Science.gov

Sample records for birefringence pvlas achievements

  1. Recent Results from the PVLAS Experiment on the Magnetized Vacuum

    NASA Astrophysics Data System (ADS)

    Cantatore, Giovanni

    The vacuum element can be used as a target in a photon-photon collider in order to study its properties. Some of these properties are predicted by Quantum Electrodynamics, while additional and unexpected properties might be linked to the existence of yet undiscovered axion-like particles (ALPs) interacting with two photons. In this low energy case (1 2 texteV), real photons from a polarized laser beam are scattered off virtual photons provided by a magnetic field. Information on the scattering processes can be obtained by measuring changes in the polarization state of the probe photons. In the PVLAS (Polarizzazione del Vuoto con LASer) experiment, running at the Legnaro Laboratory of the Istituto Nazionale di Fisica Nucleare (INFN), near Padova, Italy, a linearly polarized laser beam is sent through a 5 textT strong magnetic field in vacuum, where it is reflected back and forth, by means of a Fabry-P’erot resonator, ˜ 50,000 times over a distance of 1 textm. A heterodyne ellipsometer allows the simultaneous detection of a birefringence and a rotation of the polarization plane. The sensitivity of the instrument allows the detection of rotation or of ellipticity angles of about 10-9 textrad, in an hour of data taking. The measurement technique employed by PVLAS will be illustrated, and recent results on polarization effects due to the magnetized vacuum will be presented in this chapter. The interpretation of these effects in terms of the production of ALPs will also be discussed. Finally, the realization of a photon-regeneration type experiment will be briefly illustrated.

  2. A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss

    SciTech Connect

    Chou Chau, Yuan-Fong Lim, Chee Ming; Yoong, Voo Nyuk; Syafi'ie Idris, Muhammad Nur

    2015-12-28

    We propose a simple structure of photonic crystal fibers (PCFs) with high birefringence and low confinement loss based on one rectangular centric ring of smaller circular air holes (CAHs) in the fiber core, and three rings of larger CAHs in the fiber cladding. This simple geometry (using all CAHs with two different air hole sizes) is capable of achieving a flexible control of the birefringence, B = 5.501 × 10{sup −3}, and ultra-low confinement loss, 7.30 × 10{sup −5 }dB/km, at an excitation wavelength of λ = 1550 nm. The birefringence value is ∼5.0 times greater than that obtained for conventional CAH PCF. This simple structure has the added advantage from the view point of easy fabrication, robustness, and cost. A full-vector finite element method combined with anisotropic perfectly matched layers was used to analyze the various fiber structures. We have analyzed four cases of CAH PCFs, focusing on the core asymmetry design as opposed to the conventional approach of CAHs or elliptical air holes on the cladding and core. The robustness against manufacturing inaccuracies of the proposed structure has also been further investigated in this work.

  3. High birefringence liquid crystals for photonic applications

    NASA Astrophysics Data System (ADS)

    Gauza, S.; Wen, C. H.; Wu, S. T.; Dabrowski, R.; Hsu, C. S.; Catanescu, C. O.; Chien, L. C.

    2005-09-01

    High birefringence liquid crystals (LCs) play an important role for laser beam steering, tunable-focus lens, reflective display, cholesteric LC laser, infrared dynamic scene projector, and telecom variable optical attenuator applications. We have developed some high birefringence compounds and eutectic mixtures with birefringence in the 0.4-0.7 range. For some photonic devices where response time is critical, we have also developed high birefringence dual-frequency LC mixtures. The cross-over frequency is around 5-10 kHz. Using such a dual-frequency LC mixture, sub-millisecond response time is achieved.

  4. Birefringent-fiber polarization coupler

    NASA Astrophysics Data System (ADS)

    Youngquist, R. C.; Brooks, J. L.; Shaw, H. J.

    1983-12-01

    Periodically stressing a birefringent fiber once per beat length can cause coherent coupling to occur between polarization modes. Such a birefringent-fiber polarization coupler is described here. More than 30 dB of power transfer between polarizations has been achieved. The device has been used as the output coupler of an in-line Mach-Zehnder interferometer, and better than 25-dB on/off extinction has been measured. The device is wavelength selective and can be used as a multiplexer or as a notch filter. A notch of 9-nm full width at half-maximum has been achieved with a 60-period comb structure.

  5. Coherent control of optically induced birefringence in azoaromatic molecules

    SciTech Connect

    Mendonca, C. R.; Neves, U. M.; Guedes, I.; Zilio, S. C.; Misoguti, L.

    2006-08-15

    Here we present the coherent control of two-photon induced birefringence in polymeric films containing Disperse Red 13 (DR13) azoaromatic molecules. Such control is achieved by enhancing and reducing the azochromophor cis-trans photoisomerization rate, which leads to the molecular orientation, inducing the birefringence. The dependence on chirp and phase mask of the birefringence signal was studied and modeled.

  6. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  7. PVLAS experiment, star cooling and big bang nucleosynthesis constraints: Possible interpretation with temperature dependent gauge symmetry breaking

    SciTech Connect

    Kim, Jihn E.

    2007-09-01

    It is known that the kinetic mixing of a photon and another U(1){sub ex} gauge boson can introduce millicharged particles. Millicharged particles f of mass 0.1 eV can explain the PVLAS experiment. I suggest a temperature dependent gauge symmetry breaking of U(1){sub ex} for this idea to be consistent with astrophysical and cosmological constraints.

  8. Compatibility of the chameleon-field model with fifth-force experiments, cosmology, and PVLAS and CAST results.

    PubMed

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine

    2007-09-21

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(phi) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology. PMID:17930493

  9. Compatibility of the chameleon-field model with fifth-force experiments, cosmology, and PVLAS and CAST results.

    PubMed

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine

    2007-09-21

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(phi) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology.

  10. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  11. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  12. Dual function microscope for quantitative DIC and birefringence imaging

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Zhu, Yizheng

    2016-03-01

    A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.

  13. Holodiagrams in birefringent media.

    PubMed

    Rabal, Héctor; Cap, Nelly; Gottschalk, Karin V; Simon, María C

    2003-10-10

    The modifications to the holodiagram concept to describe free propagation (the extraordinary ray) inside birefringent materials are described. Holodiagrams are graphs showing the loci where the sum or the difference in the optical path from a generic point to two foci is the same. The holodiagrams obtained in this way give the shape of the surfaces that satisfy Fermat's principle, conjugate by reflection of one focus into the other, and represent the interference fringes obtained if both points are coherent sources. The reflection law in birefringent media is investigated in relation to this diagram. One direction for the optical axis is considered: parallel to the line joining the source and the observation point. Quartz-type and calcite-type crystals are studied. PMID:14577535

  14. Birefringent phononic structures

    SciTech Connect

    Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.

    2014-12-15

    Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  15. Optical birefringence of aorta tissues

    NASA Astrophysics Data System (ADS)

    Tang, G. C.; Wang, W. B.; Pu, Y.; Alfano, R. R.

    2010-02-01

    The optical birefringence of porcine aortic tissues including heated and non-heated tissues was studied using polarization technique. The measurements show that a whole piece of aortic tissue has birefringence properties like a uniaxial crystal. The experiment results indicate that the birefringence status of tissue have a potential application for monitoring changes of tissue structure due to burning, plastic surgery, laser tissue welding and wound healing.

  16. Tunable optofluidic birefringent lens.

    PubMed

    Wee, D; Hwang, S H; Song, Y S; Youn, J R

    2016-05-01

    An optofluidic birefringent lens is demonstrated using hydrodynamic liquid-liquid (L(2)) interfaces in a microchannel. The L(2) lens comprises a nematic liquid crystal (NLC) phase and an optically isotropic phase for the main stream and the surrounding sub-stream, respectively. When the optofluidic device is subjected to a sufficiently strong electric field perpendicular to the flow direction, NLCs are allowed to orient along the external field rather than the flow direction overcoming fluidic viscous stress. The characteristics of the optofluidic birefringence lens are investigated by experimental and numerical analyses. The difference between the refractive indices of the main stream and the sub-stream changes according to the polarization direction of incident light, which determines the optical behaviour of the lens. The incidence of s-polarized light leads to a short focal point, while p-polarized light has a relatively long focal distance from the same L(2) interface. The curvatures and focal lengths of the lens are successfully evaluated by a hydrodynamic theory of NLCs and a simple ray-tracing model. PMID:27035877

  17. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  18. High birefringence and low viscosity liquid crystals

    NASA Astrophysics Data System (ADS)

    Wen, Chien-Hui

    In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual-frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ˜0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ˜0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2, 3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive Deltaepsilon or non-polar LC compounds or mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. In this dissertation, we investigate the

  19. Active polarization coupler for birefringent fiber

    NASA Astrophysics Data System (ADS)

    Brooks, J. L.; Youngquist, R. C.; Kino, G. S.; Shaw, H. J.

    1984-06-01

    Static coupling between polarization modes achieved by periodically stressing birefringent fiber once per beat length was recently reported. The same scheme is now used to obtain coupling modulation at kilohertz-to-megahertz frequencies by applying pressure to the fiber with an oscillating piezoelectric ceramic. An amplitude of 30-50 V (peak to peak) was found to be necessary to modulate the polarization coupling from a minimum to a maximum. Polarization modulation is also achieved by applying stress along one fiber polarization axis between the two static couplers of a Mach-Zehnder interferometer.

  20. Circular birefringence of banded spherulites.

    PubMed

    Cui, Xiaoyan; Shtukenberg, Alexander G; Freudenthal, John; Nichols, Shane; Kahr, Bart

    2014-04-01

    Crystal optical properties of banded spherulites of 21 different compounds--molecular crystals, polymers, and minerals--with helically twisted fibers were analyzed with Mueller matrix polarimetry. The well-established radial oscillations in linear birefringence of many polycrystalline ensembles is accompanied by oscillations in circular birefringence that cannot be explained by the natural optical activity of corresponding compounds, some of which are centrosymmetric in the crystalline state. The circular birefringence is shown to be a consequence of misoriented, overlapping anisotropic lamellae, a kind of optical activity associated with the mesoscale stereochemistry of the refracting components. Lamellae splay as a consequence of space constraints related to simultaneous twisting of anisometric lamellae. This mechanism is supported by quantitative simulations of circular birefringence arising from crystallite twisting and splaying under confinement. PMID:24625095

  1. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  2. Fiber gyroscope with birefringence modulation

    NASA Astrophysics Data System (ADS)

    Carrara, S. L. A.; Kim, B. Y.; Shaw, H. J.

    1987-03-01

    A theoretical analysis of the nonreciprocal phase error in a highly-birefringent fiber gyroscope is presented, characterizing the different types of errors and their sources in a general form. These error terms are due to polarization cross coupling in the fiber and in the fiber components and can be reduced by modulating the magnitude of the fiber birefringence at appropriate locations in the optical circuit and by balancing the optical power between the two polarization eigenmodes of the fiber at the input of the interferometer. Experimental results demonstrating these techniques show a 20 dB relief on the performance requirements of the polarizer usually employed for drift reduction.

  3. Long range surface plasmons in birefringent media

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.

    1983-01-01

    The propagation properties of surface plasmon polaritons guided by thin metal films bounded by birefringent media are investigated. For the very thin (less than or equal to 150 A) films required to produce long propagation distances, the effects of birefringence on the dispersion relations are found to be minimal. A small effect of the birefringence on the mode attenuation is found.

  4. Simple method for locking birefringent resonators.

    PubMed

    Libson, Adam; Brown, Nicolas; Buikema, Aaron; López, Camilo Cela; Dordevic, Tamara; Heising, Matthew; Evans, Matthew

    2015-02-01

    We report on a simple method of locking a laser to a birefringent cavity using polarization spectroscopy. The birefringence of the resonator permits the simple extraction of an error signal by using one polarization state as a phase reference for another state. No modulation of the light or the resonator is required, reducing the complexity of the laser locking setup. This method of producing an error signal can be used on most birefringent optical resonators, even if the details of birefringence and eigenpolarizations are not known. This technique is particularly well suited for fiber ring resonators due to the inherent birefringence of the fiber and the unknown nature of that birefringence. We present an experimental demonstration of this technique using a fiber ring. PMID:25836232

  5. Photoinduced birefringence in optical fibers: a comparative study of low-birefringence and high-birefringence fibers.

    PubMed

    Bardal, S; Kamal, A; Russell, P S

    1992-03-15

    A study of photoinduced birefringence in bow-tie (stress-induced) high-birefringence (Hi-Bi) and low-birefringence (Lo-Bi) germanosilicate optical fibers is conducted by using 532-nm light. The study reveals that Hi-Bi fibers are insensitive to light polarized along the fast axis, in contrast to Lo-Bi fibers, which are photosensitive along both axes. The induced birefringence in Lo-Bi fibers is reversible, whereas the change in Hi-Bi fibers is permanent. The sign of the induced birefringence is established experimentally for the first time to our knowledge, and the significance of the results to models based on stress and/or glass defects is briefly discussed.

  6. Constraints on cosmological birefringence energy dependence from CMB polarization data

    SciTech Connect

    Gubitosi, G.; Paci, F. E-mail: fpaci@sissa.it

    2013-02-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect.

  7. Stress effects in twisted highly birefringent fibers

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  8. Birefringence in time-dependent moving media

    NASA Astrophysics Data System (ADS)

    Lin, Shirong; Zhang, Ruoyang; Zhai, Yanwang; Wei, Jianye; Zhao, Qing

    2016-08-01

    Electromagnetic wave propagation in one- and two-dimensional time-dependent moving media is investigated in this paper. We identify another origin of linear birefringence caused by the component of the flow perpendicular to the wave vector. Previously, birefringence is induced by applying external electric and magnetic fields to non-crystalline material. Here it is shown that the time-varying velocity field also contributes to such a phenomenon. Our results indicate that the parallel component, time-dependent or not, will not yield birefringence. Furthermore, the time-dependent flow also results in a frequency shift. One-dimensional simulation is conducted to demonstrate these effects.

  9. Photon pair generation in birefringent optical fibers

    NASA Astrophysics Data System (ADS)

    Smith, Brian J.; Mahou, P.; Cohen, Offir; Lundeen, J. S.; Walmsley, I. A.

    2009-12-01

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  10. Spectral contents readout of birefringent sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1989-01-01

    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations.

  11. Optical temperature sensor utilizing birefringent crystals

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); James, Kenneth A. (Inventor); Strahan, Virgil H. (Inventor)

    1980-01-01

    A temperature sensor comprising an optical transducer member having an array of birefringent crystals. The length and, accordingly, the sensitivity to temperature change of successive birefringent crystals varies according to a particular relationship. The transducer is interconnected with a fiber optic transmission and detecting system. Respective optical output signals that are transmitted from the birefringent crystals via the fiber optic transmission system are detected and decoded so as to correspond to digits of a numbering system, whereby an accurate digital representation of temperature can ultimately be provided.

  12. Spun optical fibres: A helical structure of linear birefringence or circular birefringence?

    SciTech Connect

    Morshnev, Sergey K; Gubin, Vladimir P; Vorob'ev, I P; Starostin, I I; Sazonov, Aleksandr I; Chamorovsky, Yury K; Korotkov, N M

    2009-03-31

    An experiment has been proposed, theoretically substantiated and accomplished which has provided conclusive evidence in favour of one of two models for the behaviour of polarised light in optical fibres fabricated by spinning preforms with a high built-in linear birefringence (spun fibres): a helical structure of the built-in linear birefringence axes and circular birefringence. The experiment, carried out with a reflective fibreoptic dual-polarisation interferometer, has shown that the behaviour of polarisation states in spun fibres can be understood in terms of a helical structure of the built-in linear birefringence axes. (optical fibres)

  13. Shock Induced Birefringence in Lithium Fluoride

    SciTech Connect

    Holmes, N C

    2001-06-01

    We have used an ellipsometer to measure the birefringence of lithium fluoride in shock compression experiments. In previous x-ray diffraction experiments, single crystal [100] LiF has been reported to remain cubic at moderate pressures.

  14. New constraints on gravity-induced birefringence

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Haugan, Mark P.

    1996-01-01

    A wide class of gravitation theories predicts gravity-induced birefringence. For Moffat's NGT, the prototypical theory of this type, Gabriel, Haugan, Mann, and Palmer used the predicted gravitational birefringence and observations of solar polarization to constrain the Sun's nonsymmetric charge lsolar. We improve on this constraint by making use of improved knowledge of the solar source of polarization and of a refined analysis procedure. We obtain l2solar< (305 km)2.

  15. Birefringence, the Lost and Forgotten Optical Property

    NASA Astrophysics Data System (ADS)

    Nicholls, J.

    2009-05-01

    Petrologists and mineralogists could more effectively exploit birefringence and its derivative properties, retardation and interference color, to characterize minerals in thin section. Mineralogy texts and courses largely confine their treatments to the principal birefringences: γ - α, β - α, and γ - β in biaxial crystals and |ɛ - ω| in uniaxial crystals. Each section through a biaxial or uniaxial crystal has a birefringence and the birefringences range from zero to a maximum value for the substance under examination. The distribution of birefringence values on the indicatrix is not random; rather it follows a regular pattern. The pattern reveals itself in stereographic projection and it can be quantitatively depicted if the principal refractive indices are known. This pattern, when combined with the optical orientation of the crystal, places limits on the crystallographic orientation of the crystal plate in thin section. Birefringence can be used to estimate the composition of binary solid solutions displaying moderate to high interference colors if the optical orientation can be established. Computer color management techniques provide estimation of retardation values derived from interference colors to within a few nanometres in the range 250 to 1650 nanometres. These color management techniques can also be used to create charts and diagrams with retardation values as one variable and other mineral properties and compositions as the other variable. On such diagrams, interference colors can be painted, the color bands normal to the retardation axis like Michel-Levy charts.

  16. Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror.

    PubMed

    Moshe, I; Jackel, S

    2000-08-20

    Enhanced correction of thermally induced birefringence in the presence of strong single-pass, azimuthally dependent bipolar focusing was achieved in single-rod laser oscillators by use of an adaptive optic rear mirror with image relay and aberration correction capabilities. Together with a Faraday rotator, the imaging variable radius mirror was successfully tested in stable and unstable Nd:Cr:GSGG power oscillators under variable pump power conditions from 0 to 800 W. Birefringence correction in the absence of ray retracing was achieved. PMID:18350015

  17. Birefringent torque sensor for motors

    NASA Astrophysics Data System (ADS)

    Chung, Dukki; Merat, Francis L.; Discenzo, Fred M.; Harris, James S.

    1998-12-01

    Birefringent optical materials can be used to convert mechanical strain into fringe patterns of optical intensity which have typically been used to measure surface stains or stresses. In this paper a system will be described that uses a photoelastic transducer, linear sensor array, and neural network image processing to estimate the load torque for stationary and rotating motor shafts up to 1500 rpm. A photoelastic polymer coupling is attached to the shaft, and illuminated by polarized light. As the shaft torque varies the photoelastic plastic coupling experiences torsional strain. This results in a corresponding 2D fringe pattern when viewed through an optical polarizer. The strain that causes this observed pattern in a complex function of the applied torque applied to the shaft. A neural network is trained with the fringe patterns corresponding to calibrated load torques as measured by a laboratory strain gauge torque sensor. Experimental results show that the neural network torque estimator can accurately estimate the applied torque for both static and rotating shafts.

  18. Jones birefringence in twisted single-mode optical fibers.

    PubMed

    Tentori, Diana; Garcia-Weidner, A

    2013-12-30

    In this work we analyze the birefringence matrix developed for a twisted fiber in order to identify the basic optical effects that define its birefringence. The study was performed using differential Jones calculus. The resultant differential matrix showed three independent types of birefringence: circular, linear at 0 degrees and linear at 45 degrees (Jones birefringence). We applied this birefringence matrix to the description of the output state of polarization measured for three commercial fibers that due to its higher rigidity present stronger birefringence changes when twisted. The torsion applied to the erbium-doped fiber samples varied from 0 to 1440 degrees. PMID:24514769

  19. PCTFE as a solution to birefringence in atom trap viewports

    NASA Astrophysics Data System (ADS)

    Warner, C. L.; Behr, J. A.; Gorelov, A.

    2014-11-01

    We have developed and characterized optical viewports with the glass-to-metal seal made by the plastic PCTFE (polychlorotrifluoroethylene). The goal is to reduce stress-induced birefringence while maintaining ultra-high vacuum compatibility. We have maintained a Stokes parameter S3 of 0.9986, and achieved <5 × 10-11 Torr partial pressure of air. We have also measured the diffusion and permeation of helium through PCTFE and placed upper limits on nitrogen, oxygen, and argon permeation, as PCTFE has been suggested as an o-ring for transport of environmental noble gas samples, though we know of no other noble gas measurements.

  20. PCTFE as a solution to birefringence in atom trap viewports.

    PubMed

    Warner, C L; Behr, J A; Gorelov, A

    2014-11-01

    We have developed and characterized optical viewports with the glass-to-metal seal made by the plastic PCTFE (polychlorotrifluoroethylene). The goal is to reduce stress-induced birefringence while maintaining ultra-high vacuum compatibility. We have maintained a Stokes parameter S3 of 0.9986, and achieved <5 × 10(-11) Torr partial pressure of air. We have also measured the diffusion and permeation of helium through PCTFE and placed upper limits on nitrogen, oxygen, and argon permeation, as PCTFE has been suggested as an o-ring for transport of environmental noble gas samples, though we know of no other noble gas measurements. PMID:25430097

  1. PCTFE as a solution to birefringence in atom trap viewports

    SciTech Connect

    Warner, C. L.; Behr, J. A.; Gorelov, A.

    2014-11-15

    We have developed and characterized optical viewports with the glass-to-metal seal made by the plastic PCTFE (polychlorotrifluoroethylene). The goal is to reduce stress-induced birefringence while maintaining ultra-high vacuum compatibility. We have maintained a Stokes parameter S{sub 3} of 0.9986, and achieved <5 × 10{sup −11} Torr partial pressure of air. We have also measured the diffusion and permeation of helium through PCTFE and placed upper limits on nitrogen, oxygen, and argon permeation, as PCTFE has been suggested as an o-ring for transport of environmental noble gas samples, though we know of no other noble gas measurements.

  2. Crystal chemistry of birefringent hydrogrossular

    NASA Astrophysics Data System (ADS)

    Antao, Sytle M.

    2015-06-01

    Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green "jade" and 2. pink "jade"] were carried out with the Rietveld method, cubic space group and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca2.997Mg0.003)Σ3{Al1.794Fe{0.196/3+}Cr{0.004/3+}Mn{0.003/3+}Ti{0.002/4+}}Σ2[(SiO4)2.851(O4H4)0.151]Σ3 and (2) (Ca2.993Mg0.007)Σ3{Al1.977Fe{0.020/3+}Mn{0.003/3+}Cr{0.001/3+}}Σ2[(SiO4)2.272(O4H4)0.730]Σ3. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ2 and overall R ( F 2) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O-H bond distance (Å) are as follows: 74.4(1), a = 11.88874(4), and O-H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a = 11.9280(5), and O-H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a = 12.0591(1), and O-H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a = 11.9340(2), and O-H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the "Si-O" bond direction, which is written as Z-O, because of the general formula, X3Y2Z3O12, for garnet. Phase 1a is near end-member grossular, ideally Ca3Al2Si3O12. The deficiencies of the site occupancy factors ( sofs) for the Si (=Z) site indicate that there are significant [O4H4]4- replacing [SiO4]4-. The Z-O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z-O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites

  3. Birefringent polarization ray tracing: Theory and applications

    NASA Astrophysics Data System (ADS)

    McClain, Stephen Charles

    1992-06-01

    Birefringent polarization ray tracing is an extension of geometric ray tracing. In addition to calculating ray paths and phases, it also analyzes the state of polarization through birefringent devices. Some systems containing birefringent elements include optical computers, radiometers, optical isolators, bar code scanners, and optical data storage systems. This dissertation derives explicit algorithms for polarization ray tracing through anisotropic media, optically active media, and anisotropic optically active media, such as quartz. The objective was to go beyond the electromagnetic relations to establish algorithms in standard ray tracing format, ready for direct inclusion into lens design software. The algorithms, derived from Maxwell's equations, constitutive relations, and boundary conditions, calculate the wavevector, ray vector, optical path length, refractive index, and polarization state of a ray. Generalized Fresnel relations govern the division of energy at each interface into two transmitted and two reflected modes. The algorithms are applied to calculate the polarization aberrations of a variety of birefringent devices. In particular, it is established that the polarization properties of quartz vary significantly (greater than 20 percent) over angles of only 5 degrees. This limits the useful field of view of quartz devices. Field of view aberrations of birefringent elements can critically affect the performance of optical systems. Also, design guidelines are presented for pseudodepolarizers. These devices spatially scramble the polarization. Inserted into an instrument, a depolarizer negates the polarization sensitivity of the elements which follow it. Presented in detail is the design and analysis of a depolarizer for use in a spectrometer on NASA's Earth Observing System (EOS).

  4. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M.

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  5. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    SciTech Connect

    Wang, Chao; Jin, Wa; Ma, Jun; Jin, Wei Yang, Fan; Ho, Hoi Lut; Liao, Changrui; Wang, Yiping

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  6. Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence

    NASA Astrophysics Data System (ADS)

    Chiang, K. S.; Wong, D.

    1991-07-01

    A simple formula is derived to describe the effect of radial pressure on the birefringence in a coated birefringent optical fiber. Both plastic and metal coating materials are studied. Theoretical analysis shows that the pressure-induced birefringence in the fiber is determined mainly by the elastic properties of the fiber glasses and is rather insensitive to the coating material and thickness. The condition for zero pressure sensitivity is found to be strictly independent of the coating parameters. The use of boron-doped stress-applying sections to optimize the pressure sensitivity of a silica fiber is discussed.

  7. Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing.

    PubMed

    Martynkien, Tadeusz; Wojcik, Grzegorz; Mergo, Pawel; Urbanczyk, Waclaw

    2015-07-01

    We report on the fabrication of a birefringent side-hole polymer optical fiber with an elliptical core made of polymethyl metacrylate-polystyrene (PMMA/PS) copolymer and pure PMMA cladding. The fiber core is located in a narrow PMMA bridge separating the holes. Two fibers with different bridge thickness were fabricated and characterized. We demonstrate, experimentally and numerically, that, by narrowing the bridge between the holes, one can increase simultaneously the fiber birefringence and the polarimetric sensitivity to hydrostatic pressure. In the fiber with the bridge as narrow as 5 μm, we achieved a record-high polarimetric sensitivity to hydrostatic pressure ranging between 175 and 140 rad/MPa/m in the spectral range of 600-830 nm. The phase modal birefringence in this fiber is also high and exceeds 3×10(-5) at 600 nm, which results in small polarization cross talk. PMID:26125360

  8. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals.

    PubMed

    Choi, Byeongdae; Song, Seongkyu; Jeong, Soon Moon; Chung, Seok-Hwan; Glushchenko, Anatoliy

    2014-07-28

    We report an optical film with electrically tunable birefringence in which the liquid crystals (LCs), mixed with the host polymer, form long-range ordering. The film was prepared through polymerization without phase separation between the LCs and polymers. Driving voltage below 30 V for full switching of birefringence is achieved in a 6 μm-thick film. Electro-optical investigations for the film suggest that the long-range ordering of the LCs mixed in the film caused by polymerization lead to rotations of the LCs as well as optical anisotropy in the film. These films with electrically tunable birefringence could have applications as flexible light modulators and phase retardation films for 2D-3D image switching. PMID:25089422

  9. Optical stress sensor based on electro-optic compensation for photoelastic birefringence in a single crystal

    SciTech Connect

    Li Changsheng

    2011-09-20

    An optical stress sensor is proposed by using a single crystal with both electro-optic and photoelastic effects. Different from previous crystal-based stress sensors, the proposed sensor is based on electro-optic compensation for stress-induced birefringence and does not need an additional quarter-wave plate or modulator, because the stress-sensing element is simultaneously used as an electro-optic compensator. Candidate sensing materials include electro-optic crystals of the 3 m symmetry group and all glass with large Kerr coefficients. A primary experiment has demonstrated that the stress-induced birefringence in lithium niobate crystal can be compensated by its electro-optic birefringence. The proposed stress sensor is compact and low cost, and it is possible to achieve closed-loop stress measurement.

  10. Research on spectroscopic imaging. Volume 1: Technical discussion. [birefringent filters

    NASA Technical Reports Server (NTRS)

    Title, A.; Rosenberg, W.

    1979-01-01

    The principals of operation and the capabilities of birefringent filters systems are examined. Topics covered include: Lyot, Solc, and partial polarizer filters; transmission profile management; tuning birefringent filters; field of view; bandpass control; engineering considerations; and recommendations. Improvements for field of view effects, and the development of birefringent filters for spaceflight are discussed in appendices.

  11. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

    PubMed Central

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-01-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia. PMID:21750772

  12. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.

    PubMed

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-07-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates ("wave-plate-enhanced RBS") that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia.

  13. Polarized light in birefringent samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chue-Sang, Joseph; Bai, Yuqiang; Ramella-Roman, Jessica

    2016-02-01

    Full-field polarized light imaging provides the capability of investigating the alignment and density of birefringent tissue such as collagen abundantly found in scars, the cervix, and other sites of connective tissue. These can be indicators of disease and conditions affecting a patient. Two-dimensional polarized light Monte Carlo simulations which allow the input of an optical axis of a birefringent sample relative to a detector have been created and validated using optically anisotropic samples such as tendon yet, unlike tendon, most collagen-based tissues is significantly less directional and anisotropic. Most important is the incorporation of three-dimensional structures for polarized light to interact with in order to simulate more realistic biological environments. Here we describe the development of a new polarization sensitive Monte Carlo capable to handle birefringent materials with any spatial distribution. The new computational platform is based on tissue digitization and classification including tissue birefringence and principle axis of polarization. Validation of the system was conducted both numerically and experimentally.

  14. CMB polarization systematics, cosmological birefringence, and the gravitational waves background

    SciTech Connect

    Pagano, Luca; Bernardis, Paolo de; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Piacentini, Francesco; De Troia, Grazia; Natoli, Paolo; Polenta, Gianluca

    2009-08-15

    Cosmic microwave background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several nonstandard, symmetry breaking theories of electrodynamics that allow for in vacuo rotation of the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the cosmic microwave background may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle {alpha}=-4.3 deg. {+-}4.1 deg. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1 deg. for Planck and 0.2 deg. for the Experimental Probe of Inflationary Cosmology, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a gravitational waves background.

  15. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  16. Spectral characterization of nanostructured birefringent porous silicon.

    PubMed

    Hakshur, Keren; Yifat, Yuval; Levin, Amit; Ruschin, Shlomo

    2015-12-20

    We present measurements and analysis of the reflection spectrum of white light from a highly birefringent porous silicon layer at different polarization states. We report an anomalous pattern in the spectrum of linearly polarized light at 45° with respect to the principal axes of the layer. This spectrum comprises a combination of two interference effects, namely the Fabry-Perot-type multiple-beam interference present in a simple thin film, and a two-wave interference caused by the beat of two combined orthogonally polarized waves propagating in the birefringent medium. We perform a Fourier analysis of the measured reflected spectra. This analysis furnishes a powerful tool in order to separate the two interference mechanisms and determine the degree of coherence of their superposition.

  17. Polarimetric characterization of birefringent filter components.

    PubMed

    Mudge, Jason; Mitchell, Keith; Tarbell, Theodore

    2015-01-10

    Over the past 75 years, birefringent filter technology has evolved significantly. For nearly that same period of time, these filters have been designed and used by solar scientists to study the Sun. Prior to assembling these types of filters, each component, e.g., polarizers and wave plates, is characterized to determine its polarimetric parameters to ensure the desired filter design performance. With time and cost becoming an ever increasing issue, it is imperative to test components designated for a birefringent filter efficiently. This article addresses a shift to increased efficiency when testing components of very low volume (<5 units) solar research filters that minimizes high-priced hardware expenditures, i.e., Mueller matrix spectropolarimeter. PMID:25967624

  18. Reconsidering the origins of Forsbergh birefringence patterns

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Kumar, A.; McQuaid, R. G. P.; Glazer, A. M.; Thomas, P. A.; Gregg, J. M.

    2016-07-01

    In 1949, Forsbergh, Jr. reported spontaneous spatial ordering in the birefringence patterns seen in flux-grown BaTi O3 crystals under the transmission polarized light microscope [Phys. Rev. 76, 1187 (1949), 10.1103/PhysRev.76.1187]. Stunningly regular square-net arrays were often only found within a finite temperature window and could be induced on both heating and cooling, suggesting genuine thermodynamic stability. At the time, Forsbergh rationalized the patterns to have resulted from the impingement of ferroelastic domains, creating a complex tessellation of variously shaped domain packets. However, no direct evidence for the intricate microstructural arrangement proposed by Forsbergh has subsequently been found. Moreover, there are no robust thermodynamic arguments to explain the finite region of thermal stability, its occurrence just below the Curie temperature, and the apparent increase in entropy associated with the loss of the Forsbergh pattern on cooling. Despite decades of research on ferroelectrics, this ordering phenomenon and its thermodynamic origin have hence remained a mystery. In this paper, we reexamine the microstructure of flux-grown BaTi O3 crystals, which show Forsbergh birefringence patterns. Given an absence of any obvious arrays of domain polyhedra or even regular shapes of domain packets, we suggest an alternative origin for the Forsbergh pattern in which sheets of orthogonally oriented ferroelastic stripe domains simply overlay one another. We show explicitly that the Forsbergh birefringence pattern occurs if the periodicity of the stripe domains is above a critical value. Moreover, by considering well-established semiempirical models, we show that the significant domain coarsening needed to generate the Forsbergh birefringence is fully expected in a finite window below the Curie temperature. We hence present a much more straightforward rationalization of the Forsbergh pattern than that originally proposed in which exotic thermodynamic

  19. Performance analysis of intracavity birefringence sensing

    SciTech Connect

    Yoshino, Toshihiko

    2008-05-10

    The performance of intracavity birefringence sensing by use of a standing-wave laser is theoretically analyzed when the cavity involves internal reflection. On the three-mirror compound cavity model, the condition for converting an optical path length into a laser frequency or a retardation into an optical beat frequency with good linearity and little uncertainty is derived as a function of the cavity parameters and is numerically analyzed.

  20. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  1. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  2. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance.

    PubMed

    Chen, Na-na; Liang, Jian; Ren, Li-yong

    2013-07-20

    A new kind of polymer porous fiber with elliptical air-holes is designed for obtaining high birefringence in the terahertz (THz) frequency range in this paper. Using the finite element method, the properties of this kind of fiber are simulated in detail including the single-mode propagation condition, the birefringence, and the loss. Theoretical results indicate that the single-mode THz wave in the frequency range from 0.73 to 1.22 THz can be guided in the fiber; the birefringence can be enhanced by rotating the major axis of the elliptical air-hole and there exists an optimal rotating angle at 30°. At this optimal angle a birefringence as high as 0.0445 can be obtained in a wide frequency range. Low-loss THz guidance can be achieved owing to the effective reduction of the material absorption in such a porous fiber. This research is useful for polarization-maintaining THz-wave guidance. PMID:23872779

  3. Detecting strain in birefringent materials using spectral polarimetry

    NASA Technical Reports Server (NTRS)

    Ragucci, Anthony J. (Inventor); Cisar, Alan J. (Inventor); Huebschman, Michael L. (Inventor); Garner, Harold R. (Inventor)

    2010-01-01

    A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.

  4. Highly birefringent low-mode-asymmetry microstructured optical fibres

    SciTech Connect

    Denisov, A N; Levchenko, A E; Semenov, S L; Dianov, Evgenii M

    2011-03-31

    A novel birefringent microstructured fibre (BMF) design is proposed, and its birefringence and dispersion characteristics are analysed using the finite element method. The results indicate that the proposed BMF design ensures high birefringence ({approx}5x10{sup -3}) at a low mode asymmetry. At a certain core ellipticity, the BMF configurations considered may have equal mode field sizes along two orthogonal axes. (fibre optics)

  5. Transfer matrix for treating stratified media including birefringent crystals.

    PubMed

    Essinger-Hileman, Thomas

    2013-01-10

    Birefringent crystals are extensively used to manipulate polarized light. The generalized transfer matrix developed allows efficient calculation of the full polarization state of light transmitted through and reflected by a stack of arbitrarily many discrete layers of isotropic and birefringent materials at any frequency and angle of incidence. The matrix of a uniaxial birefringent crystal with arbitrary rotation is calculated, along with its reduction to the matrix of an isotropic medium. This method is of great practical importance where tight control of systematic effects is needed in optical systems employing birefringent crystals, one example being wave plates used by cosmic microwave background polarimetry with wide field-of-view telescopes.

  6. Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2016-04-01

    Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) provide novel opportunities to overcome several limitations of conventional, purely charge-based semiconductor lasers. Presumably the highest potential lies in the spin-VCSEL's capability for ultrafast spin and polarization dynamics which can be significantly faster than the intensity dynamics in conventional devices. By injecting spin-polarized carriers, these coupled spin-photon dynamics can be controlled and utilized for high-speed applications. While relaxation oscillations provide insights in the speed and direct modulation bandwidth of conventional devices, resonance oscillations in the circular polarization degree step in for the spin and polarization dynamics in spin-VCSELs. These polarization oscillations can be generated using pulsed spin injection and achieve much higher frequencies than the conventional intensity relaxation oscillations in these devices. Furthermore polarization oscillations can be switched on and off and it is possible to generate short polarization pulses, which may represent an information unit in polarization-based optical communication. The frequency of polarization oscillations is mainly determined by the birefringence-induced mode splitting between both orthogonal linearly polarized laser modes. Thus the polarization modulation bandwidth of spin-VCSELs can be increased by adding a high amount of birefringence to the cavity, for example by incorporating mechanical strain. Using this technique, we could demonstrate tunable polarization oscillations from 10 to 40 GHz in AlGaAs-based 850nm VCSELs recently. Furthermore a birefringence-induced mode splitting of more than 250 GHz could be demonstrated experimentally. Provided that this potential for ultrafast dynamics can be fully exploited, birefringent spin-VCSELs are ideal devices for fast short-haul optical interconnects. In this paper we review our recent progress on polarization dynamics of birefringent spin

  7. Experiment to measure vacuum birefringence: Conceptual design

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno

    2016-03-01

    Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.

  8. Superluminal group velocity in a birefringent crystal

    SciTech Connect

    Halvorsen, Tore Gunnar; Leinaas, Jon Magne

    2008-02-15

    We examine the effect of superluminal signal propagation through a birefringent crystal, where the effect is not due to absorption or reflection, but to the filtration of a special polarization component. We first examine the effect by a stationary phase analysis, with results consistent with those of an earlier analysis of the system. We supplement this analysis by considering the transit of a Gaussian wave and find bounds for the validity of the stationary phase result. The propagation of the Gaussian wave is illustrated by figures.

  9. Method and apparatus for measuring birefringent particles

    DOEpatents

    Bishop, James K.; Guay, Christopher K.

    2006-04-18

    A method and apparatus for measuring birefringent particles is provided comprising a source lamp, a grating, a first polarizer having a first transmission axis, a sample cell and a second polarizer having a second polarization axis. The second polarizer has a second polarization axis that is set to be perpendicular to the first polarization axis, and thereby blocks linearly polarized light with the orientation of the beam of light passing through the first polarizer. The beam of light passing through the second polarizer is measured using a detector.

  10. Smectic-A-filled birefringent elements and fast switching twisted dual-frequency nematic cells used for digital light deflection

    NASA Astrophysics Data System (ADS)

    Pishnyak, Oleg P.; Golovin, Andrii B.; Kreminska, Liubov; Pouch, John J.; Miranda, Félix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-04-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90-deg twisted nematic (TN) cell.

  11. Smectic A Filled Birefringent Elements and Fast Switching Twisted Dual Frequency Nematic Cells Used for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-01-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.

  12. Form birefringence in porous semiconductors and dielectrics: A review

    SciTech Connect

    Golovan', L. A. Kashkarov, P. K.; Timoshenko, V. Yu.

    2007-07-15

    The phenomenon of optical anisotropy in porous semiconductors and dielectrics (porous silicon, gallium phosphide, and alumina) and photonic crystal structures formed on their basis is reviewed. It is shown that anisotropic nanostructuring of initially isotropic media leads to the occurrence of strong birefringence. Applicability of the effective-medium model to description of the form birefringence in porous semiconductors and dielectrics is discussed.

  13. Liquid microlenses and waveguides from bulk nematic birefringent profiles.

    PubMed

    Čančula, Miha; Ravnik, Miha; Muševič, Igor; Žumer, Slobodan

    2016-09-19

    We demonstrate polarization-selective microlensing and waveguiding of laser beams by birefringent profiles in bulk nematic fluids using numerical modelling. Specifically, we show that radial escaped nematic director profiles with negative birefringence focus and guide light with radial polarization, whereas the opposite - azimuthal - polarization passes through unaffected. A converging lens is realized in a nematic with negative birefringence, and a diverging lens in a positive birefringence material. Tuning of such single-liquid lenses by an external low-frequency electric field and by adjusting the profile and intensity of the beam itself is demonstrated, combining external control with intrinsic self-adaptive focusing. Escaped radial profiles of birefringence are shown to act as single-liquid waveguides with a single distinct eigenmode and low attenuation. Finally, this work is an approach towards creating liquid photonic elements for all-soft matter photonics. PMID:27661952

  14. Michelson-Morley with a Birefringent Cavity

    NASA Astrophysics Data System (ADS)

    Monsalve, Francisco J.; Hohensee, Michael; Müller, Holger

    2012-06-01

    We report on the progress of a birefringent cavity test of the isotropy of the speed of light. Previous experimental tests have constrained anisotropies in the speed of light at the level of parts in 10^17 [1-2]. These experiments search for frame-dependent variations in the resonant frequencies of two orthogonally mounted optical cavities. Uncorrelated fluctuations in the cavity lengths are a significant challenge for such experiments. Our experiment uses a single dielectric-filled cavity, and measures the difference in the resonant frequency of two orthogonally polarized modes. Anisotropies in the speed of light will manifest as a frame-dependent strain on the dielectric [3-4], giving rise to a frame-dependent variation in the cavity birefringence. By making the length of each cavity mode identical, we expect that our experiment will be less sensitive to thermal cavity fluctuations. [4pt] [1] S. Herrmann, A. Senger, K. M"ohle, M. Nagel, E.V. Kovalchuk and A. Peters, PRD 80, 105011 (2009).[2] Ch. Eisel, A. Yu. Nevsky, and S. Schiller, PRL 103, 090401 (2009).[3] H. M"uller, PRD 71, 045004 (2005).[4] V.A. Kosteleck'y and M. Mewes, PRD 80, 015020 (2009).

  15. Magnetic birefringence of natural and synthetic ferritin

    NASA Astrophysics Data System (ADS)

    Koralewski, M.; Pochylski, M.; Mitróová, Z.; Timko, M.; Kopčanský, P.; Melníková, L.

    2011-10-01

    Magnetically induced optical birefringence (Δn) was measured for magnetoferritin (MFer), horse spleen ferritin (HSF) and nanoscale magnetite aqueous suspensions. The anisotropy of optical polarizability was calculated. The average magnetic dipole moment calculated assuming the Langevin model was about 20,000 and 8500 μB per particle, for magnetite nanoparticle and magnetoferritin, respectively. Poor fitting results and the unphysical value of average magnetic moment per Fe ion for MFer excluded the use of the simple Langevin model for description of Δn for this compound. It was deduced that for MFer the estimated average magnetic moment should be about 1125 μB per molecule. A magnetic contribution from the protein shell was found to be negligible. Results from the low-field region permit the calculation of the Cotton-Mouton (C-M) constants and their comparison for the substances studied. It was shown that magnetic birefringence and C-M constant can be powerful parameters in identification of the magnetic core structure of ferritins, especially useful in biomedicine.

  16. Nematic liquid crystals exhibiting high birefringence

    NASA Astrophysics Data System (ADS)

    Thingujam, Kiranmala; Bhattacharjee, Ayon; Choudhury, Basana; Dabrowski, Roman

    2016-06-01

    Two fluorinated isothiocyanato nematic liquid crystalline compounds, 4'-butylcyclohexyl-3, 5-difluoro-4-isothiocyanatobiphenyl and 4'-pentylcyclohexyl-3, 5-difluoro-4-isothiocynatobiphenyl are studied in detail to obtain their different physical parameters. Optical polarizing microscopy, differential scanning calorimetry, density and dielectric studies have been carried out for the two samples. Both the samples were found to have high clearing temperature (>100 °C) and exhibit small enthalpy of transition. The two samples exhibit high optical birefringence (Δ n > 0.2). The values of order parameters for the two samples were obtained using different approaches, namely, Vuks', Neugebauer's, modified Vuks' and direct extrapolation method from birefringence data. Experimentally obtained values of order parameters have also been compared with theoretical Maier-Saupe values. The parallel and perpendicular components of dielectric permittivity values of the two compounds were also calculated and their anisotropy values were found to be small. The effect of temperature on the molecular dipole moment μ and the angle of inclination β of the dipole axis with the director have also been investigated in this work.

  17. Induced birefringence and dichroism in azo polymers. Comparison between amorphous and liquid crystalline polymers

    SciTech Connect

    Natansohn, A.; Brown, D.; Rochon, P.

    1993-12-31

    Macroscopic order can be induced in amorphous high-Tg azo polymers (usually containing electron-donor - electron-acceptor substituted azobenzene moieties) by exposure to polarized light. The phenomenon is based on a series of trans-cis-trans isomerization cycles and the induced birefringence is typically of 2x10{sup {minus}2}. The ordered domains can be returned to randomness ({open_quotes}erased{close_quotes}) using circularly polarized light. This paper will present a comparison between amorphous and liquid crystalline azo polymers. The most significant difference between these two types of polymers is that any other type of concert with the azo moiety. Consequently the dichroism and birefringence induced in the liquid crystalline polymers can be one order of magnitude higher than in the amorphous polymers. At the same time, however, the time required to achieve saturation also increases by at least one order of magnitude.

  18. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    PubMed Central

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  19. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  20. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  1. Flow Birefringence in Polymer Melt Rheology.

    NASA Astrophysics Data System (ADS)

    Subramanian, Ramesh Mani

    Optical techniques that are sensitive to structural changes induced by a flow field applied to polymers during processing have been used to study the fundamental relationships between applied deformation, mechanical stresses, and flow -induced molecular orientation. But most of the work done so far has used opto-mechanical techniques (i.e. mechanical measurement of stress and deformation, and optical measurement of flow-induced molecular orientation). This thesis reports the development and application of non-intrusive, opto-electronic techniques for rheo-optical studies on a 300 Pa.s polydimethylsiloxane (PDMS) melt flowing through a 5.00 cm wide converging wedge cell at room temperature. The two techniques used as tools of rheological characterization in the present study are laser doppler anemometry (LDA) to compute strain rate from local velocity measurements, and flow birefringence (double refraction) for measurement of the anisotropic refractive index tensor which, for flexible polymer solutions and melts, provides information the state of stress in the material via the stress-optical law. Birefringence measurements in extensional flow up to a pressure drop of 689 kPa across the converging wedge cell indicated that stress tensor and polarizability or anisotropic refractive index tensor were linearly related for the polymer over a range of strain rate that extended well into the non-Newtonian region. Along the cell centerline, the extensional flow behaviour of the polymer was studied via birefringence measurements in the linear stress-optical region, and it was found to be extension-thinning in nature. Assuming no boundary layer error, the optical techniques used in the present study provide a valuable test for constitutive relations between stress and deformation in the polymer by comparing predicted orientation angles with experimental measurements in combined shear and extension flows. The two constitutive equations tested were the Power-law model and the

  2. Detection of birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Mirhej, Andrew; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.

  3. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    SciTech Connect

    Brakhane, Stefan Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  4. Strongly birefringent pb3o2cl2 nanobelts.

    PubMed

    Sigman, Michael B; Korgel, Brian A

    2005-07-20

    Orthorhombic Pb3O2Cl2 (mendipite) nanobelts micrometers in length and tens of nanometers wide were synthesized by a solventless thermolysis of a single-source precursor in the presence of capping ligands. The nanobelts are single crystals elongated preferentially in the [010] direction. Pb3O2Cl2 is a birefringent material due to its anisotropic crystal structure. The nanobelts exhibit birefringence enhanced by 1 order of magnitude as a result of their small size and belt geometry exceeding the birefringence of naturally occurring minerals, including CaCO3 and TiO2. The preferential elongation of the nanobelts in the [010] direction contributes to this enhancement.

  5. Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators.

    PubMed

    Kim, Jun-Whee; Park, Su-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2012-05-21

    Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using a crosslinkable liquid crystal, reactive mesogen, and inserted between the BMs to produce static phase retardation and polarization coupling. By applying a triangular AC signal to one BM and a DC signal to another, the polarization states of the output light are modulated to cover the entire surface of the Poincaré sphere. PMID:22714231

  6. Photonic quasi-crystal fiber with high birefringence

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Xiao, Wei; Cai, Weicheng; Liu, Exian; Feng, Bo; Wang, Ziming; Liang, Taiyuan; Wang, Shuo; Liu, Jianjun

    2016-03-01

    A high-birefringence photonic quasi-crystal fiber (HB-PQF) based on SiO2 is proposed. The relationships between birefringence and structure parameters and between beat length and structure parameters are researched by finite difference beam propagation method. With the optimization of fiber structure parameters, the birefringence is 1.4207×10-2, which is two orders of magnitude higher than the normally used fiber when the wavelength is 1.55 μm. The radius of the fiber is 6.5 μm. The HB-PQF in a communication sensor will have important application prospects.

  7. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    NASA Astrophysics Data System (ADS)

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10-8. After baking the cell at 150 °C, we reach a pressure below 10-10 mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  8. Novel laser machining of optical fibers for long cavities with low birefringence.

    PubMed

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  9. Novel laser machining of optical fibers for long cavities with low birefringence.

    PubMed

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs. PMID:25607080

  10. Angular tuning of the magnetic birefringence in rippled cobalt films

    SciTech Connect

    Arranz, Miguel A.; Colino, José M.

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  11. Luminescence from oriented emitting dipoles in a birefringent medium.

    PubMed

    Moon, Chang-Ki; Kim, Sei-Yong; Lee, Jeong-Hwan; Kim, Jang-Joo

    2015-04-01

    We present an optical model to describe the luminescence from oriented emitting dipoles in a birefringent medium and validate the theoretical model through its applications to a dye doped organic thin film and organic light emitting diodes (OLEDs). We demonstrate that the optical birefringence affects not only far-field radiation characteristics such as the angle-dependent emission spectrum and intensity from the thin film and OLEDs, but also the outcoupling efficiency of OLEDs. The orientation of emitting dipoles in a birefringent medium is successfully analyzed from the far-field radiation pattern of a thin film using the model. In addition, the birefringent model presented here provides a precise analysis of the angle-dependent EL spectra and efficiencies of OLEDs with the determined emitting dipole orientation. PMID:25968793

  12. Form birefringence in Kerr media: analytical formulation and rigorous theory.

    PubMed

    Bej, Subhajit; Tervo, Jani; Svirko, Yuri P; Turunen, Jari

    2015-06-15

    Employing the first-order effective medium theory, we develop an analytical model that governs light propagation inside a form birefringent medium with isotropic dielectric Kerr nonlinear material. This analytical model is found to be in excellent agreement with the recently developed rigorous Fourier modal method for Kerr nonlinear material [J. Opt. Soc. Am. B31, 2371 (2014)JOSAAH0030-394110.1364/JOSAB.31.002371]. Theoretical results demonstrate that form birefringent linear gratings with Kerr nonlinear materials behave like uniaxial crystals. However, the magnitude of birefringence can be tuned with a change of the incident light intensity. This paves the way toward all-optical control of form birefringence by exploiting optical nonlinearities in subwavelength structures. PMID:26076294

  13. On the existence of Jones birefringence and Jones dichroism.

    PubMed

    Arteaga, Oriol

    2010-05-01

    We claim that the so-called Jones birefringence and Jones dichroism effects, understood as new optical phenomena of difficult experimental observation, cannot be deduced from Jones publications and were proposed due to a misinterpretation of his original work.

  14. Anomalously temperature-independent birefringence in biaxial optical crystals

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-31

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160{sup 0}C. (letters to the editor)

  15. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  16. Quantifying strain birefringence halos around inclusions in diamond

    NASA Astrophysics Data System (ADS)

    Howell, D.; Wood, I. G.; Dobson, D. P.; Jones, A. P.; Nasdala, L.; Harris, J. W.

    2010-11-01

    The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, Updelta n(R_{text{i}} )_{text{av}} , to the peak value of birefringence that has been encountered; to first order Updelta n_{text{pk}} = (3/4)(L/R_{text{i}} ) Updelta n(R_{text{i}} )_{text{av}} . From this birefringence, the remnant pressure ( P i) can be calculated using the photoelastic relationship Updelta n_{text{pk}} = - (3/4)n3 q_{text{iso}} P_{text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied

  17. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented. PMID:21394189

  18. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

  19. Birefringence gradient development during drying of solution cast functional films and their mechanical, optical and gas barrier properties

    NASA Astrophysics Data System (ADS)

    Yucel, Orcun

    shown by TEM images and WAXS. This is in agreement with the out-of-plane anisotropy development observed during drying. Beyond a critical solid wt%, out-of-plane birefringence started to increase earlier with organoclay addition. In the case of multi-layer organoclay reinforced PAI films, the drying behavior of each individual layer was tracked and a complementary drying model is proposed. Planar orientation of nanoplatelets resulted in excellent helium-barrier properties. Mechanical properties were optimized at 3wt% clay content. In a similar way, multifunctional nanocomposite films exhibiting flexibility, high modulus and high gas barrier properties were developed using a soluble polyamide-imide (PAI) in dimethylacetamide (DMAc) with graphene-oxide nanosheets (GO). Addition of GO content resulted in increase in evaporation rate of solvent. This was attributed to increase in hydrophobicity of the films with increased GO content as shown by contact angle measurements. Overall He permeability of dried hybrid films decreased over 40% even with very small GO content. Multi-layered optical retarder film exhibiting low birefringence dispersion and high optical clarity was developed using a solutions of polysulfone (PSF), polycarbonate-co-polymer (PCC) and atactic polystyrene (PS) in N-methyl pyrrolidone (NMP). The uniaxial and biaxial deformation behavior and associated anisotropy development were determined real-time, using a newly developed real-time measurement system. Higher deformation rates generated lower out-of-plane birefringence with higher in-plane birefringence. Machine Direction (MD) stretching resulted in negative retardation values at high deformation rates. This behavior was reversed upon inception of Transverse Direction (TD) stretching. Optimum R th and R0 values were achieved at 1mm/sec stretch rate to compensate ECB-LCDs. Birefringence dispersion of multi-layer films was found to be flattened.

  20. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.

    PubMed

    Irsch, Kristina; Gramatikov, Boris I; Wu, Yi-Kai; Guyton, David L

    2014-04-01

    We present an improved method for remote eye-fixation detection, using a polarization-modulated approach to retinal birefringence scanning (RBS), without the need for individual calibration or separate background measurements and essentially independent of corneal birefringence. Polarization-modulated RBS detects polarization changes generated in modulated polarized light passing through a unique pattern of nerve fibers identifying and defining the retinal region where fixation occurs (the fovea). A proof-of-concept demonstration in human eyes suggests that polarization-modulated RBS has the potential to reliably detect true foveal fixation on a specified point with an accuracy of at least ± 0.75°, and that it can be applied to the general population, including individuals with sub-optimal eyes and young children, where early diagnosis of visual problems can be critical. As could be employed in an eye-controlled display or in other devices, polarization-modulated RBS also enables and paves the way for new and reliable eye-fixation-evoked human-machine interfaces.

  1. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  2. Phase matching of four-wave interactions of SRS components in birefringent SRS-active crystals

    NASA Astrophysics Data System (ADS)

    Smetanin, Sergei N.; Basiev, Tasoltan T.

    2012-03-01

    A new method has been proposed for achieving wave vector matching in four-wave interactions of frequency components upon SRS in birefringent SRS-active crystals. The method ensures anti-Stokes wave generation and enables a substantial reduction in higher order Stokes SRS generation thresholds. Phase matching directions in BaWO4 SRS-active negative uniaxial crystals and SrWO4 SRS-active positive uniaxial crystals have been found in the wavelength range 0.4 — 0.7 μm.

  3. Direct UV written planar Bragg gratings that feature zero fluence induced birefringence

    NASA Astrophysics Data System (ADS)

    Holmes, Christopher; Cooper, Peter A.; Fernando, Harendra N. J.; Stroll, Andreas; Gates, James C.; Krishnan, Chirenjeevi; Haynes, Roger; Mennea, Paolo L.; Carpenter, Lewis G.; Gawith, Corin B. E.; Roth, Martin M.; Charlton, Martin D.; Smith, Peter G. R.

    2015-12-01

    Direct UV writing is a planar fabrication process capable of simultaneously defining waveguides and Bragg gratings. The technique is fully computer controlled and uniquely uses a small focused spot ~7 μm in diameter for direct writing exposure. This work investigates its use to achieve phase trimming and Bragg grating definition in silica-on-silicon lithographic waveguides. It is observed that birefringence control using direct UV writing can be made independent of exposure fluence with this technique through tailoring substrate stress. The result is demonstrated experimentally and supported theoretically using finite element analysis.

  4. Birefringence of single and bundled microtubules.

    PubMed Central

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366

  5. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  6. Dynamics of creation photoinduced birefringence on (PAH/PAZO)n layer-by-layer films: Analysis of consecutive cycles

    NASA Astrophysics Data System (ADS)

    Timóteo, Ana Rita Monteiro; Ribeiro, Jorge H. F.; Ribeiro, Paulo A.; Raposo, Maria

    2016-01-01

    Reproducibility and reliability of data is an important subject in the development of organic devices for photonics applications. This work reports the analysis of successive photoinduced birefringence creation curves in layer-by-layer films of poly(allylamine hydrochloride) (PAH) and poly{1-(4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido)-1,2-ethanediyl, sodium salt} (PAZO) with different number of bilayers. The birefringence creation or writing curves are described by two processes: a faster one referring the contribution of trans-cis-trans photoisomerization cycles to the birefringence; and a slower one associated to the contribution of motion of the polymer chain to the birefringence. As the number of write-erase cycles increases, the characteristic times of these processes decreases, respectively, to values of 18 and 212 s independently of the number of bilayers of films while for the magnitudes the fast process prevailed relatively to the slow, by 70% against 30%. The observed behavior is explained by the thermal treatment given by the laser beam in the irradiated area with increase of free volume which contributes for the chromophore mobility. This conclusion was achieved by measuring the surface temperature during and after irradiation and analyzing by optical microscopy the film surface where an increase of holes and aggregation as a result of irradiation was observed. Infrared spectra of films after and before irradiation showed changes in the Cdbnd C absorbance indicating aggregation of azobenzene groups while changes in the protonated and deprotonated carboxylic acid groups are consistent with ionization degree diminishing which is explained by the removal of water molecules by heating caused by laser. The results presented in this paper indicates that an increase in the number of write-erase cycles contributes to reliable and reproducible birefringence characteristics of PAH/PAZO films - a good new from point of view of possible applications.

  7. Plasmonic gold nanodiscs using piezoelectric substrate birefringence for liquid sensing

    NASA Astrophysics Data System (ADS)

    Hao, Danni; Kenney, Mitchell G.; Cumming, David R. S.

    2016-06-01

    This article presents the simulation, fabrication, and experimental characterization of a surface plasmonic resonance (SPR) sensor integrated with an acoustic sensing compatible substrate. The SPR sensor is designed to work in the visible region with gold nanodisc arrays fabricated on LiNbO3, which is both piezoelectric and birefringent. A linear relationship between resonance wavelength and varying liquid refractive indices were observed in experiments, and a sensitivity of 165 nm/refractive index unit was obtained. Polarization effects of the birefringent property of the Y-cut LiNbO3 substrate have been investigated, which can also be applied to X-cut LiNbO3. Our study demonstrates the feasibility of an SPR sensor device utilizing a birefringent substrate, which has acoustic wave compatibility and can pave the way toward much more robust and flexible biosensing devices.

  8. Measurement of high-birefringent spun fiber parameters using short-length fiber Bragg gratings.

    PubMed

    Vasiliev, S A; Przhiyalkovsky, Ya V; Gnusin, P I; Medvedkov, O I; Dianov, E M

    2016-05-30

    Spectral polarization characteristics of short-length fiber Bragg gratings UV-written in a highly-birefringent spun-fiber have been investigated. Based on the analysis of the characteristics the technique for measuring the built-in linear phase birefringence as well as the spin period in this fiber type has been suggested. In this method the birefringence dispersion is excluded and therefore the built-in linear phase birefringence can be measured with an improved accuracy. PMID:27410060

  9. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  10. Induced and Form Birefringence in High-Frequency Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Ponce, Geminiano; Solano, Cristina

    2001-08-01

    High-frequency phase polarization gratings are fabricated holographically in dichromated gelatin dyed with malachite green. It is observed that the intensity of the -1 diffracted beam is a sinusoidal function of the incident polarization angle. In addition, we analyze the dependence of the diffracted order polarization on grating frequency. It is evident from our results that form birefringence becomes significant when the grating period is smaller than the illumination wavelength, thus modifying the optically induced birefringence. Then, in polarization hologram reconstruction, it is not possible to obtain the polarization distribution at the recording step for high-frequency objects.

  11. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  12. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter.

    PubMed

    Nastishin, Yu A; Liu, H; Schneider, T; Nazarenko, V; Vasyuta, R; Shiyanovskii, S V; Lavrentovich, O D

    2005-10-01

    We report on the optical properties of the nematic (N) phase formed by lyotropic chromonic liquid crystals (LCLCs) in well aligned planar samples. LCLCs belong to a broad class of materials formed by one-dimensional molecular self-assembly and are similar to other systems such as "living polymers" and "wormlike micelles." We study three water soluble LCLC forming materials: disodium chromoglycate, a derivative of indanthrone called Blue 27, and a derivative of perylene called Violet 20. The individual molecules have a planklike shape and assemble into rodlike aggregates that form the phase once the concentration exceeds about 0.1 M. The uniform surface alignment of the N phase is achieved by buffed polyimide layers. According to the light absorption anisotropy data, the molecular planes are on average perpendicular to the aggregate axes and thus to the nematic director. We determined the birefringence of these materials in the N and biphasic N-isotropic (I) regions and found it to be negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic low-molecular-weight nematic materials. In the absorbing materials Blue 27 and Violet 20, the wavelength dependence of birefringence is nonmonotonic because of the effect of anomalous dispersion near the absorption bands. We describe positive and negative tactoids formed as the nuclei of the new phase in the biphasic N-I region (which is wide in all three materials studied). Finally, we determined the scalar order parameter of the phase of Blue 27 and found it to be relatively high, in the range 0.72-0.79, which puts the finding into the domain of general validity of the Onsager model. However, the observed temperature dependence of the scalar order parameter points to the importance of factors not accounted for in the athermal Onsager model, such as interaggregate interactions and the temperature dependence of the aggregate length.

  13. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  14. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  15. A Kind of Double-Cladding Photonic Crystal Fiber with High Birefringence and Two Zero-Dispersion Wavelengths

    NASA Astrophysics Data System (ADS)

    Zhou, Hong-Song; Li, Shu-Guang; Fu, Bo; Yao, Yan-Yan; Zhang, Lei

    2010-01-01

    A kind of double-cladding photonic crystal fiber (DC-PCF) with high birefringence and two zero-dispersion wavelengths is proposed. It is found that the birefringence of DC-PCF with inner cladding air holes pitch 1.0 μm and diameter 0.8 μm is 1.001 × 10-2 in the optical communication band at wavelength 1.55 μm by the multipole method. It is demonstrated that two zero dispersion wavelengths can be achieved in the optical communication band between 0.8 μm and 1.7 μm, and the first zero-dispersion wavelength is in the working wave band of the Ti:sapphire oscillator, which contributes to the frequency conversion of the Ti:sapphire femtosecond laser. PCF with two zero-dispersion wavelengths can make strong power supercontinuum spectral in the near infrared band.

  16. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  17. Multivariate system of polarization tomography of biological crystals birefringence networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, N. I.; Pavlov, S. V.; Ushenko, A. G.; Sobko, O. V.; Savich, V. O.

    2014-08-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  18. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  19. Zero-birefringent polyimide for polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ho; Kang, Jae-Wook; Li, Xiangdan; Lee, Myong-Hoon; Kim, Jang-Joo

    2003-07-01

    A novel zero birefringent and photosensitive polyimide was synthesized. The polymer is soluble in solvents and contains a chalcone group for photo-crosslinking by UV exposure. The glass transition and decomposition temperature of the polymer were 254°C and 430°C before cross-linking. Evolution of the absorption spectra upon UV exposure indicated that the cross-linking reaction is related to the cycloaddition of the double bonds in the chalcone group to form cyclobutane. The photo-crosslinking reaction not only increased the thermal stability, but also induced a refractive index change of the films. The refractive index of the film was reduced upon UV exposure from 1.5862 to 1.5697 for TE mode and from 1.5807 to 1.5697 for TM mode, respectively, resulting in zero birefringence after curing. Loss of p-conjugation in the chalcone group by the crosslinking reaction is supposed to induce the reduction of the refractive indices and orbital change from sp2 to sp3 makes the polymer chain be kinked, resulting in decrease of birefringence. The polymer film showed optical loss of 0.41 dB/cm at 1.3 mm and 0.54 dB/cm at 1.55 mm. Zero birefringence and low optical loss combined with photo-processibility of the material are making it an excellent candidate for the high performance waveguide materials.

  20. Dispersion characterization of group birefringence in polarization-maintaining fiber using a Kerr phase-interrogator

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Baker, Chams; Bao, Xiaoyi

    2015-07-01

    We present a new approach to characterize dispersion of group birefringence in a long polarization-maintaining fiber (PMF). Two sinusoidal optical signals are respectively launched into fast and slow axes of a PMF under test. Wavelength dependent group-delay difference between two sinusoidal optical signals induced by group birefringence in the PMF is measured using a Kerr phase-interrogator, and dispersion of group birefringence is characterized from the group-delay difference. Measurements of wavelength dependent group birefringence and group birefringence dispersion for a 459.4-m Panda PMF are experimentally demonstrated.

  1. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  2. Annealing of linear birefringence in single-mode fiber coils - Application to optical fiber current sensors

    NASA Technical Reports Server (NTRS)

    Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.

    1991-01-01

    Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.

  3. Development of an angular displacement measurement technique through birefringence heterodyne interferometry.

    PubMed

    Hsieh, Hung-Lin; Lee, Ju-Yi; Chen, Lin-Yu; Yang, Yang

    2016-04-01

    An angular displacement measurement sensor with high resolution for large range measurement is presented. The design concept of the proposed method is based on the birefringence effect and phase detection of heterodyne interferometry. High system symmetry and simple operation can be easily achieved by employing an innovative sandwich optical design for the angular sensor. To evaluate the feasibility and performance of the proposed method, several experiments were performed. The experimental results demonstrate that our angular displacement measurement sensor can achieve a measurement range greater than 26°. Considering the high-frequency noise, the measurement resolution of the system is approximately 1.2° × 10-4. Because of the common-path arrangement, our proposed method can provide superior immunity against environmental disturbances. PMID:27136979

  4. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence.

    PubMed

    Radosevich, Andrew J; Rogers, Jeremy D; Capoğlu, Ilker R; Mutyal, Nikhil N; Pradhan, Prabhakar; Backman, Vadim

    2012-11-01

    ABSTRACT. We present an open source electric field tracking Monte Carlo program to model backscattering in biological media containing birefringence, with computation of the coherent backscattering phenomenon as an example. These simulations enable the modeling of tissue scattering as a statistically homogeneous continuous random media under the Whittle-Matérn model, which includes the Henyey-Greenstein phase function as a special case, or as a composition of discrete spherical scatterers under Mie theory. The calculation of the amplitude scattering matrix for the above two cases as well as the implementation of birefringence using the Jones N-matrix formalism is presented. For ease of operator use and data processing, our simulation incorporates a graphical user interface written in MATLAB to interact with the underlying C code. Additionally, an increase in computational speed is achieved through implementation of message passing interface and the semi-analytical approach. Finally, we provide demonstrations of the results of our simulation for purely scattering media and scattering media containing linear birefringence.

  5. Birefringence Measurements of Spherulites formed in β-Lactoglobulin

    NASA Astrophysics Data System (ADS)

    Hardin, Eric; Kirkwood, Brad; Loman, Jazmine; Herat, Athula; Mahmood, Rizwan; Domike, Kristin

    2009-03-01

    Many proteins have a propensity to aggregate into amyloid fibril containing spherulite-like structures. In some instances these spherulitic protein aggregates have been observed in people suffering from a number of neurodegenerative diseases, including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob's. However, the exact role these aggregates play in the body, their internal structure, and the aggregation mechanism still remains a mystery. The model protein used in our study, β-lactoglobulin (BLG), produce spherulites under low pH and high temperature conditions. We report birefringence measurement on BLG using phase retardation method as a function of temperature. Birefringence (˜0.0022 ± 0.0002) data suggest very weak ordering within the spherulites. These spherulites seem to disappear when we added an extensively studied thermotropic liquid crystal [4'-pentyl-4-cyanobiphenyl (5CB)] in β-Lactoglobulin + water+ hydrochloric acid. Our preliminary data suggests that the strong interaction energy between the two systems may lead to the destruction of spherulites.

  6. Ultraviolet-induced birefringence in hydrogen-loaded optical fiber

    SciTech Connect

    Canning, J.; Deyerl, H.J.; Soerensen, H.R.; Kristensen, M.

    2005-03-01

    A precision phase-shifting approach to fabricate various phase-shifted gratings using different combinations of polarized ultraviolet (UV) light is demonstrated. In doing so, the difference between s- and p-polarized light reported by others is confirmed. However, we reveal added complexity for the role of hydrogen and deuterium in the UV-induced process. Previous arguments for the origins are systematically ruled out by reviewing existing literature. We note that the birefringence is made up of at least two components with different thermal stabilities, one consistent simply with molecular hydrogen being present in the system. Overall the birefringence, by deduction, is associated with anisotropy in hydrogen reactions within the fiber. As a result they lead, through known mechanisms of dilation in glass, to anisotropic stress relaxation that can be annealed out, with or without hydrogen remaining, at low temperatures close to 125 deg. C.

  7. Dichroism and birefringence of natural violet diamond crystals

    SciTech Connect

    Konstantinova, A. F. Titkov, S. V.; Imangazieva, K. B.; Evdishchenko, E. A.; Sergeev, A. M.; Zudin, N. G.; Orekhova, V. P.

    2006-05-15

    Investigation of the optical properties of natural violet diamonds from the Yakutian kimberlites is performed. A red shift of the absorption edge is revealed in the absorption spectra of these crystals. This shift is indicative of the presence of a high concentration of nitrogen in the diamonds studied. Along with the strong band at 0.550 {mu}m, weaker bands at 0.390, 0.456 and 0.496 {mu}m are revealed. It is shown that violet diamond crystals have birefringence and dichroism of about 10{sup -5} and 10{sup -6}, respectively. When a light beam propagates perpendicularly to colored lamellas, the dichroism is much larger and the birefringence is smaller than in the case where the beam direction is parallel to lamellas.

  8. Single-Sideband Frequency Shifting In Birefringent Optical Fiber

    NASA Astrophysics Data System (ADS)

    Risk, W. P.; Youngquist, R. C.; Kino, G. S.; Shaw, H. J.

    1984-09-01

    Single-sideband frequency shifting has been demonstrated in birefringent fiber by using a traveling acoustic wave to couple the two orthogonal polarizations of the fiber. Both surface and bulk acoustic waves have been used. Frequency shifts as high as 15 MHz have been observed, with carrier and unwanted sideband suppressions of 25-30 dB, using acoustic powers of a few watts.

  9. Fourier polarimetry of the birefringence distribution of myocardium tissue

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Dubolazov, O. V.; Ushenko, V. O.; Gorsky, M. P.; Soltys, I. V.; Olar, O. V.

    2015-11-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of causes of death due to coronary heart disease (CHD) and acute coronary insufficiency (ACI) were found.

  10. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver; Polarbear Collaboration

    2015-12-01

    We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E -mode and odd-parity B -mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B -modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B -mode power spectrum. Using the POLARBEAR measurements of the B -mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  11. Use of Cosserat birefringence to measurement couple stresses by photoelasticity

    NASA Astrophysics Data System (ADS)

    Marek, Sikoń

    2014-05-01

    The quantum analysis of the polar atom under the action of a mechanical load is presented in this work. The obtained solution can be used to describe the optical properties of the Cosserat medium in the form of the gyro-birefringence. Rayleigh scattering of laser light coming towards the Cosserat medium head is analysed to measure the rotation of the azimuth of polarisation associated with couple stresses.

  12. Tuning micropillar cavity birefringence by laser induced surface defects

    SciTech Connect

    Bonato, Cristian; Ding Dapeng; Gudat, Jan; Exter, Martin P. van; Thon, Susanna; Kim, Hyochul; Petroff, Pierre M.; Bouwmeester, Dirk

    2009-12-21

    We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.

  13. Use of Cosserat birefringence to measurement couple stresses by photoelasticity

    SciTech Connect

    Marek, Sikoń

    2014-05-27

    The quantum analysis of the polar atom under the action of a mechanical load is presented in this work. The obtained solution can be used to describe the optical properties of the Cosserat medium in the form of the gyro-birefringence. Rayleigh scattering of laser light coming towards the Cosserat medium head is analysed to measure the rotation of the azimuth of polarisation associated with couple stresses.

  14. Spectral-Content Readout Of Stress-Induced Birefringence

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Voloshin, Arkady S.

    1992-01-01

    Spectrum of transmitted light indicates stress in sensor or specimen. Photoelastic apparatus demonstrates feasibility of analysis of spectrum of transmitted light to quantify birefringence in transparent specimen. By augmenting conventional photoelastic analysis with spectral sensors and automating it with computer control and processing of data, technique made more versatile and useful. Potential uses include measurement of stresses in optical fibers and transparent materials in general.

  15. In-situ SLM correction by birefringence mapping

    NASA Astrophysics Data System (ADS)

    Carrat, Vincent; Pruvost, Laurence; Viaris de Lesegno, Bruno

    2013-09-01

    Liquid crystal spatial light modulators (SLM) often suffer from defects that need to be compensated for demanding phase modulation applications. Usually the calibration map used to correct the SLM are determined at the factory or on a dedicated optical bench, but either way the measurement is done away from the experimental setup. So this correction map can't reflect any temporal modification of defects, or correct for defects induced by the experimental setup itself or the environment. With a liquid crystal SLM, the read-out beam phase is modulated by tuning locally the birefringence. We present here a method where we record the birefringence map with a second superimposed light beam which uses the SLM in intensity modulation. In a first experiment we use the birefringence map to deduce the complete phase response of the SLM and optimize its parameters. In a second experiment we demonstrate the correction of externally induced defects: after a comparison between the measured and desired birefringence maps, SLM defects are compensated via a feed-back on the addressed hologram. As SLM monitoring is done in-place we can control time-dependant defects like those induced by a powerful read-out beam or a thermal drift. This method allows us to measure the defects of the SLM with spatial and phase resolutions comparable to interferometric methods. As it relies on polarization modulation, vibrations and misalignments are not critical, therefore supplying robustness. Furthermore, this method provides in-situ measurement, so that it's easy to compensate day to day defects variation or aging. Finally the demonstrated method is a way open to closed-loop phase correction.

  16. Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics

    SciTech Connect

    Laemmerzahl, Claus; Hehl, Friedrich W.

    2004-11-15

    We consider premetric electrodynamics with a local and linear constitutive law for the vacuum. Within this framework, we find quartic Fresnel wave surfaces for the propagation of light. If we require (i) the Fresnel equation to have only real solutions and (ii) the vanishing of birefringence in vacuum, then a Riemannian light cone is implied. No proper Finslerian structure can occur. This is generalized to dynamical equations of any order.

  17. Intra-cavity fiber laser technique for high accuracy birefringence measurement

    NASA Astrophysics Data System (ADS)

    Li, Ning; Luo, Fei; Unlu, Selim; Morse, T. F.; Hernandez-Cordero, Juan; Battiato, James; Wang, Ding

    2006-08-01

    When a device under test (DUT) with birefringence is placed within a laser cavity two distinct sets of orthogonally polarized longitudinal modes will result. If the output of the laser is sent through a 45o linear polarizer, polarization mode beating (PMB) between these two sets of longitudinal modes can be detected. We demonstrate the relation between PMB and the birefringence of the DUT and show that by tracking the PMB it provides a sensitive measurement of the birefringence of the device. We first examined the birefringence of a Newport PM fiber and then measured the birefringence of a 3M (Austin, TX) Chirped grating 1.0 m in length. For comparison, birefringence measurements were performed using a Hewlett-Packard Polarization Analyzer (HP 8509B).

  18. Computational study to evaluate the birefringence of uniaxially oriented film of cellulose triacetate.

    PubMed

    Hayakawa, Daichi; Ueda, Kazuyoshi

    2015-01-30

    The intrinsic birefringence of a cellulose triacetate (CTA) film is evaluated using the polarizability of the monomer model of the CTA repeating unit, which is calculated using the density functional theory (DFT). Since the CTA monomer is known to have three rotational isomers, referred to as gg, gt, and tg, the intrinsic birefringence of these isomers is evaluated separately. The calculation indicates that the monomer CTA with gg and gt structures shows a negative intrinsic birefringence, whereas the monomer unit with a tg structure shows a positive intrinsic birefringence. By using these values, a model of the uniaxially elongated CTA film is constructed with a molecular dynamics simulation, and the orientation birefringence of the film model was evaluated. The result indicates that the film has negative orientation birefringence and that its value is in good agreement with experimental results. PMID:25498014

  19. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  20. Semiconductor optical amplifier direct modulation with double-stage birefringent fiber loop

    NASA Astrophysics Data System (ADS)

    Engel, Thomas; Rizou, Zoe V.; Zoiros, Kyriakos E.; Morel, Pascal

    2016-06-01

    The feasibility of cascading two birefringent fiber loops (BFLs) for directly modulating a conventional semiconductor optical amplifier (SOA) at a faster data rate than that being possible by its limited electrical bandwidth is demonstrated for the first time. The experimental results reveal the improvements in the quality characteristics of the encoded signal compared to those achieved with a single-stage BFL. The observed trends are complemented by numerical simulations, which allow to investigate the impact of the double-stage BFL detuning and specify how this critical parameter must be selected for enhanced performance. Provided that it is properly tailored, the proposed optical notch filtering scheme efficiently compensates for the pattern-dependent SOA response and enables this element to be employed as intensity modulator with improved performance at enhanced data speeds.

  1. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing. PMID:27409947

  2. Coupled-mode equation of polarization modes of twisted birefringent fibers in a unified coordinate.

    PubMed

    Fang, Zujie; Yang, Fei; Cai, Haiwen; Qu, Ronghui

    2013-01-20

    A coupled-mode equation (CME) of twisted birefringent fiber is presented in this paper, which uses the degenerate polarization modes of single-mode fibers as eigenmodes in a unified coordinate. The inconsistency between the coordinate and the rotating principal axis, existing in the previous CME, is solved by conversion to the lab coordinate. The CME gives self-consistent results for fibers with high birefringence or low birefringence and for single-mode fibers as well. Analyses and simulations show the CME gives characteristics of twisted birefringent fiber coincident with the property of polarization-maintaining fibers.

  3. Birefringence properties of a polarization maintaining Panda fibre during Bragg grating regeneration

    NASA Astrophysics Data System (ADS)

    Polz, Leonhard; Jarsen, Andreas; Bartelt, Hartmut; Roths, Johannes

    2015-09-01

    Regeneration of fibre Bragg gratings under application of a high temperature annealing process in a high birefringent polarisation maintaining fibre of type Panda was investigated. During the annealing process, a distinct nonlinearity and hysteresis of the birefringence with temperature was observed. After the temperature process, the birefringence between slow and fast axis at room temperature was nearly doubled, which is in agreement with observations of other researchers. The hysteresis in birefringence might be explained by the crossing of the transition temperature of the stress applying parts and the relief of in-frozen mechanical and thermal stresses.

  4. Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity

    SciTech Connect

    Durand, Mathieu; Morville, Jerome; Romanini, Daniele

    2010-09-15

    We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.

  5. Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.

    PubMed

    Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang

    2016-08-01

    A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results. PMID:27472640

  6. Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.

    PubMed

    Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang

    2016-08-01

    A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results.

  7. Thermally induced birefringence in Nd:YAG slab lasers

    SciTech Connect

    Ostermeyer, Martin; Mudge, Damien; Veitch, Peter J.; Munch, Jesper

    2006-07-20

    We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

  8. X-ray natural birefringence in reflection from graphene

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H.-Ch.; Gilbert, M.; Wahab, H.; Timmers, H.; Choi, S.-H.; Gaupp, A.; Krivenkov, M.; Varykhalov, A.; Rader, O.; Legut, D.; Oppeneer, P. M.

    2016-07-01

    The existence of natural birefringence in x-ray reflection on graphene is demonstrated at energies spanning the carbon 1 s absorption edge. This new x-ray effect has been discovered with precision measurements of the polarization-plane rotation and the polarization-ellipticity changes that occur upon reflection of linearly polarized synchrotron radiation on monolayer graphene. Extraordinarily large polarization-plane rotations of up to 30∘, accompanied by a change from linearly to circularly polarized radiation have been measured for graphene on copper. Graphene on single crystalline cobalt, grown on tungsten, exhibits rotation values of up to 17∘. Both graphene systems show resonantly enhanced effects at the π* and σ* energies. The results are referenced against those obtained for polycrystalline carbon and highly oriented pyrolytic graphite (HOPG), respectively. As expected, polycrystalline carbon shows negligible rotation, whereas a huge maximum rotation of 140∘ has been observed for HOPG that may be considered a graphene multilayer system. HOPG is found to exhibit such large rotation values over a broad energy range, even well beyond the π* resonance energy due to the contributions of numerous graphene layers. To explain the origin of the observed natural birefringence of graphene, the Stokes parameters as well as the x-ray natural linear dichroism in reflection have been determined. It is shown that the birefringence directly results from the optical anisotropy related to the orthogonal alignment of π* and σ* bonds in the graphene layer. Our polarization analysis reveals a strong bonding of graphene on Co with a reduced σ* excitation energy and a strong tilt of 50 % of the pz orbitals towards diagonal orientation. In contrast, graphene on Cu is weakly bound with an orthogonal orientation of the pz orbitals. Exhibiting such a large natural birefringence that can be controlled through substrate choice, and because of excellent heat conductivity

  9. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber.

    PubMed

    Zhu, Zhaoming; Brown, Thomas

    2004-03-01

    Besides coherence degradations, supercontinuum spectra generated in birefringent photonic crystal fibers also suffer from polarization fluctuations because of noise in the input pump pulse. This paper describes an experimental study of polarization properties of supercontinuum spectra generated in a birefringent photonic crystal fiber, validating previous numerical simulations. PMID:19474887

  10. Research of polarization properties of the birefringent waveguides coupling point at different polish angles

    NASA Astrophysics Data System (ADS)

    Shulepov, V. A.; Aksarin, S. M.

    2016-08-01

    Integrated optical birefringent waveguides are widely used in the field of phase interferometric fiber optic sensors. In sensors integrated optical waveguides are coupled to birefringent fiber waveguides. Due to different optical properties polarization conversion occurs at waveguides coupling point which may cause parasite interference to the signal of fiber optic sensors.

  11. Birefringence of a normal human red blood cell and related optomechanics in an optical trap

    NASA Astrophysics Data System (ADS)

    Nagesh, Belavadi Venkatakrishnaiah; Yogesha, Yogesha; Pratibha, Ramarao; Parthasarathi, Praveen; Iyengar, Shruthi Subhash; Bhattacharya, Sarbari; Ananthamurthy, Sharath

    2014-11-01

    A normal human red blood cell (RBC) when trapped with a linearly polarized laser, reorients about the electric polarization direction and then remains rotationally bound to this direction. This behavior is expected for a birefringent object. We have measured the birefringence of distortion-free RBCs in an isotonic medium using a polarizing microscope. The birefringence is confined to the cell's dimple region and the slow axis is along a diameter. We report an average retardation of 3.5±1.5 nm for linearly polarized green light (λ=546 nm). We also estimate a retardation of 1.87±0.09 nm from the optomechanical response of the RBC in an optical trap. We reason that the birefringence is a property of the cell membrane and propose a simple model attributing the origin of birefringence to the phospholipid molecules in the lipid bilayer and the variation to the membrane curvature. We observe that RBCs reconstituted in shape subsequent to crenation show diminished birefringence along with a sluggish optomechanical response in a trap. As the arrangement of phospholipid molecules in the cell membrane is disrupted on crenation, this lends credence to our conjecture on the origin of birefringence. Dependence of the birefringence on membrane contours is further illustrated through studies on chicken RBCs.

  12. Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals.

    PubMed

    Mao, Nannan; Wu, Juanxia; Han, Bowen; Lin, Jingjing; Tong, Lianming; Zhang, Jin

    2016-05-01

    The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses. PMID:27030911

  13. Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals.

    PubMed

    Mao, Nannan; Wu, Juanxia; Han, Bowen; Lin, Jingjing; Tong, Lianming; Zhang, Jin

    2016-05-01

    The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.

  14. Spectral-Domain Measurements of Birefringence and Sensing Characteristics of a Side-Hole Microstructured Fiber

    PubMed Central

    Hlubina, Petr; Martynkien, Tadeusz; Olszewski, Jacek; Mergo, Pawel; Makara, Mariusz; Poturaj, Krzysztof; Urbańczyk, Waclaw

    2013-01-01

    We experimentally characterized a birefringent side-hole microstructured fiber in the visible wavelength region. The spectral dependence of the group and phase modal birefringence was measured using the methods of spectral interferometry. The phase modal birefringence of the investigated fiber increases with wavelength, but its positive sign is opposite to the sign of the group modal birefringence. We also measured the sensing characteristics of the fiber using a method of tandem spectral interferometry. Spectral interferograms corresponding to different values of a physical parameter were processed to retrieve the spectral phase functions and to determine the spectral dependence of polarimetric sensitivity to strain, temperature and hydrostatic pressure. A negative sign of the polarimetric sensitivity was deduced from the simulation results utilizing the known modal birefringence dispersion of the fiber. Our experimental results show that the investigated fiber has a very high polarimetric sensitivity to hydrostatic pressure, reaching −200 rad × MPa−1× m−1 at 750 nm. PMID:23989824

  15. On the birefringence of healthy and malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Basu, Himanish; Dharmadhikari, Jayashree A.; Sharma, Shobhona; Mathur, Deepak

    2013-12-01

    The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found to itself exercise a profound influence on the rotational dynamics by inducing stage-specific birefringence. Our measurements shed new light on the competition between shape- and form-birefringence in RBCs. We demonstrate the possibility of using birefringence to establish very early stages of infected parasites and of assessing various factors that contribute to birefringence in normal and infected cells. Our results have implications for the development and use of noninvasive techniques of quantifying changes in cell properties induced by malaria disease pathology.

  16. Testing the Lorentz Invariance of Light with a Birefringent Cavity

    NASA Astrophysics Data System (ADS)

    Hohensee, Michael; Monsalve, Francisco; Müller, Holger

    2010-03-01

    We report on the progress of a novel experimental test of the isotropy of c, based on measuring the birefringence of a single optical cavity. Tests of the isotropy of c typically compare the phase velocities of two orthogonally propagating optical modes. Using pairs of high-finesse optical cavities, such tests have constrained direction-dependent variations in the speed of light to the level of parts per 10^17 [1-2]. The precision of these tests is presently limited by systematic stochastic fluctuations in the relative length of such cavities. We have developed an experiment which compares the phase velocities of two orthogonally polarized optical modes in a single high-finesse dielectric-filled optical cavity. Since anisotropies in c can make otherwise isotropic materials optically birefringent [3-4], we anticipate that we will be able to place significantly tighter constraints on Lorentz violation for photons. [4pt] [1] S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk and A. Peters, PRD 80, 105011 (2009).[2] Ch. Eisel, A. Yu. Nevsky, and S. Schiller, PRL 103, 090401 (2009).[3] H. Müller, PRD 71, 045004 (2005).[4] V.A. Kosteleck'y and M. Mewes, PRD 80, 015020 (2009).

  17. Nonlinear response of the electric birefringence of polyelectrolyte solutions.

    PubMed

    Déjardin, J L; Martinez, J M

    2010-12-15

    A theoretical approach for the nonlinear ac electro-optical response in polyelectrolytes is developed in the case where a weak ac electric field superimposed on a strong dc bias electric field is applied to these electrically charged systems. By restricting ourselves to an assembly of noninteracting and nonpolar rodlike macroions, we use a perturbation procedure and establish expressions for the first two harmonic components of the electric birefringence up to the second order in the electric field strength. An attempt is also made to extend this theory to the (non-Markovian) subdiffusive regime based on a fractional kinetic equation written in a configuration space where angular and linear displacements are taken into account. The results obtained are illustrated by three-dimensional dispersion and absorption plots together with Cole-Cole-like diagrams to show the importance of the coupling effect between translation and rotation. Besides considering the stationary ac response, we have also derived, in the context of subdiffusion, new expressions for the transient electric birefringence in the presence of a constant electric field, both for the buildup and the reversing pulse. All these results are illustrated by plots demonstrating the effect of the coupling (rotation-translation) parameter a and the critical exponent α (subdiffusion). A comparison of our theoretical model with experimental measurements of the ac Kerr effect response of a polyelectrolyte solution of NaCMC appears to be quite satisfactory. PMID:21406769

  18. Electrically induced birefringence in nanoparticle dispersions for electrorheological applications

    NASA Astrophysics Data System (ADS)

    Pochylski, Mikolaj; Calandra, Pietro; Aliotta, Francesco; Ponterio, Rosina C.

    2014-11-01

    Recently, the observation of an anomalously large electrorheological effect in the dispersion of nanosized particles of titania in octanoid acid has been reported. Such an enhanced effect was not observed in the similar dispersion of micrometric particles or in more conventional suspensions of silica in silicon oil. It was suggested that this effect could be promoted by the formation of a thin layer of solvent molecules on the surface of the titania particles. We propose the measurement of electrically induced optical birefringence as a suitable independent method for testing this working hypothesis. In this paper, we report the results from the investigations of the dilute dispersions of 32 nm TiO2 particles in two insulating fluids: silicone oil and octanoic acid. A comparison of the experimental birefringence data with the theoretical predictions suggests that TiO2 nanoparticles behave like permanent electric dipoles, although induced dipoles are expected in the case of the titania material. The source of such behaviour has been individuated at the particle/solvent interface and the different possibilities of the permanent dipole origin are discussed. The lower value of the dipole moment observed in octanoic acid dispersion is explained in terms of a specific particle/solvent interaction leading to the formation of a solvent coating around the particle. The results highlight that electro-optical properties are related to electrorheological performance and that both methods can be considered as supportive for testing electrically driven phenomena in complex fluids.

  19. Group-Velocity-Matched Three Wave Mixing in Birefringent Crystals

    SciTech Connect

    SMITH,ARLEE V.

    2000-12-12

    We show that the combination of pulse-front slant, k-vector tilt, and crystal birefringence often permits exact matching of both phase and group velocities in three wave mixing in birefringent crystals. This makes possible more efficient mixing of short light pulses, and it permits efficient mixing of chirped or broad bandwidth light. We analyze this process and present examples. Differences in the group velocities of the three interacting waves in a nonlinear crystal often limits the effective interaction length. For example, in mixing very short pulses, temporal walk off can stretch the pulses in time unless the crystal is very short. Efficient mixing with such short crystals requires high irradiances, but the irradiances are limited by higher order nonlinear effects such as intensity-dependent refractive index and two-photon absorption. Improved matching of the group velocities can alleviate this problem, allowing longer crystal and lower irradiances. Similarly, for high energy pulses, practical limits on crystal apertures mandate temporally stretching the pulses to reduce irradiances. For the resulting chirped pulses, temporal walk off restricts the chirp range unless the group velocities are well matched. In addition to perfectly matching the group velocities of all three waves, it is sometimes useful to match two velocities, such as the signal and idler in parametric amplification, permitting broadband parametric amplification, or to arrange the velocities of two inputs to bracket the generated sum frequency pulse, giving pulse compression under suitable circumstances.

  20. Development and characterization of orthotropic-birefringent materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Koller, G. M.; Niiro, T.

    1984-01-01

    Materials were selected and fabrication procedures developed for orthotropic birefringent materials. An epoxy resin (Maraset 658/558 system) was selected as the matrix material. Fibers obtained from style 3733 glass cloth and type 1062 glass roving were used as reinforcement. Two different fabrication procedures were used. In the first one, layers of unidirectional fibers removed from the glass cloth were stacked, impregnated with resin, bagged and cured in the autoclave at an elevated temperature. In the second procedure, the glass roving was drywound over metal frames, impregnated with resin and cured at room temperature under pressure and vacuum in an autoclave. Unidirectional, angle-ply and quasi-isotropic laminates of two thicknesses and with embedded flaws were fabricated. The matrix and the unidirectional glass/epoxy material were fully characterized. The density, fiber volume ratio, mechanical, and optical properties were determined. The fiber volume ratio was over 0.50. Birefringent properties were in good agreement with predictions based on a stress proportioning concept and also, with one exception, with properties predicted by a finite element analysis. Previously announced in STAR as N81-26183

  1. Development of orthotropic birefringent materials for photoelastic stress analysis

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Niiro, T.; Koller, G. M.

    1981-01-01

    Materials were selected and fabrication procedures developed for orthotropic birefringent materials. An epoxy resin (Maraset 658/558 system) was selected as the matrix material. Fibers obtained from style 3733 glass cloth and type 1062 glass roving were used as reinforcement. Two different fabrication procedures were used. In the first one, layers of unidirectional fibers removed from the glass cloth were stacked, impregnated with resin, bagged and cured in the autoclave at an elevated temperature. In the second procedure, the glass roving was drywound over metal frames, impregnated with resin and cured at room temperature under pressure and vacuum in an autoclave. Unidirectional, angle-ply and quasi-isotropic laminates of two thicknesses and with embedded flaws were fabricated. The matrix and the unidirectional glass/epoxy material were fully characterized. The density, fiber volume ratio, mechanical, and optical properties were determined. The fiber volume ratio was over 0.50. Birefringent properties were in good agreement with predictions based on a stress proportioning concept and also, with one exception, with properties predicted by a finite element analysis.

  2. Characterisation of birefringence of [111]-cut crystal rod using side-pumping and crystal rotation

    NASA Astrophysics Data System (ADS)

    Graupeter, Thomas; Hartmann, Rainer; Pflaum, Christoph

    2014-05-01

    Birefringence influences the beam quality and output power of high power solid-state lasers. Inhomogeneous distribution of the thermal field inside the laser crystal rod leads to thermal strains and birefringence, due to the photoelastic effect. Analytical models have used the plane stress and plane strain assumption for an axial sym- metric pumped crystal. This leads in case of an [111]-cut to an axially symmetric birefringence pattern. However, numerical calculations of birefringence show a threefold symmetry pattern due to the anisotropic behavior of the photoelastic tensor. This disturbs the ideal use of a radial or azimuthal polarised beam. We analyzed a laser rod pumped at three sides with threefold symmetry, in order to reduce the effect of birefringence. Simulation results show birefringence is affected by rotation of the crystal around its [111]-axis. Smallest birefringence can be obtained by an optimal rotation with respect to the edges of the crystal. Therefore the output beam of this laser device is more suitable for generating radial or azimuthal polarisations.

  3. Including birefringence into time evolution of CMB: current and future constraints

    SciTech Connect

    Gubitosi, G.; Pagano, L.; Martinelli, M. E-mail: martinelli@thphys.uni-heidelberg.de

    2014-12-01

    We introduce birefringence effects within the propagation history of CMB, considering the two cases of a constant effect and of an effect that increases linearly in time, as the rotation of polarization induced by birefringence accumulates during photon propagation. Both cases result into a mixing of E and B modes before lensing effects take place, thus leading to the fact that lensing is acting on spectra that are already mixed because of birefringence. Moreover, if the polarization rotation angle increases during propagation, birefringence affects more the large scales that the small scales. We put constraints on the two cases using data from WMAP 9yr and BICEP 2013 and compare these results with the constraints obtained when the usual procedure of rotating the final power spectra is adopted, finding that this dataset combination is unable to distinguish between effects, but it nevertheless hints for a non vanishing value of the polarization rotation angle. We also forecast the sensitivity that will be obtained using data from Planck and PolarBear, highlighting how this combination is capable to rule out a vanishing birefringence angle, but still unable to distinguish the different scenarios. Nevertheless, we find that the combination of Planck and PolarBear is sensitive enough to highlight the existence of degeneracies between birefringence rotation and gravitational lensing of CMB photons, possibly leading to false detection of non standard lensing effects if birefringence is neglected.

  4. Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers

    NASA Astrophysics Data System (ADS)

    Leiva, Ariel; Olivares, Ricardo

    2008-04-01

    The propagation of Gaussian optical pulses through optical PM-HiBi (Polarization Maintaining Highly Birefringent) fibers is analyzed and simulated. Based upon a model of propagation as described by Marcuse, et al., [1] and Sunnerud, et al., [2], and the use of PMD (Polarization Mode Dispersion) compensators and emulators used by Kogelnik, et al. [2], [3] and Lima, et al. [4], we construct a simple model that allows graphical representation of the distortion experienced by optical pulses when propagating in a PM-HiBi fiber for different initial polarizations. The results of our analysis have the benefit of being identical to the more elaborate models of [1], [2], while also providing the additional advantage of simple graphical representation.

  5. Alternating magneto-birefringence of ionic ferrofluids in crossed fields

    NASA Astrophysics Data System (ADS)

    Hasmonay, E.; Dubois, E.; Neveu, S.; Bacri, J.-C.; Perzynski, R.

    2001-05-01

    A dynamic probing of magnetic liquids is performed experimentally, using a static magnetic field modulated by another smaller field, normal and alternating. The optical magneto-birefringence under these crossed magnetic fields is recorded as a function of the frequency for different field intensities and different sizes of the magnetic nanoparticles. A general reduced behavior is found for the in-phase and the out-of-phase optical response which is well-described by a simple mechanical model. Depending on the value Hani of the anisotropy field of the nanoparticles, we can distinguish two different high magnetic field regimes: - a rigid dipole regime (large anisotropy energy with respect to kBT) for cobalt ferrite nanoparticles with a relaxation time inversely proportional to the field intensity HC(HC < Hani), - a soft dipole regime (anisotropy energy of the order of kBT) for maghemite nanoparticles with a relaxation time independent of the field intensity HC(HC > Hani).

  6. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  7. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  8. The Double Jones Birefringence in Magneto-electric Medium

    PubMed Central

    Mahmood, Waqas; Zhao, Qing

    2015-01-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave. PMID:26354609

  9. Birefringence, CMB polarization, and magnetized B-mode

    SciTech Connect

    Giovannini, Massimo; Kunze, Kerstin E.

    2009-04-15

    Even in the absence of a sizable tensor contribution, a B-mode polarization can be generated because of the competition between a pseudoscalar background and predecoupling magnetic fields. By investigating the dispersion relations of a magnetoactive plasma supplemented by a pseudoscalar interaction, the total B-mode polarization is shown to depend not only upon the plasma and Larmor frequencies but also on the pseudoscalar rotation rate. If the (angular) frequency channels of a given experiment are larger than the pseudoscalar rotation rate, the only possible source of (frequency-dependent) B-mode autocorrelations must be attributed to Faraday rotation. In the opposite case the pseudoscalar contribution dominates and the total rate becomes, in practice, frequency independent. The B-mode cross correlations can be used, under certain conditions, to break the degeneracy by disentangling the two birefringent contributions.

  10. Birefringent breakup of Dirac fermions on a square optical lattice

    SciTech Connect

    Kennett, Malcolm P.; Komeilizadeh, Nazanin; Kaveh, Kamran; Smith, Peter M.

    2011-05-15

    We introduce a lattice model for fermions in a spatially periodic magnetic field that also has spatially periodic hopping amplitudes. We discuss how this model might be realized with cold atoms in an artificial magnetic field on a square optical lattice. When there is an average flux of half a flux quantum per plaquette, the spectrum of low-energy excitations can be described by massless Dirac fermions in which the usually doubly degenerate Dirac cones split into cones with different ''speeds of light.'' These gapless birefringent Dirac fermions arise because of broken chiral symmetry in the kinetic energy term of the effective low-energy Hamiltonian. We characterize the effects of various perturbations to the low-energy spectrum, including staggered potentials, interactions, and domain-wall topological defects.

  11. Birefringence and anisotropic optical absorption in porous silicon

    SciTech Connect

    Efimova, A. I. Krutkova, E. Yu.; Golovan', L. A.; Fomenko, M. A.; Kashkarov, P. K.; Timoshenko, V. Yu.

    2007-10-15

    The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surface bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.

  12. Dynamics of photoinduced dichroism and birefringence in optically thick azopolymers

    SciTech Connect

    Ponomarev, Yu V; Ivanov, Yu V; Rumyantsev, Yu A; Gromchenko, A A

    2009-01-31

    Dynamics of photoinduced dichroism and birefringence have been studied experimentally and theoretically (with the help of the Dumont model) by using some comb-shaped azopolymers. It is shown that the dynamics of trans-isomer concentration and their angular distribution anisotropy can be restored from the experimentally found dichroism dynamics, with the concentration and anisotropy being averaged over the thickness for optically thick samples. At the initial stage of photoinduced anisotropy when the active role of the polymer matrix can be neglected, the experimental time dependence of dichroism is shown to comply well with the Dumont model even if the orientation memory is neglected, provided that only a part of trans-isomers participates in trans-isomerisation. (nonlinear optical phenomena)

  13. Integrated polarizers based on tapered highly birefringent photonic crystal fibers.

    PubMed

    Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S

    2014-07-28

    This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned. PMID:25089397

  14. Birefringence and DNA Condensation of Liquid Crystalline Chromosomes ▿

    PubMed Central

    Chow, Man H.; Yan, Kosmo T. H.; Bennett, Michael J.; Wong, Joseph T. Y.

    2010-01-01

    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes—up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material. PMID:20400466

  15. Quantification of fatigue state in CFRP using ultrasonic birefringence

    NASA Astrophysics Data System (ADS)

    Fey, Peter; Kreutzbruck, Marc

    2016-02-01

    Fiber reinforced plastics are widely used in high performance application areas such as aerospace, automotive and wind energy. They are preferred over classic materials such as metals because of their superior weight to stiffness ratio. When subjected to cyclic or static loading, micro-cracks develop and hence their stiffness degrades. The rate of stiffness degradation depends on the angle between the fibers and the applied load. Because commonly used fiber reinforced composites consist of multiple layers with different fiber directions to cope with different loads applied to the material, the stiffness degradation has to be analyzed for each fiber direction. One method to analyze the stiffness degradation in fiber reinforced materials is ultrasonic birefringence. A birefringent effect as it is known for light in optics is also observed for ultrasonic shear waves in fiber reinforced composites because of their elastic anisotropy. The role of the polarization dependent refractive index is taken by the propagation velocity of shear waves. If polarized parallel to the fiber direction they have a higher velocity than polarized perpendicularly to the fiber direction. The velocity depends on shear stiffness of the material. A model to predict the behavior of shear waves in multi-ply layups has been presented previously by Rheinfurth, Fey, Allinger and Busse[1]. That model was used to manually match measured and simulated phase and amplitude curves for waves that traversed the material under different angles between polarization direction of the emitting transducer and fiber direction in the first ply. Here another mode of interpreting the simulated results is used: amplitude and phase for each transducer orientation angle are combined to a complex number. Displaying them in the complex plane for one half rotation of the transducer yields an ellipse. Semi axis lengths and orientation can be obtained by Fourier transform and are used to compare the simulation to measured

  16. Birefringence and DNA condensation of liquid crystalline chromosomes.

    PubMed

    Chow, Man H; Yan, Kosmo T H; Bennett, Michael J; Wong, Joseph T Y

    2010-10-01

    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes-up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material.

  17. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing

    SciTech Connect

    Krasinski, J.S.; Band, Y.B.; Chin, T.; Heller, D.F.; Morris, R.C.; Papanestor, P.

    1989-04-15

    Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

  18. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers. PMID:26371916

  19. Low-level birefringence measurement by cyclic-path polarization interferometer.

    PubMed

    Chakraborty, Sonali; Bhattacharya, K

    2016-07-20

    A modified cyclic-path interferometer is employed for complete measurement of spatially varying birefringence. An expanded and collimated laser beam intercepted by a birefringent specimen is incident on a polarization-masked cube beam splitter, resulting in two mutually orthogonal polarization components propagating along clockwise and counterclockwise directions in the interferometer. These two wavefronts are made to interfere for four specific orientations of an analyzer. Suitable combinations of the interferograms result in determination of the direction of birefringence and its magnitude. Experimental results are presented. PMID:27463918

  20. Dielectric relaxation and birefringence study of 7.O5O.7 dimeric liquid crystal compound

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debanjan; Paul-Choudhury, Sandip; Alapati, Parameswara Rao; Bhattacharjee, Ayon

    2016-05-01

    Measurement of dielectric relaxation and birefringence phenomenon of dimeric liquid crystal compound with the dependence of temperature was reported in this paper. Homogeneous (HG) and homeotropic (HT) alignment of the cell are introduced to investigate the dielectric relaxation, activation energy and birefringence. Cole-Cole plots analyzed the dielectric relaxation of the dimeric compound. The observed Cole-Cole plots were semi-circular, and the relaxation mechanism obeys the non-Debye type of relaxation behaviour. Slater's perturbation equations have been used to analysis the activation energy of the compound. The birefringence of the compound has positively anisotropy and thin prism mechanism was used to study the anisotropy of the compound.

  1. Determination of the Dispersion of the Principal Refractive Indices for Birefringent Polypropylene Films

    NASA Astrophysics Data System (ADS)

    Bezruchenko, V. S.; Murauski, An. A.; Muravsky, Al. A.

    2014-07-01

    We present a novel method for determining the dispersion of the refractive indices of birefringent films, based on treatment of transmission spectra, in which we observe interference of light. The dispersion curves n x (λ) and n y (λ) were determined by treatment of transmission spectra obtained for normal incidence of radiation on a P2-25 birefringent fi lm, and n z (λ) was determined for oblique incidence of radiation. From the results of determination of the dispersions of the principal refractive indices of a birefringent P2-25 polypropylene film (Mogilevkhimvolokno OAO, Belarus), we established that the sample is a negative biaxial retarder with N z = 2.9.

  2. Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry

    SciTech Connect

    Smirnov, A S; Burdin, V V; Konstantinov, Yu A; Petukhov, A S; Drozdov, I R; Kuz'minykh, Ya S; Besprozvannykh, V G

    2015-01-31

    Modal birefringence (the difference between the effective refractive indices of orthogonal polarisation modes) is one of the key parameters of anisotropic single-mode fibres, characterising their ability to preserve a linearly polarised state of input light. This parameter is commonly measured using short pieces of fibre, but such procedures are destructive and allow the birefringence to be determined only at the ends of long fibres. In this study, polarised light Brillouin reflectometry is used to assess birefringence uniformity throughout the length of an anisotropic fibre. (optical fibres)

  3. Development of birefringence imaging analysis method for observing cubic crystals in various phase transitions.

    PubMed

    Manaka, Hirotaka; Yagi, Genta; Miura, Yoko

    2016-07-01

    Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth. PMID:27475562

  4. Development of birefringence imaging analysis method for observing cubic crystals in various phase transitions

    NASA Astrophysics Data System (ADS)

    Manaka, Hirotaka; Yagi, Genta; Miura, Yoko

    2016-07-01

    Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth.

  5. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  6. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  7. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis.

    PubMed

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient's joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient's tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm(2)), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  8. Hong-Ou-Mandel interference experiment of two independent heralded single photon sources in an optical fiber with birefringence

    NASA Astrophysics Data System (ADS)

    Ma, Tianyi; Zhou, Qiang; Zhang, Wei; Huang, Yidong; Cui, Xiaowei; Lu, Mingquan; Feng, Zhenming

    2012-11-01

    Single photon sources (SPSs) play important roles in quantum communication and quantum information processing. Spontaneous four wave mixing (SFWM) in optical fibers provides a promising way to realize practical heralded single photon sources (HSPSs), since it is compatible with current techniques of optical communications. In this paper, two independent HSPSs at 1.5μm band are realized in one polarization maintaining dispersion shifted fiber (PM-DSF) utilizing its large birefringence. When pulsed pump light passes through an optical fiber, two kinds of SFWM will take place simultaneously. One is scalar processes, in which two annihilated pump photons and generated photon pair are all polarized along the same fiber polarization axis. The other is vector processes, in which two annihilated pump photons are polarized along different fiber polarization axes, either for the two photons of the generated pair. In the PM-DSF, the large birefringence generates obvious walk-off effect on the two pump polarization components, which leads to an effective suppression of the vector processes. Hence, by proper pump polarization, correlated photon pairs (CPPs) with different polarization directions can be generated independently by the two scalar processes, which can be used to realize two independent HSPSs. The indistinguishability of the heralded photons generated by the two independent sources is demonstrated by an experiment of Hong-Ou-Mandel (HOM) interference. Using a fiber coupler as the beam splitter, a visibility of HOM dip of 76% is achieved, showing their potential on quantum information.

  9. Electric Birefringence: A Simple Apparatus for Determining Physical Parameters of Macromolecules and Colloids.

    ERIC Educational Resources Information Center

    Trimm, Harold H.; And Others

    1984-01-01

    Describes a birefringence apparatus that can be assembled for less than $100 and can be used to measure both the dimensions and dipole moments of many macromolecules. Details are given of the construction and manipulation of the apparatus. (JN)

  10. Approach for fast numerical propagation of uniformly polarized random electromagnetic fields in dispersive linearly birefringent systems.

    PubMed

    Makowski, Piotr L; Domanski, Andrzej W

    2013-09-01

    An efficient simulation technique is proposed for computing propagation of uniformly polarized statistically stationary fields in linear nonimage-forming systems that includes dispersion of linear birefringence to all orders. The method is based on the discrete-time Fourier transformation of modified frequency profiles of the spectral Stokes parameters. It works under the condition that all (linearly) birefringent sections present in the system are described by the same phase birefringence dispersion curve, being a monotonic function of the optical frequency within the bandwidth of the light. We demonstrate the technique as a supplement for the Mueller-Stokes matrix formalism extended to any uniformly polarized polychromatic illumination. Accuracy of its numerical implementation has been verified by using parameters of a Lyot depolarizer made of a highly birefringent and dispersive monomode photonic crystal fiber.

  11. Birefringent left-handed metamaterials and perfect lenses for vectorial fields

    NASA Astrophysics Data System (ADS)

    Zharov, Alexander A.; Zharova, Nina A.; Noskov, Roman E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2005-10-01

    We describe the properties of specific non-reflecting birefringent left-handed metamaterials and demonstrate a birefringent perfect lens for vectorial fields. We predict that, in a sharp contrast to the concept of a conventional perfect lens realized at epsi = μ = -1 (where epsi is the dielectric permittivity and μ is the magnetic permeability), the birefringent left-handed slab possesses the property of negative refraction either for TE- or TM-polarized waves or for both of them simultaneously. This allows selective focusing and a spatial separation of the images created at different polarizations. We discuss several applications of the birefringent left-handed lenses such as the beam splitting and near-field diagnostics at the sub-wavelength scale.

  12. Mode-splitting cloning in birefringent fiber Bragg grating ring resonators.

    PubMed

    Campanella, C E; Malara, P; Campanella, C M; Giove, F; Dunai, M; Passaro, V M N; Gagliardi, G

    2016-06-15

    In this Letter, we report the theoretical model and the experimental evidence of a mode-splitting cloning effect due to the resonant coupling between modes having different polarizations in weakly birefringent fiber Bragg grating (FBG) ring resonators. This modal coupling depends on the fiber birefringence and the FBG reflectivity. In the ideal case of the absence of birefringence, a single split-mode resonant structure can be observed in the resonator transmission spectrum due to the degeneracy removal of the two counter-propagating modes. In the presence of FBG birefringence, a secondary split doublet resulting in a clone of the initial one is generated. The described effect can be exploited for spectroscopic-sensing applications based on more complex split-mode dynamics. PMID:27304260

  13. Imaging of small birefringent objects by polarised light conventional and confocal microscopes

    NASA Astrophysics Data System (ADS)

    Török, P.

    2000-07-01

    In this work a theory for describing small birefringent objects imaged in polarised light conventional and confocal microscopes is developed. Due to the polarisation dependent nature of the problem a full electromagnetic theory is used. The solution permits the analysis of a polarised light optical microscope imaging small birefringent objects of arbitrary type, including form birefringence, as long as it can be characterised by a third-rank dielectric tensor. The optical microscope is equipped with two Babinet-Soleil compensators on the illumination side that can be freely adjusted to set the polarisation state of the illumination from linear through elliptical to circular. Numerical examples are presented for the most important practical cases of images of small birefringent objects.

  14. Quantum-electrodynamical birefringence vanishing in a thermal relativistic pair plasma.

    PubMed

    Huang, Y S

    2015-01-01

    Quantum electrodynamical (QED) birefringence in a thermal relativistic pair plasma with the presence of the strong crossed field: E0 ⊥ B0, is proposed and investigated. We clarify the coupling relationship and competition between the QED effect and the plasma collective effect and find the critical condition that makes the birefringence vanish. In a relative weak electromagnetic field, the birefringence is dominated by the coupling of the QED-effect, the collective effect and the E0 × B0 drift effect. In a relative strong electromagnetic field, we obtain the formulations stating the competition between the QED effect and the collective effect and then the critical conditions so that they are canceled with each other and the birefringence vanishes. With our results, a new possible scheme is proposed to estimate the thickness of the magnetosphere in a millisecond pulsar and the plasma density of a pulsar, if the magnetic field is known beforehand. PMID:26522493

  15. Quantum-electrodynamical birefringence vanishing in a thermal relativistic pair plasma

    PubMed Central

    Huang, Y. S.

    2015-01-01

    Quantum electrodynamical (QED) birefringence in a thermal relativistic pair plasma with the presence of the strong crossed field: , is proposed and investigated. We clarify the coupling relationship and competition between the QED effect and the plasma collective effect and find the critical condition that makes the birefringence vanish. In a relative weak electromagnetic field, the birefringence is dominated by the coupling of the QED-effect, the collective effect and the drift effect. In a relative strong electromagnetic field, we obtain the formulations stating the competition between the QED effect and the collective effect and then the critical conditions so that they are canceled with each other and the birefringence vanishes. With our results, a new possible scheme is proposed to estimate the thickness of the magnetosphere in a millisecond pulsar and the plasma density of a pulsar, if the magnetic field is known beforehand. PMID:26522493

  16. The photoinduced birefringence and mass transport in azo compound K-D-2

    NASA Astrophysics Data System (ADS)

    Klismeta, K.; Teteris, J.

    2015-06-01

    Azobenzene containing compounds are among light polarization sensitive materials - the moieties may align relative to the electric field vector of light, leading to anisotropy and birefringence in the sample. Another phenomenon which can be observed in azo compounds under influence of light is macroscopic movement of the material. In this work photoinduced processes in low molecular weight organic glass - bis-azobenzene containing compound K-D-2 were experimentally studied. Birefringence was induced with linearly polarized laser light (473, 532 and 635 nm) and measured at 633 nm wavelength. Polarization holography with recording beam configuration +45°/-45° was used to induce mass motion. Dependence of the surface relief depth on the recording laser wavelength in the visible spectrum (375 - 671 nm) was obtained. Formation of the SRG was observed with all used wavelengths and high birefringence values were obtained. Certain correlation between the absorption of the wavelength and photoinduced mass transport and birefringence is yet to be confirmed.

  17. Sensitivity of Bragg gratings in birefringent optical fiber to transverse compression between conforming materials.

    PubMed

    Dennison, Christopher R; Wild, Peter M

    2010-04-20

    A theoretical and experimental investigation of the transverse load sensitivity of Bragg gratings in birefringent fibers to conforming contact is presented. A plane elasticity model is used to predict the contact dimensions between a conforming material and optical fiber and the principal stresses, indicating birefringence, created as a result of this contact. The transverse load sensitivity of commercially available birefringent fiber is experimentally measured for two cases of conforming contact. Theoretical and experimental results show that birefringent optical fiber can be used to make modulus-independent measurements of contact load. Therefore, Bragg gratings could be applied to conforming contact load measurements while avoiding some of the complications associated with existing contact sensors: specifically, the necessity to precalibrate by using materials with mechanical properties identical to those found in situ.

  18. Dispersion of the temperature-noncritical frequency conversion and birefringence in biaxial optical crystals

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2004-05-31

    Dispersion of the temperature-noncritical frequency conversion (phase matching) and birefringence in biaxial crystals is considered. The possibility of simultaneous realisation of these processes during SHG in a KTP crystal is discussed. (nonlinear optical phenomena)

  19. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy

    SciTech Connect

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-15

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10{sup −8} and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

  20. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.

    2016-07-01

    A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.

  1. Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media.

    PubMed

    Du, E; He, Honghui; Zeng, Nan; Guo, Yihong; Liao, Ran; He, Yonghong; Ma, Hui

    2012-12-01

    We have developed a sphere-cylinder birefringence model (SCBM) for anisotropic media. The new model is based on a previously published sphere-cylinder scattering model (SCSM), but the spherical and cylindrical scatterers are embedded in a linearly birefringent medium. A Monte Carlo simulation program for SCBM was also developed by adding a new module to the SCSM program to take into account the effects of birefringence. Simulations of the backscattering Mueller matrix demonstrate that SCBM results in better agreement with experimental results than SCSM and is more suitable to characterize fibrous tissues such as skeletal muscle. Using Monte Carlo simulations, we also examined the characteristics of two-dimensional backscattering Mueller matrix of SCBM and analyzed the influence of linear birefringence.

  2. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  3. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  4. Light-induced rotations of chiral birefringent microparticles in optical tweezers.

    PubMed

    Donato, M G; Mazzulla, A; Pagliusi, P; Magazzù, A; Hernandez, R J; Provenzano, C; Gucciardi, P G; Maragò, O M; Cipparrone, G

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  5. Light-induced rotations of chiral birefringent microparticles in optical tweezers

    PubMed Central

    Donato, M. G.; Mazzulla, A.; Pagliusi, P.; Magazzù, A.; Hernandez, R. J.; Provenzano, C.; Gucciardi, P. G.; Maragò, O. M.; Cipparrone, G.

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  6. Influence of Photosensitive Group Concentration on Birefringence Induced in Benzaldehyde Polymers

    NASA Astrophysics Data System (ADS)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.

    2014-01-01

    Induction of optical anisotropy in benzaldehyde polymer layers by linearly polarized UV radiation was investigated experimentally. Negative dichroism in absorption spectra and strong negative birefringence (-2 · 10-3) were related to the presence of an oriented ensemble of residual benzaldehyde groups. The thermal stability of photoinduced birefringence at high photosensitive group concentration was associated with a high density of photocross-links formed between macromolecules.

  7. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM.

    PubMed

    NAKAJIMA, H; ALLEN, R D

    1965-05-01

    Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.

  8. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    SciTech Connect

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  9. Relationship between dermal birefringence and the skin surface roughness of photoaged human skin

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo; Nakagawa, Noriaki; Yamanari, Masahiro; Miyazawa, Arata; Yasuno, Yoshiaki; Matsumoto, Masayuki

    2009-07-01

    The dermal degeneration accompanying photoaging is considered to promote skin roughness features such as wrinkles. Our previous study demonstrated that polarization-sensitive spectral domain optical coherence tomography (PS-SD-OCT) enabled noninvasive three-dimensional evaluation of the dermal degeneration of photoaged skin as a change in dermal birefringence, mainly due to collagenous structures. Our purpose is to examine the relationship between dermal birefringence and elasticity and the skin morphology in the eye corner area using PS-SD-OCT. Nineteen healthy male subjects in their seventees were recruited as subjects. A transverse dermal birefringence map, automatically produced by the algorithm, did not show localized changes in the dermal birefringence in the part of the main horizontal wrinkle. The averaged upper dermal birefringence, however, showed depth-dependent correlation with the parameters of skin roughness significantly, suggesting that solar elastosis is a major factor for the progress of wrinkles. Age-dependent parameters of skin elasticity measured with Cutometer did not correlate with the parameters. These results suggest that the analysis of dermal birefringence using PS-SD-OCT enables the evaluation of photoaging-dependent upper dermal degeneration related to the change of skin roughness.

  10. Interrogation and mitigation of polarization effects for standard and birefringent FBGs

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Van Roosbroeck, Jan; O'Dowd, John A.; Van Hoe, Bram; Lindner, Eric; Vlekken, Johan; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-05-01

    Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. Several inscription techniques and type of fibers can be used. However, depending on the writing process, type of fiber used and the packaging of the sensor a Polarization Dependent Frequency Shift (PDFS) can often be observed with polarized tunable laser based optical interrogators. Here we study the PDFS of the FBG peak for the different FBG types. A PDFS of <1pm up to >20pm was observed across the FBGs. To mitigate and reduce this effect we propose a polarization mitigation technique which relies on a synchronous polarization switch to reduce the effect typically by a factor greater than 4. In other scenarios the sensor itself is designed to be birefringent (Bi-FBG) to allow pressure and/or simultaneous temperature and strain measurements. Using the same polarization switch we demonstrate how we can interrogate the Bi-FBGs with high accuracy to enable high performance of such sensors to be achievable.

  11. Research on the detection system of liquid concentration base on birefringence light transmission method

    NASA Astrophysics Data System (ADS)

    Li, Tianze; Zhang, Xia; Hou, Luan; Jiang, Chuan

    2010-10-01

    The characteristics of the beam transmitting in the optical fiber and the liquid medium are analyzed in this paper. On this basis, a new type of semiconductor optical position sensitive detector is used for a receiving device, a light transmission method of birefringence is presented,and a set of opto-electrical detection system which is applied to detect liquid concentration is designed. The system is mainly composed of semiconductor lasers,optical systems, Psd signal conditioning circuit, Single-chip System, A/D conversion circuit and display circuit. Through theoretical analysis and experimental simulations, the accuracy of this system has been verified. Some main factors affecting the test results are analyzed detailedly in this paper. The experiments show that the temperature drift and the light intensity have a very small impact on this system. The system has some advantages, such as the simple structure, high sensitivity, good stability, fast response time, high degree of automation, and so on. It also can achieve the real-time detection of liquid concentration conveniently and accurately. The system can be widely applied in chemical, food, pharmacy and many other industries. It has broad prospects of application.

  12. Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking.

    PubMed

    Gong, Peijun; Chin, Lixin; Es'haghian, Shaghayegh; Liew, Yih Miin; Wood, Fiona M; Sampson, David D; McLaughlin, Robert A

    2014-12-01

    We demonstrate the in vivo assessment of human scars by parametric imaging of birefringence using polarization-sensitive optical coherence tomography (PS-OCT). Such in vivo assessment is subject to artifacts in the detected birefringence caused by scattering from blood vessels. To reduce these artifacts, we preprocessed the PS-OCT data using a vascular masking technique. The birefringence of the remaining tissue regions was then automatically quantified. Results from the scars and contralateral or adjacent normal skin of 13 patients show a correspondence of birefringence with scar type: the ratio of birefringence of hypertrophic scars to corresponding normal skin is 2.2 ± 0.2 (mean ± standard deviation ), while the ratio of birefringence of normotrophic scars to normal skin is 1.1 ± 0.4 . This method represents a new clinically applicable means for objective, quantitative human scar assessment. PMID:25539060

  13. Four-photon homoclinic instabilities in nonlinear highly birefringent media

    SciTech Connect

    De Angelis, C.; Santagiustina, M. ); Trillo, S. )

    1995-01-01

    We investigate the nonlinear dynamics of a nonconventional (i.e., pumped by a mixed-mode wave) modulational instability in a highly birefringent nonlinear dispersive medium. We find that the depleted regime of propagation beyond the linearized stage can be described analytically in a proper region of the parameter space. In this case the governing coupled nonlinear Schroedinger equations, which are not integrable, are reduced to an integrable one-dimensional nonlinear oscillator that rules the propagation of the pump wave and a single sideband pair. This approach permits us to predict the existence of stable and unstable manifolds of time-periodic solutions of the coupled nonlinear Schroedinger equations. The nonlinear dynamics governed by these equations mimics the period-doubling instabilities associated with the homoclinic separatrices in the reduced phase space. Moreover, our approach is also capable of describing the onset of spatial chaos that occurs when the parameter values are such that the additional degree of freedom represented by the conjugated sidebands becomes effective.

  14. Extension of the hole-drilling method to birefringent composites

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1982-01-01

    A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  15. Ultrasonic light diffraction in optically isotropic media with induced birefringence

    NASA Astrophysics Data System (ADS)

    Blomme, Erik; Sliwinski, Antoni

    2001-11-01

    Optically isotropic media which are susceptible to acoustically induced birefringence can be used as acousto- optic polarization converters. A comparative study between fused silica and dense flint shows that at normal light incidence 52% of the light can be converted from linear to circular in the case of fused silica and only 20% in the case of dense flint. In each case the conversion appears at moderate sound amplitudes and at frequencies which are typical for the intermediate regime of diffraction. Applying oblique light incidence, most interesting effects can be obtained with fused silica at high sound frequencies which are typical for the Bragg regime of diffraction and in the neighborhood of the Bragg angle. The possibility is shown to use an AO cell fabricated of fused silica as a laser-beam splitter, converting a linearly polarized beam of light partially into a circularly polarized beam and a linearly polarized beam, the light intensity of the two beams being equal. In addition, it is seen that the temporal light intensity modulations which can be observed in the near field of the light diffracted under these specific conditions, can be understood from the polarization changes taking place.

  16. Measurement of birefringence for optical recording disk substrates

    NASA Technical Reports Server (NTRS)

    Fu, Hong; Sugaya, S.; Erwin, J. K.; Goodman, T.; Yan, Z.; Tang, W. J.; Mansuripur, M.

    1993-01-01

    The birefringence of bare and coated substrates for magneto-optical recording is experimentally investigated using ellipsometry at the wavelengths of 632.8 nm and 780 nm. The rotation and ellipticity of the polarization state of the reflected or transmitted light is measured for different incident angles and different orientations of the incident linear polarization. The measured data is then fitted by a computer program which solves the Maxwell equations for the plane-wave propagation in a multilayer structure and minimizes the error between the measured and calculated data by adjusting the unknown parameters of the multilayer. This approach enables us to determine orientations of the three principal axes in the substrate and the corresponding refractive indices. A special feature of our ellipsometers is that a glass hemisphere is placed in contact with the substrate, which eliminates the refraction of the incident light and enables a maximum propagation angle of 70 degrees (with respect to the normal) in the substrate. This increases the sensitivity of the measurement. Certain anomalies were observed, which we believe are associated with the presence of grooves on these substrates.

  17. Birefringent phase demodulator: application to wave plate characterization.

    PubMed

    Veiras, F E; Riobó, L M; Matteo, C L; Perez, L I; Garea, M T

    2015-03-20

    The scope of this work is to present a phase demodulator that enables the recovery of temporal phase information contained in the phase difference between two signals with different polarizations. This demodulator is a polarization interferometer that may consist only of a uniaxial crystal slab and a polarizer sheet. The phase shift between two orthogonal components of the electric field is translated into space by means of birefringent crystals, which act as demodulators or phase analyzers with great robustness. The experimental scheme utilized is based on a simple conoscopic interference setup. Each portion of the space in which the interference pattern is projected contains not only the unknown temporal phase we want to recover, but also a phase shift due to the uniaxial crystal itself. The underlying idea is developing simultaneous phase shifting with uniaxial crystals. Thus, different phase recovery techniques can be applied in order to maximize their ability to track high-speed signals. Depending on the characteristics of the fringe pattern, it will permit phase recovery via different classical procedures. In order to prove the demodulator under different experimental and signal processing schemes, we employed it for wave plate characterization. The results obtained not only allow some wave plate features such as axes determination and retardance to be characterized, but also prove the working principle and capabilities of the demodulator.

  18. Properties of monomeric paramyosin using a transient electric birefringence techniques.

    PubMed

    DeLaney, D; Krause, S

    1976-01-01

    Paramyosin samples obtained from the chowder clam, Mercenaria mercenaria, by different extraction techniques were studied using transient electric birefringence techniques. The protein remain monomeric (unaggregated) in 1 mM buffer solution at pH 3.1 to 3.8 and near pH 10. At pH 3.2, the molecules obtained by different extraction techniques exhibit rotational diffusion constants that indicate a 5% difference in length between them, with the probable native form of paramyosin being the longer species. This difference in rotational diffusion constant disappears at higher pH, and, in addition, a large difference in dipole moment between the molecules observed at pH 3.2 also disappears at high pH. These results are used to hypothesize that the rodlike native paramyosin molecules have one or two partly flexible portions on their ends; at one end of each molecule this portion probably contains excess basic amino acids which are charged at low pH to account for the higher dipole moment of this form of paramyosin at these low pH values. At pH 3.2, these portions of the macromolecule are not flexible and act as stiff parts of the rodlike molecules, but they gradually become flexible at higher pH. Possible mechanisms for this change in flexibility are discussed.

  19. Flexible polarimeter architecture based on a birefringent grating.

    PubMed

    Vargas, Asticio; Torres-Ruiz, Fabián A; Campos, Juan; Donoso, Ramiro; Martínez, José Luis; Moreno, Ignacio

    2014-09-01

    A polarimeter architecture is presented based on a birefringent grating displayed onto a parallel-aligned liquid crystal (LC) on silicon display (PAL-LCoS). The system is compact and flexible, since the size of the image can be adjusted by means of the period of the grating. The LCoS grating permits simultaneously measuring two orthogonal states of polarization (SOPs). By adding a wave plate, different couples of orthogonal SOPs can be detected. First, a basic proof of concept is presented using one quarter-wave and one half-wave plate with fixed retardances, which permit measuring the six SOPs classically used in polarimetry (linear states at 0°, 45°, 90°, and 135°, and R and L circular states). Next, the system is made fully programmable by incorporating a variable LC retarder (LCR). The LCR orientation and retardance values are optimized by means of the condition number indicator, in order to provide equivalent optimal accuracy. Experimental results of calibration images and test images are presented, showing the potentials of this architecture. PMID:25321350

  20. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  1. Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions.

    PubMed

    Ahmad, R T M; Hong, Seung-Ho; Shen, Tian-Zi; Song, Jang-Kun

    2015-02-23

    In order to use graphene oxide (GO) dispersions for electro-optical applications, both a high GO concentration and a high electrical sensitivity are essential; however, these have not been achieved to date. Here, we report that by optimizing the mean size of GO particles to approximately 0.5 μm, one can obtain a high GO concentration of up to 2 wt% and high electrical sensitivity simultaneously. By reducing the mean GO-particle size, the interparticle interaction and the rotational viscosity can be significantly reduced, and a high-concentration isotropic phase can be obtained. As a result, the maximum birefringence increases and the dynamic response becomes faster. However, further decrease of the mean size below 0.1 μm causes a decrease in the anisotropy of electrical polarizability, resulting in the reduction of the electrical sensitivity of GO dispersions. PMID:25836480

  2. Negative dispersion of birefringence of smectic liquid crystal-polymer composite: dependence on the constituent molecules and temperature.

    PubMed

    Yang, Seungbin; Lee, Hyojin; Lee, Ji-Hoon

    2015-02-01

    We investigated the dependence of the negative dispersion of birefringence of smectic liquid crystal-polymer composites on the constituent molecules and temperature. The dispersion of birefringence was significantly varied from positive dispersion to negative dispersion by the change of the relative fraction of the constituent monomers. For the temperature dependence of the dispersion, a composite with more fraction of monomers located at the inter-layer space showed a wider temperature range of the negative dispersion of birefringence.

  3. Contribution of lone-pairs to birefringence affected by the Pb(II) coordination environment: a DFT investigation.

    PubMed

    Jing, Qun; Yang, Zhihua; Pan, Shilie; Xue, Dongfeng

    2015-09-14

    Pb(II) cations have long been associated with lone-pairs which can help to enhance the optical anisotropic birefringence. In this paper, the contribution of lead cations to birefringence has been investigated using first-principles and real-space atom-cutting methods. The results show that the contribution of lead cations to birefringence is determined by the degree of stereochemical activity, which is affected by the coordination environment of lead cations. PMID:26234398

  4. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber.

    PubMed

    Feng, Danqi; Xie, Heng; Qian, Lifen; Bai, Qinhong; Sun, Junqiang

    2015-06-29

    We experimentally demonstrate a novel approach for microwave frequency measurement utilizing birefringence effect in the highly non-linear fiber (HNLF). A detailed theoretical analysis is presented to implement the adjustable measurement range and resolution. By stimulating a complementary polarization-domain interferometer pair in the HNLF, a mathematical expression that relates the microwave frequency and amplitude comparison function is developed. We carry out a proof-to-concept experiment. A frequency measurement range of 2.5-30 GHz with a measurement error within 0.5 GHz is achieved except 16-17.5 GHz. This method is all-optical and requires no high-speed electronic components. PMID:26191769

  5. Structural Design Parameters for Highly Birefringent Coordination Polymers.

    PubMed

    Thompson, John R; Katz, Michael J; Williams, Vance E; Leznoff, Daniel B

    2015-07-01

    A series of coordination polymer materials incorporating the highly anisotropic 2-(2-pyridyl)-1,10-phenanthroline (phenpy) building block have been synthesized and structurally characterized. M(phenpy)[Au(CN)2]2 (M = Cd, Mn) are isostructural and form a 1-D chain through bridging [Au(CN)2](-) units and extend into a 2-D sheet through aurophilic interactions. M(phenpy)(H2O)[Au(CN)2]2·2H2O (M = Cd, Mn, and Zn) are also isostructural but differ from the first set via the inclusion of a water molecule into the coordination sphere, resulting in a 1-D topology through aurophilic interactions. In(phenpy)(Cl)2[Au(CN)2]·0.5H2O forms a dimer through bridging chlorides and contains a free [Au(CN)2](-) unit. In the plane of the primary crystal growth direction, the birefringence values (Δn) of 0.37(2) (Cd(phenpy)[Au(CN)2]2), 0.50(3) (In(phenpy)(Cl)2[Au(CN)2]·0.5H2O), 0.56(3) and 0.59(6) (M(phenpy)(H2O)[Au(CN)2]2·2H2O M = Cd and Zn, respectively) were determined. β, a structural parameter defined by phenpy units rotated in the A-C plane relative to the light propagation (C) direction, was found to correlate to Δn magnitudes. The addition of a carbon-carbon double bond to terpy has increased the molecular polarizability anisotropy of the building block, and all structures have reduced deviation from planarity in comparison to terpy and terpy derivative structures, leading to these higher Δn values, which are among the highest reported for crystalline solids. PMID:26098267

  6. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2010-05-01

    Optical polarimetry for monitoring glucose concentration in the aqueous humor of the eye as a potential noninvasive means of assessing blood glucose has promise, but the realization of such an approach has been limited by noise from time-varying corneal birefringence due to motion artifact. Modeling the corneal birefringence of the eye is critically important toward understanding the overall effect of this noise source compared to other changes in the signal, and can aid in design of the polarimetric system. To this end, an eye model is introduced in this work that includes spatially varying birefringence properties of the cornea. The degree of birefringence and the fast axis orientation is calculated as a function of beam position on the anterior chamber. It is shown that the minimum change in polarization vector orientation occurs for beam position near the midpoint between the corneal apex and limbus. In addition, the relative wavelength independence of motion artifact is shown in the same region. The direct consequence of these findings are that a multiwavelength polarimetric system can potentially be utilized to eliminate the effect of time-varying corneal birefringence, and that eye coupling is optimal at the midpoint between the apex and limbus.

  7. In-vivo depth-resolved birefringence measurements of the human retina

    NASA Astrophysics Data System (ADS)

    Cense, Barry; Chen, Teresa; Park, Boris H.; Pierce, Mark C.; de Boer, Johannes F.

    2002-06-01

    Glaucoma causes irreversible damage to nerves in the retinal nerve fiber layer. A technique that could measure both the condition and thickness of the retinal nerve fiber layer (RNFL) would be very useful for the early detection and treatment of glaucoma. Polarization Sensitive Optical Coherence Tomography (PS-OCT) is a modality that measures the depth resolved optical birefringence of biological tissue. Since damage to the nerve fiber layer could decrease its birefringence, PS-OCT has the potential to enhance specificity in determining RNFL thickness and integrity in OCT images. In order to measure the RNFL birefringence on humans in vivo, a fiber-based PS-OCT set-up was built with which quasi real time images of the human retina were made. Preliminary measurements on a healthy retina show that the birefringence of the RNFL around the optic nerve head was equal to 34+/- 3 degree(s)/100 micrometers . In conclusion, to our knowledge, we present the first depth resolved birefringence measurements of the human RNFL in vivo.

  8. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  9. Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film

    NASA Astrophysics Data System (ADS)

    Sanaâ, F.; Palierne, J. F.; Gharbia, M.

    2016-07-01

    A convenient and accurate interferometric technique for measuring the birefringence dispersion of anisotropic Mylar film according to a continuous spectral range of wavelengths in the ultraviolet, visible and near infrared region, using the so called "Channelled Spectrum" method is described. The technique proposed here consists of considering all the experimental data, not only the minima of the transmitted light obtained after recording the transmitted light that travelled a Mylar film sandwiched between two crossed polarizers. Furthermore, we are able to measure the transmission coefficients of the polarizers, the absorption of the Mylar sheet, and other parameters involved in the experiment by using a spectroscopic detection. Thus, the transmission of the Mylar sheet vs wavelength is deduced. Using the dispersion of the optical birefringence given by the birefringence dispersion theory for uniaxial organic compounds ie the one band, three-band, and Cauchy models, and by applying a nonlinear fitting procedure on the recorded experimental data, we have obtained the parameters involved in the expressions of the optical birefringence and we have computed the optical birefringence of the Mylar film vs wavelengths. In the visible and near-infrared regions, all models give excellent fits to the experimental data. In the UV region, the three-band model considers the resonance effect. Thus, in the near-resonance region the results from the three-band model are more accurate.

  10. Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography.

    PubMed

    Sugiyama, Satoshi; Hong, Young-Joo; Kasaragod, Deepa; Makita, Shuichi; Uematsu, Sato; Ikuno, Yasushi; Miura, Masahiro; Yasuno, Yoshiaki

    2015-12-01

    A clinical grade prototype of posterior multifunctional Jones matrix optical coherence tomography (JM-OCT) is presented. This JM-OCT visualized depth-localized birefringence in addition to conventional cumulative phase retardation imaging through local Jones matrix analysis. In addition, it simultaneously provides a sensitivity enhanced scattering OCT, a quantitative polarization uniformity contrast, and OCT-based angiography. The probe beam is at 1-μm wavelength band. The measurement speed and the depth-resolution were 100,000 A-lines/s, and 6.6 μm in tissue, respectively. Normal and pathologic eyes are examined and several clinical features are revealed, which includes high birefringence in the choroid and lamina cribrosa, and birefringent layered structure of the sclera. The theoretical details of the depth-localized birefringence imaging and conventional phase retardation imaging are formulated. This formulation indicates that the birefringence imaging correctly measures a depth-localized single-trip phase retardation of a tissue, while the conventional phase retardation can provide correct single-trip phase retardation only for some specific types of samples. PMID:26713208

  11. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lei, Xueqin; Chen, Jiajia; Shi, Fuquan; Chen, Daru; Ren, Zhijun; Peng, Baojin

    2016-09-01

    In this study, the magneto-birefringence effect of magnetic fluid (MF) is adopted to form an innovative fiber optic magnetic field sensor. The sensitive section is fabricated via a D-shaped microstructure inscribed in a high-birefringence fiber Sagnac loop with a femtosecond laser. The D-shaped microstructure facilitates good combination of the optical-fiber Sagnac interferometer with the magneto-birefringence effect of MF without suffering from absorption loss and manual alignment. Experimental results show the good performance of the magnetic field fiver sensor, particularly its high stable extinction ratio. Preliminary results are provided, and the magnetic field sensitivity of 0.0823 nm/mT can be further improved by increasing the depth and length of the D-shaped microstructure.

  12. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Nancy Meng Ying; Juan Juan Hu, Dora; Shum, Perry Ping; Wu, Zhifang; Li, Kaiwei; Huang, Tianye; Wei, Lei

    2016-06-01

    Optical fiber based surface plasmon resonance (SPR) sensors are favored by their high sensitivity, compactness, remote and in situ sensing capabilities. Microstructured optical fibers (MOFs) possess microfluidic channels extended along the entire length right next to the fiber core, thereby enabling the infiltrated biochemical analyte to access the evanescent field of guided light. Since SPR can only be excited by the polarization vertical to metal surface, external perturbation could induce the polarization crosstalk in fiber core, thus leading to the instability of sensor output. Therefore for the first time we analyze how the large birefringence suppresses the impact of polarization crosstalk. We propose a high-birefringent MOF based SPR sensor with birefringence larger than 4 × 10‑4 as well as easy infiltration of microfluidic analyte, while maintaining sensitivity as high as 3100 nm/RIU.

  13. Development of a noninvasive corneal birefringence-compensated glucose-sensing polarimeter

    NASA Astrophysics Data System (ADS)

    Anumula, Harini; Nezhuvingal, Ajaina A.; Li, Yanfang; Cameron, Brent D.

    2003-07-01

    In the recent past, optical polarimetry has been shown as a potential method for noninvasive physiologic glucose sensing in the eye. Although the necessary sensitivity and accuracy have been demonstrated experimentally through in vitro studies using a range of media from simplistic glucose doped-water to more complex media such as aqueous humor, the main problem currently hindering long-term in vivo measurements is corneal birefringence coupled with motion artifact. This is due to the inability to distinguish E-field rotation due to glucose from the effects of time varying corneal birefringence. In this investigation, the effect of corneal birefringence will be discussed and a potential method to overcome this problem will be presented with supporting results.

  14. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  15. Note: mounting ultra-high vacuum windows with low stress-induced birefringence.

    PubMed

    Solmeyer, Neal; Zhu, Kunyan; Weiss, David S

    2011-06-01

    We have developed a way to mount ultra-high vacuum windows onto standard ConFlat(®) vacuum systems with very low stress-induced birefringence. Each window is sealed to a stainless steel flange with a compressed indium wire, and that flange is connected to a vacuum chamber with another indium seal. We find that deformation of a standard ConFlat flange during indium sealing dominates the stress on the window, so an extra-rigid flange is needed for minimal birefringence. With this mounting scheme, the typical residual birefringence is Δn = 2.3 × 10(-7) and is unchanged by a 120 °C bake.

  16. Note: Mounting ultra-high vacuum windows with low stress-induced birefringence

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Zhu, Kunyan; Weiss, David S.

    2011-06-01

    We have developed a way to mount ultra-high vacuum windows onto standard ConFlat® vacuum systems with very low stress-induced birefringence. Each window is sealed to a stainless steel flange with a compressed indium wire, and that flange is connected to a vacuum chamber with another indium seal. We find that deformation of a standard ConFlat flange during indium sealing dominates the stress on the window, so an extra-rigid flange is needed for minimal birefringence. With this mounting scheme, the typical residual birefringence is Δn = 2.3 × 10-7 and is unchanged by a 120 °C bake.

  17. Birefringence effects in multi-core fiber: coupled local-mode theory.

    PubMed

    Macho, Andrés; García-Meca, Carlos; Fraile-Peláez, F Javier; Morant, Maria; Llorente, Roberto

    2016-09-19

    In this paper, we evaluate experimentally and model theoretically the intra- and inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media including temporal and longitudinal birefringent effects. Specifically, extensive experimental results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence modifies the intra- and inter-core crosstalk behavior in both linear and nonlinear optical power regimes. To gain theoretical insight into the experimental results, we introduce an accurate multi-core fiber model based on local modes and perturbation theory, which is derived from the Maxwell equations including both longitudinal and temporal birefringent effects. Numerical calculations based on the developed theory are found to be in good agreement with the experimental data. PMID:27661883

  18. Effect of dimerization on the field-induced birefringence in ferrofluids.

    PubMed

    Szczytko, Jacek; Vaupotič, Nataša; Osipov, Mihail A; Madrak, Karolina; Górecka, Ewa

    2013-06-01

    The magnetic-field-induced birefringence in a ferrofluid composed of spherical cobalt nanoparticles has been studied both experimentally and theoretically. The considerable induced birefringence determined experimentally has been attributed to the formation of chains of nanoparticles. The birefringence has been measured as a function of the external magnetic field and the volume fraction (f) of nanoparticles. It is quadratic in f as opposed to the Faraday effect, which is linear in f. Experimental results agree well with the theoretical model based on a simple density functional approach. For dilute solutions the experimental results can be explained by assuming that only dimers of nanoparticles are formed while the concentration of longer chains is negligible. PMID:23848690

  19. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  20. En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography.

    PubMed

    Chin, Lixin; Yang, Xiaojie; McLaughlin, Robert A; Noble, Peter B; Sampson, David D

    2013-06-01

    A technique for generating en face parametric images of tissue birefringence from scans acquired using a fiber-based polarization-sensitive optical coherence tomography (PS-OCT) system utilizing only a single-incident polarization state is presented. The value of birefringence is calculated for each A-scan in the PS-OCT volume using a quadrature demodulation and phase unwrapping algorithm. The algorithm additionally uses weighted spatial averaging and weighted least squares regression to account for the variation in phase accuracies due to varying OCT signal-to-noise-ratio. The utility of this technique is demonstrated using a model of thermally induced damage in porcine tendon and validated against histology. The resulting en face images of tissue birefringence are more useful than conventional PS-OCT B-scans in assessing the severity of tissue damage and in localizing the spatial extent of damage. PMID:23733021

  1. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. PMID:25257542

  2. Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography

    DOEpatents

    De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart

    2001-01-01

    Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.

  3. Form birefringence induced in multicomponent glass by femtosecond laser direct writing.

    PubMed

    Cao, Jing; Mazerolles, Léo; Lancry, Matthieu; Solas, Denis; Brisset, François; Poumellec, Bertrand

    2016-06-15

    We demonstrate a new kind of form birefringence in lithium niobium silicate glass induced by femtosecond laser direct writing. By combining electron backscatter diffraction and transmission electron microscopy, we reveal a self-assembled nanostructure consisting of periodic phase change: nonlinear optical nanocrystals embedded in a network of "walls" in a vitreous phase. These "walls" are aligned perpendicular to the laser polarization direction. This self-organized nanostructure may successfully explain the origin of the laser-induced birefringence in this multicomponent glass quite differently from pure silica. These findings highlight a spectacular modification of glass, and enable construction of a high contrast three-dimensional refractive index and birefringent structures at the micrometer scale in multicomponent glasses. PMID:27304277

  4. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    SciTech Connect

    Reyes-Vera, Erick Gómez-Cardona, Nelson D.; Chesini, Giancarlo; Cordeiro, Cristiano M. B.; Torres, Pedro

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.

  5. Birefringence Variation With High Pressure And Temperature In Elliptical Core Single Mode Fiber.

    NASA Astrophysics Data System (ADS)

    Domanski, Andrzej W.; Bock, Wojtek J.

    1990-01-01

    High - birefringent optical fiber with elliptical core was placed inside a high pressure and temperature controlled measuring chamber equipped with special fiber optic leadthrough system. The experiments were carried out in University of Quebec at Hull Optoelectronics Laboratory by using Harwood DWT-35 dead weight tester as a pressure standard up to 100MPa. Linearly polarised light was injected into fiber. Then changes in polarisation state of light passed through the fiber in term of hydrostatic pressure and temperature variation were filvestigated. Birefringence variations were determined by measurements of changes in beat length ofthe siagle mode elliptical core fiber. The fiber was prepared in laboratories of Maria Curie University at Lublin. Based on the results obtained we could determined hydrostatic pressure of compensation of intrinsic stress i.e. ,the pressure for which birefringence is diminished to zero.

  6. Determination of the refractive index difference caused by the birefringence of FA (II) centers in KCl:Li

    NASA Astrophysics Data System (ADS)

    Silfsten, Pertti; Ketolainen, Pertti

    1991-11-01

    A method is described for determining the refractive index difference caused by the birefringence of oriented FA (II) centers in KCl:Li crystals. It is shown that the portion induced by the birefringence can be separated from an absorption spectrum measured through a polarizer-analyzer system. From this portion the refractive index difference can then be calculated with ease.

  7. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Dainty, Mary; Kleinzeller, Arnost; Lawrence, A. S. C.; Miall, Margaret; Needham, Joseph; Needham, Dorothy M.; Shen, Shih-Chang

    1944-01-01

    1. An investigation of the physicochemical properties of myosin has been carried out. Prepared under standard conditions, the ratio of flow-birefringence to protein concentration is uniform. The effect of electrolytes, pH, and urea on the flow-birefringence and viscosity (relative and anomalous) of myosin has been examined. 2. Decrease or abolition of flow-birefringence does not necessarily imply far reaching denaturation, since such effects can be reversed by a variety of means. 3. When a myosin solution is treated with adenosinetriphosphate, its flow-birefringence is decreased (average 48 per cent), its anomalous viscosity is retained, and its relative viscosity is decreased (average 14 per cent). The full effect of adenosinetriphosphate is obtained at 0.004 M; a molarity very much less than that of other substances which decrease the flow-birefringence of myosin. 4. The changes in the physicochemical properties of myosin brought about by adenosinetriphosphate are spontaneously reversible, and are connected with the enzymatic action of the protein as adenosinetriphosphatase. 5. Effects similar to those of adenosinetriphosphate on the physicochemical properties of purified myosin have been obtained so far only with inosinetriphosphate. 6. Inorganic phosphate is split off by myosin from inosinetriphosphate as well as from adenosinetriphosphate. Inorganic triphosphate is split by 1 to 2 per cent solution of three times precipitated myosin. 7. Adenosinediphosphate and inorganic triphosphate act as competitive inhibitors with adenosinetriphosphate, blocking the fall of flow-birefringence. 8. The implications of the results, and the conception of active enzymic groups attached to proteins participating in cell structure, whether contractile or non-contractile, are discussed in relation to present views on muscle physiology and other biological problems. PMID:19873391

  8. Integrated optic polarization splitter based on total internal reflection from a birefringent polymer.

    PubMed

    Huang, Guanghao; Park, Tae-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2016-09-01

    An integrated optic polarization splitter with large fabrication tolerance and high reliability is required for optical signal processing in quantum-encrypted communication systems. A polarization splitter based on total internal reflection from a highly birefringent polymer-reactive mesogen-is proposed and demonstrated in this work. The device consists of a mode expander for reducing the wave vector distribution of the guided mode, and an interface with a large birefringence. Several polymers with suitable refractive indexes were used for fabricating the device. We obtained a polarization splitter with a low crosstalk (less than -30 dB), and a large fabrication tolerance. PMID:27607704

  9. First realization of a birefringent flat-top single-mode fiber

    NASA Astrophysics Data System (ADS)

    Valentin, C.; Gouriou, P.; Scol, F.; Sevigny, B.; Quiquempois, Y.; Bigot, L.; Habert, R.; Cassez, A.; Vanvincq, O.; Hugonnot, E.; Bouwmans, G.

    2016-04-01

    We report on the first polarization maintaining single-mode fiber that delivers a flat-top intensity profile at 1050 nm. A high quality fundamental flat mode was obtained. We showed that our fiber can be considered as single-mode in practice with low confinement losses. Its birefringence was measured to be 0.6x10-4, and the PER was measured at more than 20 dB even for a 20 m fiber long. Strategies to enhance this birefringence preserving the flat top profile and the singlemode behaviour as well are also discussed.

  10. Modeling the rabbit's eye with the Mueller matrix for birefringent properties

    NASA Astrophysics Data System (ADS)

    Baba, Justin S.; Cooper, Califf T.; Cote, Gerard L.

    2003-07-01

    The effect of changing corneal birefringence, due to motion artifact, remains a major obstacle to the development of an accurate non-invasive polarimetric glucose sensor for patients with diabetes mellitus. Consequently, there is still a need to characterize fully, and to quantify the relative changes in corneal birefringence to facilitate the optimization of detection algorithms, enabling in vivo accuracy within 10mg/dl. In this paper, we present preliminary results, utilizing a Mueller matrix imaging technique, that demonstrates notable relative changes in the apparent retardance and in the apparent fast axis location of rabbit cornea.

  11. Vacuum magnetic linear birefringence using pulsed fields: status of the BMV experiment

    NASA Astrophysics Data System (ADS)

    Cadène, Agathe; Berceau, Paul; Fouché, Mathilde; Battesti, Rémy; Rizzo, Carlo

    2014-01-01

    We present the current status of the BMV experiment. Our apparatus is based on an up-to-date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and analysis procedure which takes into account the symmetry properties of the raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. The measurement result of the vacuum magnetic linear birefringence k CM presented in this paper was obtained with about 200 magnetic pulses and a maximum field of 6.5 T, giving a noise floor of about 8 × 10-21 T-2 at 3 σ confidence level.

  12. Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N

    2013-10-01

    We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.

  13. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  14. Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light

    DOEpatents

    Grek, Boris; Bartolick, Joseph; Kennedy, Alan D.

    2000-01-01

    A method and apparatus for measuring microstructures, anistropy and birefringence in polymers using laser scattered light includes a laser which provides a beam that can be conditioned and is directed at a fiber or film which causes the beam to scatter. Backscatter light is received and processed with detectors and beam splitters to obtain data. The data is directed to a computer where it is processed to obtain information about the fiber or film, such as the birefringence and diameter. This information provides a basis for modifications to the production process to enhance the process.

  15. Spectropolarimetric investigation of the photoinduced dichroism and birefringence in malachite green/dichromated gelatin films

    NASA Astrophysics Data System (ADS)

    Markova, Bistra; Hristov, Boyan; Todorov, Todor; Nikolova, Ludmila; Stoilov, Georgi

    2009-06-01

    We report a spectropolarimetric investigation of the photoinduced anisotropy in dichromated gelatin films containing the dye malachite green. The investigation is done with a novel Spectral Stokesmeter which measures simultaneously and in real time (20 ms) the spectra of all the Stokes parameters of light in the spectral range 500-750 nm. This made it possible to measure not only the spectrum of the dichroism but also, for the first time to our knowledge, the spectrum of the photoinduced birefringence in these films. The results show that we can measure trustworthy dichroism larger than 0.02 and birefringence larger than 2 × 10-4.

  16. Magnetic-Field-Induced Stress-Birefringence in Laminate Composites of Terfenol-D and Polycarbonate

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Bin; Wu, Dong; Zhang, Ning

    2013-07-01

    The laminate composites that can show the magneto-birefringence effect are suggested and fabricated by the product of magnetostriction and stress-birefringence. Under a magnetic field no stronger than 1900 Oe, a phase difference of ~3.3π is observed for a trilayer composite Tb1-xDyxFe2-y/polycarbonate/Tb1-xDyxFe2-y with a polycarbonate layer at a size of 5 × 2.75 × 20 mm3 at room temperature, resulting in a half-wave magnetic field of no greater than 270 Oe.

  17. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384

  18. Single layer retarder with negative dispersion of birefringence and wide field-of-view.

    PubMed

    Hwang, Jiyong; Yang, Seungbin; Choi, Yu-Jin; Lee, Yumin; Jeong, Kwang-Un; Lee, Ji-Hoon

    2016-08-22

    A single layer retarder possessing negative dispersion (ND) of birefringence as well as wide field-of-view (FOV) was long-term objective in optical science. We synthesized new guest reactive monomers with x-shape and mixed them with the host smectic reactive mesogen. The host-guest molecules formed two dimensionally self-organized nanostructure and showed both the ND of birefringence and wide FOV properties. We simulated the antireflection property of a circular polarizer using the optical properties of the retarder. The average reflectance of the retarder was 0.52% which was much smaller than that of the commercial single layer ND retarder 1.83%. PMID:27557268

  19. Birefringence lens effects of an atom ensemble enhanced by an electromagnetically induced transparency

    SciTech Connect

    Zhang, H. R.; Sun, C. P.; Zhou Lan

    2009-07-15

    We study the optical control for birefringence of a polarized light by an atomic ensemble with a tripod configuration, which is mediated by the electromagnetically induced transparency with a spatially inhomogeneous laser. The atomic ensemble splits the linearly polarized light ray into two orthogonally polarized components, whose polarizations depend on quantum superposition of the initial states of the atomic ensemble. Accompanied with this splitting, the atomic ensemble behaves as a birefringent lens, which allows one polarized light ray passing through straightly while focuses the other light of vertical polarization with finite aberration of focus.

  20. Investigation of optical and thermal properties of N-(alkyl-substituted) maleimides for use in zero-zero-birefringence polymer.

    PubMed

    Beppu, Shotaro; Hotta, Hikaru; Shafiee, Houran; Tagaya, Akihiro; Koike, Yasuhiro

    2015-02-01

    N-(alkyl-substituted) maleimides (RMIs) were proposed as materials useful for the development of a zero-zero-birefringence polymer that exhibits no birefringence. We analyzed the optical and thermal properties of poly(RMI)s, such as the refractive index, birefringence, and glass transition temperature. The characteristics of the obtained polymers varied significantly because the shift of the density and polarizability derived from the change of the substituent structure influenced the optical properties, and the bulkiness of the substituents influenced the thermal properties. We also designed a zero-zero-birefringence polymer using N-ethyl maleimide (EMI) as a comonomer, and the obtained copolymer had no birefringence, relatively high heat resistance, and high transparency. PMID:25967788

  1. Origin of birefringence in andradite from Arizona, Madagascar, and Iran

    NASA Astrophysics Data System (ADS)

    Antao, Sytle M.; Klincker, Allison M.

    2013-07-01

    The crystal structure of four birefringent andradite samples (two from Arizona, one from Madagascar, and one from Iran) was refined with the Rietveld method, space group Iaoverline{3} d, and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Each sample contains an assemblage of three different cubic phases. From the electron-microprobe (EMPA) results, fine-scale intergrowths in the Arizona-2 and Madagascar samples appear homogeneous with nearly identical compositions of {Ca2.99Mg0.01}Σ3[{{Fe}}_{1.99}^{3 + } {{Mn}}_{0.01}^{3 + }]Σ2(Si2.95Al0.03 {{Fe}}_{0.02}^{3 + })Σ3O12, Adr98 (Arizona-2), and Adr97 (Madagascar). Both samples are near-end-member andradite, ideally {Ca3}[{{Fe}}2^{3 + }](Si3)O12, so cation ordering in the X, Y, or Z sites is not possible. Because of the large-scale intergrowths, the Arizona-1 and Iran samples contain three different compositions. Arizona-1 has compositions Adr97 (phase-1), Adr93Grs4 (phase-2), and Adr87Grs11 (phase-3). Iran sample has compositions Adr86Uv12 (phase-1), Adr69Uv30 (phase-2), and Adr76Uv22 (phase-3). The crystal structure of the three phases within each sample was modeled quite well as indicated by the Rietveld refinement statistics of reduced χ2 and overall R ( F 2) values of, respectively, 1.980 and 0.0291 (Arizona-1); 1.091 and 0.0305 (Arizona-2); 1.362 and 0.0231 (Madagascar); and 1.681 and 0.0304 (Iran). The dominant phase for each sample has the following unit-cell parameters (Å) and weight fractions (%): a = 12.06314(1), 51.93(9) (Arizona-1); 12.04889(1), 52.47(1) (Arizona-2); 12.06276(1), 52.21(8) (Madagascar); and 12.05962(2), 63.3(1) (Iran). For these dominant phases, the distances and site occupancy factors ( sofs) in terms of neutral atoms at the Ca(X), Fe(Y), and Si(Z) sites are as follows: = 2.4348, Fe-O = 2.0121(6), Si-O = 1.6508(6) Å; Ca( sof) = 0.955(2), Fe( sof) = 0.930(2), and Si( sof) = 0.917(2) (Arizona-1); = 2.4288, Fe-O = 2.0148(7), Si-O = 1

  2. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline. PMID:25607146

  3. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline.

  4. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .

  5. A novel high-birefringence fiber loop mirror electric current sensor

    NASA Astrophysics Data System (ADS)

    Bo, Dong; Zhao, Qida; Liao, Liubo Tongqing; Li, Shuhong; Zeng, Xiangye; Miao, Yinping; Huang, Guiling

    2007-11-01

    A novel electric current sensor based on a high-birefringence fiber loop mirror(HBFLM) and a kind of magnetostrictive material rod(MMR) is demonstrated theoretically and experimentally. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The HBFLM is used as the sensor head and the linear filter simultaneously. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The rod will have elastic lengthening along the direction of the magnetic field when the uniform magnetic field changes, which will lead to a change of transmission intensity of the HBFLM filter, thus the variation of the electric current can be determined via the laser wavelength within the quasi-linear transmission range of the HBFLM filter. The sensitivity reaches 0.0153/100mA, the resolution reaches 10mA. Comparing with the previous fiber-optic electric current sensor, it has nothing with the linear birefringence based on Faraday effects in the previous fiber-optic electric current sensor. Comparing with the expensive and complex FBG electric current, the sensing signal can be directly detected by a photodiode(PD) and complicated demodulation devices are avoidable. The advantages of the electric current include optical power detection, simple and smart structure, high sensitivity, low cost, and good repeatability, etc.

  6. Conoscopic evaluation of the birefringence of gradient-index lenses: infidelity sources

    NASA Astrophysics Data System (ADS)

    Tentori, Diana; Camacho, Javier

    2002-12-01

    Gradient-index lenses are samples whose special characteristics must be taken into account to design the optical polariscopes that can be applied in the evaluation of their birefringence. We discuss the main infidelity sources that modify the conoscopic patterns when a traditional polariscopic setup is used.

  7. Elucidating the temporal dynamics of optical birefringence changes in crustacean nerves

    PubMed Central

    Badreddine, Ali H.; Schoener, Kurt J.; Bigio, Irving J.

    2015-01-01

    Intrinsic optical properties, such as optical birefringence, may serve as a tool for minimally invasive neuroimaging methods with high spatiotemporal resolution to aid in the study of neuronal activation patterns. To facilitate imaging neuronal activity by sensing dynamic birefringence, temporal characteristics behind the signal must be better understood. We have developed a novel nerve chamber to investigate changes in birefringence at the stimulation site, and at distances ~4-28 mm from that site. Using crustacean nerves with either heterogeneous or homogeneous size distributions of axon diameters, we found that the gradual (slow) recovery of the crossed-polarized signal is not explained by the arrival times of action potentials in smaller axons. Through studying the effects of stimulating current and voltage pulses, we hypothesize that the recovery may be caused by a capacitive-like coupling between firing axons and adjacent tissue structures, and we report data consistent with this hypothesis. This study will aid in the utilization of action-potential-related changes in birefringence to study fast changes in neuronal network activity. PMID:26504663

  8. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often non-uniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R = 99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μm, with precision limited by both quantum and technical noise sources. We report a splitting of δν = 618(1) Hz, significantly less than the intrinsic cavity linewidth of δcav ≈ 3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δn/n = 6.38(1) × 10−6. PMID:27088133

  9. A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens

    NASA Astrophysics Data System (ADS)

    Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon

    2014-11-01

    The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.

  10. Elucidating the temporal dynamics of optical birefringence changes in crustacean nerves.

    PubMed

    Badreddine, Ali H; Schoener, Kurt J; Bigio, Irving J

    2015-10-01

    Intrinsic optical properties, such as optical birefringence, may serve as a tool for minimally invasive neuroimaging methods with high spatiotemporal resolution to aid in the study of neuronal activation patterns. To facilitate imaging neuronal activity by sensing dynamic birefringence, temporal characteristics behind the signal must be better understood. We have developed a novel nerve chamber to investigate changes in birefringence at the stimulation site, and at distances ~4-28 mm from that site. Using crustacean nerves with either heterogeneous or homogeneous size distributions of axon diameters, we found that the gradual (slow) recovery of the crossed-polarized signal is not explained by the arrival times of action potentials in smaller axons. Through studying the effects of stimulating current and voltage pulses, we hypothesize that the recovery may be caused by a capacitive-like coupling between firing axons and adjacent tissue structures, and we report data consistent with this hypothesis. This study will aid in the utilization of action-potential-related changes in birefringence to study fast changes in neuronal network activity. PMID:26504663

  11. Estimation of the Intrinsic Birefringence of the A, B and V Crystalline Forms of Amylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical birefringence (Delta n) for A, B, Va, Vh amylose crystals were calculated by vector summation of bond polarizabilities. Orientation of the O-H bond vectors in these amylose crystals is not well understood so results are given for likely O-H conformers. For B amylose, Delta n ranges from 0....

  12. Dynamics of laser-induced radial birefringence in silver-doped glasses.

    PubMed

    Ahangary, Ali Akbar; Bouchard, Frédéric; Santamato, Enrico; Karimi, Ebrahim; Khalesifard, Hamid Reza

    2015-09-01

    Silver ion-exchanged glass exhibits nonlinear optical properties upon interacting with intense light beams. The thermal effect due to the nanoparticles' light-absorption induces radial stress, and consequently, a radial birefringence on the glass surface. The induced birefringence possesses a topological charge of 1 in the transverse plane of the glass, i.e., cylindrical symmetry. Therefore, when the glass is illuminated with a circularly polarized light beam, a portion of the incoming beam flips its polarization handedness, since the plate is birefringent, and gains an orbital angular momentum of ±2 in units of the Planck constant. This is referred to as optical spin-to-orbital angular momentum conversion, and can be understood by means of the Pancharatnam-Berry phase. Here, we design a pump-probe setup to study and observe the dynamics of optical angular momentum coupling in real time. We show that this effect can be permanent or reversible, depending on the power and interaction time of the pump beam. In particular, an intrinsic power-dependent birefringence hysteresis is observed on the sample after interaction with and the relaxation of the irradiated point. PMID:26368712

  13. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  14. Critical behavior of a nonpolar smectogen from high-resolution birefringence measurements

    NASA Astrophysics Data System (ADS)

    Erkan, Selen; Çetinkaya, Mehmetcan; Yildiz, Sevtap; Özbek, Haluk

    2012-10-01

    We report high-sensitivity and high-temperature resolution experimental data for the temperature dependence of the optical birefringence of a nonpolar monolayer smectogen 4-butyloxyphenyl-4'-decyloxybenzoate (10¯.O.4¯) liquid crystal by using a rotating-analyzer technique. The birefringence data cover nematic and smectic-A phases of the 10¯.O.4¯ compound. The birefringence data are used to probe the temperature behavior of the nematic order parameter S(T) in the vicinity of both the nematic-isotropic (N-I) and the nematic-smectic-A (N-SmA) transitions. For the N-I transition, from the data sufficiently far away from the smectic-A phase, the average value of the critical exponent β describing the limiting behavior of S(T) is found to be 0.2507±0.0010, which is in accordance with the so-called tricritical hypothesis, which predicts β=0.25 and excludes higher theoretical values. The critical behavior of S(T) at the N-I transition is discussed in detail by comparing our results with the latest reports in the literature and we conclude that by comparing with the previously reported results, the isotropic internal field assumption by the Vuks-Chandrasekhar-Madhusudana model is adequate to extract the critical behavior of S(T) from the optical birefringence data. We observe that there is no discontinuous behavior in the optical birefringence, signaling the second-order nature of the N-SmA transition. The effect of the coupling between the nematic and smectic-A order parameters on the optical birefringence near the N-SmA transition is also discussed. In a temperature range of about 4K above and below the N-SmA transition, the pretransitional evidence for the N-SmA coupling have been detected. From the analysis of the optical birefringence data above and below the N-SmA transition by means of various fitting expressions we test the validity of the scaling relation λ=1-α between the critical exponent λ describing the limiting behavior of the nematic order parameter

  15. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation.

    PubMed

    Sato, H; Ellis, G W; Inoué, S

    1975-12-01

    Meiosis I metaphase spindles were isolated from oocytes of the sea-star Pisaster ochraceus by a method that produced no detectable net loss in spindle birefringence. Some of the spindles were fixed immediately and embedded and sectioned for electron microscopy. Others were laminated between gelatine pellicles in a perfusion chamber, then fixed and sequentially and reversibly imbibed with a series of media of increasing refractive indices. Electron microscopy showed little else besides microtubules in the isolates, and no other component present could account for the observed form birefringence. An Ambronn plot of the birefringent retardation measured during imbibition was a good least squares fit to a computer generated theoretical curve based on the Bragg-Pippard rederivation of the Wiener curve for form birefringence. The data were best fit by the curve for rodlet index (n1) = 1.512, rodlet volume fraction (f) = 0.0206, and coefficient of intrinsic birefringence = 4.7 X 10(-5). The value obtained for n1 is unequivocal and is virtually as good as the refractometer determinations of imbibing medium index on which it is based. The optically interactive volume of the microtubule subunit, calculated from our electron microscope determination of spindle microtubule distribution (106/mum2), 13 protofilaments per microtubules, an 8 nm repeat distance and our best value for f, is compatible with known subunit dimensions as determined by other means. We also report curves fitted to the results of Ambronn imbibition of Bouin's-fixed Lytechinus spindles and to the Noll and Weber muscle imbibition data.

  16. The measurement system of birefringence and Verdet constant of optical fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  17. Analysis of birefringence effects in laser crystals by full vectorial beam propagation method

    NASA Astrophysics Data System (ADS)

    Hartmann, Rainer; Pflaum, Christoph; Graupeter, Thomas

    2014-05-01

    Modern laser technology demands powerful numerical tools to predict the efficiency of laser configurations. Birefringence has a strong influence on the beam quality and output power of a laser amplifier. We developed a complex physical model for simulating laser amplifiers and analyzing the birefringence effects. This model includes pump configuration, thermal lensing effects, birefringence, and beam propagation in the laser amplifier. The pump configuration is simulated using a complete three-dimensional ray tracing or by an approximation based on super-Gaussian functions. For an accurate modeling of the thermal lensing effect, the deformation of the end faces and the polarization dependent index of refraction was taken into account. Temperature, deformation and stress inside the laser crystal were calculated by a three-dimensional finite element analysis (FEA). In particular, the refractive index was accurately calculated by considering its temperature dependency and the photo elastic effect. This refractive index was used in the simulation of laser beam propagation through an amplifier. These simulations were performed by a complete three-dimensional vectorial beam propagation method (VBPM). The advantage of VBPM is that it can be applied to a polarization dependent index of refraction. This is important when taking into account the birefringence obtained by the photo elastic effect inside the laser crystal. The beam propagation method is based on finite elements on block structured grids as well as a Crank-Nicolson approximation in the propagation direction (FE-BPM). Reflecting boundaries were eliminated by introducing a perfect matching layer (PML). Simulation results show that a complete three-dimensional simulation model was useful in analyzing and optimizing high power laser amplifiers. The value of our model lies in the fact that it can take into account the crystal cut direction. Based on this the birefringence for simulating the laser beam quality and

  18. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups

    SciTech Connect

    Emoto, Akira; Matsumoto, Taro; Shioda, Tatsutoshi; Ono, Hiroshi; Yamashita, Ayumi; Kawatsuki, Nobuhiro

    2009-10-01

    Polarization gratings with large birefringence are formed in photoreactive polymer liquid crystals with bistolane moiety and terminal cinnamic acid moiety by the use of polarized ultraviolet interference light and subsequent annealing. The polarized ultraviolet light causes the axis-selective photoreaction between the cinnamic acid groups and subsequent annealing induce the reorientation of peripheral molecules without cross-linking along the cross-linked groups. Long bistolane mesogenic moiety exhibits large birefringence in comparison with a biphenyl mesogenic moiety, the value of the induced birefringence in the bistolane mesogenic liquid crystalline (LC) polymer is strongly dependent on both the grating constant and the wavelength of the reconstruction light.

  19. PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications

    PubMed Central

    Ademgil, Huseyin; Haxha, Shyqyri

    2015-01-01

    In this paper, we report a design of high sensitivity Photonic Crystal Fiber (PCF) sensor with high birefringence and low confinement losses for liquid analyte sensing applications. The proposed PCF structures are designed with supplementary elliptical air holes in the core region vertically-shaped V-PCF and horizontally-shaped H-PCF. The full vectorial Finite Element Method (FEM) simulations performed to examine the sensitivity, the confinement losses, the effective refractive index and the modal birefringence features of the proposed elliptical air hole PCF structures. We show that the proposed PCF structures exhibit high relative sensitivity, high birefringence and low confinement losses simultaneously for various analytes. PMID:26694408

  20. Vibration sensor based on highly birefringent Bragg gratings written in standard optical fiber by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Bueno, Antonio; Kinet, Damien; Caucheteur, Christophe; Chluda, Cédric; Mégret, Patrice; Wuilpart, Marc

    2014-05-01

    We present a vibration sensor based on highly birefringent fiber Bragg gratings written in standard single mode optical fiber and realized with UV femtosecond pulses. This vibration sensor takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes which induces intensity distribution changes in the two fiber Bragg grating reflection modes. The gratings are inscribed with the femtosecond line by line technique and have a birefringence value of 6 10-4. We demonstrate that theses gratings are temperature birefringence insensitive and ideal for vibration measurements.

  1. PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications.

    PubMed

    Ademgil, Huseyin; Haxha, Shyqyri

    2015-01-01

    In this paper, we report a design of high sensitivity Photonic Crystal Fiber (PCF) sensor with high birefringence and low confinement losses for liquid analyte sensing applications. The proposed PCF structures are designed with supplementary elliptical air holes in the core region vertically-shaped V-PCF and horizontally-shaped H-PCF. The full vectorial Finite Element Method (FEM) simulations performed to examine the sensitivity, the confinement losses, the effective refractive index and the modal birefringence features of the proposed elliptical air hole PCF structures. We show that the proposed PCF structures exhibit high relative sensitivity, high birefringence and low confinement losses simultaneously for various analytes. PMID:26694408

  2. A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz

    NASA Astrophysics Data System (ADS)

    Onuma, Takashi; Otani, Yukitoshi

    2014-03-01

    A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.

  3. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3-8.5 µm mid-IR window.

    PubMed

    Caillaud, Celine; Gilles, Clement; Provino, Laurent; Brilland, Laurent; Jouan, Thierry; Ferre, Simon; Carras, Mathieu; Brun, Mickael; Mechin, David; Adam, Jean-Luc; Troles, Johann

    2016-04-18

    A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core. Birefringence properties are calculated by using the vector finite-element method and are compared to the experimental ones. The group birefringence is 1.5x10-3 and fiber losses are equal to 0.8 dB/m at 7.55 µm. PMID:27137239

  4. Segment Orientation and Optical Birefringence of Amorphous Polymers Under Tensile Deformation: Novel Computational Method applied to Different Glassy Polycarbonates

    NASA Astrophysics Data System (ADS)

    Natarajan, Upendra; Sulatha, M. S.

    2005-03-01

    Orientation dependent optical properties of Bisphenol A polycarbonate and two aliphatic substituted polycarbonates in glassy phase have been studied by atomistic modeling using molecular mechanics simulations under tensile deformation. Probability distributions and orientation functions show that phenylene rings and carbonate groups vectors along the main chain orient towards stretching direction following deformation. Interchain packing of rings and carbonates become ordered with strain. Efficient computational approach for calculation of optical birefringence of amorphous polymers is presented and applied to the polycarbonates in detail. Polarizability anisotropy of the polymer segments and chain as a function of deformation is calculated by combining information on the conformations and group polarizabilities, and used to estimate birefringence during deformation. Simulated and experimental values for segment orientation and bulk birefringence are in very good agreement. Effect of the optical properties of atomic groups on bulk birefringence is brought forth for the first time by molecular simulation for polymers other than polyethylene.

  5. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Juan; Dai, Ye; Tao, Wenjun; Gong, Min; Ma, Guohong; Zhao, Quanzhong; Qiu, Jianrong

    2016-02-01

    In this paper, we report the birefringence effect of surface self-assembly periodic nanostructures induced on 6H-SiC by femtosecond laser irradiation. Birefringence characteristic (e.g. cross-polarized image), measured by cross polarized microscopy, was found to be controlled by both single pulse energy and scanning velocity. Comparing birefringence measurement results of nanostructures and morphology characterization by Scanning electron microscopy, it is shown that ∼200 nm-period deep-subwavelength periodic ripples (DSWR) plays a dominating role in the birefringence effect. Raman spectra show that the change of retardance with pulse energy and scanning velocity is most possibly caused by the thickness variation of DSWR. Finally, a light attenuator based on a single layer of DSWR structure on 6H-SiC surface was constructed and tested by light source of 800 nm to have a tunable attenuating ratio of 69-100%.

  6. Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film.

    PubMed

    Lee, Hyojin; Lee, Ji-Hoon

    2014-09-01

    We suggest a method to obtain a negative dispersion (ND) of birefringence using a two-dimensional self-organization of smectic liquid crystal (LC) and monomer molecules. The averaged orientation of the smectic LC was the layer normal direction with the extraordinary refractive index n(e). Meanwhile, the orientation of the monomer molecules was templated by the host-smectic LC and parallel to the layer plane corresponding to the ordinary refractive index n(o). We selected the LC molecules absorbing a shorter wavelength of UV light rather than the polymerized monomers, hence n(e) was more smoothly decreased than n(o) in the visible-wavelength range. Consequently, the birefringence Δn≡n(e)-n(o) was increased with a longer wavelength, thus giving a ND of birefringence. Using the proposed method, the ND of birefringence could be obtained in a single layer, which is desirable for thin flexible applications.

  7. Determination of birefringence and slow axis distribution using an interferometric measurement system with liquid crystal phase shifter.

    PubMed

    Nose, Toshiaki; Kamata, Keisuke; Takeuchi, Toru; Okano, Keiju; Fujita, Naoko; Muraguchi, Hajime; Ozaki, Noriaki; Honma, Michinori; Ito, Ryouta

    2014-11-01

    It is known that liquid crystal (LC) cells are useful as compact and easy-to-handle phase shifters that are readily coupled into the optics of standard microscope systems. Here, a uniformly aligned molecular LC phase shifter is introduced into a polarization microscope to attain a birefringence imaging system, using the phase-shift interferometric technique. Since the birefringence can be determined accurately only when the optical axis of the sample is parallel or perpendicular to the slow axis (variable axis) of the LC phase shifter, an improved data analysis method is proposed for determining the birefringence independently of the direction; a simple method of determining the slow axis distribution is also demonstrated. Measurements of the birefringence and slow axis distribution properties of a potato starch particle are demonstrated to confirm the novel determination method. PMID:25402881

  8. Spectral-domain measurement of the strain sensitivity of phase modal birefringence of polarization-maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Cezary

    2016-09-01

    The paper presents a new and simple method of measuring the strain sensitivity of phase modal birefringence (dΔn/dε) of polarization maintaining fibers (PMFs). The method is based on measuring the spectral strain sensitivity of a strain sensor in the configuration of a Sagnac interferometer with a PMF. The measured spectral strain sensitivity of the sensor is used to determine the strain sensitivity of phase modal birefringence and the polarimetric strain sensitivity of the PMF. In addition, a new procedure for determining the sign of the strain sensitivity of phase and group modal birefringence of a PMF. Using this method, measurements of the strain sensitivity of modal birefringence of PMFs were performed: a PM-PCF and a Bow-Tie fiber, in the wavelength range 1460-1600 nm. A comparison of the results of these measurements with results obtained using other methods for the same types of fibers is presented.

  9. Universal compensation of the non-reciprocal circular birefringence in a retracing path by a mirrored quarter-wave plate

    NASA Astrophysics Data System (ADS)

    Martinelli, Mario; Martelli, Paolo; Fasiello, Annalaura

    2016-08-01

    A quarter-wave plate combined with a mirror realizes a pure rotator on the reflected beam, hence it realizes the same polarization transformation of a Porro prism, which has been recently demonstrated as a universal compensator for the non-reciprocal circular birefringence present in a retracing path. In the present work, the mirrored quarter-wave plate has been experimentally proved to effectively compensate for the non-reciprocal circular birefringence introduced by a variable Faraday rotator.

  10. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    PubMed

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam. PMID:25927770

  11. Phase-matched second-harmonic generation in poled polymers by the use of birefringence

    NASA Astrophysics Data System (ADS)

    Tao, X. T.; Watanabe, T.; Zou, D. C.; Ukuda, H.; Miyata, S.

    1995-09-01

    Green light has been observed for the first time to the authors' knowledge by bulk phase-matched second-harmonic generation from a stretched main chain polyurea. The polyurea was synthesized from 4,4'-diphenylmethane diisocyanate and 4,4'-methylene bis(cyclohexylamine). The spin-coated film has an initial positive birefringence. Drawing further increased the birefringence, and the film can be used for phase matching just as in biaxial single crystals. The drawn and poled polymer films belong to the 2mm point group. Three independent nonlinear-optic coefficients were determined. The type I phase-matching characteristics were calculated and confirmed by experiments. We demonstrate that a highly effective second-harmonic-generation device with a long optical path length can be obtained by use of bulk phase-matchable poled polymer.

  12. Wave propagation in birefringent materials with off-axis absorption or gain

    NASA Astrophysics Data System (ADS)

    Sabooni, Mahmood; Nilsson, Adam N.; Kristensson, Gerhard; Rippe, Lars

    2016-01-01

    The polarization direction of an electromagnetic field changes and eventually reaches a steady state when propagating through a birefringent material with off-axis absorption or gain. The steady state orientation direction depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization direction is experimentally demonstrated in weakly doped (0.05 %) Pr3+:Y2SiO5 crystals, where the light polarization, if initially aligned along the most strongly absorbing principal axis, gradually switches to a much less absorbing polarization state during the propagation. This means that the absorption coefficient α in birefringent materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and narrow band spectral filters and quantum memories.

  13. Negligible birefringence in dual-mode ion-exchanged glass waveguide gratings

    NASA Astrophysics Data System (ADS)

    Yliniemi, Sanna; Albert, Jacques; Laronche, Albane; Castro, Jose M.; Geraghty, David; Honkanen, Seppo

    2006-09-01

    Polarization dependence of UV-written Bragg gratings in buried ion-exchanged glass waveguides is investigated. A polarization-dependent shift in Bragg wavelength of less than 0.02 nm is measured, both for the even and the odd modes of a laterally dual-mode waveguide. The measured wavelength shift corresponds to a waveguide birefringence of the order of 10-5, which is negligible for most applications in optical communications. It is observed that the UV-induced birefringence is small, within the limits of the measurement accuracy. The thermal stability of the fabricated gratings is also very good. The results are of particular importance for devices considered here since they require a polarization-independent mode-converting waveguide Bragg grating. Polarization-independent performance of these gratings enables the fabrication of a new class of integrated optical devices for telecommunication applications.

  14. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  15. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  16. Terahertz-field-induced optical birefringence in common window and substrate materials.

    PubMed

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2015-11-01

    We apply intense terahertz (THz) electromagnetic pulses with field strengths exceeding 2 MV cm(-1) at ~1 THz to window and substrate materials commonly used in THz spectroscopy and determine the induced optical birefringence. Materials studied are diamond, sapphire, magnesium oxide (MgO), polymethylpentene (TPX), low-density polyethylene (LDPE), silicon nitride membrane (SiN) and crystalline quartz. We observe a Kerr-effect-type transient birefringence in all samples, except in quartz and Si, where, respectively, a linear electrooptic signal and a response beyond the perturbative regime are found. We extract the nonlinear refractive indices and the electrooptic coefficient (in the case of quartz) of these materials and discuss implications for their use as windows or substrates in THz pump-optical probe spectroscopy.

  17. Nonlinear temperature dependence of glue-induced birefringence in polarization maintaining FBG sensors

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    Glue-induced stresses decrease the accuracy of surface-mounted fiber Bragg gratings (FBG). Significant temperature dependent glue-induced birefringence was verified when a thermally cured epoxy-based bonding technique had been used. Determining the peak separation of two azimuthally aligned FBGs in PM fibers combined with a polarization resolved measurement set-up in a temperature range between -30°C and 150°C revealed high glue-induced stresses at low temperatures. Peak separations of about 60 pm and a nonlinear temperature dependence of the glue-induced birefringence due to stress relaxation processes and a visco-elastic behavior of the used adhesive have been shown.

  18. Birefringence-balanced polarimetric optical fiber sensor for high-temperature measurements

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.

    1992-01-01

    A birefringence-balanced polarimetric multimode fiber temperature sensor is proposed and demonstrated. Two single-crystal sapphire rods are incorporated into the sensor head. They are connected end to end in such a way that the slow axis of the first rod is aligned with the fast axis of the second rod, referred to as the referencing rod. Since the lengths of the two rods are chosen to be almost the same, the original birefringence of the first rod is balanced by that of the second rod. A light-emitting diode serves as the light source. This sensor has been experimentally demonstrated for high-temperature measurements as high as 1500 C. A sensitivity of 5 C has been obtained.

  19. Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals.

    PubMed

    Asoubar, Daniel; Zhang, Site; Wyrowski, Frank

    2015-06-01

    Birefringence effects can have a significant influence on the polarization state as well as on the transversal mode structure of laser resonators. This work introduces a flexible, fast and fully vectorial algorithm for the analysis of resonators containing homogeneous, anisotropic optical components. It is based on a generalization of the Fox and Li algorithm by field tracing, enabling the calculation of the dominant transversal resonator eigenmode. For the simulation of light propagation through the anisotropic media, a fast Fourier Transformation (FFT) based angular spectrum of plane waves approach is introduced. Besides birefringence effects, this technique includes intra-crystal diffraction and interface refraction at crystal surfaces. The combination with numerically efficient eigenvalue solvers, namely vector extrapolation methods, ensures the fast convergence of the method. Furthermore a numerical example is presented which is in good agreement to experimental measurements. PMID:26072756

  20. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity

    PubMed Central

    Mehta, Shalin B.; Shribak, Michael; Oldenbourg, Rudolf

    2013-01-01

    Polarized light microscopy provides unique opportunities for analyzing the molecular order in man-made and natural materials, including biological structures inside living cells, tissues, and whole organisms. 20 years ago, the LC-PolScope was introduced as a modern version of the traditional polarizing microscope enhanced by liquid crystal devices for the control of polarization, and by electronic imaging and digital image processing for fast and comprehensive image acquisition and analysis. The LCPolScope is commonly used for birefringence imaging, analyzing the spatial and temporal variations of the differential phase delay in ordered and transparent materials. Here we describe an alternative use of the LC-PolScope for imaging the polarization dependent transmittance of dichroic materials. We explain the minor changes needed to convert the instrument between the two imaging modes, discuss the relationship between the quantities measured with either instrument, and touch on the physical connection between refractive index, birefringence, transmittance, diattenuation, and dichroism. PMID:24273640

  1. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber.

    PubMed

    Beravat, R; Wong, G K L; Xi, X M; Frosz, M H; St J Russell, P

    2016-04-01

    Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant. PMID:27192315

  2. A device for continuous monitoring of true central fixation based on foveal birefringence.

    PubMed

    Gramatikov, Boris; Irsch, Kristina; Müllenbroich, Marie; Frindt, Nicole; Qu, Yinhong; Gutmark, Ron; Wu, Yi-Kai; Guyton, David

    2013-09-01

    A device for continuous monitoring of central fixation utilizes birefringence, the property of the Henle fibers surrounding the human fovea, to change the polarization state of light. A circular scan of retinal birefringence, where the scanning circle encompasses the fovea, allows identification of true central fixation-an assessment much needed in various applications in ophthalmology, psychology, and psychiatry. The device allows continuous monitoring for central fixation over an extended period of time in the presence of fixation targets and distracting stimuli, which may be helpful in detecting attention deficit hyperactivity disorder, autism spectrum disorders, and other disorders characterized by changes in the subject's ability to maintain fixation. A proof-of-concept has been obtained in a small study of ADHD patients and normal control subjects.

  3. Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion

    NASA Astrophysics Data System (ADS)

    Toishi, Mitsuru; Tanaka, Tomiji; Fukumoto, Atsushi; Sugiki, Mikio; Watanabe, Kenjiro

    2007-02-01

    In this paper, we evaluate photopolymer media using a polycarbonate (PC) substrate. In holographic data storage medium, substrates that sandwich the photopolymer material are needed to protect the photopolymer material against exogenous shock and open air. An optical glass such as BK-7 is normally used as a substrate, but a PC substrate has a cost advantage and is easy to fabricate compared with optical glass. For holographic recording and reading, however, the high birefringence and high thermal expansion of a PC substrate are significant problems. First, we analyze the degree of degradation of output power by the polarization change and estimate the threshold value of birefringence to record hologram normally. Next, we estimate the temperature tolerance of hologram readout with polycarbonate substrate hologram medium. These analyses results indicate the possible usage of the PC substrate as holographic recording media.

  4. A novel synthesis approach for birefringent filters having arbitrarily amplitude transmittances

    NASA Astrophysics Data System (ADS)

    Halassi, Abde Rezzaq; Hamdi, Rachid; Bendimerad, Djalal Falih; Benkelfat, Badr-Eddine

    2016-06-01

    In this paper, we present a novel procedure for the synthesis of a filter having an arbitrarily specified amplitude transmittance. The filter configuration consists of N birefringent stages placed between a polarizer and an analyzer, with each stage containing an identical section and a variable section. An additional variable section is placed in front of the analyzer. The synthesis procedure is based on the resolution of a generalized nonlinear equation system directly deducted from the Jones matrix formalism to determine the angles of each stage, the angle of the analyzer and the phase shifts of the variable sections. A typical example of a 6-stage birefringent filter having an arbitrarily non-symmetric amplitude transmittance is shown and the opto-geometrical parameters are given to demonstrate the efficiency of the proposed synthesis procedure. The results obtained show an excellent agreement with those developed in the literature.

  5. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method. PMID:26628116

  6. Terahertz-field-induced optical birefringence in common window and substrate materials.

    PubMed

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2015-11-01

    We apply intense terahertz (THz) electromagnetic pulses with field strengths exceeding 2 MV cm(-1) at ~1 THz to window and substrate materials commonly used in THz spectroscopy and determine the induced optical birefringence. Materials studied are diamond, sapphire, magnesium oxide (MgO), polymethylpentene (TPX), low-density polyethylene (LDPE), silicon nitride membrane (SiN) and crystalline quartz. We observe a Kerr-effect-type transient birefringence in all samples, except in quartz and Si, where, respectively, a linear electrooptic signal and a response beyond the perturbative regime are found. We extract the nonlinear refractive indices and the electrooptic coefficient (in the case of quartz) of these materials and discuss implications for their use as windows or substrates in THz pump-optical probe spectroscopy. PMID:26561167

  7. A Compact Dual-Crystal Modulated Birefringence-Measurement System for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.; Das, Kamal K.; Anna, Shelley L.; McKinley, Gareth H.

    1999-01-01

    A compact modulated birefringence-measurement system has been developed for use in microgravity fluid physics applications with non-Newtonian fluids such as polymer solutions. This instrument uses a dual-crystal transverse electro-optical modulator capable of modulation frequencies in excess of 100 MHz. The two crystals are modulated 180 deg. out of phase from each other, The theoretical framework governing the development of this instrument using the Mueller-Stokes polarization matrices is discussed. Several ground-based experiments are performed to compare this system with the theoretical results. Results from this transverse electro-optical modulator-based birefringence-measurement system agree well with the theory. The instrument is also very stable and robust, making it suitable for the extreme acceleration environment to be encountered in a NASA Black Brandt sounding rocket.

  8. Thermal dependence of stress-induced birefringence in single mode optical fibers

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Thompson, L. B.

    1984-01-01

    Measurements of the change in stress-induced birefringence with temperature in single mode optical fibers are reported. The fibers examined include those with low residual stress birefringence that have circular and elliptical cores. A section of each fiber was placed under constant load with weights and heated inside a furnace. Polarized light was coupled into and out of the fiber ends outside the furnace. Two mutually perpendicular polarization components were analyzed and detected at the fiber output end. Changes in the detected signal levels were monitored as a function of the temperature of the single mode fiber stressed under constant load. Discussion of results and applications to localized stress measurements at high temperatures are presented.

  9. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-01

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated. PMID:25187982

  10. Real-time imaging of action potentials in nerves using changes in birefringence

    PubMed Central

    Badreddine, Ali H.; Jordan, Tomas; Bigio, Irving J.

    2016-01-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time “movies”. This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  11. Zero-birefringence photosensitive poly(arylene ether) for optical waveguides

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Dan; Zhong, Zhen-Xin; Kim, Jang Joo; Lee, Myong-Hoon

    2005-01-01

    Novel photosensitive fluorinated poly(arylene ether) containing chalcone unit (F-PAECh) in the main chain was synthesized from decafluorinated chalcone and fluorinated bisphenol at low temperature for polymer optical waveguide application. Upon UV irradiation on the resulting polymer film, [2+2] cycloaddition of chalocone moiety induced the anisotropic decrease of the refractive indices (nTE and nTM) accompanied with crosslinking of polymer film. The decrease was more significant in in-plane direction than out-of-plane direction, and consequently, zero birefringence was obtained with 4.5 min of exposure. Zero-birefringence as well as its excellent optical properties of F-PAECh makes it a promising candidate material for use in high-performance wavelength division multiplexing components such as polarization-independent arrayed waveguide gratings and Bragg wavelength filters.

  12. Real-time imaging of action potentials in nerves using changes in birefringence.

    PubMed

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  13. Measurement of the chromatic dispersion in birefringent microstructured fibers by spectral interferometry

    NASA Astrophysics Data System (ADS)

    Statkiewicz-Barabach, G.; Van Hoeken, A.; Mikolajczyk, M.; Urbanczyk, W.

    2008-06-01

    We present an application of the interferometric method for measuring the chromatic dispersion of microstructured birefringent fibers in a wide wavelength range employing a portable spectrometer with resolution of 0.5 nm. The method utilizes an unbalanced Mach-Zehnder interferometer with a tested fiber in one arm and the other arm with a controllable path length. We recorded a series of spectral signals to find the length of the reference arm (with compensated group delay coming from the tested fiber) as a function of wavelength. We also present the results of dispersion measurements in three highly birefringent microstructured fibers manufactured by the Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, Lublin, Poland.

  14. A note on the birefringence angle estimation in CMB data analysis

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Maggio, G.; Molinari, D.; Natoli, P.

    2016-05-01

    Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of 5-10%. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.

  15. Suppression of Brewster delocalization anomalies in an alternating isotropic-birefringent random layered medium

    NASA Astrophysics Data System (ADS)

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2013-07-01

    We investigate the polarization dependence of localization length in alternating isotropic-birefringent stacks with uncorrelated thickness disorder. The birefringent layers can be positive uniaxial, negative uniaxial, or a mixture of both. Stacks which contain a mixture are shown to suppress the Brewster delocalization anomalies and, over all incident angles, exhibit p-polarization localization length maxima that are of similar magnitude to normal incidence. Furthermore, we propose a parameter set that enables the p-polarization localization length to monotonically decrease with angle of incidence. This investigation was inspired by weakly polarizing mirrors on the sides of silvery fish and provides a generic means to produce polarization-insensitive, broadband reflections from a random, all-dielectric layered medium.

  16. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle

    PubMed Central

    1979-01-01

    The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316

  17. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    SciTech Connect

    Paranin, V D; Matyunin, S A; Tukmakov, K N

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  18. Birefringing arising from the reorientation of the polarizability anisotropy of molecules in collisionless gases

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Heritage, J. P.; Gustafson, T. K.; Chiao, R. Y.; Mctague, J. P.

    1974-01-01

    The refractive index change in a collisionless gas is evaluated from the Stark shifts of the rotational energy levels that arise from the polarizability anisotropy. For the limit of an extremely short-duration excitation, a multilevel coherent effect resulted in delayed refractive index bursts. Both stationary and transient responses of this birefringence to an optical field were considered for symmetric top molecules, with particular emphasis on the special case of linear molecules.

  19. Longitudinal coherence properties of light waves propagating through a birefringent fiber.

    PubMed

    Tsubokawa, M; Shibata, N; Higashi, T; Seikai, S

    1987-05-01

    Longitudinal coherence properties of the waves propagating through a birefringent fiber are investigated theoretically and experimentally. Significant loss due to the polarization-dispersion slope is observed clearly for the interference between the two orthogonally polarized HE(11) modes. The results obtained experimentally reflect the theoretical predictions well for both the modulus of the degree of coherence and its curve shape versus the optical path difference in the wavelength region from 816 to 1540 nm.

  20. Birefringence arising from the reorientation of the polarizability anisotropy of molecules in collisionless gases

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Heritage, J. P.; Gustafson, T. K.; Chiao, R. Y.; Mctague, J. P.

    1976-01-01

    The refractive-index change in a collisionless gas is evaluated from the Stark shifts of the rotational energy levels that arise from the polarizability anisotropy. In the limit of an extremely-short-duration excitation, a multilevel coherent effect results in delayed refractive-index bursts. Both stationary and transient responses of this birefringence to an optical field are considered for symmetric-top molecules, with particular emphasis on the special case of linear molecules.

  1. Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method.

    PubMed

    Drobczynski, Slawomir; Bueno, Juan M; Artal, Pablo; Kasprzak, Henryk

    2006-08-01

    We present an imaging polarimeter in transmission mode that is based on a carrier frequency method and allows a spatially resolved polarimetric description of nondichroic linear birefringent media. The apparatus incorporates a generator of polarization states in the incoming pathway and a Wollaston prism and a linear polarizer as the analyzer unit. A series of two fringe pattern images of the birefringent sample under study, corresponding to two independent polarization states of the generator unit, were recorded. From these images and by using Fourier analysis, the 2D distribution of azimuth angle and retardation were calculated. Two alternative generator units were used: (i) a linear polarizer combined with a rotatory quarter-wave plate and (ii) a liquid-crystal variable retarder. A uniform quarter-wave plate at different orientations was measured with both generator units to demonstrate the effectiveness and the accuracy of the method. The mean absolute deviations were 1.8 degrees and 4.1 degrees for the azimuth and the retardation, respectively, with the first generator unit, and 2.9 degrees and 4.4 degrees for the second one. Moreover, some nonuniform birefringent samples presenting wider ranges of azimuth and retardation were also tested. PMID:16855647

  2. Measurement of birefringence of optical materials using a wedged plate interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, Putcha

    1990-01-01

    A nondestructive technique for measuring the birefringence of optical materials such as calcite using wedged plate interferometer is presented. The sample needed for measuring the refractive index must be polished in the form of a parallel plate. The method is based on the measurement of the longitudinal displacement of the focus when the parallel plate is inserted in a converging beam of light. The displacement of the focus is a measure of the refractive index of the optical material. In the case of a uniaxial crystal, the displacement of the focus for the extraordinary ray is different from the displacement of the focus for the ordinary ray. Hence the birefringence of the crystal is determined by measuring the difference between the two focii. It is possible to obtain an accuracy up to 0.0002 in the measurement of birefringence depending on the sample thickness. The method should find its application for the characterization of new crystals in various material research and crystal growth laboratories.

  3. Wavelength-tunable mid-infrared femtosecond Raman soliton generation in birefringent ZBLAN photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Sharma, Sneha; Kumar, Jitendra

    2016-03-01

    A solid core high birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic crystal fiber (PCF) with low confinement loss is proposed for the generation of Raman soliton source in the mid-infrared region. The birefringence value of the PCF reaches the magnitude of 10- 3 and confinement loss is 0.05 dB/m at 3000 nm wavelength. Numerical simulation of femtosecond Raman soliton generation based on soliton self-frequency shift in the birefringent PCF is analyzed using the coupled nonlinear Schrodinger equation and split-step Fourier method. We investigate the dependence of output pulse width, wavelength shift, and conversion efficiency of Raman soliton formation on several input parameters. A femtosecond Raman soliton source with its wavelength tunable from 1500 to 3600 nm can be obtained. It is found that the maximum conversion efficiency is 93% when the wavelength is tuned by varying the initial input chirp.

  4. Electric field induced birefringence in non-aqueous dispersions of mineral nanorods.

    PubMed

    de la Cotte, Alexis; Merzeau, Pascal; Kim, Jong Wook; Lahlil, Khalid; Boilot, Jean-Pierre; Gacoin, Thierry; Grelet, Eric

    2015-09-01

    Lanthanum phosphate (LaPO4) nanorods dispersed in the non-aqueous solvent of ethylene glycol form a system exhibiting large intrinsic birefringence, high colloidal stability and the ability to self-organize into liquid crystalline phases. In order to probe the electro-optical response of these rod dispersions we study here the electric-field-induced birefringence, also called Kerr effect, for a concentrated isotropic liquid state with an in-plane a.c. sinusoidal electric field, in conditions of directly applied (electrodes in contact with the sample) or externally applied (electrodes outside the sample cell) fields. Performing an analysis of the electric polarizability of our rod-like particles in the framework of Maxwell-Wagner-O'Konski theory, we account quantitatively for the coupling between the induced steady-state birefringence and the electric field as a function of the voltage frequency for both sample geometries. The switching time of this non-aqueous transparent system has been measured, and combined with its high Kerr coefficients and its features of optically isotropic "off-state" and athermal phase behavior, this represents a promising proof-of-concept for the integration of anisotropic nanoparticle suspensions into a new generation of electro-optical devices. PMID:26189711

  5. X-ray Birefringence Imaging of Materials with Anisotropic Molecular Dynamics.

    PubMed

    Palmer, Benjamin A; Edwards-Gau, Gregory R; Kariuki, Benson M; Harris, Kenneth D M; Dolbnya, Igor P; Collins, Stephen P; Sutter, John P

    2015-02-01

    The X-ray birefringence imaging (XBI) technique, reported very recently, is a sensitive tool for spatially resolved mapping of the local orientational properties of anisotropic materials. In this paper, we report the first XBI measurements on materials that undergo anisotropic molecular dynamics. Using incident linearly polarized X-rays with energy close to the Br K-edge, the X-ray birefringence is dictated by the orientational properties of the C-Br bonds in the material. We focus on two materials (urea inclusion compounds containing 1,8-dibromooctane and 1,10-dibromodecane guest molecules) for which the reorientational dynamics of the brominated guest molecules (and hence the reorientational dynamics of the C-Br bonds) are already well characterized by other experimental techniques. The XBI results demonstrate clearly that, for the anisotropic molecular dynamics in these materials, the effective X-ray optic axis for the X-ray birefringence phenomenon is the time-averaged resultant of the orientational distribution of the C-Br bonds. PMID:26261979

  6. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.

    PubMed

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2012-04-20

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  7. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Wallenburg, Marika A.; Li, Shu-Hong; Weisel, Richard D.; Wilson, Brian C.; Li, Ren-Ke; Vitkin, I. Alex

    2010-07-01

    Myocardial infarction leads to structural remodeling of the myocardium, in particular to the loss of cardiomyocytes due to necrosis and an increase in collagen with scar formation. Stem cell regenerative treatments have been shown to alter this remodeling process, resulting in improved cardiac function. As healthy myocardial tissue is highly fibrous and anisotropic, it exhibits optical linear birefringence due to the different refractive indices parallel and perpendicular to the fibers. Accordingly, changes in myocardial structure associated with infarction and treatment-induced remodeling will alter the anisotropy exhibited by the tissue. Polarization-based linear birefringence is measured on the myocardium of adult rat hearts after myocardial infarction and compared with hearts that had received mesenchymal stem cell treatment. Both point measurement and imaging data show a decrease in birefringence in the region of infarction, with a partial rebound back toward the healthy values following regenerative treatment with stem cells. These results demonstrate the ability of optical polarimetry to characterize the micro-organizational state of the myocardium via its measured anisotropy, and the potential of this approach for monitoring regenerative treatments of myocardial infarction.

  8. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.

    PubMed

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2012-04-20

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications. PMID:22456180

  9. Heterodyne double-channel polarimeter for mapping birefringence and thickness of flat glass panels

    SciTech Connect

    Protopopov, Vladimir V.; Cho, Sunghoon; Kim, Kwangso; Lee, Sukwon; Kim, Hyuk; Kim, Daesuk

    2006-05-15

    A new cross-polarized heterodyne optical technique is developed for two-dimensional (2D) simultaneous mapping of both birefringence and thickness variations in large flat glass panels commonly used in liquid-crystal displays (LCDs). Weak depolarization of a linearly polarized probe beam due to glass birefringence is detected by means of heterodyne mixing of the two cross-polarized and frequency shifted waves generated by Zeeman-type laser. Amplitude variations of the transmitted laser beam due to interference of the partial waves reflected from the both sides of a sample provide information about glass thickness. Measurements are being performed at the intermediate frequency of 2.3 MHz, providing several orders of magnitude higher speed of data acquisition with respect to traditional polarimeters. That high speed of measurements makes it possible to perform quality assessment of LCD glass panels not only in few randomly chosen points as it was in common practice before but to obtain entire 2D maps of both birefringence and thickness variations with millimeter scale spatial resolution. The medium-scale prototype of the LCD glass inspection system is developed and tested. Design and performance of the prototype are described.

  10. Birefringent dual-frequency laser Doppler velocimeter using a low-frequency lock-in amplifier technique for high-resolution measurements.

    PubMed

    Zhu, Hongbin; Chen, Junbao; Guo, Dongmei; Xia, Wei; Hao, Hui; Wang, Ming

    2016-06-01

    A birefringent dual-frequency laser with a half-intracavity has been used to develop a laser Doppler velocimeter (LDV). The developed LDV utilizes a new signal-processing method based on a lock-in amplifier to achieve high-resolution velocity measurements and the discrimination of positive and negative velocities. Theoretical analysis and simulation results are presented. The velocity measurement experiments by using a high-precision linear stage are performed to verify the performance of the LDV. Compared with the previous dual-frequency LDVs, the average velocity resolution of the developed LDV is improved from 0.31 mm/s to 0.028 mm/s for a target without the rotational velocity. The measurement results show that our new technique can offer a powerful instrument for metrology sciences. PMID:27411198

  11. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    SciTech Connect

    Raposo, Maria Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  12. Time Circular Birefringence in Time-Dependent Magnetoelectric Media

    PubMed Central

    Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin

    2015-01-01

    Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928

  13. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.

    PubMed

    Wood, Michael F G; Guo, Xinxin; Vitkin, I Alex

    2007-01-01

    A Monte Carlo model for polarized light propagation in birefringent, optically active, multiply scattering media is developed in an effort to accurately represent the propagation of polarized light in biological tissue. The model employs the Jones N-matrix formalism to combine both linear birefringence and optical activity into a single effect that can be applied to photons as they propagate between scattering events. Polyacrylamide phantoms with strain-induced birefringence, sucrose-induced optical activity, and polystyrene microspheres as scattering particles are used for experimental validation. Measurements are made using a Stokes polarimeter that detects scattered light in different geometries, and compared to the results of Monte Carlo simulations run with similar parameters. The results show close agreement between the experimental measurements and Monte Carlo calculations for phantoms exhibiting turbidity and birefringence, as well as for phantoms exhibiting turbidity, birefringence, and optical activity. Other scattering-independent polarization properties can be incorporated into the developed Jones N-matrix formalism, enabling quantification of the polarization effects via an accurate polarization-sensitive Monte Carlo model. PMID:17343504

  14. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring

    PubMed Central

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-01-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  15. Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    1999-01-01

    We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.

  16. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring.

    PubMed

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-04-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  17. Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion

    DOE PAGESBeta

    Erenso, Daniel

    2009-01-01

    The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.

  18. Chirality measurements using optical fibre long period gratings fabricated in high birefringent fibre

    NASA Astrophysics Data System (ADS)

    Korposh, S.; Tatam, R. P.; James, S. W.; Lee, S.-W.

    2015-07-01

    A Long period grating (LPG) with a period of 111 μm was fabricated in the highly birefringent (Hi-Bi) optical fibre with the aim of developing a sensor for chirality measurements. The LPG sensor was exposed to different concentrations of glucose D(+) and fructose D(-) in water, which have similar structures but exhibit opposite optical rotations, i.e. chirality. The behaviour of the resonance bands of the submodes corresponding to the two orthogonal polarization states was different depending on the chirality of the compound, thus allowing discrimination between two compounds.

  19. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  20. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.

  1. Electric-field-induced mid-infrared birefringence of the double quantum wells

    NASA Astrophysics Data System (ADS)

    Vinnichenko, M. Ya; Babich, V. M.; Balagula, R. M.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.

    2016-08-01

    Birefringence in double tunnel-coupled GaAs/AlGaAs quantum wells was studied in the mid-infrared spectral range close to the intersubband resonance. Phase-sensitive optical studies allowed us to deduce simultaneously the differences of the refraction index and absorption coefficient for the normal waves polarized in the plane of the structure and along the structure growth, including electric-field induced effects. The optical absorption data are in a good agreement with the direct optical transmission measurements.

  2. A 25 T dipole pulsed magnet to study the magnetic birefringence of vacuum: the BMV project

    NASA Astrophysics Data System (ADS)

    Askenazy, S.; Billette, J.; Dupré, P.; Ganau, P.; Mackowski, J.; Marquez, J.; Pinard, L.; Portugall, O.; Ricard, D.; Rikken, G. L. J. A.; Rizzo, C.; Trenec, G.; Vigué, J.

    2001-04-01

    The existence of a magnetic birefringence of vacuum is one of the most important predictions of quantum electrodynamics, which has not yet been verified. In this contribution, we present a new project, the BMV (Biréfringence Magnétique du Vide) project, a collaboration between different Grenoble, Lyon and Toulouse institutes. The proposed experimental set-up, compared to previous attempts, should improve the signal level by about two orders of magnitude. Keystones of the proposed set-up are a very sensitive ellipsometer and a specially designed 1.5 m long 25 T pulsed magnet, which is under development in Toulouse, France.

  3. Detection of a two-photon transition by stimulated emission: Amplification and circular birefringence

    SciTech Connect

    Sanguinetti, S.; Mure, E.; Minguzzi, P.

    2007-02-15

    We present the detection of a two-photon transition based on stimulated emission. This measurement was performed in rubidium for the 5S-5D{sub 5{approx}}{sub sol{approx}}{sub 2}-5P{sub 3{approx}}{sub sol{approx}}{sub 2} transition, using two low-cost diode lasers. Several detection schemes were tested. We reached the best results by probing the circular birefringence of the excited vapor, with the polarization analysis of the amplified laser beam.

  4. Degree of polarization fading of light passing through birefringent medium with optical axis variation

    NASA Astrophysics Data System (ADS)

    Makowski, Piotr L.; Domański, Andrzej W.

    2010-09-01

    Numerical implementation of Mueller-Stokes matrix calculus for polychromatic light is used to analyze and plainly illustrate polarization properties of multi-section linearly birefringent systems illuminated by the light of any spectrum profile. Numerical investigations are preceded by a detailed review of known concepts for modeling the depolarization phenomenon in anisotropic media. The numerical study examines efficiency of the Lyot depolarizer system undergoing variations from the optimal configuration. In addition, the power spectrum density profile and intrinsic polarization state of light passing through the system are considered as interesting degrees of freedom. The comparative analysis makes use of the degree of polarization and the depolarization index diagrams.

  5. Birefringence and scattering of light in colloidal solutions of magnetite in kerosene

    NASA Astrophysics Data System (ADS)

    Erin, K. V.

    2016-02-01

    The birefringence and dynamic and static scattering of light in colloidal solutions of magnetite nanoparticles in kerosene with different concentrations of the solid phase have been investigated. It is shown that these solutions contain both individual colloidal particles about 12 nm in diameter and their aggregates up to 100‒600 nm in diameter. The largest aggregates are formed in solutions with the lowest concentration (on the order of 0.001 vol % or lower). The presence of relatively large aggregates makes it possible to observe specific features of optical anisotropy relaxation in these solutions, which are related to the non-Rayleigh character of light scattering from magnetite-particle aggregates.

  6. Stray magnetic-field response of linear birefringent optical current sensors

    NASA Astrophysics Data System (ADS)

    MacDougall, Trevor W.; Hutchinson, Ted F.

    1995-07-01

    It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.

  7. Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer.

    PubMed

    Li, Jie; Zhu, Jingping; Qi, Chun; Zheng, Chuanlin; Gao, Bo; Zhang, Yunyao; Hou, Xun

    2013-04-22

    A compact static birefringent imaging spectrometer (BIS) with spectral zooming capability is presented. It based on two identical Wollaston prisms and has no slit. The most significant advantage of the BIS is that we can conveniently select spectral resolution to adapt to different application requirements and greatly reduce the size of the spectral image data for capturing, saving, transferring, and processing. Also, we show this configuration blend the advantage of a grating spectrometer and a Michelson interferometer: extremely compact, robust, wide free spectral range and very high throughput. PMID:23609723

  8. Reversible change of birefringence sign by optical and thermal processes in an azobenzene polymethacrylate

    SciTech Connect

    Rodriguez, F.J.; Sanchez, C.; Villacampa, B.; Alcala, R.; Cases, R.; Millaruelo, M.; Oriol, L.

    2005-01-10

    Birefringence ({delta}n) induced in an azobenzene polymethacrylate by combination of biphotonic and thermotropic processes has subsequently been changed in sign by room temperature illumination with linearly polarized blue light. The sign of {delta}n can be reversed again, by simply heating up the film to 100 deg. C. This change of {delta}n between positive and negative values can be repeated several times. Besides, by appropriate choice of film thickness and blue light irradiation conditions the same absolute value for positive and negative {delta}n values can be obtained.

  9. Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology.

    PubMed

    Dubolazov, A V; Pashkovskaya, N V; Ushenko, Yu A; Marchuk, Yu F; Ushenko, V A; Novakovskaya, O Yu

    2016-04-20

    We propose an optical model of the Mueller-matrix description of mechanisms of optical anisotropy of polycrystalline films of urine, namely, optical activity and birefringence. The algorithm of reconstruction of distributions of parameters-optical rotation angles and phase shifts of the indicated anisotropy types-are elaborated upon. The objective criteria of differentiation of urine films taken from healthy donors and albuminuria patients by means of statistical analysis of such distributions are determined. The operational characteristics (sensitivity, specificity, and accuracy) of the Mueller-matrix reconstruction method of the optical anisotropy parameters are defined. PMID:27140137

  10. Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo M.; Ferreira, Marta S.; Frazão, Orlando

    2012-03-01

    A high-birefringent (Hi-Bi) Sagnac loop interferometer for torsion measurement is demonstrated. The sensing head is formed by a section of standard single mode fiber spliced between the output ports of a Hi-Bi coupler at 3 dB. The sensing configuration is characterized in torsion, temperature and strain. The results obtained indicate the viability of a torsion sensor independent of the temperature and strain cross-sensitivity effects. Additionally, in the proposed configuration all measurements are performed without the need of a polarization controller, a device most often required in standard Sagnac loops applied for sensing.

  11. Crystalline perfection, birefringence and laser damage threshold properties of piperidinium p-hydroxybenzoate

    SciTech Connect

    Sudhahar, S.; Zahid, I. MD; Kumar, M. Krishna; Kumar, R. Mohan

    2015-06-24

    Piperidinium p-hydroxybenzoate (PPHB) crystal was grown by slow evaporation method. Single crystal X-ray diffraction studies confirm that PPHB crystallizes in monoclinic crystal system with noncentrosymmetric space group Cc. The crystalline perfection of the grown crystal was evaluated by using high resolution X-ray diffractometry. UV-Visible transmission and birefringence studies were employed on the grown PPHB crystal. The laser induced damage threshold value was estimated using Nd:YAG laser. Thermal behavior of PPHB crystal has been investigated by TG-DTA analyses. Etching studies have been performed to assess the growth pattern of PPHB crystal.

  12. Stress-induced birefringence and fabrication of in-fiber polarization devices by controlled femtosecond laser irradiations.

    PubMed

    Yuan, Lei; Cheng, Baokai; Huang, Jie; Liu, Jie; Wang, Hanzheng; Lan, Xinwei; Xiao, Hai

    2016-01-25

    Optical birefringence was created in a single-mode fiber by introducing a series of symmetric cuboid stress rods on both sides of the fiber core along the fiber axis using a femtosecond laser. The stress-induced birefringence was estimated to be 2.4 × 10(-4) at the wavelength of 1550 nm. By adding the desired numbers of stressed rods, an in-fiber quarter waveplate was fabricated with a insertion loss of 0.19 dB. The stress-induced birefringence was further explored to fabricate in-fiber polarizers based on the polarization-dependent long-period fiber grating (LPFG) structure. A polarization extinction ratio of more than 20 dB was observed at the resonant wavelength of 1523.9 nm. The in-fiber polarization devices may be useful in optical communications and fiber optic sensing applications. PMID:26832490

  13. Irregular spin angular momentum transfer from light to small birefringent particles

    SciTech Connect

    Rothmayer, M.; Tierney, D.; Schmitzer, H.; Frins, E.; Dultz, W.

    2009-10-15

    The transfer of spin angular momentum from photons to small particles is a key experiment of quantum physics. The particles rotate clockwise or counterclockwise depending on the polarization of the light beam which holds them in an optical trap. We show that even perfectly disk shaped particles will in general not rotate with a constant angular speed. The particles will periodically accelerate and decelerate their rotational motion due to a varying spin angular momentum transfer from the light. Using the Poincare sphere we derive the equation of motion of a birefringent plate and verify the results by measuring the time dependent rotation of small crystals of Hg(I) iodide and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) in the trap of polarized optical tweezers. For small ellipticities of the polarized light in the tweezers the plate stops in a fixed orientation relative to the axes of the light ellipse. We discuss the origin of this halt and propose an application of small birefringent plates as self-adjusting optical retarders in micro-optics.

  14. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    SciTech Connect

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  15. Effect of mechanical stress on optical properties of polydimethylsiloxane II - Birefringence

    NASA Astrophysics Data System (ADS)

    Tarjányi, Norbert; Turek, Ivan; Martinček, Ivan

    2014-11-01

    In the paper we present the results of an experimental study of photoelasticity of polydimethylsiloxane (PDMS) in its deformation in compression with relative shortening in the range in which the dependence of the mechanical stress is not a linear function of strain (up to ε = -0.45). We observed nonlinearity of the dependence of the refractive index difference between beams polarized parallel and perpendicular to the direction in which the sample is compressed on the deformation which is significantly lower than the nonlinearity of the stress-strain dependence measured at the same sample. This fact can be explained by the assumption that the birefringence involves two mechanisms: (i) a change in polarizability of atoms, which is proportional to stress and, (ii) a change in structure of the environment, which we assume to be a linear function of strain. Appropriate choice of the impact ratio of these mechanisms gives a good match between experimentally observed dependence of birefringence on deformation and dependence arising from the above mentioned assumption. The contribution of the individual effects to the observed photoelasticity we investigated within the wavelength range (400-1800) nm. We have found that: (i) the effect of the polarizability of the environment is dominant for strain larger than ε = -0.3; (ii) the difference in the refractive indices of the beams with different orientation of polarization slightly decreases with increasing wavelength and, (iii) there are visible less-pronounced local extremes in the vicinity of the absorption lines of PDMS in the near-infrared.

  16. Multiple scattering of polarized light in turbid birefringent media: a Monte Carlo simulation.

    PubMed

    Otsuki, Soichi

    2016-07-20

    Multiple scattering of polarized light in a birefringent turbid plane medium was studied using a Monte Carlo simulation. The reduced effective scattering Mueller matrix obtained in the simulation was factorized in two dimensions using the Lu-Chipman decomposition, yielding polarization parameters that exhibited dependences on the azimuth and the radial distance around the illumination point. We propose a double-scattering model for the propagation of polarized photons in turbid infinite plane media. When the birefringence slow axis is along the azimuth of 90° on the plane surface, the retardance becomes the largest negative along the azimuth of 0° and the largest positive along the azimuth of 90° and increases with increasing the azimuth from 0° to 90°. This azimuthal dependence may result from the overlap of the contributions from the light propagations vertical to, and lateral along, the plane surface. Thus, the dependences on the azimuth and the radial distance of the polarization parameters, such as the retardance, its orientation, optical rotation, and the depolarization coefficients, are correctly predicted. PMID:27463921

  17. Large Microwave Birefringence Liquid-Crystal Characterization for Phase-Shifter Applications

    NASA Astrophysics Data System (ADS)

    Dubois, Frédéric; Krasinski, Freddy; Splingart, Bertrand; Tentillier, Nicolas; Legrand, Christian; Spadlo, Anna; Dabrowski, Roman

    2008-05-01

    This work is concerned with the improvement of a microwave liquid-crystal phase shifter using a large birefringence nematic liquid crystal. This material is a eutectic mixture of isothiocyanatotolane molecules. Microwave dielectric properties are reported and compared to the data obtained with the 5CB cyanobiphenyl material in the 26-40 GHz frequency range using a rectangular waveguide. The phase-shifter design consists of a central cavity, where a liquid crystal is inserted, and two coplanar strip lines accesses. Its dimensions were calculated by electromagnetic simulation, using measured dielectric permittivities of the liquid crystal. The measurements were performed with a commercial Wiltron 3680 K probe test fixture. Phase-shift variations with and without bias voltage versus frequency are presented. As expected, the large-birefringence nematic liquid crystal exhibits a higher microwave dielectric anisotropy (Δɛ' = 1.06 against 0.34) and the tunability of the phase shifter strongly increases (1.8 deg·cm-1·GHz-1 against 0.8 deg·cm-1·GHz-1).

  18. Enhanced Solar Cell Conversion Efficiency Using Birefringent Liquid Crystal Polymer Homeotropic Films from Reactive Mesogens

    PubMed Central

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  19. Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media

    NASA Astrophysics Data System (ADS)

    Gusachenko, Ivan; Schanne-Klein, Marie-Claire

    2013-11-01

    Polarization-resolved second-harmonic microscopy has recently emerged as a valuable technique for in situ imaging of collagen structure in tissues. Nevertheless, collagen-rich tissues such as tendon, ligament, skin dermis, bone, cornea, or artery exhibit a heterogeneous and anisotropic architecture that results in complex optical properties. While experimental evidence of polarization distortions has been reported in various tissues, the physics of second-harmonic imaging within such tissues is not fully understood yet. In this work, we performed numerical simulations of polarization-resolved second-harmonic generation in a strongly focused regime within a birefringent tissue. We show that vectorial components due to strong focusing have a rather small effect on the measurement of the second-harmonic tensorial response, while birefringence and optical dispersion may affect these measurements dramatically. We show indeed that a difference in the focal field distribution for ordinary and extraordinary waves results in different phase-matching conditions, which strongly affects the relative efficacy of second-harmonic generation for different polarizations. These results are of great interest for extracting reliable quantitative parameters from second-harmonic images.

  20. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    NASA Astrophysics Data System (ADS)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  1. Optical birefringence of liquid crystals for label-free optical biosensing diagnosis

    PubMed Central

    Nguyen, Tan Tai; Han, Gyeo-Re; Jang, Chang-Hyun; Ju, Heongkyu

    2015-01-01

    Purpose We present a polarization-sensitive optical detection platform for label-free quantitative optical biosensing diagnosis using liquid crystals (LCs). This is capable of determining quantitatively the optical birefringence of optical cells containing LCs, whose orientation depends on the immobilized biomolecules. Patients and methods This technique uses a polarization-dependent double-port detection without any polarizer at a single wavelength and removes the need of aligning optical cells of LCs in the azimuthal direction, with respect to the light path through the optical cell. Thus, this technique enables a stand-alone detection in a relatively compact format without an additional optical instrument, such as a retardation compensator, a Michael–Levy chart, and a spectrophotometer, in order to determine the optical birefringence quantitatively. Results We demonstrate that bovine serum albumin immobilized on the gold surface of the cell hybrid interfaces that support both homeotropic and planar anchoring of LCs causes optical phase retardation change which can be determined quantitatively. We also provide estimation of the zenithal orientation of LCs near the gold surface of the hybrid interfaces, based on the phase retardation determined. The estimated limit of bovine serum albumin detection is approximately 2.1 μM. Conclusion This optical technique with LCs can serve an optical platform for label-free quantitative diagnosis of proteins in a real time manner. PMID:26347013

  2. Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation.

    PubMed

    Silva, Daniela Fátima Teixeira; Gomes, Anderson Stevens Leonidas; de Campos Vidal, Benedicto; Ribeiro, Martha Simões

    2013-04-01

    Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ = 632.8 nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P = 6.0 mW, I = 21.2 mW/cm(2), E ≈ 0.3 J, ED = 1.0 J/cm(2)) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization. PMID:23247985

  3. Enhanced solar cell conversion efficiency using birefringent liquid crystal polymer homeotropic films from reactive mesogens.

    PubMed

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  4. Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Wang, Chia-Hung; Lee, Meng-Zhe

    2013-04-01

    To prepare dispersed Fe3O4 magnetic nanoparticles (MNPs), we adopt a co-precipitation method and consider surfactant amount, stirring speed, dispersion mode, and molar ratio of Fe3+/Fe2+. Via transmission electronic microscopy and X-ray diffractometry, we characterize the dispersibility and size of the products and determine the appropriate values of experimental parameters. The stirring speed is 1000 rpm in titration. There is simultaneous ultrasonic vibration and mechanical stirring in the titration and surface coating processes. The surfactant amount of oleic acid is 1.2 ml for molar ratios of Fe3+/Fe2+ as 1.7:1, 1.8:1, and 1.9:1. The average diameters of these Fe3O4 MNPs are 11 nm, and the ratios of saturation magnetization for these MNPs to that of bulk magnetite range from 45% to 65%, with remanent magnetization close to zero and low coercivity. Above all, the linear birefringence and dichroism measurements of the kerosene-based ferrofluid (FF) samples are investigated by a Stokes polarimeter. The influences of particle size distribution and magnetization in the birefringence and dichroism measurements of FFs are discussed.

  5. Compact snapshot birefringent imaging Fourier transform spectrometer for remote sensing and endoscopy

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Banerjee, Bhaskar; Chan, Victoria C.; Dereniak, Eustace L.

    2012-09-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors and of a rat esophagus, demonstrating the sensor's ability to resolve spectral signatures in both standard outdoor lighting and environmental conditions, as well as in fluorescence spectroscopy.

  6. Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Gerbino, M.; Natoli, P.; Pagano, L.; Mandolesi, N.; Melchiorri, A.; Molinari, D.

    2016-06-01

    The polarization of cosmic microwave background (CMB) can be used to constrain cosmological birefringence, the rotation of the linear polarization of CMB photons potentially induced by parity violating physics beyond the standard model. This effect produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Both cross-correlations are otherwise null in the standard cosmological model. We use the recently released 2015 PLANCK likelihood in combination with the Bicep2/Keck/Planck (BKP) likelihood to constrain the birefringence angle α. Our findings, that are compatible with no detection, read α = 0.0° ± 1.3° (stat) ± 1° (sys) for PLANCK data and α = 0.30° ± 0.27° (stat) ± 1° (sys) for BKP data. We finally forecast the expected improvements over present constraints when the PLANCK BB, TB and EB spectra at high l will be included in the analysis.

  7. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Chang, S. C.; Chang, Y. C.

    2013-07-01

    An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001) single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  8. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.

    2016-07-01

    Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.

  9. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour

    PubMed Central

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.

    2016-01-01

    Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins. PMID:27364229

  10. Investigation of birefringence in planar waveguides produced by ion exchange K+-Na+ in glass BK-7

    NASA Astrophysics Data System (ADS)

    Rogozinski, Roman

    2004-09-01

    In the work the results of investigations of birefringence arise in glass BK-7 in long-lasting processes of diffusion of ions K+ from liquid source of admixture KNO3 in temperature ~400°C -- in range of times 24-504 h has been presented.

  11. Reduction of birefringence in a skin-layer of injection molded polymer strips using CO{sub 2} laser irradiation

    SciTech Connect

    Kurosaki, Yasuo; Satoh, Isao; Saito, Takushi

    1995-12-31

    Injection molding of polymers is currently utilized for numerous industrial applications. Because of high productivity and stable quality of molded products, the injection-molding process makes the production costs lower, and therefore, is expected to spread more widely in the future. This paper deals with a technique for improving the optical quality of injection molded polymer products using radiative heating. The birefringence frozen in a skin-layer of the molded part was reduced by CO{sub 2} laser heating, and the efficiency of this technique was investigated experimentally. Namely, a simple numerical calculation was performed to estimate the heating efficiency of CO{sub 2} laser in the polymer, effects of radiation heating on the skin-layer of the molded polymer were observed by using a mold with transparent windows, and the residual birefringence frozen in the final molded specimen was measured. The results clearly showed that the birefringence in the skin-layer of injection molded polymer strips was reduced with CO{sub 2} laser heating. The authors believe that the proposed method for reducing the birefringence frozen in injection-molded polymer products is suitable for practical molding, because process time required for the injection-molding is only slightly increased with this method.

  12. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour.

    PubMed

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A; Quirk, Bryden C; Kirk, Rodney W; Bouma, Brett E; Sampson, David D

    2016-01-01

    Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins. PMID:27364229

  13. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements.

    PubMed

    Liebi, Marianne; van Rhee, Peter G; Christianen, Peter C M; Kohlbrecher, Joachim; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-03-12

    Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm(3+)), and perpendicular alignment with dysprosium (Dy(3+)). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.

  14. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea.

    PubMed

    Huang, Y; Meek, K M; Ho, M W; Paterson, C A

    2001-10-01

    The use of synthetic inhibitors of metalloproteinases (SIMP) or medroxyprogesterone (MP) can prevent or significantly delay the ulceration of alkali-injured corneas by influencing collagen degradation. We have examined the remodeling of rabbit corneal stroma following alkali injury and have assessed the effect of SIMP and MP treatment. Following a defined alkali injury to the rabbit cornea, animals were divided into three subgroups, one group treated with topical beta-mercaptomethyl tripeptide (SIMP), one treated by subconjunctival injection of MP and one treated with a control solution. The corneal tissue was taken at 3 days, 1, 2, 3, 4, 9 and 26 weeks after alkali injury and prepared for light microscopy and transmission electron microscopy (TEM). A quantitative measurement of birefringence, in terms of the optical path difference (OPD), was made using a modified polarized microscopy technique based on the analysis of interference colours. The results showed that SIMP effectively prevented deep corneal ulceration. MP could delay the ulceration and the corneas treated with MP appeared to have better transparency than the other groups. There was a significant difference of the OPD between the anterior (5.8 +/-0.3 nm) and posterior (7.8 +/-0.4 nm) stroma of the normal cornea (P<0.001). The OPD values from the central corneas from alkali-injured eyes were generally lower than normal during the first 4 weeks and then gradually recovered to the normal level or above, except for the posterior stroma of the MP-treated eyes. We found that the OPD changes were very dependent on the presence of corneal lesions. The stroma near corneal ulceration, scar tissue, calcified stroma and the retro-corneal collagen layer showed a significant reduction of birefringence (lower OPD values). These OPD values remained much lower than normal up to the end of the experiment. TEM showed disrupted corneal stroma in all three groups, with thinner scar tissue in the MP group. The fibril

  15. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Miall, Margaret; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. An extensive investigation has been made of protein particle shape using the methods of flow-birefringence and anomalous viscosity measurement in the coaxial cell. 2. As a result of investigations on a number of proteins, it is concluded that they may be divided into four groups. Group A consists of those which show flow-anomaly both in the bulk phase and in the surface film. These also show flow-birefringence in the bulk phase. Examples: tobacco mosaic disease virus nucleoprotein; myosin. Though corpuscular proteins, they have elongated particles before denaturation. Group B consists of those which show flow-anomaly only (in the first instance) in the surface film, and no flow-birefringence in the bulk phase. They are probably close to spherical in shape in solution, but form elongated particles as they denature in the surface film. After this process has been completed, they may show flow-anomaly also in the bulk phase. Some proteins show flow-anomaly in the surface film immediately it forms, others only show it after a certain time has elapsed for the building up of the film. We designate the former as group B1 and the latter as group B2. Group B1, immediate surface film flow-anomaly. Examples: serum euglobulin, amphibian embryo euglobulin b. Group B2, slowly appearing surface film flow-anomaly. After the film has once been fully formed and then dispersed by shaking, the solution may have the properties of that of a protein in group B1; i.e., anomalous flow in the film may occur immediately on testing in the viscosimeter. Examples: avian ovalbumin, amphibian embryo pseudoglobulin. Group C consists of those proteins which show flow-anomaly neither in the bulk phase nor in the surface film, under the conditions used by us. They are probably close to spherical in shape. Examples: insulin, methaemoglobin, amphibian embryo euglobulin c, mucoproteins. 3. The theoretical significance of protein fibre molecules, whether native or formed by denaturation in the living

  16. Light-induced reorientation and birefringence in polymeric dispersions of nano-sized crystals.

    PubMed

    Termine, Roberto; Aiello, Iolinda; Godbert, Nicolas; Ghedini, Mauro; Golemme, A

    2008-05-12

    Nanocrystals (50-250 nm) of a Palladium complex within a polyisobutylmethacrylate matrix were prepared by a phase separation method. In these dispersions, a light-induced birefringence with Deltan approximately 10(-3) was induced, without the application of an electric field. This effect was related to the photoconducting properties of the dispersion. Evidence for charge photogeneration without any applied field was obtained. The photorefractive behaviour of the material confirmed that the nanocrystals reorientation is a consequence of photoconducting properties. A light-generated electric field approximaely E 3 V/microm was estimated. These results illustrate the potential of materials with a nano-crystalline dispersion morphology as light-responsive media.

  17. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Zabolotna, N. I.; Pavlov, S. V.; Burcovets, D. M.; Novakovska, O. Yu.

    2013-12-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The complex statistic, correlation and fractal analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order, correlation moment, fratal parameters) of differentiation of histological sections of uterus wall tumor - group 1 (polypus) and group 2 (adenocarcinoma) are estimated.

  18. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  19. Growth and birefringence studies of semi organic non-linear optical LHB single crystal

    NASA Astrophysics Data System (ADS)

    Jayaramakrishnan, V.; Prasanyaa, T.; Haris, M.; Bhoopathi, G.

    2015-02-01

    In the last few decades nonlinear optical materials are getting attention in the field of optical data storage, telecommunication, second harmonic generation (SHG) and optical signal processing, etc. In the present work we are reporting the single crystal growth of L-Histidine with hydro-bromic acid. The L-Histidine bromide (LHB) single crystals have been harvested from the solution in a span of 34 days by adopting slow cooling solution growth technique. The grown crystals have been subjected to powder X-ray diffraction studies to identify the cell parameters and structure. The crystalline perfection has been defined by rocking curve (HRXRD) analysis. Optical transmission spectra reveal the optical properties of the grown crystals. The Modified channel spectrum (MCS) method has been adopted for the study of spectral dependence of linear birefringence over the wavelength range 480-620 nm. The second harmonic generation efficiency was tested by using Kurtz and Perry method, keeping KDP as reference.

  20. High resolution polarization-independent high-birefringence fiber loop mirror sensor.

    PubMed

    Leandro, Daniel; Bravo, Mikel; Lopez-Amo, Manuel

    2015-11-30

    In this work, two all polarization-maintaining (PM) high-birefringence (Hi-Bi) fiber loop mirrors (FLM) which are immune to external polarization perturbations are validated both theoretically and experimentally. Simplified and stable versions of classical FLMs were attained using a PM-coupler and by fusing the different Hi-Bi fiber sections with an adequate rotation angle between them. Since the polarization states are fixed along the whole fiber loop, no polarization controllers are needed. This simplifies the operation and increases the stability of the systems, which were also validated as ultra-high resolution sensors, experimentally obtaining a resolution of 6.2∙10-4 °C without averaging. PMID:26698729

  1. Two-photon absorption and nonlinear refraction of birefringent mesoporous silicon films

    SciTech Connect

    Gayvoronsky, Vladimir Ya; Golovan, Leonid A; Kopylovsky, M A; Gromov, Yu V; Zabotnov, S V; Piskunov, N A; Kashkarov, Pavel K; Timoshenko, Viktor Yu

    2011-03-31

    The self-action of light in birefringent mesoporous silicon films is studied using picosecond laser pulses. Two mechanisms of self-action of light in mesoporous silicon are found. One of them manifests itself at laser intensities below 3 MW cm{sup -2} and tends to saturation. The other dominates at intensities above 10 MW cm{sup -2}. The former is related to the resonant excitation of electronic states on the surface of silicon nanocrystals, whereas the latter is due to the local fields in the nanocomposite. For the aforementioned ranges of the laser intensity, the cubic nonlinear susceptibility of the films exceeds that of single-crystal silicon by six and four orders of magnitude, respectively, and the figure of merit for the films exceeds that for single-crystal silicon by an order of magnitude. (nonlinear-optics phenomena)

  2. Scanning Fourier transform spectrometer in the visible range based on birefringent wedges.

    PubMed

    Oriana, Aurelio; Réhault, Julien; Preda, Fabrizio; Polli, Dario; Cerullo, Giulio

    2016-07-01

    We introduce a spectrometer capable of measuring sample absorption spectra in the visible regime, based on a time-domain scanning Fourier transform (FT) approach. While infrared FT spectrometers typically employ a Michelson interferometer to create the two delayed light replicas, the proposed apparatus exploits a compact common-mode passive interferometer that relies on the use of birefringent wedges. This ensures excellent path-length stability (∼λ/300) and accuracy, with no need for active feedback or beam tracking. We demonstrate the robustness of the technique measuring the transmission spectrum of a colored bandpass filter over one octave of bandwidth and compare the results with those obtained with a commercial spectrophotometer.

  3. Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; Oldenbourg, Rudolf

    2003-06-01

    We propose image processing algorithms for measuring two-dimensional distributions of linear birefringence using a pair of variable retarders. Several algorithms that use between two and five recorded frames allow us to optimize measurements for speed, sensitivity, and accuracy. We show images of asters, which consist of radial arrays of microtubule polymers recorded with a polarized light microscope equipped with a universal compensator. Our experimental results confirm our theoretical expectations. The lowest noise level of 0.036 nm was obtained when we used the five-frame technique and four-frame algorithm without extinction setting. The two-frame technique allows us to increase the speed of measurement with acceptable image quality.

  4. Negative Birefringence in the Higher Homologs of the 5O.m Series of Liquid Crystals.

    PubMed

    Bhattacharjee, Debanjan; Alapati, Parameswara Rao; Bhattacharjee, Ayon

    2016-07-14

    A detailed study of the different parameters of the higher homologs of the 5O.m (m = 14, 16) series of liquid-crystalline compounds is reported. These are interdigitated compounds with unsymmetrical alkyl chain length. The compounds have a unique nature, unlike the other members of the nO.m series. The molecular structure reported in this article is not purely uniaxial; it has a bending tendency. In this article, we report that both the compounds exhibit negative birefringence. For the optical study, the refractive indices, ne and no, of the sample are measured by the thin-prism technique, using a He-Ne laser beam of wavelength 633 nm. A four-parameter model was used for fitting the experimental results. From the experimentally measured refractive indices, it is possible to compare different parameters with those of the theoretical models. PMID:27267484

  5. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence.

    PubMed

    Nazarova, Dimana; Nedelchev, Lian; Sharlandjiev, Peter; Dragostinova, Violeta

    2013-08-01

    Hybrid materials based on combination of polymers and inorganic nanoparticles (NP) attracted considerable attention in the last decade due to their advantageous electrical, optical, or mechanical properties. Recently, we reported a significant improvement of the photoresponse by doping azopolymers with ZnO NP. To study the influence of the composition of the dopant, in our present work we have synthesized anisotropic organic/inorganic nanocomposite materials by incorporating 5-15 nm sized SiO2 NP in a side-chain azopolymer. As a result we observe an enhancement of the photoinduced birefringence in these composite materials with about 20% compared to the nondoped sample. Additionally, we discuss possible mechanisms leading to this enhancement related with the scattering caused by the NP and the increased mobility of the azochromophores in the vicinity of NP. PMID:23913084

  6. Temperature independent torsion sensor based on modal interferometry in ultra high-birefringent photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Frazão, Orlando; Jesus, C.; Baptista, José M.; Santos, José L.; Roy, Philippe

    2009-10-01

    A fiber-optic sensor for torsion measurement, based on a two-LP-mode operation in ultra high birefringent photonic crystal fiber (PCF) is described. The structure of the photonic crystal fiber presents two large asymmetric holes adjacent to the core fiber. When linearly polarized light is injected in x or in y directions, respectively, two different interferometers can be obtained. In one of these cases, as torsion is applied to the ultra Hi-Bi PCF a beat between the two interferometers is formed due to the simultaneous excitation of the two polarization states. The detection technique to read the torsion sensor is based on the analysis of the Fast Fourier Transform (FFT), which is an alternative and simple solution. The sensor exhibited reduced sensitivity to temperature and also to strain.

  7. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber

    NASA Astrophysics Data System (ADS)

    Yao, Chuanfei; Zhao, Zhipeng; Jia, Zhixu; Li, Qing; Hu, Minglie; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-09-01

    Tunable mid-infrared dispersive waves are generated in a birefringent fluorotellurite microstructured fiber (FTMF) pumped by a 1560 nm femtosecond fiber laser. The FTMF have two zero-dispersion wavelengths (ZDWs) for each polarization axis. The second ZDWs for the fast and slow axes of the FTMF are 2224 and 2042 nm, respectively. As the pump laser is polarized along the fast (or slow) axis of the FTMF, tunable mid-infrared dispersive waves from 2680 to 2725 nm (or from 2260 to 2400 nm) are generated in the FTMF when the Raman soliton meets the second zero-dispersion wavelength of the fast (or slow) axis with increasing the pump power. Our results show that the designed FTMFs are promising nonlinear media for generating tunable mid-infrared light sources.

  8. High-resolution birefringence imaging in three-dimensional stressed models by fourier polarimetry.

    PubMed

    Berezhna, S; Berezhnyy, I; Takashi, M

    2001-10-01

    Recently several polarimetric techniques have been suggested, designed deliberately for automatic whole-field birefringence imaging in photoelastic models with essentially three-dimensional stresses. In general, these techniques are feasible for mapping three optical parameters that determine birefringence in a given case. However, the difficulty in attaining a high level of data accuracy over the whole image persists. There remains a problem of precise imaging in regions where the mutual interference of three given parameters inevitably causes accuracy deterioration. We show how to correct such imperfections in an imaging polarizer-sample-analyzer (PSA) Fourier polarimetry technique, as suggested earlier [Appl. Opt. 41, 644 (2001)]. The given technique (a method developed so that it maps the phase, the azimuth, and the ellipticity angles of an elliptic retarder) particularly fails to provide precise imaging in regions where the phase is either close to null or approaches pi-multiple values and in intervals where the ellipticity angle falls into the proximity of ?pi/4 values. These drawbacks can be successfully overcome by incorporation of a compensator into a PSA polarimeter arrangement. Although use of a compensator in the polarimeter makes the original technique more complicated, we demonstrate that the compensator allows two important issues to be resolved. First, it provides precise imaging for each of three optical parameters through the whole accessible intervals of the parameters regardless of the absolute value of the parameter. In addition, it gives a sign of phase that remains undefined in the PSA techniques. Theoretical considerations are presented and are followed by experimental data that illustrate the improved accuracy capabilities of the compensator-enhanced technique. PMID:18364770

  9. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels

    SciTech Connect

    Hattori, Koichi; Itakura, Kazunori

    2013-03-15

    Photons propagating in strong magnetic fields are subject to a phenomenon called the 'vacuum birefringence' where refractive indices of two physical modes both deviate from unity and are different from each other. We compute the vacuum polarization tensor of a photon in a static and homogeneous magnetic field by utilizing Schwinger's proper-time method, and obtain a series representation as a result of double integrals analytically performed with respect to proper-time variables. The outcome is expressed in terms of an infinite sum of known functions which is plausibly interpreted as summation over all the Landau levels of fermions. Each contribution from infinitely many Landau levels yields a kinematical condition above which the contribution has an imaginary part. This indicates decay of a sufficiently energetic photon into a fermion-antifermion pair with corresponding Landau level indices. Since we do not resort to any approximation, our result is applicable to the calculation of refractive indices in the whole kinematical region of a photon momentum and in any magnitude of the external magnetic field. - Highlights: Black-Right-Pointing-Pointer Vacuum birefringence is studied in the presence of externally applied magnetic field. Black-Right-Pointing-Pointer A general framework is given on the basis of a vacuum polarization tensor of photon. Black-Right-Pointing-Pointer A resummed vacuum polarization tensor is calculated analytically and exactly. Black-Right-Pointing-Pointer Contributions of all the Landau levels are obtained in the form of an infinite sum. Black-Right-Pointing-Pointer Threshold behavior of real-photon decay is obtained at the each Landau level.

  10. Electric birefringence study of rabbit skeletal myosin subfragments HMM, LMM, and rod in solution.

    PubMed Central

    Cardinaud, R; Bernengo, J C

    1985-01-01

    Electric birefringence measurements and depolarized light scattering experiments were performed with HMM, LMM, and rod, the three fragments of myosin, under conditions (0.3 M KCl, 0.02 M PO4, pH 7.3) the medium currently used for biochemical assays of myosin in its native state as well as of its subfragments. The comparison of myosin and rod relaxation times (17.2 and 22.8 microseconds, respectively) suggests that the average bend angle in the tail is sharper in intact myosin (90 degrees) whereas rod, when detached from the heads, is a more elongated species with an average bend angle of 120-135 degrees. The LMM relaxation time (6.4 microseconds) is consistent with a rigid linear stick model of length 78 nm. Flexibility in myosin tail is thus confirmed as located in the HMM-LMM hinge. LMM and rod did not exhibit any significant variation of their apparent relaxation times with concentration and the decay curves were best fitted by a single exponential, evidence that the concentration of parallel staggered dimers was negligible in the concentration range studied here (0-7 g/l). This observation lends support to previous results obtained with myosin. Respective HMM, LMM, and rod molecular weights and homogeneity as evaluated by SDS-PAGE analysis were correlated to the Kerr constants of their solutions. Large variations in LMM Kerr constants could be related to the loss of a COOH-terminal peptide on prolonged chymotryptic digestion. Electric birefringence combined with depolarized light scattering is presented as a potential method for net charge distribution studies. Images FIGURE 1 PMID:4074835

  11. Investigation of unstable resonators with a variable-reflectivity mirror based on a radial birefringent filter for high-average-power solid-state lasers.

    PubMed

    Kurtev, S; Denchev, O

    1995-07-20

    We investigate a Gaussian-type unstable resonator. The Gaussian mirror comprises a two-element radial birefringent element used within a ring-mirror configuration. It is shown that this resonator compensates undesirable thermally induced birefringence of the active element, which is typical for high-average-power flash-lamp-pumped solid-state lasers. We prove that this resonator is workable and suggest some possibilities for its practical use. Polarization and geometric analyses are also included. PMID:21052249

  12. Electric-field-induced linear birefringence in TmAl3(BO3)4.

    PubMed

    Pashchenko, M I; Bedarev, V A; Merenkov, D N; Gnatchenko, S L; Bezmaternykh, L N; Sukhachev, A L; Temerov, V L

    2016-04-20

    The linear birefringence induced by the electric field was first detected in a TmAl3(BO3)4 single crystal. The electric field dependence of the birefringence was investigated. The estimation of the electro-optical coefficient of the material gives ≈1.5×10-10  cm/V for a wavelength 632.8 nm. PMID:27140114

  13. Simultaneous measurement of strain and temperature using a high birefringence fiber loop mirror and an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Xiao, Shilin; Chen, He; Zhu, Min; Bi, Meihua

    2010-12-01

    A fiber sensor configuration suitable for simultaneous measurement of temperature and strain is investigated. The sensor consists of a high-birefringence fiber loop mirror concatenating with an erbium-doped fiber. The high-birefringence fiber used in the configuration is capsule shaped polarization maintaining fiber, which serves as the sensor element. While the erbium-doped fiber acts as the temperature compensation module. By monitoring the peak power variation and peak wavelength shift, it is feasible to simultaneously measure temperature and strain. The experimental results show that the mean square errors for temperature and stain are 0.35°C and 13.34μɛ, respectively. The proposed sensor configuration shows several merits, including simple in structure, easy fabrication, low cost and high sensitivity.

  14. Frequency difference stabilization in dual-frequency laser by stress-induced birefringence closed-loop control.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Niu, Haisha

    2016-06-01

    The frequency difference of dual-frequency lasers is increasingly becoming an area of focus in research. The stabilization of beat frequency is of significance in fields such as synthetic wavelength and shows great potential in precise measurement. In this paper, a novel device based on stress-induced birefringence closed-loop control is proposed. Experiments are carried out on a dual-frequency He-Ne Zeeman-birefringence laser with the output mirror sealed in the opposite direction. The results show that the device is capable of controlling the frequency difference variation in 1.3%, in a convenient and highly cost-effective way, and it can increase the quantity of frequency difference, which is crucial to the application of precise measurement through dual-frequency lasers.

  15. Domain switching emission from the mixed-mode crack in ferroelectrics by birefringence measurement and phase field modeling

    NASA Astrophysics Data System (ADS)

    Li, Qun; Pan, Suxin; Liu, Qida; Wang, Jie

    2016-07-01

    The spatial and temporal evolution of domain switching near the tip of a mixed-mode crack (e.g., an inclined crack) is observed in ferroelectrics. The birefringence technique is used to measure the optical quantities to demonstrate the domain switching near the crack tip. The results show an intriguing feature that there appears electrical creep and domain switching emission from the crack tip. The actual time-dependence of domain switching emission and its anisotropic velocity is approximately measured. Moreover, the phase field modeling is developed to simulate polarization distribution and domain switching near the crack tip where the time-dependent Ginzburg–Landau equation is used to describe the change of polarization. The phase field results indicate the same features of domain switching emission from the mixed-mode crack. A good agreement between phase field simulation and birefringence measurement is concluded by setting the appropriate kinetic coefficient in the time-dependent Ginzburg–Landau equation.

  16. Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2002-09-15

    To our knowledge, this is the first demonstration of in vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Because glaucoma causes nerve fiber layer damage, which may cause loss of retinal birefringence, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces quasi-real-time images of the human retina in vivo . Preliminary measurements of a healthy volunteer showed that the double-pass phase retardation per unit depth of the RNFL near the optic nerve head is 39+/-6( degrees )/100microm . PMID:18026517

  17. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-01-01

    Glaucoma causes damage of the nerve fiber layer, which may cause loss of retinal birefringence. Therefore, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces real-time images of the human retina in vivo, coregistered with retinal video images of the location of PS-OCT scans. Preliminary measurements of a healthy volunteer show that the double-pass phase retardation per unit of depth of the RNFL is not constant and varies with location, with values between 0.18 and 0.37 deg/microm. A trend in the preliminary measurements shows that the nerve fiber layer located inferior and superior to the optic nerve head is more birefringent than the thinner layer of nerve fiber tissue in the temporal and nasal regions. PMID:14715063

  18. Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer.

    PubMed

    Frazão, Orlando; Baptista, José M; Santos, José L; Roy, Philippe

    2008-05-01

    A curvature sensor based on a highly birefringent (Hi-Bi) photonic crystal fiber inserted into a Sagnac interferometer is demonstrated. For this purpose, a novel Hi-Bi photonic crystal fiber was designed and fabricated. Half of the microstructured region of the photonic crystal fiber was composed by large diameter holes, while the other half contained small diameter holes. Because of this geometry, the fiber core was shifted from the center and high birefringence appears in the optical fiber. Curvature was applied for three different fiber directions for a range of 0.6-5 m(-1). Temperature and longitudinal strain was also characterized for constant curvature. The configuration showed insensitivity to these two physical parameters. PMID:18449321

  19. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    SciTech Connect

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Santamato, Enrico; Marrucci, Lorenzo

    2011-07-04

    Samples of Ag{sup +}/Na{sup +} ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  20. [Study on the axial strain sensor of birefringence photonic crystal fiber loop mirror based on the absolute integral of the monitoring peak].

    PubMed

    Jiang, Ying; Zeng, Jie; Liang, Da-Kai; Wang, Xue-Liang; Ni, Xiao-Yu; Zhang, Xiao-Yan; Li, Ji-Feng; Luo, Wen-Yong

    2013-12-01

    In the present paper, the theoretical expression of the wavelength change and the axial strain of birefringence fiber loop mirror is developed. The theoretical result shows that the axial strain sensitivity of birefringence photonic crystal fiber loop mirror is much lower than conventional birefringence fiber loop mirror. It is difficult to measure the axial strain by monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, and it is easy to cause the measurement error because the output spectrum is not perfectly smooth. The different strain spectrum of birefringence photonic crystal fiber loop mirror was measured experimentally by an optical spectrum analyzer. The measured spectrum was analysed. The results show that the absolute integral of the monitoring peak decreases with increasing strain and the absolute integral is linear versus strain. Based on the above results, it is proposed that the axial strain can be measured by monitoring the absolute integral of the monitoring peak in this paper. The absolute integral of the monitoring peak is a comprehensive index which can indicate the light intensity of different wavelength. This method of monitoring the absolute integral of the monitoring peak to measure the axial strain can not only overcome the difficulty of monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, but also reduce the measurement error caused by the unsmooth output spectrum. PMID:24611385

  1. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis

    PubMed Central

    Panula, H.; Hyttinen, M.; Arokoski, J.; Langsjo, T.; Pelttari, A.; Kiviranta, I.; Helminen, H.

    1998-01-01

    OBJECTIVES—To investigate articular cartilage collagen network, thickness of birefringent cartilage zones, and glycosaminoglycan concentration in macroscopically normal looking knee joint cartilage of young beagles subjected to experimental slowly progressive osteoarthritis (OA).
METHODS—OA was induced by a tibial 30° valgus osteotomy in 15 female beagles at the age of 3 months. Fifteen sisters were controls. Cartilage specimens were collected seven (Group 1) and 18 months (Group 2) postoperatively. Collagen induced optical path difference and cartilage zone thickness measurements were determined from histological sections of articular cartilage with smooth and intact surface by computer assisted quantitative polarised light microscopy. Volume density of cartilage collagen fibrils was determined by image analysis from transmission electron micrographs and content of glycosaminoglycans by quantitative digital densitometry from histological sections.
Results—In the superficial zone of the lateral tibial and femoral cartilage, the collagen induced optical path difference (birefringence) decreased by 19 to 71% (p < 0.05) seven months postoperatively. This suggests that severe superficial collagen fibril network deterioration took place, as 18 months postoperatively, macroscopic and microscopic OA was present in many cartilage areas. Thickness of the uncalcified cartilage increased while the superficial zone became thinner in the same sites. In operated dogs, glycosaminoglycan content first increased (Group 1) in the lateral tibial condyle and then decreased (Group 2) (p < 0.05).
Conclusion—In this OA model, derangement of the superficial zone collagen network was the probable reason for birefringence reduction. This change occurred well before macroscopic OA.

 Keywords: cartilage; birefringence PMID:9709181

  2. Structural circular birefringence and dichroism quantified by differential decomposition of spectroscopic transmission Mueller matrices from Cetonia aurata.

    PubMed

    Arwin, H; Mendoza-Galván, A; Magnusson, R; Andersson, A; Landin, J; Järrendahl, K; Garcia-Caurel, E; Ossikovski, R

    2016-07-15

    Transmission Mueller-matrix spectroscopic ellipsometry is applied to the cuticle of the beetle Cetonia aurata in the spectral range 300-1000 nm. The cuticle is optically reciprocal and exhibits circular Bragg filter features for green light. By using differential decomposition of the Mueller matrix, the circular and linear birefringence as well as dichroism of the beetle cuticle are quantified. A maximum value of structural optical activity of 560°/mm is found.

  3. Structural circular birefringence and dichroism quantified by differential decomposition of spectroscopic transmission Mueller matrices from Cetonia aurata.

    PubMed

    Arwin, H; Mendoza-Galván, A; Magnusson, R; Andersson, A; Landin, J; Järrendahl, K; Garcia-Caurel, E; Ossikovski, R

    2016-07-15

    Transmission Mueller-matrix spectroscopic ellipsometry is applied to the cuticle of the beetle Cetonia aurata in the spectral range 300-1000 nm. The cuticle is optically reciprocal and exhibits circular Bragg filter features for green light. By using differential decomposition of the Mueller matrix, the circular and linear birefringence as well as dichroism of the beetle cuticle are quantified. A maximum value of structural optical activity of 560°/mm is found. PMID:27420518

  4. Modification of birefringence properties of nanostructured silicon with a change in the level of substrate doping with boron

    SciTech Connect

    Piskunov, N. A. Zabotnov, S. V.; Mamichev, D. A.; Golovan', L. A.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2007-07-15

    Birefringence of porous-silicon films prepared by electrochemical etching of boron-doped Si(110) wafers with a resistivity of 25-45 m{theta} cm has been studied. The samples are found to exhibit the properties of a negative uniaxial crystal with the optical axis oriented along the [11-bar0] crystallographic direction. The possibility of using porous-silicon films as phase plates for light-polarization control in the near and mid-IR ranges is demonstrated.

  5. Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada

    SciTech Connect

    Antao, Sytle M.; Klincker, Allison M.

    2014-02-20

    The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca2.88Mn2+ 0.06Mg0.04Fe2+ 0.03}Σ3[Fe3+ 1.29Al0.49Ti4+ 0.17Fe2+ 0.06] Σ2(Si2.89Al0.11) Σ3O12. The Rietveld refinement reduced χ2 = 1.384 and overall R (F2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average = 2.4196, Fe–O = 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.

  6. Superior electro-optical properties of electrically controlled birefringence mode using solution-derived La{sub 2}O{sub 3} films

    SciTech Connect

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Seo, Dae-Shik; Oh, Byeong-Yun

    2015-11-15

    The authors demonstrate a high performance electrically controlled birefringence (ECB) mode with solution-derived La{sub 2}O{sub 3} films at various molar concentrations. Uniform and homogeneous liquid crystal (LC) alignment was spontaneously achieved on the La{sub 2}O{sub 3} films for lanthanum concentrations at ratios greater than and equal to 0.2. A preferred orientation of LC molecules appeared along the filling direction, and the LC alignment was maintained via van der Waals force by nanocrystals of the La{sub 2}O{sub 3} films. The LC alignment mechanism was confirmed by x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. Superior electro-optical characteristics of the ECB cells constructed with solution-derived La{sub 2}O{sub 3} films were observed, which suggests that the proposed solution-derived La{sub 2}O{sub 3} films have strong potential for use in the production of advanced LC displays.

  7. The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Spittel, Ron; Bierlich, Jörg; Grimm, Stephan; Jäger, Matthias; Bartelt, Hartmut

    2015-04-01

    The propagation properties of optical fibers can be significantly influenced by intrinsic stress. These effects are often undesired but in some cases essential for certain applications, e.g. in polarization maintaining (PM) fibers. In this paper, we present systematic studies on the influence of the fiber drawing process on the generated stress and demonstrate an approach to significantly increase the stress induced birefringence of PM-fibers. It is shown that the thermal stress caused by the material composition is superimposed with the mechanical stress caused by the fiber fabrication process. This intrinsic stress has a strong effect on the optical and mechanical properties of the glass and thus influences the fiber stability and modal behavior. By applying a thermal annealing step, the mechanical stress due to the fiber drawing process can be canceled. It is shown that this annealing step compensates the stress reducing influence of the drawing process on the birefringence of PM-fibers with panda structure. The comparison of the intrinsic stress states after fabrication with the state after the additional high temperature annealing step clearly shows that it is possible to improve the overall birefringence of panda fibers using appropriate preparation steps.

  8. Optical birefringence and its critical behavior in the vicinity of nematic-smectic A phase transition in a binary mixture

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta Kumar; Barman, Purna Chandra; Das, Malay Kumar

    2014-08-01

    Optical birefringence (Δn) measurements as a function of temperature have been performed for binary mixtures of octyloxy cyanobiphenyl (8OCB) and octyl cyanobiphenyl (8CB) liquid crystals by means of a high resolution temperature scanning technique. The temperature dependence of the birefringence (Δn) was determined from the transmitted intensity data for wavelengths λ=532 nm. Using a fitting procedure consistent with the mean field theory and the first order nature of nematic-isotropic (N-I) phase transition, the order parameter critical exponent β has been determined. The critical behavior of the nematic-smectic A (N-SmA) phase transition has been investigated from the high resolution birefringence data and the nature of this transition in the mixtures has been assessed. From the evolution of the critical exponent α, it has been possible to predict the limiting value of the McMillan ratio for the tricritical point (TCP) as well as the 3D-XY universality class.

  9. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  10. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture

    PubMed Central

    Sun, Shih-Hung; Lee, Mon-Juan; Lee, Yun-Han; Lee, Wei; Song, Xiaolong; Chen, Chao-Yuan

    2014-01-01

    The use of fluorescence is ubiquitously found in the detection of immunoreaction; though with good sensitivity, this technique requires labeling as well as other time-consuming steps to perform the measurement. An alternative approach involving liquid crystals (LCs) was proposed, based on the fact that an immunocomplex can disturb the orientation of LCs, leading to an optical texture different from the case when only antigen or antibody exists. This method is label-free, easy to manipulate and low-cost. However, its sensitivity was low for practical usage. In this study, we adopted a high-birefringence liquid crystal (LC) to enhance the sensitivity for the immunodetection. Experiments were performed, targeting at the cancer biomarker CA125. We showed that the larger birefringence (Δn = 0.33 at 20 °C) amplifies the detected signal and, in turn, dramatically improves the detection limit. To avoid signal loss from conventional rinsing steps in immunodetection, CA125 antigen and antibody were reacted before immobilized on substrates. We studied the specific binding events and obtained a detection limit as low as 1 ng/ml. The valid temperature ranges were compared by using the typical single-compound LC 5CB and the high-birefringence LC mixture. We further investigated time dependency of the optical textures and affirmed the capability of LC-based immunodetection in distinguishing between specific and nonspecific antibodies. PMID:25657889

  11. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    SciTech Connect

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  12. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture.

    PubMed

    Sun, Shih-Hung; Lee, Mon-Juan; Lee, Yun-Han; Lee, Wei; Song, Xiaolong; Chen, Chao-Yuan

    2015-01-01

    The use of fluorescence is ubiquitously found in the detection of immunoreaction; though with good sensitivity, this technique requires labeling as well as other time-consuming steps to perform the measurement. An alternative approach involving liquid crystals (LCs) was proposed, based on the fact that an immunocomplex can disturb the orientation of LCs, leading to an optical texture different from the case when only antigen or antibody exists. This method is label-free, easy to manipulate and low-cost. However, its sensitivity was low for practical usage. In this study, we adopted a high-birefringence liquid crystal (LC) to enhance the sensitivity for the immunodetection. Experiments were performed, targeting at the cancer biomarker CA125. We showed that the larger birefringence (Δn = 0.33 at 20 °C) amplifies the detected signal and, in turn, dramatically improves the detection limit. To avoid signal loss from conventional rinsing steps in immunodetection, CA125 antigen and antibody were reacted before immobilized on substrates. We studied the specific binding events and obtained a detection limit as low as 1 ng/ml. The valid temperature ranges were compared by using the typical single-compound LC 5CB and the high-birefringence LC mixture. We further investigated time dependency of the optical textures and affirmed the capability of LC-based immunodetection in distinguishing between specific and nonspecific antibodies. PMID:25657889

  13. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing. PMID:26406692

  14. Optical birefringence studies of a binary mixture with the nematic-smectic Ad-re-entrant nematic phase sequence.

    PubMed

    Prasad, Akhileshwar; Das, Malay Kumar

    2010-05-19

    We report the measurements of birefringence as a function of temperature of a binary system 4-cyanophenyl [4'(4''-n-heptylphenyl)]benzoate (7CPB) + 4-cyanophenyl 4-nonylbenzoate (9.CN) showing a nematic-smectic A(d)-re-entrant nematic phase sequence by means of the optical transmission method. The temperature dependence of the birefringence has been determined from the transmitted intensity data and the orientational order parameters have been calculated. These observations indicate that re-entrant nematic to induced smectic A(d) and induced smectic A(d) to nematic phase transitions for all the mixtures are of second order. There is a continuous change in the Δn values at the nematic-smectic A(d) and smectic A(d)-re-entrant nematic phase transitions. However, for some mixtures a slight increase in birefringence on cooling in the vicinity of the smectic A(d)-re-entrant nematic transition has been observed. We have also fitted our experimental results with those calculated from the modified McMillan theory as proposed by Luckhurst and Timimi.

  15. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    SciTech Connect

    Hattori, Koichi; Itakura, Kazunori

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon into a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.

  16. Linear birefringence and dichroism in citric acid coated Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Tsai, Chun-Chin; Lee, Meng-Zhe

    2014-12-01

    To prepare highly dispersed water-based Fe3O4 magnetic nanoparticles (MNPs), we adopted the co-precipitation method and used citric acid (CA) as the surfactant. Via transmission electronic microscopy, dynamic light scattering, and X-ray diffractometry, we characterized the dispersibility and size of the products. Through two single-parameter experiments, including the pH value of suspension and the action of double centrifugations, the appropriate parameters' values were determined. Further, to produce CA coated MNPs with good magneto-optical properties as high retardance and low dichroism, the orthogonal design method was used to find the optimal parameters' values, including pH value of suspension after coating was 5, molar ratio of CA to Fe3O4 MNPs was 0.06, volume of CA was 40 ml, and coating temperature was 70 °C. Above all, the linear birefringence and dichroism of the best CA coated ferrofluid we produced were measured by a Stokes polarimeter as 23.6294° and 0.3411 under 64.5 mT, respectively. Thus, the biomedical applications could be performed hereafter.

  17. A hybrid tunable THz metadevice using a high birefringence liquid crystal

    NASA Astrophysics Data System (ADS)

    Chikhi, Nassim; Lisitskiy, Mikhail; Papari, Gianpaolo; Tkachenko, Volodymyr; Andreone, Antonello

    2016-10-01

    We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantilevers in the gap region. Adding a “third dimension” to a standard planar device plays a dual role: (i) enhance the tunability of the overall structure, exploiting the birefringence of the liquid crystal at its best, and (ii) improve the field confinement and therefore the ability of the metadevice to efficiently steer the THz signal. We describe the design, electromagnetic simulation, fabrication and experimental characterization of this new class of tunable metamaterials under an externally applied small voltage. By infiltrating tiny quantities of a nematic liquid crystal in the structure, we induce a frequency shift in the resonant response of the order of 7–8% in terms of bandwidth and about two orders of magnitude change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator.

  18. Design and realization of the control system for the three-channel birefringent filter

    NASA Astrophysics Data System (ADS)

    Zhu, Dan

    2008-07-01

    Space Solar Telescope is one of the large-scale scientific programs under development in China. In it, an important part is the filter, a birefringent filter with three-channels. It consists of 17 rotatable wave plates. In coordination with other mechanical and optical components, complicated and precise adjustments of their attitudes are necessary, which requests a high-accuracy control system to ensure their concertedness. The paper describes the design and realization of the control system. It mainly has a hardware plate and a software one. The former uses an industrial controller, a control card and step motors, while the latter uses the technique construction of the object oriented. That is modularization design with lengthwise dividing as per functions and breadthwise dividing as per element layers. Shift arithmetic for whole spectrum in programs is for intelligent spectral scanning. At the same time, the control information is roundly recorded in the data base of the system. Tests show that the system is characterized by high precision, good stabilization, high data safety and user-friendly interface, totally meeting the design requirements. Also discussed in this paper is some new conceivability to realize the handiness and miniaturization of the filter to fit the use in space flight in the future.

  19. Problems in polarized light microscopy observation of birefringence of calcium pyrophosphate dihydrate crystals.

    PubMed

    Omura, Yoko; Okamoto, Renzo; Konno, Minoru; Shiro, Motoo

    2010-12-01

    To reconsider the problems arising from the use of the phase plate as a test plate inserted into a polarized light microscope system for the analysis of triclinic calcium pyrophosphate dihydrate (t-CPPD) crystals, or Ca(2)P(2)O(7) x 2H(2)O in the synovial fluid of arthritis patients, we made the polarized light microscopy observations using a phase plate with a retardation of 530 nm for the synthesized t-CPPD crystals well-characterized by X-ray powder pattern indexing and single crystal X-ray diffraction measurements. The microscopy observations were made of crystals of different sizes, thicknesses and shapes. The retardation was assessed using the interference color chart at four extinction and diagonal positions both with and without the test plate. The addition and subtraction states produced by superimposing the retardations of two anisotropic materials, that is, the t-CPPD crystal and the 530 nm phase plate, were deduced from the interference color change by inserting the test plate at four diagonal positions. When the color change of a crystal at a diagonal position resulting from 90-degree rotation exhibits no clear birefringence, the interference color chart was shown to be useless. We suggested the use of a compensator whose retardation can be changed to obtain an accurate value for the retardation of the crystal.

  20. Collagen birefringence in skin repair in response to red polarized-laser therapy

    NASA Astrophysics Data System (ADS)

    da Silva, Daniela d. F. T.; Vidal, Benedicto d. C.; Zezell, Denise M.; Zorn, Telma M. T.; Núñez, Silvia C.; Ribeiro, Martha S.

    2006-03-01

    We use the optical path difference (OPD) technique to quantify the organization of collagen fibers during skin repair of full-thickness burns following low-intensity polarized laser therapy with two different polarization incidence vectors. Three burns are cryogenerated on the back of rats. Lesion L|| is irradiated using the electric field vector of the polarized laser radiation aligned in parallel with the rat's occipital-caudal direction. Lesion L⊥ is irradiated using the electric field vector of the polarized laser radiation aligned perpendicularly to the aforementioned orientation. Lesion C is untreated. A healthy area labeled H is also evaluated. The tissue samples are collected and processed for polarized light microscopy. The overall finding is that the OPD for collagen fibers depends on the electric field vector of the incident polarized laser radiation. No significant differences in OPDs are observed between L|| and H in the center, sides, and edges of the lesion. Lesions irradiated using the electric field vector of the polarized laser radiation aligned in parallel with the rat's occipital-caudal direction show higher birefringence, indicating that collagen bundles in these lesions are more organized.

  1. Nanoparticle-mediated monitoring of carbohydrate-lectin interactions using Transient Magnetic Birefringence.

    PubMed

    Köber, Mariana; Moros, Maria; Franco Fraguas, Laura; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2014-12-16

    The development of sensitive and easy-to-use biosensors that allow an adequate characterization of specific weak biological interactions like carbohydrate-lectin interactions still remains challenging today. Nanoparticles functionalized with carbohydrates are one of the most powerful systems for studying carbohydrate-lectin interactions, because they mimic the multivalent presentation of carbohydrates encountered in nature, for example when viruses and bacteria bind to cells. On the basis of the model system glucose-Concanavalin A (ConA), we explore the application of Transient Magnetic Birefringence (TMB) to study these weak interactions, using glucose-functionalized colloidal magnetite nanoparticles (NPs) as probes. We demonstrate that the binding dynamics can be monitored and derive a model to obtain the apparent cooperativity. For our studies, we use nanoparticles of 6 and 8 nm in diameter. The ConA-generated response shows apparent cooperativity, due to the cross-linking of nanoparticles by the ConA tetramer which has four binding sites. Cooperativity is higher for 6 nm NPs, possibly due to a better accessibility of all four ConA binding sites on smaller NPs, enhancing cross-linking. For this system, we find a detection limit of 3-23 nM. PMID:25417550

  2. Observation of the Birefringence in the Friction Interface with Polarizing Microscope

    NASA Astrophysics Data System (ADS)

    Yamada, Naoya; Gong, Jin; Wada, Masato; Makino, Masato; Hasnat Kabir, M.; Furukawa, Hidemitsu

    Gels have some unique characteristics such as low frictional properties [1][2], high water content and materials permeability. Double Network (DN) gels having a mechanical strength of 30 MPa for the maximum breaking stress in compression was developed [3] in the last decade. Their frictional coefficient and mechanical strength are comparable to human cartilages. Gels are prospective materials that could be used for the parts of the human body. In this study, we focus on the dynamic frictional interface of the friction of polymer gels and aim to develop a new apparatus with a polarized microscope for in-situ observation and frictional measurement. We first rubbed hydrogel and glass plate sandwiching hydroxypropylcellulose (HPC) solution on the stage of a polarization microscope. The birefringence flow of HPC polymer solution enabled the observation of the dynamical interface. After the experiment, we designed an observation instrument that included an inverted microscope and a friction-measuring machine. This new instrument can observe the frictional interface and measure the frictional coefficient at the same time. We hope the comparison between direct observation with this instrument and the measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.

  3. A hybrid tunable THz metadevice using a high birefringence liquid crystal

    PubMed Central

    Chikhi, Nassim; Lisitskiy, Mikhail; Papari, Gianpaolo; Tkachenko, Volodymyr; Andreone, Antonello

    2016-01-01

    We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantilevers in the gap region. Adding a “third dimension” to a standard planar device plays a dual role: (i) enhance the tunability of the overall structure, exploiting the birefringence of the liquid crystal at its best, and (ii) improve the field confinement and therefore the ability of the metadevice to efficiently steer the THz signal. We describe the design, electromagnetic simulation, fabrication and experimental characterization of this new class of tunable metamaterials under an externally applied small voltage. By infiltrating tiny quantities of a nematic liquid crystal in the structure, we induce a frequency shift in the resonant response of the order of 7–8% in terms of bandwidth and about two orders of magnitude change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator. PMID:27708395

  4. Narrow band pass filter using birefringence film and quarter-wave film

    NASA Astrophysics Data System (ADS)

    Lee, Dong-kun; Song, Jang-Kun

    2016-03-01

    While a pixel in a color image has three colorimetric information of RGB, that in a spectral image contains full spectral information, several tens times more information compared to the color image. Hence, the spectral image is widely applicable in biology, material science, and environmental science. Although several methods for spectral image acquisition have been suggested to date, those methods are expensive, bulky, or slow in actual device. In this work, we designed a novel type of tunable narrow band-pass filter using rotatable polarizer, quarter-wave plate, and birefringence films. Different from the conventional Lyot-Ohman type filter, we do not use a liquid crystal layer. The selection of wavelength is made by rotating the polarizer in our filter set, and adopted a piezoelectric rotational actuator for that. We simulated to find the optimal conditions of the filter set, and finally, fabricated a filter module. The minimum band width was 5 nm, which is suitable for usual spectral imaging and can be reduced further if necessary, and the wavelength of light passing through the filter set was continuously selectable. After setting the filter in a microscope, we obtained a spectral image set for a bio sample that contained full spectrum information in each pixel. Using image processing, we could demonstrate to read out the spectral information for any selected position.

  5. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.

    PubMed

    Soeta, Hiroto; Fujisawa, Shuji; Saito, Tsuguyuki; Berglund, Lars; Isogai, Akira

    2015-05-27

    Improvement of the mechanical and thermal properties of cellulose triacetate (CTA) films is required without sacrificing their optical properties. Here, poly(ethylene glycol) (PEG)-grafted cellulose nanofibril/CTA nanocomposite films were fabricated by casting and drying methods. The cellulose nanofibrils were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and amine-terminated PEG chains were grafted onto the surfaces of the TEMPO-oxidized cellulose nanofibrils (TOCNs) by ionic bonds. Because of the nanosize effect of TOCNs with a uniform width of ∼3 nm, the PEG-TOCN/CTA nanocomposite films had high transparency and low birefringence. The grafted PEG chains enhanced the filler-matrix interactions and crystallization of matrix CTA molecules, resulting in the Young's modulus and toughness of CTA film being significantly improved by PEG-grafted TOCN addition. The coefficient of thermal expansion of the original CTA film was mostly preserved even with the addition of PEG-grafted TOCNs. These results suggest that PEG-TOCNs are applicable to the reinforcement for transparent optical films. PMID:25946413

  6. A birefringent polarization modulator: Application to phase measurement in conoscopic interference patterns.

    PubMed

    Veiras, F E; Garea, M T; Perez, L I

    2016-04-01

    Conoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup employed is a simple conoscopic interferometer where the elements under study correspond to two birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized and the wave plate retardance to be measured as a function of the angle of incidence. The modulator itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it works with a wide range of phase shifting interferometry algorithms. We show that our scheme is easily adaptable to algorithms that require either a low or high amount of interferograms.

  7. Nanoparticle-mediated monitoring of carbohydrate-lectin interactions using Transient Magnetic Birefringence.

    PubMed

    Köber, Mariana; Moros, Maria; Franco Fraguas, Laura; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2014-12-16

    The development of sensitive and easy-to-use biosensors that allow an adequate characterization of specific weak biological interactions like carbohydrate-lectin interactions still remains challenging today. Nanoparticles functionalized with carbohydrates are one of the most powerful systems for studying carbohydrate-lectin interactions, because they mimic the multivalent presentation of carbohydrates encountered in nature, for example when viruses and bacteria bind to cells. On the basis of the model system glucose-Concanavalin A (ConA), we explore the application of Transient Magnetic Birefringence (TMB) to study these weak interactions, using glucose-functionalized colloidal magnetite nanoparticles (NPs) as probes. We demonstrate that the binding dynamics can be monitored and derive a model to obtain the apparent cooperativity. For our studies, we use nanoparticles of 6 and 8 nm in diameter. The ConA-generated response shows apparent cooperativity, due to the cross-linking of nanoparticles by the ConA tetramer which has four binding sites. Cooperativity is higher for 6 nm NPs, possibly due to a better accessibility of all four ConA binding sites on smaller NPs, enhancing cross-linking. For this system, we find a detection limit of 3-23 nM.

  8. A birefringent polarization modulator: Application to phase measurement in conoscopic interference patterns

    NASA Astrophysics Data System (ADS)

    Veiras, F. E.; Garea, M. T.; Perez, L. I.

    2016-04-01

    Conoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup employed is a simple conoscopic interferometer where the elements under study correspond to two birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized and the wave plate retardance to be measured as a function of the angle of incidence. The modulator itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it works with a wide range of phase shifting interferometry algorithms. We show that our scheme is easily adaptable to algorithms that require either a low or high amount of interferograms.

  9. Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing.

    PubMed

    Lim, Jeong-Ku; Song, Jang-Kun

    2011-12-19

    The photo-polymerized liquid crystal (LC) film aligned on a photo-alignment layer was investigated with varying polarizability of UV light exposing on the photo-alignment layer. Interestingly, the polarizability of UV light required to induce bulk LC alignment on the photo alignment layer was found to be very low down to 0.1, and UV light greater than 0.3 polarizability produced outstanding optical performance of the film. The films fabricated with low polarizability light exhibited comparable thermo-stability with one fabricated with high polarizability light. The results suggest that micro-patterned optical birefringence films (MP-OBFs) can be fabricated by using an incoherent multi beam mixing method, where the direction of polarization of UV light can be spatially modulated. A simple MP-OBF was fabricated by using a two beam mixing method, and it exhibited a quality 3D film performance. The method will be highly useful in various optical components such as the MP-OBF, optical retarders, polarization grating etc. PMID:22274279

  10. Polycyanurate ester resins with low loss and low birefringence for use in integrated optics

    NASA Astrophysics Data System (ADS)

    Dreyer, Christian J.; Bauer, Monika; Bauer, Joerg; Keil, Norbert; Yao, HuiHai; Zawadzki, Crispin

    2001-12-01

    In the age of information society and internet the requirements of fast transfers of large data streams for different applications are growing day by day. Killer-applications like teleconferencing, video-on-demand, online-games, virtual reality etc. are waiting in the wings. The optical network technology using the great bandwidth of glass fibre is the most suitable technology for these demands. Not only glass fibre is required, but also a broad range of optical components, such as multiplexers, demultiplexers, optical switches, optical attenuators, splitters and combiners, which are usually produced in silica technology. Polymeric materials are becoming more and more interesting for these applications, since they promise for instance lower power consumption and a reduction of production costs compared to their silica based pendants. Polycyanurate ester resins are a relatively new class of high-performance polymers with outstanding properties, for example high thermal stability, low optical loss, low dielectric constant, good adhesion and outstanding mechanical properties. This paper focuses on optical loss and birefringence of such materials at 1550 nm. The results lead the way to optimization for use in integrated optics and for the production of embedded waveguides and devices.

  11. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  12. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms

    PubMed Central

    Pirnstill, Casey W.; Coté, Gerard L.

    2013-01-01

    Abstract. Noninvasive glucose monitoring is being investigated as a tool for effectively managing diabetes mellitus. Optical polarimetry has emerged as one such method, which can potentially be used to ascertain blood glucose levels by measuring the aqueous humor glucose levels in the anterior chamber of the eye. The key limitation for realizing this technique is the presence of sample noise due to corneal birefringence, which in the presence of motion artifact can confound the glucose signature in the aqueous humor of the eye. We present the development and characterization of a real-time, closed-loop, dual-wavelength polarimetric system for glucose monitoring using both a custom-built plastic eye phantom (in vitro) and isolated rabbit corneas (ex vivo) mounted in an artificial anterior chamber. The results show that the system can account for these noise sources and can monitor physiologic glucose levels accurately for a limited range of motion-induced birefringence. Using the dual-wavelength system in vitro and ex vivo, standard errors were 14.5  mg/dL and 22.4  mg/dL, respectively, in the presence of birefringence with motion. The results indicate that although dual-wavelength polarimetry has a limited range of compensation for motion-induced birefringence, when aligned correctly, it can minimize the effect of time-varying corneal birefringence for a range of motion larger than what has been reported in vivo. PMID:23299516

  13. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

    PubMed Central

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457

  14. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Pirnstill, Casey W.; Coté, Gerard L.

    2013-01-01

    Noninvasive glucose monitoring is being investigated as a tool for effectively managing diabetes mellitus. Optical polarimetry has emerged as one such method, which can potentially be used to ascertain blood glucose levels by measuring the aqueous humor glucose levels in the anterior chamber of the eye. The key limitation for realizing this technique is the presence of sample noise due to corneal birefringence, which in the presence of motion artifact can confound the glucose signature in the aqueous humor of the eye. We present the development and characterization of a real-time, closed-loop, dual-wavelength polarimetric system for glucose monitoring using both a custom-built plastic eye phantom (in vitro) and isolated rabbit corneas (ex vivo) mounted in an artificial anterior chamber. The results show that the system can account for these noise sources and can monitor physiologic glucose levels accurately for a limited range of motion-induced birefringence. Using the dual-wavelength system in vitro and ex vivo, standard errors were 14.5 mg/dL and 22.4 mg/dL, respectively, in the presence of birefringence with motion. The results indicate that although dual-wavelength polarimetry has a limited range of compensation for motion-induced birefringence, when aligned correctly, it can minimize the effect of time-varying corneal birefringence for a range of motion larger than what has been reported in vivo.

  15. Host inflammatory response to polypropylene implants: insights from a quantitative immunohistochemical and birefringence analysis in a rat subcutaneous model

    PubMed Central

    Prudente, Alessandro; Fávaro, Wágner José; Latuf, Paulo; Riccetto, Cássio Luis Zanettini

    2016-01-01

    ABSTRACT Objectives To describe acute and sub acute aspects of histological and immunohistochemical response to PP implant in a rat subcutaneous model based on objective methods. Materials and Methods Thirty rats had a PP mesh subcutaneously implanted and the same dissection on the other side of abdomen but without mesh (sham). The animals were euthanized after 4 and 30 days. Six slides were prepared using the tissue removed: one stained with hematoxylin-eosin (inflammation assessment); one unstained (birefringence evaluation) and four slides for immunohistochemical processing: IL-1 and TNF-α (pro-inflammatory cytokines), MMP-2 (collagen metabolism) and CD-31 (angiogenesis). The area of inflammation, the birefringence index, the area of immunoreactivity and the number of vessels were objectively measured. Results A larger area of inflammatory reaction was observed in PP compared to sham on the 4th and on the 30th day (p=0.0002). After 4 days, PP presented higher TNF (p=0.0001) immunoreactivity than sham and no differences were observed in MMP-2 (p=0.06) and IL-1 (p=0.08). After 30 days, a reduction of IL-1 (p=0.010) and TNF (p=0.016) for PP and of IL-1 (p=0.010) for sham were observed. Moreover, area of MMP-2 immunoreactivity decreased over time for PP group (p=0.018). Birefringence index and vessel counting showed no differences between PP and sham (p=0.27 and p=0.58, respectively). Conclusions The implantation of monofilament and macroporous polypropylene in the subcutaneous of rats resulted in increased inflammatory activity and higher TNF production in the early post implant phase. After 30 days, PP has similar cytokines immunoreactivity, vessel density and extracellular matrix organization. PMID:27286125

  16. Investigation on second and third order nonlinear optical, phase matching and birefringence properties of γ-glycine single crystals

    NASA Astrophysics Data System (ADS)

    Peramaiyan, G.; Pandi, P.; Jayaramakrishnan, V.; Das, Subhasis; Mohan Kumar, R.

    2012-12-01

    Optical quality γ-glycine single crystal of dimension 9 × 9 × 8 mm3 has been grown by slow cooling method in the presence of lithium nitrate. The third order nonlinear refractive index and nonlinear absorption coefficient of the grown crystal were measured by Z-scan studies. The dispersion of birefringence behaviour was studied by modified channelled spectrum method. The relative second harmonic generation efficiency of grown crystal was measured by Kurtz and Perry technique and phase matching angle was also measured using Nd:YAG laser.

  17. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  18. Characterization of polarizer made of the deep-UV birefringent crystal Ba2Mg(B3O6)2.

    PubMed

    Zhao, Jing; Ma, Yingying; Li, Rukang

    2015-11-20

    In optical communications and the laser industry, modulating the polarization of light requires crystals with both large birefringence and a wide transparent range. A good candidate for a deep-UV birefringent crystal is Ba2Mg(B3O6) because it has a large birefringence and short UV cutoff edge. We grew Ba2Mg(B3O6)2 crystals with sizes up to 41  mm×40  mm×7  mm using the top-seeded solution growth method. We obtained the thermal-expansion coefficients in different directions and the thermo-optic coefficients and then designed and manufactured a Glan-Taylor type polarizer to fulfill the commercial requirements. PMID:26836562

  19. The study of the thermal annealing of the Bragg gratings induced in the hydrogenated birefringent optical fiber with an elliptical stress cladding

    NASA Astrophysics Data System (ADS)

    Munko, A. S.; Varzhel', S. V.; Arkhipov, S. V.; Gribaev, A. I.; Konnov, K. A.; Belikin, M. N.

    2016-08-01

    In this work the comparative results on the dynamics of fiber Bragg gratings inscription in both the conventional and the subjected to hydrogenation birefringent optical fiber with elliptical stress cladding as well as in the same type of lightguide with the increased GeO2 concentration are presented. Also the research on the thermal impact on the fiber Bragg gratings written in the birefringent fiber with elliptical stress cladding has been carried out. The dependences of the fiber Bragg reflectance coefficient on the time of the thermal impact, obtained by annealing of the refractive index gratings, induced in the optical fibers with increased photorefractivity, are shown.

  20. Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity.

    PubMed

    Decruppe, J P; Ponton, A

    2003-03-01

    The flow birefringence and the rheological properties of four viscoelastic solutions having nearly the same zero shear viscosity and subjected to shear flows are investigated in the linear and non-linear domains. The surfactant used for the samples is the cetyltrimethylammonium chloride in water at the concentration of 100 mmol/l with an organic salt, the sodium salicylate. The low shear viscosity curve versus the salt concentration is non-monotonic and has two maxima separated by a minimum forming four domains in which the salt concentration is chosen. For the two solutions belonging to the inner branch, i.e. between the two maxima, a simple Maxwellian behaviour is observed and shear banding occurs as confirmed by the flow birefringence pictures. Contrary to the results of P. Fisher (1996) where the unstable flow regime is restricted to the first decreasing part of the low shear viscosity curve of a cetylpyridinium chloride solution, we show that shear banding exits in a wider domain of the salt concentration.

  1. Experimental evidence of the B2 and B3 dependent circular birefringence of chiral molecules in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Surma, M.

    The rotation of the plane of polarization of light passing through chiral media in the Faraday geometry of a magnetic field B and light propagation vector k have been measured in high magnetic fields of induction up to 30 T and a laser beam wavelength = 488 nm. The optically active enantiomers of neat alpha-methylbenzylamine and solutions in water of tartaric, malic and lactic acids, leucine and threonine exhibit dependence of the induced rotation of the light polarization plane on B 2 and B 3. The effect is reported of the magnetic field B 2 induced circular birefringence of laevorotatory and dextrorotatory enantiomers. Also differences are found in the effective rotation of the plane of polarization in the parallel (alpha ) and antiparallel (alpha ) configurations of B and k acting on a chiral medium. The first quantitative determination is made of the nonlinear ( B 3) Faraday effect in chiral media. The linear in B circular birefringence makes the largest contribution to the B 2 and B 3 dependent rotation.

  2. Cyano azobenzene polymer films: Photo-induced reorientation and birefringence behaviors with linear and circular polarized light

    NASA Astrophysics Data System (ADS)

    Bagherzadeh-Khajeh Marjan, E.; Ahmadi-Kandjani, S.; Zakerhamidi, M. S.; Nunzi, J.-M.

    2014-12-01

    Photo-induced behavior of polymethacrylate polymer, with cyano azobenzene side group, was studied. The photoisomerization process occurs in cyano azo polymer, by illumination of a film with polarized and unpolarized light. The illumination of the polymer film with light results in color change, the color of film gets darker. This is in opposition to common azo polymers in which the result of illumination is a photo-bleaching. Study of spectrum changes of a dilute polymer solution shows that the color change under pump beam illumination is not due to interaction between dye molecules. Time evaluation of probe beam absorption induced by Ar+ laser pump beam shows the fast change in population of isomers at higher light powers. Light induced birefringence (LIB) experiments with high power pump beams shows uncommon new features. A high long-term stability of LIB is demonstrated when the polymer film is kept in the dark. Not only a circular polarized light cannot erase the birefringence but it also induces anisotropy in polymer film. It appears that this is relevant of a phase transition in the polymer film.

  3. Birefringence-induced frequency beating in high-finesse cavities by continuous-wave cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-11-01

    By analyzing the decaying intensity, leaking out a high-finesse cavity previously "filled" by a cw laser source (using the cavity ring-down spectroscopy technique), we observed frequency beating between what we think are two orthogonal eigenpolarization states of the intracavity electromagnetic field. The time decay (ring down) is analyzed by varying the angle of the polarization analyzer located in front of the detector. A full modeling of the observed signal is proposed. It is based on the Jones matrix formalism required for modeling the cavity behavior following a rotated phase shifter. The full transfer function is first established in the frequency domain, and then Fourier transformed to recover the temporal response. The same optical cavity, i.e., constituted of the same set of mirrors, is used at two different wavelengths (˜800 and ˜880 nm). It demonstrates the differences in behavior between a high-finesse cavity (˜400 000 ) and a lower finesse cavity (˜50 000 ). Beating frequency, characteristics time, and beat amplitude are mainly discussed versus the analyzer angle. A cavity birefringence of ˜1.6 ×10-5 rad, resulting from the mirror birefringence is suggested. If the current analysis is in agreement with pulsed CRDS experiments (polarimetry) obtained in an isotropic moderate-finesse cavity, it differs from a recent work report on a high-finesse cavity associated with a source mode locking [Phys. Rev. A 85, 013837 (2012), 10.1103/PhysRevA.85.013837].

  4. Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides.

    PubMed

    Hellwig, Tim; Epping, Jörn P; Schnack, Martin; Boller, Klaus-J; Fallnich, Carsten

    2015-07-27

    We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise nonlinear mode switching exceeding efficiencies of 90% at switching energies below 1 nJ. PMID:26367581

  5. Utility of birefringence changes due to collagen thermal denaturation rate process analysis: vessel wall temperature estimation for new short term heating balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Kaneko, Kenji; Shimazaki, Natsumi; Gotoh, Maya; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    Our photo thermal reaction heating architecture balloon realizes less than 10 s short term heating that can soften vessel wall collagen without damaging surrounding tissue thermally. New thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA) has experimentally shown sufficient opening with 2 atm low pressure dilation and prevention of chronic phase restenosis and acute phase thrombus in vivo. Even though PTDBA has high therapeutic potential, the most efficient heating condition is still under study, because relationship of treatment and thermal dose to vessel wall is not clarified yet. To study and set the most efficient heating condition, we have been working on establishment of temperature history estimation method from our previous experimental results. Heating target of PTDBA, collagen, thermally denatures following rate process. Denaturation is able to be quantified with measured collagen birefringence value. To express the denaturation with equation of rate process, the following ex vivo experiments were performed. Porcine extracted carotid artery was soaked in two different temperature saline baths to enforce constant temperature heating. Higher temperature bath was set to 40 to 80 degree Celsius and soaking duration was 5 to 40 s. Samples were observed by a polarizing microscope and a scanning electron microscope. The birefringence was measured by polarizing microscopic system using Brace-Koehler compensator 1/30 wavelength. The measured birefringence showed temperature dependency and quite fit with the rate process equation. We think vessel wall temperature is able to be estimated using the birefringence changes due to thermal denaturation.

  6. A very promising piezoelectric property of Ta{sub 2}O{sub 5} thin films. II: Birefringence and piezoelectricity

    SciTech Connect

    Audier, M.; Chenevier, B.; Roussel, H.; Vincent, L.; Pena, A.

    2011-08-15

    Birefringent and piezoelectric properties of Ta{sub 2}O{sub 5} ceramic thin films of monoclinic and trigonal structures were analyzed. The birefringence, observed by reflected polarized light microscopy, yields information on thin film microstructures, crystal shapes and sizes and on crystallographic orientations of grains of trigonal structure. Such an information was considered for investigating piezoelectric properties by laser Doppler vibrometry and by piezoresponse force microscopy. The vibration velocity was measured by applying an oscillating electric field between electrodes on both sides of a Ta{sub 2}O{sub 5} film deposited on a Si substrate which was pasted on an isolating mica sheet. In this case, it is shown that the vibration velocity results were not only from a converse piezoelectric effect, proportional to the voltage, but also from the Coulomb force, proportional to the square of the voltage. A huge piezoelectric strain effect, up to 7.6%, is found in the case of Ta{sub 2}O{sub 5} of trigonal structure. From an estimation of the electrical field through the Ta{sub 2}O{sub 5} thin film, this strain likely corresponds to a very high longitudinal coefficient d{sub 33} of several thousand picometers. Results obtained by piezoresponse force microscopy show that trigonal grains exhibit a polarization at zero field, which is probably due to stress caused expansion in the transition monoclinic-trigonal, presented in a previous article (part I). - Graphical abstract: Image of cross-polarized optical microscopy showing grains of trigonal structure embedded in the monoclinic phase (on the left); (a) mounting of the sample for Laser Doppler Vibrometry, sample constituted of several layers and its equivalent electrical circuit; (b) longitudinal displacements due to converse piezoelectric and Coulomb effects and corresponding piezoelectric strain-U{sub app.}. hystereses. Highlights: > A new Ta{sub 2}O{sub 5} trigonal phase is shown to be birefringent and

  7. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  8. Mobility and Reading Achievement.

    ERIC Educational Resources Information Center

    Waters, Theresa Z.

    A study examined the effect of geographic mobility on elementary school students' achievement. Although such mobility, which requires students to make multiple moves among schools, can have a negative impact on academic achievement, the hypothesis for the study was that it was not a determining factor in reading achievement test scores. Subjects…

  9. Does women’s age influence zona pellucida birefringence of metaphase ΙΙ oocytes in in-vitro maturation program?

    PubMed Central

    Omidi, Marjan; Khalili, Mohammad Ali; Nahangi, Hossein; Ashourzadeh, Sareh; Rahimipour, Marzieh

    2013-01-01

    Background: In vitro maturation (IVM) is a promising treatment option for certain infertile women. Nowadays, with the aid of PolScope, it has become possible to evaluate zona pellucida (ZP) characteristics as a parameter of oocyte quality. Moreover, quality of oocytes can be influenced by many factors, such as patient’s age. The PolScope system is a non-invasive technique to assess birefringent structures such as the meiotic spindle and ZP in living oocytes. Objective: The aim was to determine the influence of the woman's age on ZP birefringence, a sign of oocyte quality, and morphology of in-vitro matured human oocytes using non-invasive polarized light (PolScope) microscopy. Materials and Methods: ZP birefringence and morphology were determined in 105 retrieved oocytes from 58 women undergoing ICSI in two age groups (≥30 years and <30 years). The immature oocytes were selected and after IVM, the quality of metaphase ΙΙ (MII) oocytes was assessed. The oocytes abnormalities were classified as intracytoplasmic and extracytoplasmic abnormalities. Results: Oocyte maturation rates were significantly reduced in ≥30 year’s women (56%) in comparison with other age group (80.7%). In addition, the ZP birefringence was significantly higher in MII oocytes in the younger group compared with the older group (76.2% vs. 38.1%; p=0.00). Following morphologic assessment, the rates of oocytes with extracytoplasmic (p=0.02) and both abnormalities (extra- and intracytoplasmic) (p=0.01) were higher in aged versus the younger women. Conclusion: There was a positive relationship between advanced maternal age with decreased ZP birefringence and oocyte morphological quality in in-vitro matured human oocytes. PMID:24639703

  10. Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters.

    PubMed

    Botet, Robert; Kuratsuji, Hiroshi

    2010-03-01

    We present a framework for the stochastic features of the polarization state of an electromagnetic wave propagating through the optical medium with both deterministic (controlled) and disordered birefringence. In this case, the Stokes parameters obey a Langevin-type equation on the Poincaré sphere. The functional integral method provides for a natural tool to derive the Fokker-Planck equation for the probability distribution of the Stokes parameters. We solve the Fokker-Planck equation in the case of a random anisotropic active medium submitted to a homogeneous electromagnetic field. The possible dissipation and relaxation phenomena are studied in general and in various cases, and we give hints about how to validate experimentally the corresponding phenomenological equations.

  11. Polarization of an electromagnetic wave in a randomly birefringent medium: A stochastic theory of the Stokes parameters

    SciTech Connect

    Botet, Robert; Kuratsuji, Hiroshi

    2010-03-15

    We present a framework for the stochastic features of the polarization state of an electromagnetic wave propagating through the optical medium with both deterministic (controlled) and disordered birefringence. In this case, the Stokes parameters obey a Langevin-type equation on the Poincare sphere. The functional integral method provides for a natural tool to derive the Fokker-Planck equation for the probability distribution of the Stokes parameters. We solve the Fokker-Planck equation in the case of a random anisotropic active medium submitted to a homogeneous electromagnetic field. The possible dissipation and relaxation phenomena are studied in general and in various cases, and we give hints about how to validate experimentally the corresponding phenomenological equations.

  12. Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal.

    PubMed

    Thirugnanasambandam, Manasadevi P; Senatsky, Yuri; Ueda, Ken-ichi

    2011-01-31

    We demonstrated the operation of cw diode-pumped Yb:YAG laser in radial or azimuthal polarized (RP or AP) beams using a combination of birefringent uniaxial crystal (c-cut YVO4 or α-BBO) and lens as intra-cavity elements. RP and AP doughnut modes (M2 = 2-2.5, polarization extinction ratio 50-100:1) with output power up to 60 mW were generated. Apart from doughnut modes, RP or AP ring-like off-axis oscillations and multi-ring beams with mixed RP and AP were also observed at the output of this laser scheme. Using intra-cavity short focus lenses with spherical aberrations AP or RP modes of higher orders was obtained. Mechanism of mode selection in the laser is discussed. The large variety of beams with axially symmetric polarizations from the output of the proposed laser scheme may find applications in different fields.

  13. Broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Sun, H. B.; Liu, X. M.; Gong, Y. K.; Li, X. H.; Wang, L. R.

    2010-02-01

    A broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror (HiBi-FLM) and a polarization controller is demonstrated experimentally. The measured transmission spectrum of HiBi-FLM covers a wide range from 1525 to 1575 nm. The wavelength of proposed laser can be flexibly tunable during this range of ˜50 nm by adjusting the polarization controller. In addition, the spacing of two wavelengths is adjustable by changing the length of HiBi fiber. The dual-wavelength lasers with the HiBi fiber length of 1 and 2 m are experimentally demonstrated and compared. The experimental results show that the proposed laser can stably operate on two wavelengths simultaneously at room temperature, and the output peak power variation is about 0.5 dB during 40 min.

  14. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    SciTech Connect

    Mao Wei; Zhang Shulian

    2007-04-20

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.

  15. Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography

    PubMed Central

    Yamanari, Masahiro; Tsuda, Satoru; Kokubun, Taiki; Shiga, Yukihiro; Omodaka, Kazuko; Aizawa, Naoko; Yokoyama, Yu; Himori, Noriko; Kunimatsu-Sanuki, Shiho; Maruyama, Kazuichi; Kunikata, Hiroshi; Nakazawa, Toru

    2016-01-01

    Estimation of polarimetric parameters has been a fundamental issue to assess biological tissues that have form birefringence or polarization scrambling in polarization-sensitive optical coherence tomography (PS-OCT). We present a mathematical framework to provide a maximum likelihood estimation of the target covariance matrix and its incoherent target decomposition to estimate a Jones matrix of a dominant scattering mechanism, called Cloude-Pottier decomposition, thereby deriving the phase retardation and the optic axis of the sample. In addition, we introduce entropy that shows the randomness of the polarization property. Underestimation of the entropy at a low sampling number is mitigated by asymptotic quasi maximum likelihood estimator. A bias of the entropy from random noises is corrected to show only the polarization property inherent in the sample. The theory is validated with experimental measurements of a glass plate and waveplates, and applied to the imaging of a healthy human eye anterior segment as an image filter. PMID:27699120

  16. Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography

    PubMed Central

    Yamanari, Masahiro; Tsuda, Satoru; Kokubun, Taiki; Shiga, Yukihiro; Omodaka, Kazuko; Aizawa, Naoko; Yokoyama, Yu; Himori, Noriko; Kunimatsu-Sanuki, Shiho; Maruyama, Kazuichi; Kunikata, Hiroshi; Nakazawa, Toru

    2016-01-01

    Estimation of polarimetric parameters has been a fundamental issue to assess biological tissues that have form birefringence or polarization scrambling in polarization-sensitive optical coherence tomography (PS-OCT). We present a mathematical framework to provide a maximum likelihood estimation of the target covariance matrix and its incoherent target decomposition to estimate a Jones matrix of a dominant scattering mechanism, called Cloude-Pottier decomposition, thereby deriving the phase retardation and the optic axis of the sample. In addition, we introduce entropy that shows the randomness of the polarization property. Underestimation of the entropy at a low sampling number is mitigated by asymptotic quasi maximum likelihood estimator. A bias of the entropy from random noises is corrected to show only the polarization property inherent in the sample. The theory is validated with experimental measurements of a glass plate and waveplates, and applied to the imaging of a healthy human eye anterior segment as an image filter.

  17. General Achievement Trends: Oklahoma

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  18. General Achievement Trends: Georgia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  19. General Achievement Trends: Nebraska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  20. General Achievement Trends: Arkansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  1. General Achievement Trends: Maryland

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  2. General Achievement Trends: Maine

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  3. General Achievement Trends: Iowa

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  4. General Achievement Trends: Texas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  5. General Achievement Trends: Hawaii

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  6. General Achievement Trends: Kansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  7. General Achievement Trends: Florida

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  8. General Achievement Trends: Massachusetts

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  9. General Achievement Trends: Tennessee

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  10. General Achievement Trends: Alabama

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  11. General Achievement Trends: Virginia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  12. General Achievement Trends: Michigan

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  13. General Achievement Trends: Colorado

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  14. Inverting the Achievement Pyramid

    ERIC Educational Resources Information Center

    White-Hood, Marian; Shindel, Melissa

    2006-01-01

    Attempting to invert the pyramid to improve student achievement and increase all students' chances for success is not a new endeavor. For decades, educators have strategized, formed think tanks, and developed school improvement teams to find better ways to improve the achievement of all students. Currently, the No Child Left Behind Act (NCLB) is…

  15. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  16. School Effects on Achievement.

    ERIC Educational Resources Information Center

    Nichols, Robert C.

    The New York State Education Department conducts a Pupil Evaluation Program (PEP) in which each year all third, sixth, and ninth grade students in the state are given a series of achievement tests in reading and mathematics. The data accumulated by the department includes achievement test scores, teacher characteristics, building and curriculum…

  17. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  18. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  19. Achieving Public Schools

    ERIC Educational Resources Information Center

    Abowitz, Kathleen Knight

    2011-01-01

    Public schools are functionally provided through structural arrangements such as government funding, but public schools are achieved in substance, in part, through local governance. In this essay, Kathleen Knight Abowitz explains the bifocal nature of achieving public schools; that is, that schools are both subject to the unitary Public compact of…

  20. LETTER TO THE EDITOR: Specific heat and linear birefringence behaviour of 4-aminopyridinium tetrachloroantimonate (III), [4-NH2C5H4NH][SbCl4

    NASA Astrophysics Data System (ADS)

    Przeslawski, J.; Kosturek, B.; Jakubas, R.

    2003-11-01

    Thermal (specific heat) and optical (linear birefringence) studies were performed for a new ferroelectric crystal [4-NH2C5H4NH][SbCl4]. Four phase transitions were confirmed and described. Thermal parameters (DgrH,DgrS) of the normal-incommensurate, N-IC, and incommensurate-ferroelectric commensurate, IC-F(C), phase transitions are given. The order-disorder mechanism of the N-IC phase transition is proved but the displacive one for the IC-F(C) transition can be proposed. The critical index value (2bgr = 0.68 ± 0.02) estimated from the linear birefringence measurements indicates that the N-IC phase transition can be described in terms of the 3d XY model.

  1. Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores.

    PubMed

    Naeem, Khurram; Kim, Bok Hyeon; Kim, Bongkyun; Chung, Youngjoo

    2015-02-01

    We have experimentally investigated the multi-parameter sensing characteristics in a novel all-fiber Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores. The sensor device was based on a combination of two types of in-fiber interferences, the intra-core-mode Sagnac interference and the inter-core-mode Mach-Zehnder interference due to the distinct birefringent properties associated with the asymmetric cores. Fast Fourier transform analysis on the transmission spectra of the device exhibited six clear peaks in the spatial frequency domain. By examining the phase shift responses of two distinct Sagnac and one Mach-Zehnder interference peaks, the response matrix that enable simultaneous measurement of torsion, strain, and temperature could be obtained. The proposed all-fiber Sagnac loop hybrid interferometer has the advantages such as simplicity of the device structure, compact device size, and capability for simultaneous sensing of multiple parameters. PMID:25836211

  2. Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Flammer, Gordon H.; Mecham, Robert C.

    1974-01-01

    Compares the lecture and self-paced methods of instruction on the basis of student motivation and achieveme nt, comparing motivating and demotivating factors in each, and their potential for motivation and achievement. (Authors/JR)

  3. Test for nonreciprocal circular birefringence in YBa sub 2 Cu sub 3 O sub 7 thin films as evidence for broken time-reversal symmetry

    SciTech Connect

    Spielman, S.; Fesler, K.; Eom, C.B.; Geballe, T.H.; Fejer, M.M.; Kapitulnik, A. )

    1990-07-02

    We have measured the amount of nonreciprocal circular birefringence of 50 to 800 A YBa{sub 2}Cu{sub 3}O{sub 7} films in transmission with a 15-{mu}m beam diameter. A novel instrument with a sensitivity of 2 {mu}rad for nonreciprocal phase shifts was developed by modifying a fiber-optic gyroscope. It is insensitive to reciprocal phase shifts. We observed no nonreciprocal phase shifts in any samples.

  4. Analysis of temperature and strain sensitivity of fiber Bragg gratings written in dual-mode highly birefringent microstructured fibers

    NASA Astrophysics Data System (ADS)

    Tenderenda, T.; Murawski, M.; Szymanski, M.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, K.; Makara, M.; Skorupski, K.; Marc, P.; Jaroszewicz, L. R.; Nasilowski, T.

    2013-05-01

    Fiber Bragg gratings (FBG) are one of the most successful fiber optic technologies with very interesting perspectives for application in fiber optic sensing. It has been already reported that the possibility of its fabrication in novel microstructured fibers (MSF), creating a unique 3D structure, can significantly improve their performance and sensing properties. In this paper we present the results of FBG inscription in a dual-mode highly birefringent (HB) MSF with enhanced polarimetric strain sensitivity of the second order mode, as its mode maxima are closer to the cladding air-holes, where the strain distribution during fiber elongation is the highest. We perform an analysis and comparison of the FBG reflection and transmission characteristics, showing the effects of power coupling to cladding radiation modes. Furthermore we present the results of temperature and longitudinal strain sensitivities of the particular modes visible in the grating reflection spectrum followed by conclusions with reference to our previously reported results of polarimetric strain and temperature measurements of a similar fiber design.

  5. Small-scale variations in the galactic magnetic field - The rotation measure structure function and birefringence in interstellar scintillations

    NASA Technical Reports Server (NTRS)

    Simonetti, J. H.; Cordes, J. M.; Spangler, S. R.

    1984-01-01

    The structure function of rotation measures of extragalactic sources and birefringence in interstellar scintillations are used to investigate variations in the interstellar magnetic field on length scales of about 0.01-100 pc and 10 to the 11th cm, respectively. Model structure functions are derived for the case of a power-law power spectrum of irregularities in the quantity (n(e)B), and an estimate for the structure function is computed for several regions of the sky using data on extragalactic sources. The results indicate an outer angular scale for rotation measure (RM) variations of not less than about 5 deg (a linear scale of about 9-90 pc at a distance of 0.1-1 kpc). There is also evidence for RM variations on angular scales as small as 1 arcmin, but it cannot be determined whether these are intrinsic to the source or caused by the interstellar medium. The effect of a random, Faraday-active medium on the diffraction of radio waves is derived, and an upper limit to the variations in n(e)B on a length scale of 10 to the 11th cm is obtained from available observations.

  6. Effects of maternal ageing on ICSI outcomes and embryo development in relation to oocytes morphological characteristics of birefringent structures.

    PubMed

    Korkmaz, Cem; Tekin, Yesim Bayoglu; Sakinci, Mehmet; Ercan, Cihangir Mutlu

    2015-08-01

    The aim of this study was to determine the morphological characteristics of the older reproductive aged women's oocytes and to reveal the influence of these characteristics on intra-cytoplasmic sperm injection (ICSI) outcomes. The oocytes of women older than 35 years of age were evaluated retrospectively. Non-invasive polarization microscopy (PolScope) examinations of mature oocytes were performed by measurement of meiotic spindles' length, area and retardance and zona pellucida thickness and retardance. Fertilization and conception competence and the correlation with the birefringent structures were assessed. Two hundred and thirteen mature oocytes from 54 women were evaluated with a PolScope. Length of the meiotic spindle was shown to be related to fertilization success of women with advanced maternal age. In conclusion, the PolScope is a useful device used to identify the oocyte quality. Quantitative measurements of meiotic spindle parameters may be valuable for the selection of high-quality oocytes that have the potential for embryo development in the in vitro fertilization (IVF) laboratory of women older than 35 years of age who are mostly poor responders.

  7. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    NASA Astrophysics Data System (ADS)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  8. Experimental observation of multiple dispersive waves emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber.

    PubMed

    Cheng, Tonglei; Tuan, Tong Hoang; Xue, Xiaojei; Liu, Lai; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake

    2015-08-10

    We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW. PMID:26367917

  9. Effect Terthiophenes Units on the Microstructure and Birefringence of SiO2 Gels Prepared via Sol-Gels Processing

    SciTech Connect

    Kancono; Senin, H. B.

    2007-05-09

    Materials ceramics products based on SiO2 gels have been produced via sol-gels processing in present of 1% NH4F/H2O as catalyst. Alkoxysilane from tetraethoxysilane (TEOS) are chose as a matrices or template sources, than the product's of syntheses precursor: 2,5-bis(trimethoxysilyl)terthiophene (BTS3T) used as a motif organic compound: That product formed matrices as silicate backbone of terthiophene-briged silsesquioxane net-work; [O1.5Si-(C4H2S)n-SiO1.5]n. The structure silsesquioxane terthiophene-briged formed have layer distance of 4.6and 8.6 angstroms. So, that terthiophenes units in their structure give an effect on the characteristic pattern as an ordered micro lamellar structure. Electron microscopy analyses in matrices -Si-O-Si- there spheres formed by diameter about 10 {mu}m which are rich in silicon. The effect of terthiophenes unites on SiO2 gels formed shown that birefringence phenomenas are strong in presence of higher quantity oligothiophenes units, and will decrease with increase quantity of alkoxysilane, with anisotropic values differences decrease every 1.125 x 10-3 per mole SiO2, whereas the optical transparency of SiO2 gels formed are increase.

  10. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  11. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  12. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  13. Leadership Issues: Raising Achievement.

    ERIC Educational Resources Information Center

    Horsfall, Chris, Ed.

    This document contains five papers examining the meaning and operation of leadership as a variable affecting student achievement in further education colleges in the United Kingdom. "Introduction" (Chris Horsfall) discusses school effectiveness studies' findings regarding the relationship between leadership and effective schools, distinguishes…

  14. Achievements or Disasters?

    ERIC Educational Resources Information Center

    Goodwin, MacArthur

    2000-01-01

    Focuses on policy issues that have affected arts education in the twentieth century, such as: interest in discipline-based arts education, influence of national arts associations, and national standards and coordinated assessment. States that whether the policy decisions are viewed as achievements or disasters are for future determination. (CMK)

  15. Achieving True Consensus.

    ERIC Educational Resources Information Center

    Napier, Rod; Sanaghan, Patrick

    2002-01-01

    Uses the example of Vermont's Middlebury College to explore the challenges and possibilities of achieving consensus about institutional change. Discusses why, unlike in this example, consensus usually fails, and presents four demands of an effective consensus process. Includes a list of "test" questions on successful collaboration. (EV)

  16. School Students' Science Achievement

    ERIC Educational Resources Information Center

    Shymansky, James; Wang, Tzu-Ling; Annetta, Leonard; Everett, Susan; Yore, Larry D.

    2013-01-01

    This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy…

  17. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  18. Assessing Handwriting Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Teachers in the school setting need to emphasize quality handwriting across the curriculum. Quality handwriting means that the written content is easy to read in either manuscript or cursive form. Handwriting achievement can be assessed, but not compared to the precision of assessing basic addition, subtraction, multiplication, and division facts.…

  19. Intelligence and Educational Achievement

    ERIC Educational Resources Information Center

    Deary, Ian J.; Strand, Steve; Smith, Pauline; Fernandes, Cres

    2007-01-01

    This 5-year prospective longitudinal study of 70,000+ English children examined the association between psychometric intelligence at age 11 years and educational achievement in national examinations in 25 academic subjects at age 16. The correlation between a latent intelligence trait (Spearman's "g"from CAT2E) and a latent trait of educational…

  20. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.