over the Far East taiga forest, despite their differing ecologies and migration routes. This implies a lack of suitable taiga refuelling habitats for these long-distance migrants. These results underline the extreme importance of northeast China spring staging habitats and of Arctic areas prior to departure in autumn to enable birds to clear this inhospitable biome, confirming the need for adequate site safeguard to protect these populations throughout their annual cycle. PMID:29479493

  16. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling.

    PubMed

    Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G

    2014-03-25

    Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system.

  17. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    PubMed Central

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.

    2017-01-01

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586

  18. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds

    PubMed Central

    Puig, M. Victoria; Rose, Jonas; Schmidt, Robert; Freund, Nadja

    2014-01-01

    In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain. PMID:25140130

  19. Convergent evolution of complex brains and high intelligence.

    PubMed

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  20. Serologic evidence of West Nile Virus infection in birds, Tamaulipas State, México.

    PubMed

    Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F; Blitvich, Bradley J; González-Rojas, José I; Cavazos-Alvarez, Amanda; Marlenee, Nicole L; Elizondo-Quiroga, Armando; Loroño-Pino, María A; Gubler, Duane J; Cropp, Bruce C; Calisher, Charles H; Beaty, Barry J

    2003-01-01

    Following the introduction of West Nile virus (WNV) into North America in 1999, surveillance for WNV in migratory and resident birds was established in Tamaulipas State, northern México in December 2001. Overall, 796 birds representing 70 species and 10 orders were captured and assayed for antibodies to WNV. Nine birds had flavivirus-specific antibodies by epitope-blocking enzyme-linked immunosorbent assay; four were confirmed to have antibody to WNV by plaque reduction neutralization test. The WNV-infected birds were a house wren, mourning dove, verdin and Bewick's wren. The house wren is a migratory species; the other WNV-infected birds are presumably residents. The WNV-infected birds were all captured in March 2003. These data provide the first indirect evidence of WNV transmission among birds in northern México.

  1. Correlated evolution of host and parasite body size: tests of Harrison's rule using birds and lice.

    PubMed

    Johnson, Kevin P; Bush, Sarah E; Clayton, Dale H

    2005-08-01

    Large-bodied species of hosts often harbor large-bodied parasites, a pattern known as Harrison's rule. Harrison's rule has been documented for a variety of animal parasites and herbivorous insects, yet the adaptive basis of the body-size correlation is poorly understood. We used phylogenetically independent methods to test for Harrison's rule across a large assemblage of bird lice (Insecta: Phthiraptera). The analysis revealed a significant relationship between louse and host size, despite considerable variation among taxa. We explored factors underlying this variation by testing Harrison's rule within two groups of feather-specialist lice that share hosts (pigeons and doves). The two groups, wing lice (Columbicola spp.) and body lice (Physconelloidinae spp.), have similar life histories, despite spending much of their time on different feather tracts. Wing lice showed strong support for Harrison's rule, whereas body lice showed no significant correlation with host size. Wing louse size was correlated with wing feather size, which was in turn correlated with overall host size. In contrast, body louse size showed no correlation with body feather size, which also was not correlated with overall host size. The reason why body lice did not fit Harrison's rule may be related to the fact that different species of body lice use different microhabitats within body feathers. More detailed measurements of body feathers may be needed to explore the precise relationship of body louse size to relevant components of feather size. Whatever the reason, Harrison's rule does not hold in body lice, possibly because selection on body size is mediated by community-level interactions between body lice.

  2. Program for impact testing of spar-shell fan blades, test report

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.

    1978-01-01

    Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.

  3. Investigation of a Largescale Common Murre ( Uria aalge) Mortality Event in California in 2015.

    PubMed

    Gibble, Corinne; Duerr, Rebecca; Bodenstein, Barbara; Lindquist, Kirsten; Lindsey, Jackie; Beck, Jessie; Henkel, Laird; Roletto, Jan; Harvey, Jim; Kudela, Raphael

    2018-03-16

    From August through December 2015, beachcast bird survey programs reported increased deposition of common murres ( Uria aalge) on central and northern California beaches, but not on southern California beaches. Coastal wildlife rehabilitation centers received more than 1,000 live, stranded, and debilitated murres from Sonoma County to San Luis Obispo County during August-October. Approximately two-thirds of admitted birds were after-hatch-year birds in emaciated body condition and in various stages of molt, with extremely worn plumage. Necropsies were done on a sample ( n=35) of birds to determine the probable cause of death of beachcast carcasses. Most birds examined during necropsy were emaciated, with starvation the most likely cause of death. Birds were also tested for underlying infectious diseases at the US Geological Survey National Wildlife Health Center (NWHC) and harmful algal bloom toxins at the University of California, Santa Cruz and the National Oceanographic and Atmospheric Administration's Northwest Fisheries Science Center. Twenty-four out of 29 tested birds had detectable levels of domoic acid, and no indication of infectious disease was found. Emaciation is thought to be the cause of death for these birds, with a large warm water anomaly and harmful algal bloom playing a secondary detrimental role.

  4. Investigation of a largescale common murre (Uria aalge) mortality event in California in 2015

    USGS Publications Warehouse

    Gibble, Corinne; Duerr, Rebecca; Bodenstein, Barbara; Lindquist, Kirsten; Lindsey, Jackie; Beck, Jessie; Henkel, Laird A.; Roletto, Jan; Harvey, Jim; Kudela, Raphael

    2018-01-01

    From August through December 2015, beachcast bird survey programs reported increased deposition of common murres (Uria aalge) on central and northern California beaches, but not on southern California beaches. Coastal wildlife rehabilitation centers received more than 1,000 live, stranded, and debilitated murres from Sonoma County to San Luis Obispo County during August–October. Approximately two-thirds of admitted birds were after-hatch-year birds in emaciated body condition and in various stages of molt, with extremely worn plumage. Necropsies were done on a sample (n=35) of birds to determine the probable cause of death of beachcast carcasses. Most birds examined during necropsy were emaciated, with starvation the most likely cause of death. Birds were also tested for underlying infectious diseases at the US Geological Survey National Wildlife Health Center (NWHC) and harmful algal bloom toxins at the University of California, Santa Cruz and the National Oceanographic and Atmospheric Administration's Northwest Fisheries Science Center. Twenty-four out of 29 tested birds had detectable levels of domoic acid, and no indication of infectious disease was found. Emaciation is thought to be the cause of death for these birds, with a large warm water anomaly and harmful algal bloom playing a secondary detrimental role.

  5. Large-scale assessment of commensalistic–mutualistic associations between African birds and herbivorous mammals using internet photos

    PubMed Central

    Hadrava, Jiří; Albrecht, Tomáš; Tryjanowski, Piotr

    2018-01-01

    Birds sitting or feeding on live large African herbivorous mammals are a visible, yet quite neglected, type of commensalistic–mutualistic association. Here, we investigate general patterns in such relationships at large spatial and taxonomic scales. To obtain large-scale data, an extensive internet-based search for photos was carried out on Google Images. To characterize patterns of the structural organization of commensalistic–mutualistic associations between African birds and herbivorous mammals, we used a network analysis approach. We then employed phylogenetically-informed comparative analysis to explore whether features of bird visitation of mammals, i.e., their mean number, mass and species richness per mammal species, are shaped by a combination of host mammal (body mass and herd size) and environmental (habitat openness) characteristics. We found that the association web structure was only weakly nested for commensalistic as well as for mutualistic birds (oxpeckers Buphagus spp.) and African mammals. Moreover, except for oxpeckers, nestedness did not differ significantly from a null model indicating that birds do not prefer mammal species which are visited by a large number of bird species. In oxpeckers, however, a nested structure suggests a non-random assignment of birds to their mammal hosts. We also identified some new or rare associations between birds and mammals, but we failed to find several previously described associations. Furthermore, we found that mammal body mass positively influenced the number and mass of birds observed sitting on them in the full set of species (i.e., taking oxpeckers together with other bird species). We also found a positive correlation between mammal body mass and mass of non-oxpecker species as well as oxpeckers. Mammal herd size was associated with a higher mass of birds in the full set of species as well as in non-oxpecker species, and mammal species living in larger herds also attracted more bird species in the full set of species. Habitat openness influenced the mass of birds sitting on mammals as well as the number of species recorded sitting on mammals in the full set of species. In non-oxpecker species habitat openness was correlated with the bird number, mass and species richness. Our results provide evidence that patterns of bird–mammal associations can be linked to mammal and environmental characteristics and highlight the potential role of information technologies and new media in further studies of ecology and evolution. However, further study is needed to get a proper insight into the biological and methodological processes underlying the observed patterns. PMID:29576981

  6. New Developmental Evidence Clarifies the Evolution of Wrist Bones in the Dinosaur–Bird Transition

    PubMed Central

    Botelho, João Francisco; Ossa-Fuentes, Luis; Soto-Acuña, Sergio; Smith-Paredes, Daniel; Nuñez-León, Daniel; Salinas-Saavedra, Miguel; Ruiz-Flores, Macarena; Vargas, Alexander O.

    2014-01-01

    From early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton. Beyond previous controversy, we establish that the proximal–anterior ossification develops from a composite radiale+intermedium cartilage, consistent with fusion of radiale and intermedium observed in some theropod dinosaurs. Despite previous claims that the development of the distal–anterior ossification does not support the dinosaur–bird link, we found its embryonic precursor shows two distinct regions of both collagen type II and collagen type IX expression, resembling the composite semilunate bone of bird-like dinosaurs (distal carpal 1+distal carpal 2). The distal–posterior ossification develops from a cartilage referred to as “element x,” but its position corresponds to distal carpal 3. The proximal–posterior ossification is perhaps most controversial: It is labelled as the ulnare in palaeontology, but we confirm the embryonic ulnare is lost during development. Re-examination of the fossil evidence reveals the ulnare was actually absent in bird-like dinosaurs. We confirm the proximal–posterior bone is a pisiform in terms of embryonic position and its development as a sesamoid associated to a tendon. However, the pisiform is absent in bird-like dinosaurs, which are known from several articulated specimens. The combined data provide compelling evidence of a remarkable evolutionary reversal: A large, ossified pisiform re-evolved in the lineage leading to birds, after a period in which it was either absent, nonossified, or very small, consistently escaping fossil preservation. The bird wrist provides a modern example of how developmental and paleontological data illuminate each other. Based on all available data, we introduce a new nomenclature for bird wrist ossifications. PMID:25268520

  7. New developmental evidence clarifies the evolution of wrist bones in the dinosaur-bird transition.

    PubMed

    Botelho, João Francisco; Ossa-Fuentes, Luis; Soto-Acuña, Sergio; Smith-Paredes, Daniel; Nuñez-León, Daniel; Salinas-Saavedra, Miguel; Ruiz-Flores, Macarena; Vargas, Alexander O

    2014-09-01

    From early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton. Beyond previous controversy, we establish that the proximal-anterior ossification develops from a composite radiale+intermedium cartilage, consistent with fusion of radiale and intermedium observed in some theropod dinosaurs. Despite previous claims that the development of the distal-anterior ossification does not support the dinosaur-bird link, we found its embryonic precursor shows two distinct regions of both collagen type II and collagen type IX expression, resembling the composite semilunate bone of bird-like dinosaurs (distal carpal 1+distal carpal 2). The distal-posterior ossification develops from a cartilage referred to as "element x," but its position corresponds to distal carpal 3. The proximal-posterior ossification is perhaps most controversial: It is labelled as the ulnare in palaeontology, but we confirm the embryonic ulnare is lost during development. Re-examination of the fossil evidence reveals the ulnare was actually absent in bird-like dinosaurs. We confirm the proximal-posterior bone is a pisiform in terms of embryonic position and its development as a sesamoid associated to a tendon. However, the pisiform is absent in bird-like dinosaurs, which are known from several articulated specimens. The combined data provide compelling evidence of a remarkable evolutionary reversal: A large, ossified pisiform re-evolved in the lineage leading to birds, after a period in which it was either absent, nonossified, or very small, consistently escaping fossil preservation. The bird wrist provides a modern example of how developmental and paleontological data illuminate each other. Based on all available data, we introduce a new nomenclature for bird wrist ossifications.

  8. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    PubMed

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors.

    PubMed

    Fleischer, Robert C; James, Helen F; Olson, Storrs L

    2008-12-23

    The Hawaiian "honeyeaters," five endemic species of recently extinct, nectar-feeding songbirds in the genera Moho and Chaetoptila, looked and acted like Australasian honeyeaters (Meliphagidae), and no taxonomist since their discovery on James Cook's third voyage has classified them as anything else. We obtained DNA sequences from museum specimens of Moho and Chaetoptila collected in Hawaii 115-158 years ago. Phylogenetic analysis of these sequences supports monophyly of the two Hawaiian genera but, surprisingly, reveals that neither taxon is a meliphagid honeyeater, nor even in the same part of the songbird radiation as meliphagids. Instead, the Hawaiian species are divergent members of a passeridan group that includes deceptively dissimilar families of songbirds (Holarctic waxwings, neotropical silky flycatchers, and palm chats). Here we designate them as a new family, the Mohoidae. A nuclear-DNA rate calibration suggests that mohoids diverged from their closest living ancestor 14-17 mya, coincident with the estimated earliest arrival in Hawaii of a bird-pollinated plant lineage. Convergent evolution, the evolution of similar traits in distantly related taxa because of common selective pressures, is illustrated well by nectar-feeding birds, but the morphological, behavioral, and ecological similarity of the mohoids to the Australasian honeyeaters makes them a particularly striking example of the phenomenon.

  10. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

    NASA Astrophysics Data System (ADS)

    Tellgren-Roth, Åsa; Dittmar, Katharina; Massey, Steven E.; Kemi, Cecilia; Tellgren-Roth, Christian; Savolainen, Peter; Lyons, Leslie A.; Liberles, David A.

    2009-01-01

    The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

  11. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    PubMed

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  12. DOES SUNLIGHT ENHANCE THE EFFECTIVENESS OF AVIAN PREENING FOR ECTOPARASITE CONTROL?

    PubMed Central

    Koop, Jennifer A. H.; Huber, Sarah K.; Clayton, Dale H.

    2013-01-01

    Preening is a bird’s first line of defense against harmful ectoparasites. Ectoparasites, in turn, have evolved adaptations for avoiding preening such as hardened exoskeletons and escape behavior. Earlier work suggests that some groups of ectoparasites, such as feather lice, leave hiding places in feathers that are exposed to direct sunlight, making them more vulnerable to preening. It is, therefore, conceivable that birds may choose to preen in direct sunlight, assuming it improves the effectiveness of preening. Using mourning doves and their feather lice, we tested 2 related hypotheses; (1) that birds with access to direct sunlight preen more often than birds in shade, and (2) that birds with access to direct sunlight are more effective at controlling their ectoparasites than birds in shade. To test these hypotheses, we conducted an experiment in which we manipulated both sunlight and preening ability. Our results provided no support for either hypothesis, i.e., birds given the opportunity to preen in direct sunlight did not preen significantly more often, or more effectively, than did birds in shade. Thus, the efficiency of preening for ectoparasite control appears to be independent of light intensity, at least in the case of mourning doves and their feather lice. PMID:21942474

  13. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.

    PubMed

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A

    2014-01-01

    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  14. Walking Like Dinosaurs: Chickens with Artificial Tails Provide Clues about Non-Avian Theropod Locomotion

    PubMed Central

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A.

    2014-01-01

    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion. PMID:24505491

  15. Social bonds and rank acquisition in raven nonbreeder aggregations

    PubMed Central

    Braun, Anna; Bugnyar, Thomas

    2012-01-01

    Complex social life has been characterized as cognitively challenging and recently, social relationships such as long-term social bonds and alliances have been identified as key elements for brain evolution. Whereas good evidence is available to support the link between social relations and cognition in mammals, it remains unsatisfying for birds. Here we investigated the role of avian social bonds in a nonbreeder aggregation of ravens, Corvus corax, in the Austrian Alps. We individually marked 138 wild ravens, representing approximately half of a population that uses the area of a local zoo for foraging. For 2 years, we observed the dynamics of group composition and the birds' agonistic and affiliative interactions. We identified two levels of organization: the formation of an unrelated local group and the individuals' engagement in social bonds of different length and reciprocity pattern. Whereas belonging to the local group had no significant effect on conflicts won during foraging, the individual bonding type did. Birds that engaged in affiliative relationships were more successful when competing for food than those without such bonds. Bonded birds did suffer from aggression by other bonded birds and, probably as a consequence, most of the ravens' social relations were not stable over time. These results support the idea that social bonding and selective cooperation and competition are prominent features in nonbreeding ravens. Proximately, bonding may qualify as a social manoeuvre that facilitates access to resources; ultimately it might function to assess the quality of a partner in these long-term monogamous birds. PMID:23264693

  16. Temperature, metabolic power and the evolution of endothermy.

    PubMed

    Clarke, Andrew; Pörtner, Hans-Otto

    2010-11-01

    Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope-based techniques for the measurement of metabolic rate in free-ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature-dependent, indicating that there would have been significant improvement in whole-organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long-held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  17. An individually fitted physical barrier device as a tool to restrict the birds' spatial access: can their use alter behavioral responses?

    PubMed

    Pellegrini, S; Marin, R H; Guzman, D A

    2015-10-01

    Social interactions have been extensively studied in poultry in a variety of environmental situations. Many studies allow full social contacts between birds, but there are others in which the interactions are tested through barriers (wire mesh or glass). Thus a situation where, according to their needs, some birds can get access to physical contact with conspecifics while others cannot, would be useful to expand the testing options for social interaction studies. We developed an individual physical barrier device (IPB) that is fitted on the birds to delimit their ambulation areas by preventing them from passing across metal mesh boundaries that IPB free counterparts can easily overcome. The prototypes showing greater efficacy consisted of a small metal bar placed in the bird's back perpendicular to the sagittal plane that slightly exceeds body width, held with a harness fitted by 2 elastic fabric bands around the wings' base. To be useful, the IPB should allow natural movements and not affect the expression of behaviors (non-invasive). This study assessed whether the IPB may alter adult Japanese quail behavioral responses using 4 classical test situations: Open-Field, Runway, Time Budget in Home Box, and Mating Interactions. Open-field ambulatory behaviors were affected 1 h, but not 7 d, after IPB was fitted, suggesting that 7 d (or less) are required to habituate to the device. After that time period, IPB fitted birds showed no differences in any of the behaviors registered in the other 3 tests situations when compared to non IPB fitted birds. Findings suggest that after habituation, the IPB does not affect main behaviors in adult quail. Its application could be expanded if an IPB device is also found suitable for other poultry species. © 2015 Poultry Science Association Inc.

  18. Ontogeny of lift and drag production in ground birds

    PubMed Central

    Heers, Ashley M.; Tobalske, Bret W.; Dial, Kenneth P.

    2011-01-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight. PMID:21307057

  19. Deimatic Display in the European Swallowtail Butterfly as a Secondary Defence against Attacks from Great Tits

    PubMed Central

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Background Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey’s primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. Methodology/Principal Findings In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly’s startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. Conclusions/Significance We conclude that the swallowtail’s startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey. PMID:23056590

  20. Seroprevalence of West Nile Virus in Wild Birds in Far Eastern Russia Using a Focus Reduction Neutralization Test

    PubMed Central

    Murata, Ryo; Hashiguchi, Kazuaki; Yoshii, Kentaro; Kariwa, Hiroaki; Nakajima, Kensuke; Ivanov, Leonid I.; Leonova, Galina N.; Takashima, Ikuo

    2011-01-01

    West Nile (WN) virus has been spreading geographically to non-endemic areas in various parts of the world. However, little is known about the extent of WN virus infection in Russia. Japanese encephalitis (JE) virus, which is closely related to WN virus, is prevalent throughout East Asia. We evaluated the effectiveness of a focus reduction neutralization test in young chicks inoculated with JE and WN viruses, and conducted a survey of WN infection among wild birds in Far Eastern Russia. Following single virus infection, only neutralizing antibodies specific to the homologous virus were detected in chicks. The neutralization test was then applied to serum samples from 145 wild birds for WN and JE virus. Twenty-one samples were positive for neutralizing antibodies to WN. These results suggest that WN virus is prevalent among wild birds in the Far Eastern region of Russia. PMID:21363987

  1. The Impact of Rise of the Andes and Amazon Landscape Evolution on Diversification of Lowland terra-firme Forest Birds

    NASA Technical Reports Server (NTRS)

    Aleixo, Alexandre; Wilkinson, M. Justin

    2011-01-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type. The youngest landsurfaces thus lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion away from a northerly orientation generally towards the east and an Atlantic Ocean outlet. The advance of megafans is best seen by the location of axial rivers such as the Orinoco and Mamore which lie against the cratonic margins furthest from the Andes, at the distal ends of major megafan ramparts. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. If this landscape-sequence scenario is accurate, it parallels the progressive younging of the passerine lineages. The bird DNA data appears to confirm strongly the pervasive role of Amazonian rivers--as primary barriers separating sister lineages of birds, and thus probably as facilitaters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.

  2. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  3. Status of wild birds in Bulgarian zoos with regard to orthomyxovirus and paramyxovirus type 1 infections.

    PubMed

    Dimitrov, Kiril M; Manvell, Ruth J; Goujgoulova, Gabriela V

    2010-03-01

    Newcastle disease virus (NDV) and avian influenza virus (AIV) are pathogens of major economic and social importance, and the diseases they cause are often devastating, particularly in domestic poultry. Both viruses are naturally found in a wide variety of wild birds, particularly aquatic species, where asymptomatic infection typically occurs. Wild birds are therefore considered to be a natural reservoir for both viruses. Wild birds kept in captivity are in an environment that promotes transmission of infection with both influenza and Newcastle disease viruses. This report describes a survey for the detection of antibodies against Newcastle disease and avian influenza A viruses using the hemagglutination inhibition test in samples from 88 wild birds from 38 species in four Bulgarian zoos. Samples with positive results against NDV were also tested against avian paramyxovirus type 3 (APMV-3). Real-time reverse-transcriptase PCR was also performed to detect viral RNA of NDV and AIV among 127 wild birds from 57 species from the same zoos. In 13 samples from seven avian species (ten birds from the family Phasianidae, two from the family Numidae, and one from the family Columbidae), antibodies against APMV-1 were detected. Seven birds, whose sera were APMV-1 positive, had been vaccinated. The other six birds (five Phasianidae representatives and one of the Columbidae family) had no immunization history. No antibodies against both H5 and H7 AIV and against APMV-3 were detected, and no RNA of NDV and AIV were detected.

  4. Artificial wetlands to augment use by estuarine birds

    USGS Publications Warehouse

    Zedler, Joy B.; Kus, Barbara E.

    1996-01-01

    The value of natural wetlands to bird populations is well-recognized, and declines in waterfowl numbers are often attributed to losses in wetland area. if the destruction of wetland reduces bird populations, then adding wetland habitats might improve the situation. This idea was tested in Tijuana Estuary in the late 1980s.

  5. Restoration practices have positive effects on breeding bird species of concern in the Chihuahuan Desert

    USDA-ARS?s Scientific Manuscript database

    Woody plant encroachment into grasslands is a global concern. Efforts to restore grasslands often assume that removal of woody plants benefits biodiversity but assumptions are rarely tested. In the Chihuahan Desert of the southwestern USA, we tested whether abundances of grassland specialist bird sp...

  6. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds.

    PubMed

    Goodson, James L; Kelly, Aubrey M; Kingsbury, Marcy A

    2012-03-01

    Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Avian visual behavior and the organization of the telencephalon.

    PubMed

    Shimizu, Toru; Patton, Tadd B; Husband, Scott A

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.

  8. Avian Visual Behavior and the Organization of the Telencephalon

    PubMed Central

    Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296

  9. Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    PubMed Central

    Corfield, Jeremy R.; Gsell, Anna C.; Brunton, Dianne; Heesy, Christopher P.; Hall, Margaret I.; Acosta, Monica L.; Iwaniuk, Andrew N.

    2011-01-01

    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds. PMID:21860663

  10. Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches.

    PubMed

    Tschirren, B; Rutstein, A N; Postma, E; Mariette, M; Griffith, S C

    2009-02-01

    Divergent selection pressures among populations can result not only in significant differentiation in morphology, physiology and behaviour, but also in how these traits are related to each other, thereby driving the processes of local adaptation and speciation. In the Australian zebra finch, we investigated whether domesticated stock, bred in captivity over tens of generations, differ in their response to a life-history manipulation, compared to birds taken directly from the wild. In a 'common aviary' experiment, we thereto experimentally manipulated the environmental conditions experienced by nestlings early in life by means of a brood size manipulation, and subsequently assessed its short- and long-term consequences on growth, ornamentation, immune function and reproduction. As expected, we found that early environmental conditions had a marked effect on both short- and long-term morphological and life-history traits in all birds. However, although there were pronounced differences between wild and domesticated birds with respect to the absolute expression of many of these traits, which are indicative of the different selection pressures wild and domesticated birds were exposed to in the recent past, manipulated rearing conditions affected morphology and ornamentation of wild and domesticated finches in a very similar way. This suggests that despite significant differentiation between wild and domesticated birds, selection has not altered the relationships among traits. Thus, life-history strategies and investment trade-offs may be relatively stable and not easily altered by selection. This is a reassuring finding in the light of the widespread use of domesticated birds in studies of life-history evolution and sexual selection, and suggests that adaptive explanations may be legitimate when referring to captive bird studies.

  11. Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae).

    PubMed

    Ojeda, D I; Jaén-Molina, R; Santos-Guerra, A; Caujape-Castells, J; Cronk, Q

    2017-05-01

    In the generally bee-pollinated genus Lotus a group of four species have evolved bird-pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird-pollinated species are unusual in not having papillate conical cells on the dorsal petal. Using RT-PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC-like genes) in different species with contrasting floral morphology and pollination syndromes. In bird-pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee-pollinated species. In contrast, in bee-pollinated species, LjCYC2 is expressed during conical cell development. Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird-pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Patterns and Processes of Vertebrate Evolution

    NASA Astrophysics Data System (ADS)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  13. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic analysis is underway to give a fresh understanding of the tectonic evolution of this complex zone of faulting and plate interaction.

  14. The winter bird survey of central Maryland, U.S.A

    USGS Publications Warehouse

    Robbins, C.S.; Bystrak, D.

    1974-01-01

    A method for monitoring changes in winter bird populations was tested in central Maryland in the winters of 1970, 1971 and 1972. A systematic sample of 41 transects was established to sample an area of 6150 sq. km. Each transect, located at the center of a standard 7 1/2-minute topographic map, was 8 km in length and approximately square in shape. Coverage began at local sunrise on any one day from 15 January to 15 February, and was completed in exactly 4 hours. Birds seen or heard within one-fourth mile (0.40) km were recorded separately for each hour, and those identified at a greater distance were entered in a separate column. The mean number of species per route was 29. Ten species showed a statistically significant change from 1970 to 1971 and 8 from 1971 to 1972. The Winter Bird Survey results were compared with the results from the Audubon Society's Christmas Bird Count in the same area. Close correlation was found between the two surveys, but in general the Winter Bird Survey totals are higher except for species that frequent feeding trays and those that are conspicuous along roadsides. The Winter Bird Survey method shows much promise as a means of world-wide monitoring of bird populations; it is urged that field tests be conducted on other continents.

  15. The dizzying material evolution of the toothbrush

    NASA Astrophysics Data System (ADS)

    Salveson, Paul

    The toothbrush has evolved a highly specialized material aura over the last 150 years in the petri dish of capitalism. It has been bred to appear cutting edge to the culturally trained eye, much like the bird of paradise has developed beautiful ornate plumage to attract a mate. As the toothbrush's formal evolution becomes more detailed and specific, the transparency of its purpose becomes increasingly convoluted and easily detached from its material reality. An alien object is slowly emerging from a complex set of cultural conditions. It lives in our houses and cleans our teeth.

  16. The role of indigenous wild, semidomestic, and exotic birds in the epizootiology of velogenic viscerotropic Newcastle disease in southern California, 1972-1973

    USGS Publications Warehouse

    Pearson, G.L.; McCann, M.K.

    1975-01-01

    During an epornitic of velogenic viscerotropic Newcastle disease (VVND) in southern California, free-flying wild birds, captive and free-ranging semidomestic birds, and exotic birds were collected from the quarantine area to determine their role in the epizootiology of the disease. The VVND virus was isolated from 0.04% of 9,446 free-flying wild birds, 0.76% of 4,367 semidomestic birds, and 1.01% of 3,780 exotic birds examined. Three house sparrows and 1 crow directly associated with infected poultry flocks were the only free-flying wild birds from which VVND virus was isolated. Among semidomestic species, ducks, quail, chukars, pheasants, peafowl, pigeons, and doves were found to be infected. Psittacines, pittas, and toucans accounted for 92% of the VVND virus isolations from exotic birds. In addition, domestic Newcastle disease virus (NDV) was isolated from 0.29% of the free-flying wild birds, from 1.65% of the semidomestic birds, and from 0.19% of the exotic birds collected. Hemagglutination-inhibition against domestic NDV was demonstrated in 0.24% of 3,796 wild bird serums, 8.28% of 2,004 semidomestic bird serums, and 3.90% of 231 exotic bird serums tested.Although few free-flying wild birds were infected with VVND virus in this epornitic, the isolation of domestic NDV strains from free-flying wild ducks and mourning doves suggests the potential for transportation of NDV over long distances by migratory birds.

  17. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  18. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  19. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  20. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores.

    PubMed

    Eriksson, Ove

    2016-02-01

    The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm-frugivore evolution. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  1. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    PubMed Central

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  2. Aspects of bioenergetics and civilization.

    PubMed

    Zotin, A I; Lamprecht, I

    1996-06-07

    By means of an allometric relation between the oxygen consumption rate and the body mass of an animal a metabolic coefficient is derived that can be used as a measure of standard metabolism in different animal species. This coefficient increased in the course of evolution corresponding to the time of appearance of each class of animal. It reached its highest values in Primates and passerine birds. A further increase across an energetic threshold was only possible with human civilization. A similar approach to evolution is performed through an encephalization coefficient showing that in all phases of evolution, species existed with a much larger relative brain volume than the other members of their class. These species might have established a non-human civilization on Earth if evolution would have taken another path. Finally, social activities of insects and the use of external energy sources by animals are discussed to show further implications of this bioenergetic approach to evolution.

  3. The quantum needle of the avian magnetic compass

    PubMed Central

    Hiscock, Hamish G.; Worster, Susannah; Kattnig, Daniel R.; Steers, Charlotte; Jin, Ye; Manolopoulos, David E.; Mouritsen, Henrik; Hore, P. J.

    2016-01-01

    Migratory birds have a light-dependent magnetic compass, the mechanism of which is thought to involve radical pairs formed photochemically in cryptochrome proteins in the retina. Theoretical descriptions of this compass have thus far been unable to account for the high precision with which birds are able to detect the direction of the Earth's magnetic field. Here we use coherent spin dynamics simulations to explore the behavior of realistic models of cryptochrome-based radical pairs. We show that when the spin coherence persists for longer than a few microseconds, the output of the sensor contains a sharp feature, referred to as a spike. The spike arises from avoided crossings of the quantum mechanical spin energy-levels of radicals formed in cryptochromes. Such a feature could deliver a heading precision sufficient to explain the navigational behavior of migratory birds in the wild. Our results (i) afford new insights into radical pair magnetoreception, (ii) suggest ways in which the performance of the compass could have been optimized by evolution, (iii) may provide the beginnings of an explanation for the magnetic disorientation of migratory birds exposed to anthropogenic electromagnetic noise, and (iv) suggest that radical pair magnetoreception may be more of a quantum biology phenomenon than previously realized. PMID:27044102

  4. Endothermy in birds: underlying molecular mechanisms.

    PubMed

    Walter, Isabel; Seebacher, Frank

    2009-08-01

    Endothermy is significant in vertebrate evolution because it changes the relations between animals and their environment. How endothermy has evolved in archosaurs (birds, crocodiles and dinosaurs) is controversial especially because birds do not possess brown adipose tissue, the specialized endothermic tissue of mammals. Internal heat production is facilitated by increased oxidative metabolic capacity, accompanied by the uncoupling of aerobic metabolism from energy (ATP) production. Here we show that the transition from an ectothermic to an endothermic metabolic state in developing chicken embryos occurs by the interaction between increased basal ATP demand (Na(+)/K(+)-ATPase activity and gene expression), increased oxidative capacity and increased uncoupling of mitochondria; this process is controlled by thyroid hormone via its effect on PGC1alpha and adenine nucleotide translocase (ANT) gene expression. Mitochondria become more uncoupled during development, but unlike in mammals, avian uncoupling protein (avUCP) does not uncouple electron transport from oxidative phosphorylation and therefore plays no role in heat production. Instead, ANT is the principal uncoupling protein in birds. The relationship between oxidative capacity and uncoupling indicates that there is a continuum of phenotypes that fall between the extremes of selection for increased heat production and increased aerobic activity, whereas increased cellular ATP demand is a prerequisite for increased oxidative capacity.

  5. Molecular Characterization of Avian Paramyxovirus Types 4 and 8 Isolated from Wild Migratory Waterfowl in Mongolia.

    PubMed

    Tseren-Ochir, Erdene-Ochir; Yuk, Seong-Su; Khishgee, Bodisaikhan; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Jeong, Sol; Kim, Yu-Jin; Kim, Jun-Beom; Lee, Ji-Ho; Kim, Kyu-Jik; Damdinjav, Batchuluun; Song, Chang-Seon

    2018-04-01

      Avian paramyxoviruses (APMVs) constitute some of the most globally prevalent avian viruses and are frequently isolated from wild migratory bird species. Using 1,907 fresh fecal samples collected during the 2012 avian influenza surveillance program, we identified two serotypes of APMV: APMV-4 ( n=10) and APMV-8 ( n=1). Sequences for these isolates phylogenetically clustered with Asian APMV-4 and APMV-8 recently isolated from wild birds in Korea, Japan, China, and Kazakhstan. Analysis by DNA barcoding indicated that the Mongolian APMV-4 and APMV-8 strains were isolated from Anseriformes species including Mallards ( Anas platyrhynchos) and Whooper Swans ( Cygnus cygnus). The close genetic relatedness to Asian isolates, and to similar host species, suggested that wild bird species in the Anatidae family might play an important role as a natural reservoir in the spread of APMV-4 and APMV-8. However, we did not find conclusive evidence to support this hypothesis owing to the limited number of strains that could be isolated. Enhanced surveillance of poultry and wild bird populations in Asia is therefore crucial for the understanding of global AMPV transmission, ecology, evolution, and epidemiology.

  6. High pathogenicity and low genetic evolution of avian paramyxovirus type I (Newcastle disease virus) isolated from live bird markets in Uganda.

    PubMed

    Byarugaba, Denis K; Mugimba, Kizito K; Omony, John B; Okitwi, Martin; Wanyana, Agnes; Otim, Maxwell O; Kirunda, Halid; Nakavuma, Jessica L; Teillaud, Angélique; Paul, Mathilde C; Ducatez, Mariette F

    2014-10-01

    Newcastle disease is still a serious disease of poultry especially in backyard free-range production systems despite the availability of cross protective vaccines. Healthy-looking poultry from live bird markets have been suspected as a major source of disease spread although limited studies have been conducted to ascertain the presence of the virulent strains in the markets and to understand how they are related to outbreak strains. This study evaluated the occurrence of Newcastle disease virus in samples collected from poultry in live bird markets across Uganda. The isolates were pathoyped using standard methods (mean death time (MDT), intracelebral pathogenicity index (ICPI), and sequencing of the fusion protein cleavage site motif) and also phylogenetically analysed after sequencing of the full fusion and hemagglutin-neuraminidase genes. The isolates were classified into genotypes and subgenotypes based on the full fusion protein gene classification system and compared with other strains in the region and world-wide. Virulent avian paramyxovirus type I (APMV-1) (Newcastle disease virus) was isolated in healthy-looking poultry in live bird markets. The viruses belonged to a new subgenotype, Vd, in genotype V, and clustered together with Tanzania and Kenya strains. They harbored low genetic diversity. The occurrence of virulent AMPV-1 strains in live bird markets may serve as sources of Newcastle disease outbreaks in non-commercial farms.

  7. The first report of a Pelecaniformes defensin cluster: Characterization of β-defensin genes in the crested ibis based on BAC libraries

    PubMed Central

    Lan, Hong; Chen, Hui; Chen, Li-Cheng; Wang, Bei-Bing; Sun, Li; Ma, Mei-Ying; Fang, Sheng-Guo; Wan, Qiu-Hong

    2014-01-01

    Defensins play a key role in the innate immunity of various organisms. Detailed genomic studies of the defensin cluster have only been reported in a limited number of birds. Herein, we present the first characterization of defensins in a Pelecaniformes species, the crested ibis (Nipponia nippon), which is one of the most endangered birds in the world. We constructed bacterial artificial chromosome libraries, including a 4D-PCR library and a reverse-4D library, which provide at least 40 equivalents of this rare bird's genome. A cluster including 14 β-defensin loci within 129 kb was assigned to chromosome 3 by FISH, and one gene duplication of AvBD1 was found. The ibis defensin genes are characterized by multiform gene organization ranging from two to four exons through extensive exon fusion. Splicing signal variations and alternative splice variants were also found. Comparative analysis of four bird species identified one common and multiple species-specific duplications, which might be associated with high GC content. Evolutionary analysis revealed birth-and-death mode and purifying selection for avian defensin evolution, resulting in different defensin gene numbers among bird species and functional conservation within orthologous genes, respectively. Additionally, we propose various directions for further research on genetic conservation in the crested ibis. PMID:25372018

  8. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch

    PubMed Central

    Makeyeva, Yekaterina V.; Paitel, Elizabeth R.; Pedersen, Alyssa L.; Hon, Angel T.; Gunderson, Jordan A.; Saldanha, Colin J.

    2017-01-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only–implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. PMID:28324066

  9. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    PubMed

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.

  10. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch.

    PubMed

    Bailey, David J; Makeyeva, Yekaterina V; Paitel, Elizabeth R; Pedersen, Alyssa L; Hon, Angel T; Gunderson, Jordan A; Saldanha, Colin J

    2017-04-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only-implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. Copyright © 2017 Endocrine Society.

  11. Influenza A Virus Infections in Land Birds, People’s Republic of China

    PubMed Central

    Bush, Sarah E.; Spackman, Erica; Swayne, David E.; Ip, Hon S.

    2008-01-01

    Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription–PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned. PMID:18826836

  12. Causes of mortality and unintentional poisoning in predatory and scavenging birds in California

    PubMed Central

    Kelly, Terra R.; Poppenga, Robert H.; Woods, Leslie A.; Hernandez, Yvette Z.; Boyce, Walter M.; Samaniego, Francisco J.; Torres, Steve G.; Johnson, Christine K.

    2014-01-01

    Objectives We documented causes of mortality in an opportunistic sample of golden eagles, turkey vultures and common ravens, and assessed exposure to several contaminants that have been found in carrion and common prey for these species. Methods Dead birds were submitted for testing through wildlife rehabilitation centres and a network of wildlife biologists in California from 2007 to 2009. Results The leading causes of mortality in this study were collision-related trauma (63 per cent), lead intoxication (17 per cent) and anticoagulant rodenticide poisoning (8 per cent). Elevated liver lead concentration (≥2 µg/g) and bone lead concentration (>6 µg/g) were detected in 25 and 49 per cent of birds tested, respectively. Approximately 84 per cent of birds tested had detectable rodenticide residues. The majority of rodenticide exposure occurred in peri-urban areas, suggesting that retail sale and use of commensal rodent baits, particularly in residential and semi-residential areas in California, may provide a pathway of exposure. Conclusions Monitoring anthropogenic causes of mortality in predatory and scavenging bird species provides important data needed to inform on mitigation and regulatory efforts aimed at reducing threats to these populations. PMID:26392875

  13. Birds as predators in tropical agroforestry systems.

    PubMed

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  14. Limited antigenic diversity in contemporary H7 avian-origin influenza A viruses from North America

    USDA-ARS?s Scientific Manuscript database

    Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Understanding the antigenic diversity and genetic evolution of H7 AIVs is critical for developing effective strategies for disease prev...

  15. Novel reassortant clade 2.3.4.4 avian influenza A (H5N8) virus in a grey heron in South Korea in 2017.

    PubMed

    Woo, Chanjin; Kwon, Jung-Hoon; Lee, Dong-Hun; Kim, Youngsik; Lee, Kwanghee; Jo, Seong-Deok; Son, Ki Dong; Oem, Jae-Ku; Wang, Seung-Jun; Kim, Yongkwan; Shin, Jeonghwa; Song, Chang-Seon; Jheong, Weonhwa; Jeong, Jipseol

    2017-12-01

    We report the identification of a novel reassortant clade 2.3.4.4 H5N8 virus from a dead grey heron in Korea in 2017. Outbreaks of clade 2.3.4.4 H5 HPAIVs have been reported worldwide, and they have evolved into multiple genotypes among wild birds. Phylogenetic analysis indicated that this virus likely originated from Qinghai Lake and Western Siberia and further evolved through reassortment with Eurasian LPAI during the 2016 fall migration of wild birds. Enhanced surveillance and comparative genetic analysis will help to monitor the further evolution and dissemination of clade 2.3.4.4 HPAIVs.

  16. Evidence of intercontinental transfer of North American lineage avian influenza virus into Korea.

    PubMed

    Lee, Dong-Hun; Lee, Hyun-Jeong; Lee, Yu-Na; Park, Jae-Keun; Lim, Tae-Hyun; Kim, Myeong-Seob; Youn, Ha-Na; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2011-01-01

    Avian influenza viruses (AIV) can be genetically distinguished by geographical origin. The present study found evidence of intercontinental transfer of North American lineage AIV into Asia via migratory bird populations. The North American lineage genes were detected in live animal markets during avian influenza surveillance, seemed to have reassorted with Eurasian AIV in wild bird habitats, and had transmitted to live animal markets. Enhanced AIV surveillance is required to understand the influence of newly transferred North American lineage AIV genes on AIV evolution in Asia and to investigate AIV ecology in various transcontinental migrant species. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  17. Higher predation risk for insect prey at low latitudes and elevations.

    PubMed

    Roslin, Tomas; Hardwick, Bess; Novotny, Vojtech; Petry, William K; Andrew, Nigel R; Asmus, Ashley; Barrio, Isabel C; Basset, Yves; Boesing, Andrea Larissa; Bonebrake, Timothy C; Cameron, Erin K; Dáttilo, Wesley; Donoso, David A; Drozd, Pavel; Gray, Claudia L; Hik, David S; Hill, Sarah J; Hopkins, Tapani; Huang, Shuyin; Koane, Bonny; Laird-Hopkins, Benita; Laukkanen, Liisa; Lewis, Owen T; Milne, Sol; Mwesige, Isaiah; Nakamura, Akihiro; Nell, Colleen S; Nichols, Elizabeth; Prokurat, Alena; Sam, Katerina; Schmidt, Niels M; Slade, Alison; Slade, Victor; Suchanková, Alžběta; Teder, Tiit; van Nouhuys, Saskya; Vandvik, Vigdis; Weissflog, Anita; Zhukovich, Vital; Slade, Eleanor M

    2017-05-19

    Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution. Copyright © 2017, American Association for the Advancement of Science.

  18. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  19. Co-expression of sialic acid receptors compatible with avian and human influenza virus binding in emus (Dromaius novaehollandiae).

    PubMed

    Gujjar, Naveen; Chothe, Shubhada K; Gawai, Shashikant; Nissly, Ruth; Bhushan, Gitanjali; Kanagaraj, Vijayarani; Jayarao, Bhushan M; Kathaperumal, Kumanan; Subbiah, Madhuri; Kuchipudi, Suresh V

    2017-01-01

    Influenza A viruses (IAVs) continue to threaten animal and human health with constant emergence of novel variants. While aquatic birds are a major reservoir of most IAVs, the role of other terrestrial birds in the evolution of IAVs is becoming increasingly evident. Since 2006, several reports of IAV isolations from emus have surfaced and avian influenza infection of emus can lead to the selection of mammalian like PB2-E627K and PB2-D701N mutants. However, the potential of emus to be co-infected with avian and mammalian IAVs is not yet understood. As a first step, we investigated sialic acid (SA) receptor distribution across major organs and body systems of emu and found a widespread co-expression of both SAα2,3Gal and SAα2,6Gal receptors in various tissues that are compatible with avian and human IAV binding. Our results suggest that emus could allow genetic recombination and hence play an important role in the evolution of IAVs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Visual circuits of the avian telencephalon: evolutionary implications

    NASA Technical Reports Server (NTRS)

    Shimizu, T.; Bowers, A. N.

    1999-01-01

    Birds and primates are vertebrates that possess the most advanced, efficient visual systems. Although lineages leading to these two classes were separated about 300 million years ago, there are striking similarities in their underlying neural mechanisms for visual processing. This paper discusses such similarities with special emphasis on the visual circuits in the avian telencephalon. These similarities include: (1) the existence of two parallel visual pathways and their distinct telencephalic targets, (2) anatomical and functional segregation within the visual pathways, (3) laminar organization of the telencephalic targets of the pathways (e.g. striate cortex in primates), and (4) possible interactions between multiple visual areas. Additional extensive analyses are necessary to determine whether these similarities are due to inheritance from a common ancestral stock or the consequences of convergent evolution based on adaptive response to similar selective pressures. Nevertheless, such a comparison is important to identify the general and specific principles of visual processing in amniotes (reptiles, birds, and mammals). Furthermore, these principles in turn will provide a critical foundation for understanding the evolution of the brain in amniotes.

  1. Fiber composite fan blade impact improvement

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  2. Low Usutu virus seroprevalence in four zoological gardens in central Europe

    PubMed Central

    2013-01-01

    Background Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused bird die-offs in Austria, Hungary and Switzerland between 2001 and 2009. While the zoological gardens of Vienna and Zurich recorded USUV-associated mortality in different species of birds during this period, incidences in Budapest were limited to areas outside the zoo, and in the greater Basel area avian mortality due to USUV infection was not observed at all. The objectives of this investigation were to gain insight into USUV infection dynamics in captive birds in zoos with varying degrees of virus exposure and to study differences in susceptibility to USUV of different species of birds. Results 372 bird sera were collected between October 2006 and August 2007. The samples were tested in parallel by hemagglutination inhibition (HI) and 90% plaque reduction neutralization tests (PRNT-90). 8.75%, 5.3% and 6.59% of birds in the zoos of Vienna, Zurich and Basel, respectively, showed USUV-specific antibodies by PRNT-90. No antibodies to USUV were detected in birds of the Budapest zoo. The order Strigiformes (owls) exhibited the highest USUV-seroprevalence, compared to other orders of birds. Conclusions USUV seems not to pose an imminent threat to zoo bird populations in central Europe at the moment. Depending on a variety of especially environmental factors, however, this may change at any time in the (near) future, as experienced with West Nile virus (WNV). It is therefore strongly suggested to continue with combined WNV and USUV surveillance activities in affected areas. PMID:23919825

  3. On the Morphological Description of Tracheal and Esophageal Displacement and Its Phylogenetic Distribution in Avialae

    PubMed Central

    Klingler, Jeremy J.

    2016-01-01

    This research examines the evolution and phylogenetic distribution of a peculiar and often overlooked character seen in birds, herein called tracheal and esophageal displacement. Tracheal and esophageal displacement refers to an asymmetrically situated trachea and/or esophagus along the length of the neck. This contrasts with what would be perceived as the “normal” (midsagittal) placement of these organs, wherein the two organs are situated along the ventral midline of the neck with no deviation. A total of forty-two bird species were examined (thirty-six of which came from dissections whereas six came from comments from previous literature or personal observations), as well as turtles, lizards, crocodylians, and mammals. This study found that essentially all birds have a laterally displaced trachea and/or esophagus. Lizards and mammals were seen to have normal, midsagittally placed tracheae and esophagi. Crocodylians were interesting in that alligators were defined by a normally situated trachea and esophagus whereas some crocodiles were characterized by displacement. In birds, the displacement may occur gradually along the neck, or it may happen immediately upon exiting the oropharynx. Displacement of these organs in birds is the result of a heavily modified neck wherein muscles that restrict mobility of the trachea and esophagus in lizards, alligators, and mammals (e.g., m. episternocleidomastoideus, m. omohyoideus, and m. sternohyoideus) no longer substantially restrict positions of the trachea and esophagus in birds. Rather, these muscles are modified in ways which may assist with making tracheal movements. The implications of this study may provide interesting insights for future comparisons in extinct taxa. PMID:27648952

  4. Male infanticide leads to social monogamy in primates.

    PubMed

    Opie, Christopher; Atkinson, Quentin D; Dunbar, Robin I M; Shultz, Susanne

    2013-08-13

    Although common in birds, social monogamy, or pair-living, is rare among mammals because internal gestation and lactation in mammals makes it advantageous for males to seek additional mating opportunities. A number of hypotheses have been proposed to explain the evolution of social monogamy among mammals: as a male mate-guarding strategy, because of the benefits of biparental care, or as a defense against infanticidal males. However, comparative analyses have been unable to resolve the root causes of monogamy. Primates are unusual among mammals because monogamy has evolved independently in all of the major clades. Here we combine trait data across 230 primate species with a Bayesian likelihood framework to test for correlated evolution between monogamy and a range of traits to evaluate the competing hypotheses. We find evidence of correlated evolution between social monogamy and both female ranging patterns and biparental care, but the most compelling explanation for the appearance of monogamy is male infanticide. It is only the presence of infanticide that reliably increases the probability of a shift to social monogamy, whereas monogamy allows the secondary adoption of paternal care and is associated with a shift to discrete ranges. The origin of social monogamy in primates is best explained by long lactation periods caused by altriciality, making primate infants particularly vulnerable to infanticidal males. We show that biparental care shortens relative lactation length, thereby reducing infanticide risk and increasing reproductive rates. These phylogenetic analyses support a key role for infanticide in the social evolution of primates, and potentially, humans.

  5. Male infanticide leads to social monogamy in primates

    PubMed Central

    Opie, Christopher; Atkinson, Quentin D.; Dunbar, Robin I. M.; Shultz, Susanne

    2013-01-01

    Although common in birds, social monogamy, or pair-living, is rare among mammals because internal gestation and lactation in mammals makes it advantageous for males to seek additional mating opportunities. A number of hypotheses have been proposed to explain the evolution of social monogamy among mammals: as a male mate-guarding strategy, because of the benefits of biparental care, or as a defense against infanticidal males. However, comparative analyses have been unable to resolve the root causes of monogamy. Primates are unusual among mammals because monogamy has evolved independently in all of the major clades. Here we combine trait data across 230 primate species with a Bayesian likelihood framework to test for correlated evolution between monogamy and a range of traits to evaluate the competing hypotheses. We find evidence of correlated evolution between social monogamy and both female ranging patterns and biparental care, but the most compelling explanation for the appearance of monogamy is male infanticide. It is only the presence of infanticide that reliably increases the probability of a shift to social monogamy, whereas monogamy allows the secondary adoption of paternal care and is associated with a shift to discrete ranges. The origin of social monogamy in primates is best explained by long lactation periods caused by altriciality, making primate infants particularly vulnerable to infanticidal males. We show that biparental care shortens relative lactation length, thereby reducing infanticide risk and increasing reproductive rates. These phylogenetic analyses support a key role for infanticide in the social evolution of primates, and potentially, humans. PMID:23898180

  6. Magpies can use local cues to retrieve their food caches.

    PubMed

    Feenders, Gesa; Smulders, Tom V

    2011-03-01

    Much importance has been placed on the use of spatial cues by food-hoarding birds in the retrieval of their caches. In this study, we investigate whether food-hoarding birds can be trained to use local cues ("beacons") in their cache retrieval. We test magpies (Pica pica) in an active hoarding-retrieval paradigm, where local cues are always reliable, while spatial cues are not. Our results show that the birds use the local cues to retrieve their caches, even when occasionally contradicting spatial information is available. The design of our study does not allow us to test rigorously whether the birds prefer using local over spatial cues, nor to investigate the process through which they learn to use local cues. We furthermore provide evidence that magpies develop landmark preferences, which improve their retrieval accuracy. Our findings support the hypothesis that birds are flexible in their use of memory information, using a combination of the most reliable or salient information to retrieve their caches. © Springer-Verlag 2010

  7. Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass.

    PubMed

    Mouritsen, H; Larsen, O N

    2001-11-01

    This paper investigates how young pied flycatchers, Ficedula hypoleuca, and blackcaps, Sylvia atricapilla, interpret and use celestial cues. In order to record these data, we developed a computer-controlled version of the Emlen funnel, which enabled us to make detailed temporal analyses. First, we showed that the birds use a star compass. Then, we tested the birds under a stationary planetarium sky, which simulated the star pattern of the local sky at 02:35 h for 11 consecutive hours of the night, and compared the birds' directional choices as a function of time with the predictions from five alternative stellar orientation hypotheses. The results supported the hypothesis suggesting that birds use a time-independent star compass based on learned geometrical star configurations to pinpoint the rotational point of the starry sky (north). In contrast, neither hypotheses suggesting that birds use the stars for establishing their global position and then perform true star navigation nor those suggesting the use of a time-compensated star compass were supported.

  8. Mobbing calls signal predator category in a kin group-living bird species

    PubMed Central

    Griesser, Michael

    2009-01-01

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls. PMID:19474047

  9. Mobbing calls signal predator category in a kin group-living bird species.

    PubMed

    Griesser, Michael

    2009-08-22

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls.

  10. Limited Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from North America

    PubMed Central

    Xu, Yifei; Bailey, Elizabeth; Spackman, Erica; Li, Tao; Wang, Hui; Long, Li-Ping; Baroch, John A.; Cunningham, Fred L.; Lin, Xiaoxu; Jarman, Richard G.; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976–2010], 7 from domestic poultry [1971–2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry. PMID:26858078

  11. Comparative effects of mites and lice on the reproductive success of rock doves (Columba livia).

    PubMed

    Clayton, D H; Tompkins, D M

    1995-02-01

    We report experimental data comparing the effects of Mesostigmatid mites and Ischnoceran lice on the reproductive performance of a single group of captive rock doves (Columba livia). Several components of host reproductive success were compared for the two groups, including number of eggs laid, hatching success, nestling growth rates, fledging success, post-fledging body mass and survival. Adult body mass and survival were also compared. There was a dramatic difference in the effects of the mites and lice. The former drove host reproductive success to zero, mainly by agitating adults and causing them to incubate eggs less faithfully. Nestling growth rates and post-fledging survival were also significantly reduced by mites. Lice showed no effect on reproductive success whatsoever, even though the feather damage they cause is known to have energetic consequences (Booth, Clayton & Block, 1993). Neither parasite had a significant effect on adult birds. Although Ischnocera are found on most species of birds, our results for lice constitute the first experimental test of the impact of Ischnocera on avian reproductive success (preliminary report by Clayton & Tompkins, 1994). We discuss reasons for the different effects of mites and lice, including the relationship of horizontal (mites) and vertical (lice) transmission to the evolution of virulence.

  12. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  13. The biology and evolution of music: a comparative perspective.

    PubMed

    Fitch, W Tecumseh

    2006-05-01

    Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally termed "song". A comparison of the "design features" of music with those of language reveals substantial overlap, along with some important differences. Most of these differences appear to stem from semantic, rather than structural, factors, suggesting a shared formal core of music and language. I next review various animal communication systems that appear related to human music, either by analogy (bird and whale "song") or potential homology (great ape bimanual drumming). A crucial comparative distinction is between learned, complex signals (like language, music and birdsong) and unlearned signals (like laughter, ape calls, or bird calls). While human vocalizations clearly build upon an acoustic and emotional foundation shared with other primates and mammals, vocal learning has evolved independently in our species since our divergence with chimpanzees. The convergent evolution of vocal learning in other species offers a powerful window into psychological and neural constraints influencing the evolution of complex signaling systems (including both song and speech), while ape drumming presents a fascinating potential homology with human instrumental music. I next discuss the archeological data relevant to music evolution, concluding on the basis of prehistoric bone flutes that instrumental music is at least 40,000 years old, and perhaps much older. I end with a brief review of adaptive functions proposed for music, concluding that no one selective force (e.g., sexual selection) is adequate to explaining all aspects of human music. I suggest that questions about the past function of music are unlikely to be answered definitively and are thus a poor choice as a research focus for biomusicology. In contrast, a comparative approach to music promises rich dividends for our future understanding of the biology and evolution of music.

  14. The impact of rise of the Andes and Amazon landscape evolution on diversification of lowland terra-firme forest birds

    NASA Astrophysics Data System (ADS)

    Aleixo, A.; Wilkinson, M. J.

    2011-12-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction (the easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting ~10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, which apparently extended in series progressively eastward from Andean sources. The effects on drainage patterns are apparent from the location of axial rivers such as the Negro / Orinoco and Madeira which lie at the distal ends of major megafan ramparts at cratonic margins furthest from the Andes. Megafan extension plausibly explains the progressive extinction of the original Pebas wetland of west-central Amazonia by the present fluvial landsurfaces where upland terra-firme forest develop. The youngest landsurfaces thus appear to lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion from a northward (Caribbean) outlet to a generally eastward, Atlantic Ocean outlet. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. The bird DNA data appears to confirm the role of Amazonian rivers as primary diversification barriers, and thus probably as promoters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers of apparently different ages ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.

  15. The evolution of egg colour and patterning in birds.

    PubMed

    Kilner, R M

    2006-08-01

    Avian eggs differ so much in their colour and patterning from species to species that any attempt to account for this diversity might initially seem doomed to failure. Here I present a critical review of the literature which, when combined with the results of some comparative analyses, suggests that just a few selective agents can explain much of the variation in egg appearance. Ancestrally, bird eggs were probably white and immaculate. Ancient diversification in nest location, and hence in the clutch's vulnerability to attack by predators, can explain basic differences between bird families in egg appearance. The ancestral white egg has been retained by species whose nests are safe from attack by predators, while those that have moved to a more vulnerable nest site are now more likely to lay brown eggs, covered in speckles, just as Wallace hypothesized more than a century ago. Even blue eggs might be cryptic in a subset of nests built in vegetation. It is possible that some species have subsequently turned these ancient adaptations to new functions, for example to signal female quality, to protect eggs from damaging solar radiation, or to add structural strength to shells when calcium is in short supply. The threat of predation, together with the use of varying nest sites, appears to have increased the diversity of egg colouring seen among species within families, and among clutches within species. Brood parasites and their hosts have probably secondarily influenced the diversity of egg appearance. Each drives the evolution of the other's egg colour and patterning, as hosts attempt to avoid exploitation by rejecting odd-looking eggs from their nests, and parasites attempt to outwit their hosts by laying eggs that will escape detection. This co-evolutionary arms race has increased variation in egg appearance both within and between species, in parasites and in hosts, sometimes resulting in the evolution of egg colour polymorphisms. It has also reduced variation in egg appearance within host clutches, although the benefit thus gained by hosts is not clear.

  16. West Nile virus-neutralizing antibodies in wild birds from southern Spain.

    PubMed

    Ferraguti, M; LA Puente, J Martínez-DE; Soriguer, R; Llorente, F; Jiménez-Clavero, M Á; Figuerola, J

    2016-07-01

    West Nile virus (WNV) is an emerging vector-borne arbovirus with a zoonotic life-cycle whose main reservoir hosts are birds. In humans and horses, WNV infections rarely result in clinical disease but on occasions - depending on factors such as climatic conditions, insect communities and background immunity levels in local populations - they can lead to outbreaks that threaten public and animal health. We tested for the presence of WNV antibodies in 149 birds belonging to 32 different species. Samples were first tested using a bird-specific ELISA kit and then both positive and doubtful results were confirmed by neutralization tests using WNV and Usutu virus. WNV antibodies were confirmed in a resident Sylvia melanocephala juvenile, supporting the idea of local transmission of WNV in southern Spain in 2013. In addition, the serum from an adult blackbird (Turdus merula) showed neutralization of both WNV and Usutu virus. We discuss our results in light of the occurrence of WNV on horse farms in southern Spain in 2013.

  17. Highly pathogenic avian influenza (H5N1) in ducks and in-contact chickens in backyard and smallholder commercial duck farms in Viet Nam.

    PubMed

    Henning, Joerg; Henning, Kate A; Morton, John M; Long, Ngo T; Ha, Nguyen T; Vu, Le T; Vu, Pham P; Hoa, Dong M; Meers, Joanne

    2011-09-01

    Scavenging ducks are thought to play an important role in the maintenance and transmission of highly pathogenic avian influenza (HPAI) H5N1 virus among domesticated and wild bird populations in South East Asia, but detailed field epidemiological results describing the infection status of domestic ducks and in-contact chickens have not been published. We conducted a longitudinal study, monitoring ducks and in-contact chickens in 80 flocks in the Mekong Delta of Viet Nam with bi-monthly testing from May 2007 until May 2008. Because H5 vaccination campaigns are conducted at regular intervals in poultry flocks in Viet Nam, both unvaccinated sentinel and H5 vaccinates were monitored. On each farm, a total of 10 birds were selected: 7 ducks (4 unvaccinated and 3 vaccinated) and 3 chickens (2 unvaccinated and 1 vaccinated) that were in close contact with the ducks. Blood samples were tested for H5 antibodies using the hemagglutination inhibition test, with H5 antibody titers ≥2(4) considered to indicate past exposure to H5 field or vaccine virus. Titers of vaccinated birds were analyzed for samples collected more than 3 weeks post-vaccination. Pooled oropharyngeal and cloacal swabs were assessed for H5 viral RNA using real-time PCR. Bird- and flock-level prevalences were estimated accounting for sampling fractions and clustering under the multi-stage sampling design with birds being sampled within flocks within villages in four different provinces. In total, serum and swab samples from 5409 birds-samplings were analyzed. Bird-level seroprevalence was 17.5% (95% CI: 14.1, 20.9) amongst unvaccinated ducks and 10.7% (95% CI: 7.4, 14.4) amongst unvaccinated in-contact chickens. Flock-level seroprevalence (proportion of flock-visits with at least one unvaccinated bird test positive) was 42.6% (95% CI: 38.0, 47.2) for ducks and 19.0% (95% CI: 13.6, 24.4) for chickens. Only 54.3% (95% CI: 39.2, 69.3) of vaccinated ducks and 55.5% (95% CI: 46.8, 64.2) of vaccinated in-contact chickens had H5 antibodies at more than 3 weeks post-vaccination. At about 40% and 48% of flock-visits, less than 50% of sampled vaccinated ducks and chickens, respectively, had positive titers. The flock-level virus prevalence (proportion of flocks with at least one bird positive for H5 virus of the vaccinated and unvaccinated birds tested) was 0.7% (95% CI: 0.0, 2.1). No HPAI outbreaks or mortality suspected to be due to HPAI occurred in study flocks during the observation period. Our results indicate that a substantial proportion of ducks and in-contact chickens were exposed to H5 virus during the study period. In the face of this widespread exposure to H5 virus, and despite only moderate proportions of birds developing positive titers post-vaccination, flocks were not affected by HPAI outbreaks during our study period. The higher bird-level seroprevalence in ducks compared to in-contact chickens may be due to greater durations of antibody persistence in ducks or greater rates of H5 virus exposure. These findings indicate that ducks are potentially an important source of H5 virus for other bird species. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy

    PubMed Central

    Nowack, Julia; Giroud, Sylvain; Arnold, Walter; Ruf, Thomas

    2017-01-01

    The development of sustained, long-term endothermy was one of the major transitions in the evolution of vertebrates. Thermogenesis in endotherms does not only occur via shivering or activity, but also via non-shivering thermogenesis (NST). Mammalian NST is mediated by the uncoupling protein 1 in the brown adipose tissue (BAT) and possibly involves an additional mechanism of NST in skeletal muscle. This alternative mechanism is based on Ca2+-slippage by a sarcoplasmatic reticulum Ca2+-ATPase (SERCA) and is controlled by the protein sarcolipin. The existence of muscle based NST has been discussed for a long time and is likely present in all mammals. However, its importance for thermoregulation was demonstrated only recently in mice. Interestingly, birds, which have evolved from a different reptilian lineage than mammals and lack UCP1-mediated NST, also exhibit muscle based NST under the involvement of SERCA, though likely without the participation of sarcolipin. In this review we summarize the current knowledge on muscle NST and discuss the efficiency of muscle NST and BAT in the context of the hypothesis that muscle NST could have been the earliest mechanism of heat generation during cold exposure in vertebrates that ultimately enabled the evolution of endothermy. We suggest that the evolution of BAT in addition to muscle NST was related to heterothermy being predominant among early endothermic mammals. Furthermore, we argue that, in contrast to small mammals, muscle NST is sufficient to maintain high body temperature in birds, which have enhanced capacities to fuel muscle NST by high rates of fatty acid import. PMID:29170642

  19. Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.

    PubMed

    Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-03-01

    Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.

  20. Insights into bird wing evolution and digit specification from polarizing region fate maps.

    PubMed

    Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-08-09

    The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.

  1. From neurons to nests: nest-building behaviour as a model in behavioural and comparative neuroscience.

    PubMed

    Hall, Zachary J; Meddle, Simone L; Healy, Susan D

    Despite centuries of observing the nest building of most extant bird species, we know surprisingly little about how birds build nests and, specifically, how the avian brain controls nest building. Here, we argue that nest building in birds may be a useful model behaviour in which to study how the brain controls behaviour. Specifically, we argue that nest building as a behavioural model provides a unique opportunity to study not only the mechanisms through which the brain controls behaviour within individuals of a single species but also how evolution may have shaped the brain to produce interspecific variation in nest-building behaviour. In this review, we outline the questions in both behavioural and comparative neuroscience that nest building could be used to address, summarize recent findings regarding the neurobiology of nest building in lab-reared zebra finches and across species building different nest structures, and suggest some future directions for the neurobiology of nest building.

  2. 'Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers.

    PubMed

    Castellanos, M C; Wilson, P; Thomson, J D

    2004-07-01

    Floral phenotypes may be as much the result of selection for avoidance of some animal visitors as selection for improving the interaction with better pollinators. When specializing on hummingbird-pollination, Penstemon flowers may have evolved to improve the morphological fit between bird and flower, or to exclude less-efficient bees, or both. We hypothesized how such selection might work on four floral characters that affect the mechanics of pollen transfer: anther/stigma exsertion, presence of a lower corolla lip, width of the corolla tube, and angle of flower inclination. We surgically modified bee-pollinated P. strictus flowers changing one trait at a time to make them resemble hummingbird-pollinated P. barbatus flowers, and measured pollen transfer by bumblebees and hummingbirds. Results suggest that, apart from 'pro-bird' adaptations, specific 'anti-bee' adaptations have been important in shaping hummingbird-flowers. Moreover, some trait changes may have been selected for only if changing in concert with other traits. Copyright 2004 Blackwell Publishing Ltd

  3. Chasing Salmonella Typhimurium in free range egg production system.

    PubMed

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Enzyme immunoassay of Chlamydia in birds.

    PubMed

    Ruppanner, R; Behymer, D E; DeLong, W J; Franti, C E; Schulz, T

    1984-01-01

    Serum samples from 192 free-living birds (27 species) were tested for antibodies against Chlamydia using the enzyme-linked immunosorbent assay (ELISA); 97 (51%) were seropositive. The highest antibody prevalence was among pheasants (96%), ducks (88%), and blackbirds (86%). None of 41 starlings tested were seropositive. The serotesting of 42 confined pheasants indicated 100% exposure to the organism. The ELISA is a sensitive, rapid serologic method that can be of epidemiologic and diagnostic value for detecting exposure to Chlamydia. The ELISA could also be used for mass-screening of pet birds where chlamydiosis may be considered a potential public health hazard.

  5. Distinctive courtship phenotype of the Vogelkop Superb Bird-of-Paradise Lophorina niedda Mayr, 1930 confirms new species status

    PubMed Central

    Laman, Timothy G.

    2018-01-01

    The birds-of-paradise (Aves: Paradisaeidae) are a quintessential example of elaborate ornamental diversification among animals. Ornamental evolution in the birds-of-paradise is exemplified by the presence of a highly integrated courtship phenotype, which is the whole package of plumage ornaments, behaviors and sounds that each species uses during courtship. Characterizing a species’ courtship phenotype is therefore a key part of evolutionary and taxonomic investigation in the group. With its unprecedented transmogrification from bird-like form into something abstract and otherworldly, the courtship phenotype of the Superb Bird-of-Paradise, Lophorina superba, is one of the most remarkable of all. Recent research by Irestedt et al. (2017) suggests that the genus Lophorina is not a single species but is likely a complex of three allopatric species spanning the island of New Guinea: L. niedda in the Bird’s Head Peninsula of the west, L. superba throughout the central cordillera and L. minor in the Papuan Peninsula of the east. Of these, niedda is the most phenotypically divergent with plumage traits hypothesized to possibly produce differences in ornamental appearance during display. However, the whole courtship phenotype of niedda has not been documented and so the actual extent of differences in ornamental appearance during courtship remain unknown. Here we analyze the first audiovisual recordings of niedda and compare its courtship phenotype with superba to test the hypothesis of potential differences in ornamental appearance. Our main goals are to: (1) provide the first description of the courtship phenotype of niedda in the wild, (2) determine if and how the niedda courtship phenotype differs from superba and (3) evaluate any uncovered differences in light of niedda’s newly recognized species status. Our secondary goal is to provide a more thorough characterization of courtship phenotype diversity within the genus Lophorina to facilitate future comparative study within the genus and family. Results show that the niedda courtship phenotype differs substantially from superba in numerous aspects of ornamental appearance, display behavior and sound. We highlight six key differences and conclude that the new species status of niedda is corroborated by the distinctly differentiated ornamental features documented here. With full species status, niedda becomes the fourth endemic bird-of-paradise to the Bird’s Head region of Indonesian New Guinea (i.e., the Vogelkop Peninsula), a fact that underscores the importance of this region as a center of endemic biodiversity worthy of enhanced conservation protection. PMID:29682415

  6. Bird Vision System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Bird Vision system is a multicamera photogrammerty software application that runs on a Microsoft Windows XP platform and was developed at Kennedy Space Center by ASRC Aerospace. This software system collects data about the locations of birds within a volume centered on the Space Shuttle and transmits it in real time to the laptop computer of a test director in the Launch Control Center (LCC) Firing Room.

  7. A comparison of bird communities in burned and salvage-logged, clearcut, and forested Florida Sand Pine scrub.

    Treesearch

    Cathryn H. Greenberg; Lawrence D. Harris; Daniel G Neary

    1995-01-01

    We hypothesized that similar bird assemblages will occur in like-structured habitat that results from both clearcutting and high-intensity wildfire followed by salvage logging. To test this, we compared bird communities of sand pine scrub in mature forest and three disturbance treatments (1) high-intensity wildfire, salvage logged, and naturally regenerated, (2)...

  8. Limitations and mechanisms influencing the migratory performance of soaring birds

    Treesearch

    Tricia A. Miller; Brooks Robert P.; Michael J. Lanzone; David Brandes; Jeff Cooper; Junior A. Tremblay; Jay Wilhelm; Adam Duerr; Todd E. Katzner

    2016-01-01

    Migration is costly in terms of time, energy and safety. Optimal migration theory suggests that individual migratory birds will choose between these three costs depending on their motivation and available resources. To test hypotheses about use of migratory strategies by large soaring birds, we used GPS telemetry to track 18 adult, 13 sub-adult and 15 juvenile Golden...

  9. Avian predators are less abundant during periodical cicada emergences, but why?

    PubMed

    Koenig, Walter D; Ries, Leslie; Olsen, V Beth K; Liebhold, Andrew M

    2011-03-01

    Despite a substantial resource pulse, numerous avian insectivores known to depredate periodical cicadas (Magicicada spp.) are detected less commonly during emergence years than in either the previous or following years. We used data on periodical cicada calls collected by volunteers conducting North American Breeding Bird Surveys within the range of cicada Brood X to test three hypotheses for this observation: lower detection rates could be caused by bird calls being obscured by cicada calls ("detectability" hypothesis), by birds avoiding areas with cicadas ("repel" hypothesis), or because bird abundances are generally lower during emergence years for some reason unrelated to the current emergence event ("true decline" hypothesis). We tested these hypotheses by comparing bird detections at stations coincident with calling cicadas vs. those without calling cicadas in the year prior to and during cicada emergences. At four distinct levels (stop, route, range, and season), parallel declines of birds in groups exposed and not exposed to cicada calls supported the true decline hypothesis. We discuss several potential mechanisms for this pattern, including the possibility that it is a consequence of the ecological and evolutionary interactions between predators of this extraordinary group of insects.

  10. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs.

    PubMed

    Chan, Nicholas R

    2017-10-25

    Birds originated and radiated in the presence of another group of flying vertebrates, the pterosaurs. Opinion is divided as to whether birds competitively displaced pterosaurs from small-body size niches or whether the two groups coexisted with little competition. Previous studies of Mesozoic birds and pterosaurs compared measurements of homologous limb bones to test these hypotheses. However, these characters probably reflect differing ancestries rather than ecologies. Here, competition and ecological separation were tested for using multivariate analyses of functionally equivalent morphological characters. As well as using characters from the fore- and hindlimbs, these analyses also included measurements of the lower jaw. The results of this study indicate that pterosaurs had relatively longer jaws, shorter metatarsals and shorter brachial regions compared with birds of similar size. Contrary to the results of previous studies, the distal wing was not important for separating the two clades in morphospace owing to the inclusion of the primary feathers in this unit. The differences found here indicate ecological separation based on differences in size, locomotory features and feeding adaptations. Thus, instead of one group displacing the other, birds and pterosaurs appear to have adopted distinctive ecological strategies throughout their period of coexistence. © 2017 The Author(s).

  11. The relation between fearfulness in young and stress-response in adult laying hens, on individual and group level.

    PubMed

    de Haas, Elske N; Kops, Marjolein S; Bolhuis, J Elizabeth; Groothuis, Ton G G; Ellen, Esther D; Rodenburg, T Bas

    2012-10-10

    Fearfulness of an individual can affect its sensitivity to stress, while at the same time the social situation in which an animal lives can affect its fear level. It is however unknown what the long-term effects of high fearfulness on sensitivity to stress are, on individual or group level in laying hens. We hypothesize that increased fearfulness at a young age results in increased sensitivity to stress at an adult age, and that this relation can differ between groups, due to differences in group composition. Therefore, we studied the relation between fearfulness in an Open Field (OF) test at six weeks of age and plasma-corticosterone (CORT) levels after a 5-min Manual Restraint test (MR) at 33 weeks of age, and assessed behavior in the home pen. We used birds from a low mortality line, selected for four generations on low mortality due to feather pecking and cannibalism and a control line (n=153 in total, eight pens/line). These lines are known to differ in fearfulness and stress physiology. Chicks from the low mortality line were more active in the OF compared to chicks from the control line. Chicks that showed a fearful response (no walking, no vocalizing) in the OF test had higher CORT at 33 weeks of age than chicks that walked and/or vocalized in the OF test and had higher activity in the home pen as adults. On group level, a passive response in the OF was related to high CORT levels after MR. Presence of at least one fearful bird in a group led to higher CORT in the other group mates compared to birds from groups with no fearful birds present. Birds from groups in which more than 50% of birds had severe comb lesions had higher CORT levels compared to birds from groups with less than 50% of birds affected. High fearfulness of laying hen chicks can on individual level have a long-term effect on stress sensitivity. The presence of fearful birds in a group as well as signs of social instability in a group, indicated by comb lesions, can affect sensitivity to stress of birds from the same group. The mechanism by which this occurs can lie in social transmission of (fear related) behavior, but this suggestion needs further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Mega-evolutionary dynamics of the adaptive radiation of birds.

    PubMed

    Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H

    2017-02-16

    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.

  13. The evolution of the avian bill as a thermoregulatory organ.

    PubMed

    Tattersall, Glenn J; Arnaout, Bassel; Symonds, Matthew R E

    2017-08-01

    The avian bill is a textbook example of how evolution shapes morphology in response to changing environments. Bills of seed-specialist finches in particular have been the focus of intense study demonstrating how climatic fluctuations acting on food availability drive bill size and shape. The avian bill also plays an important but under-appreciated role in body temperature regulation, and therefore in energetics. Birds are endothermic and rely on numerous mechanisms for balancing internal heat production with biophysical constraints of the environment. The bill is highly vascularised and heat exchange with the environment can vary substantially, ranging from around 2% to as high as 400% of basal heat production in certain species. This heat exchange may impact how birds respond to heat stress, substitute for evaporative water loss at elevated temperatures or environments of altered water availability, or be an energetic liability at low environmental temperatures. As a result, in numerous taxa, there is evidence for a positive association between bill size and environmental temperatures, both within and among species. Therefore, bill size is both developmentally flexible and evolutionarily adaptive in response to temperature. Understanding the evolution of variation in bill size however, requires explanations of all potential mechanisms. The purpose of this review, therefore, is to promote a greater understanding of the role of temperature on shaping bill size over spatial gradients as well as developmental, seasonal, and evolutionary timescales. © 2016 Cambridge Philosophical Society.

  14. Comparison of learning ability and memory retention in altricial (Bengalese finch, Lonchura striata var. domestica) and precocial (blue-breasted quail, Coturnix chinensis) birds using a color discrimination task.

    PubMed

    Ueno, Aki; Suzuki, Kaoru

    2014-02-01

    The present study sought to assess the potential application of avian models with different developmental modes to studies on cognition and neuroscience. Six altricial Bengalese finches (Lonchura striata var. domestica), and eight precocial blue-breasted quails (Coturnix chinensis) were presented with color discrimination tasks to compare their respective faculties for learning and memory retention within the context of the two developmental modes. Tasks consisted of presenting birds with discriminative cues in the form of colored feeder lids, and birds were considered to have learned a task when 80% of their attempts at selecting the correctly colored lid in two consecutive blocks of 10 trials were successful. All of the finches successfully performed the required experimental tasks, whereas only half of the quails were able to execute the same tasks. In the learning test, finches required significantly fewer trials than quails to learn the task (finches: 13.5 ± 9.14 trials, quails: 45.8 ± 4.35 trials, P < 0.05), with finches scoring significantly more correct responses than quails (finches: 98.3 ± 4.08%, quails: 85.0 ± 5.77% at the peak of the learning curve). In the memory retention tests, which were conducted 45 days after the learning test, finches retained the ability to discriminate between colors correctly (95.0 ± 4.47%), whereas quails did not retain any memory of the experimental procedure and so could not be tested. These results suggested that altricial and precocial birds both possess the faculty for learning and retaining discrimination-type tasks, but that altricial birds perform better than precocial birds in both faculties. The present findings imply that developmental mode is an important consideration for assessing the suitability of bird species for particular experiments. © 2013 Japanese Society of Animal Science.

  15. Aerodynamics of wing-assisted incline running in birds.

    PubMed

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet capable of flight, can produce useful lift during WAIR. We predict that neuromuscular control or power output, rather than external wing morphology, constrain the onset of flight ability during development in birds.

  16. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals.

    PubMed

    Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M

    2008-07-25

    Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.

  17. Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems.

    PubMed

    Olsen, Aaron M; Westneat, Mark W

    2016-12-01

    Many musculoskeletal systems, including the skulls of birds, fishes, and some lizards consist of interconnected chains of mobile skeletal elements, analogous to linkage mechanisms used in engineering. Biomechanical studies have applied linkage models to a diversity of musculoskeletal systems, with previous applications primarily focusing on two-dimensional linkage geometries, bilaterally symmetrical pairs of planar linkages, or single four-bar linkages. Here, we present new, three-dimensional (3D), parallel linkage models of the skulls of birds and fishes and use these models (available as free kinematic simulation software), to investigate structure-function relationships in these systems. This new computational framework provides an accessible and integrated workflow for exploring the evolution of structure and function in complex musculoskeletal systems. Linkage simulations show that kinematic transmission, although a suitable functional metric for linkages with single rotating input and output links, can give misleading results when applied to linkages with substantial translational components or multiple output links. To take into account both linear and rotational displacement we define force mechanical advantage for a linkage (analogous to lever mechanical advantage) and apply this metric to measure transmission efficiency in the bird cranial mechanism. For linkages with multiple, expanding output points we propose a new functional metric, expansion advantage, to measure expansion amplification and apply this metric to the buccal expansion mechanism in fishes. Using the bird cranial linkage model, we quantify the inaccuracies that result from simplifying a 3D geometry into two dimensions. We also show that by combining single-chain linkages into parallel linkages, more links can be simulated while decreasing or maintaining the same number of input parameters. This generalized framework for linkage simulation and analysis can accommodate linkages of differing geometries and configurations, enabling novel interpretations of the mechanics of force transmission across a diversity of vertebrate feeding mechanisms and enhancing our understanding of musculoskeletal function and evolution. J. Morphol. 277:1570-1583, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Impact Behaviour of Soft Body Projectiles

    NASA Astrophysics Data System (ADS)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana

    2018-02-01

    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  19. Cryptococcosis outbreak in psittacine birds in Brazil.

    PubMed

    Raso, T F; Werther, K; Miranda, E T; Mendes-Giannini, M J S

    2004-08-01

    An outbreak of cryptococcosis occurred in a breeding aviary in São Paulo, Brazil. Seven psittacine birds (of species Charmosyna papou, Lorius lory, Trichoglossus goldiei, Psittacula krameri and Psittacus erithacus) died of disseminated cryptococcosis. Incoordination, progressive paralysis and difficulty in flying were seen in five birds, whereas superficial lesions coincident with respiratory alterations were seen in two birds. Encapsulated yeasts suggestive of Cryptococcus sp. were seen in faecal smears stained with India ink in two cases. Histological examination of the birds showed cryptococcal cells in various tissues, including the beak, choana, sinus, lungs, air sacs, heart, liver, spleen, kidneys, intestines and central nervous system. High titres of cryptococcal antigen were observed in the serum of an affected bird. In this case, titres increased during treatment and the bird eventually died. Yeasts were isolated from the nasal mass, faeces and liver of one bird. Cryptococcus neoformans var. gattii serovar B was identified based on biochemical, physiological and serological tests. These strains were resistant (minimum inhibitory concentration 64 microg/ml) to fluconazole. This is the first report of C. neoformans var. gattii occurring in psittacine birds in Brazil.

  20. Reproductive Biology and Its Impact on Body Size: Comparative Analysis of Mammalian, Avian and Dinosaurian Reproduction

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2011-01-01

    Janis and Carrano (1992) suggested that large dinosaurs might have faced a lower risk of extinction under ecological changes than similar-sized mammals because large dinosaurs had a higher potential reproductive output than similar-sized mammals (JC hypothesis). First, we tested the assumption underlying the JC hypothesis. We therefore analysed the potential reproductive output (reflected in clutch/litter size and annual offspring number) of extant terrestrial mammals and birds (as “dinosaur analogs”) and of extinct dinosaurs. With the exception of rodents, the differences in the reproductive output of similar-sized birds and mammals proposed by Janis and Carrano (1992) existed even at the level of single orders. Fossil dinosaur clutches were larger than litters of similar-sized mammals, and dinosaur clutch sizes were comparable to those of similar-sized birds. Because the extinction risk of extant species often correlates with a low reproductive output, the latter difference suggests a lower risk of population extinction in dinosaurs than in mammals. Second, we present a very simple, mathematical model that demonstrates the advantage of a high reproductive output underlying the JC hypothesis. It predicts that a species with a high reproductive output that usually faces very high juvenile mortalities will benefit more strongly in terms of population size from reduced juvenile mortalities (e.g., resulting from a stochastic reduction in population size) than a species with a low reproductive output that usually comprises low juvenile mortalities. Based on our results, we suggest that reproductive strategy could have contributed to the evolution of the exceptional gigantism seen in dinosaurs that does not exist in extant terrestrial mammals. Large dinosaurs, e.g., the sauropods, may have easily sustained populations of very large-bodied species over evolutionary time. PMID:22194835

Top