Science.gov

Sample records for birefringence pvlas achievements

  1. First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence

    NASA Astrophysics Data System (ADS)

    Della Valle, F.; Milotti, E.; Ejlli, A.; Messineo, G.; Piemontese, L.; Zavattini, G.; Gastaldi, U.; Pengo, R.; Ruoso, G.

    2014-11-01

    Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by quantum electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δ nu(vac )=(4 ±20 )×1 0-23 T-2 (the error represents a 1 σ deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from nonlinear electrodynamics. This result reduces to a factor of 50 the gap to be overcome to measure for the first time the value of Δ nu(vac ,QED ) predicted by QED: Δ nu(vac ,QED )=4 ×10-24 T-2 . These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor-2 improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos.

  2. Recent Results from the PVLAS Experiment on the Magnetized Vacuum

    NASA Astrophysics Data System (ADS)

    Cantatore, Giovanni

    The vacuum element can be used as a target in a photon-photon collider in order to study its properties. Some of these properties are predicted by Quantum Electrodynamics, while additional and unexpected properties might be linked to the existence of yet undiscovered axion-like particles (ALPs) interacting with two photons. In this low energy case (1 2 texteV), real photons from a polarized laser beam are scattered off virtual photons provided by a magnetic field. Information on the scattering processes can be obtained by measuring changes in the polarization state of the probe photons. In the PVLAS (Polarizzazione del Vuoto con LASer) experiment, running at the Legnaro Laboratory of the Istituto Nazionale di Fisica Nucleare (INFN), near Padova, Italy, a linearly polarized laser beam is sent through a 5 textT strong magnetic field in vacuum, where it is reflected back and forth, by means of a Fabry-P’erot resonator, ˜ 50,000 times over a distance of 1 textm. A heterodyne ellipsometer allows the simultaneous detection of a birefringence and a rotation of the polarization plane. The sensitivity of the instrument allows the detection of rotation or of ellipticity angles of about 10-9 textrad, in an hour of data taking. The measurement technique employed by PVLAS will be illustrated, and recent results on polarization effects due to the magnetized vacuum will be presented in this chapter. The interpretation of these effects in terms of the production of ALPs will also be discussed. Finally, the realization of a photon-regeneration type experiment will be briefly illustrated.

  3. A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss

    SciTech Connect

    Chou Chau, Yuan-Fong Lim, Chee Ming; Yoong, Voo Nyuk; Syafi'ie Idris, Muhammad Nur

    2015-12-28

    We propose a simple structure of photonic crystal fibers (PCFs) with high birefringence and low confinement loss based on one rectangular centric ring of smaller circular air holes (CAHs) in the fiber core, and three rings of larger CAHs in the fiber cladding. This simple geometry (using all CAHs with two different air hole sizes) is capable of achieving a flexible control of the birefringence, B = 5.501 × 10{sup −3}, and ultra-low confinement loss, 7.30 × 10{sup −5 }dB/km, at an excitation wavelength of λ = 1550 nm. The birefringence value is ∼5.0 times greater than that obtained for conventional CAH PCF. This simple structure has the added advantage from the view point of easy fabrication, robustness, and cost. A full-vector finite element method combined with anisotropic perfectly matched layers was used to analyze the various fiber structures. We have analyzed four cases of CAH PCFs, focusing on the core asymmetry design as opposed to the conventional approach of CAHs or elliptical air holes on the cladding and core. The robustness against manufacturing inaccuracies of the proposed structure has also been further investigated in this work.

  4. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  5. PVLAS experiment, star cooling and big bang nucleosynthesis constraints: Possible interpretation with temperature dependent gauge symmetry breaking

    SciTech Connect

    Kim, Jihn E.

    2007-09-01

    It is known that the kinetic mixing of a photon and another U(1){sub ex} gauge boson can introduce millicharged particles. Millicharged particles f of mass 0.1 eV can explain the PVLAS experiment. I suggest a temperature dependent gauge symmetry breaking of U(1){sub ex} for this idea to be consistent with astrophysical and cosmological constraints.

  6. Birefringence compensated arrayed waveguide grating

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Xia, Xiang; Lang, Tingting; He, Jian-Jun

    2014-10-01

    In this paper we review our work on birefringence compensated arrayed waveguide grating. We elaborate on a birefringence compensation technique based on angled star couplers in arrayed waveguide grating (AWG) and discuss several demonstrations both in low-index-contrast and high-index-contrast material systems. A 16-channel AWG with 100GHz channel spacing for DWDM application is designed and fabricated in silica-based low-index-contrast waveguide. The experimental results confirm that the polarization-dependent wavelength shift (PDλ) can be tuned by varying the incident/diffraction angle at the star couplers and a birefringence-free property can be achieved without additional fabrication process as compared to conventional AWG. A further validation of this technique is demonstrated in high-index-contrast silicon-on-insulator waveguide, in combination with different diffraction orders for TE and TM polarizations. A birefringence compensated silicon nanowire AWG for CWDM optical interconnects is designed and fabricated. The theoretical and experimental results show that the PDλ can be reduced from 380-420nm to 0.5-3.5 nm, below 25% of the 3 dB bandwidth of the channel response in the wavelength range of 1500 to 1600nm.

  7. Tunable birefringent filters

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Rosenberg, W. J.

    1981-01-01

    This article reviews the types and capabilities of birefringent filters. The general operating principles of Lyot (perfect polarizers), partial polarizing, and Solc (no internal polarizers) filters are introduced. Appropriate techniques for tuning each filter type are presented. Field of view of birefringent filters is discussed and is compared to Fabry-Perot and interference filters. The transmission and throughput advantages of birefringent filters are shown. Finally, the current state of the art in practical filters is reviewed.

  8. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  9. Improved Design For Birefringent Filter

    NASA Technical Reports Server (NTRS)

    Bair, Clayton H.

    1990-01-01

    Highly selective laser tuning achieved without thin plates of questionable optical quality. Improved birefringent filter developed for use with broad-band-emission laser. Provides improved narrow-band operation and wavelength selectivity. New filter design improves traditional design by providing method of increasing wavelength separation between highly transmitted peaks. Such broad-band lasers becoming popular in scientific laboratories and useful in military applications and separation of isotopes.

  10. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    SciTech Connect

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-09-21

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V({phi}) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology.

  11. Birefringent filter design

    NASA Technical Reports Server (NTRS)

    Bair, Clayton H. (Inventor)

    1991-01-01

    A birefringent filter is provided for tuning the wavelength of a broad band emission laser. The filter comprises thin plates of a birefringent material having thicknesses which are non-unity, integral multiples of the difference between the thicknesses of the two thinnest plates. The resulting wavelength selectivity is substantially equivalent to the wavelength selectivity of a conventional filter which has a thinnest plate having a thickness equal to this thickness difference. The present invention obtains an acceptable tuning of the wavelength while avoiding a decrease in optical quality associated with conventional filters wherein the respective plate thicknesses are integral multiples of the thinnest plate.

  12. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  13. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  14. Dual function microscope for quantitative DIC and birefringence imaging

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Zhu, Yizheng

    2016-03-01

    A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.

  15. Birefringent phononic structures

    SciTech Connect

    Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.

    2014-12-15

    Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  16. Intracavity diamond heatspreaders in lasers: the effects of birefringence

    NASA Astrophysics Data System (ADS)

    van Loon, Francesco; Kemp, Alan J.; Maclean, Alexander J.; Calvez, Stephane; Hopkins, John-Mark; Hastie, Jennifer E.; Dawson, Martin D.; Burns, David

    2006-10-01

    The birefringence of a number of commercially-available diamond platelets is assessed in the context of their use for intracavity thermal management in lasers. Although diamond is normally thought of as isotropic, significant birefringence is found to be present in some samples, with considerable variation from batch to batch, and in some cases across an individual sample. Nonetheless, low-loss operation is achieved in a laser cavity containing a Brewster element, either by rotating the sample or by using a diamond platelet with low birefringence.

  17. Optical birefringence of aorta tissues

    NASA Astrophysics Data System (ADS)

    Tang, G. C.; Wang, W. B.; Pu, Y.; Alfano, R. R.

    2010-02-01

    The optical birefringence of porcine aortic tissues including heated and non-heated tissues was studied using polarization technique. The measurements show that a whole piece of aortic tissue has birefringence properties like a uniaxial crystal. The experiment results indicate that the birefringence status of tissue have a potential application for monitoring changes of tissue structure due to burning, plastic surgery, laser tissue welding and wound healing.

  18. Systematic design of highly birefringent photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Hsu, Jui-Ming

    2017-03-01

    This article systematically designs and theoretically investigates a highly birefringent photonic crystal fiber (HB-PCF) for reducing the effect of polarization mode dispersion in high-speed optical communication system. To achieve a high modal birefringence in the proposed HB-PCF, four types of HB-PCF were designed by adding some birefringence-enhancing factors step by step in sequence. Ultimately, as per the simulation results, in the condition of single-mode operation, the numeric values of modal birefringence and confinement loss of the proposed HB-PCF is about 21.85 × 10- 3 and 0.47 dB/km at the habitual wavelength λ = 1.55 µm of optical-fiber communications.

  19. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  20. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  1. Etherington's Distance Duality with Birefringence

    NASA Astrophysics Data System (ADS)

    Schuller, Frederic; Werner, Marcus

    2017-07-01

    We consider light propagation in a spacetime whose kinematics allow weak birefringence, and whose dynamics have recently been derived by gravitational closure. Revisiting the definitions of luminosity and angular diameter distances in this setting, we present a modification of the Etherington distance duality relation in a weak gravitational field around a point mass. This provides the first concrete example of how the non-metricities implied by gravitational closure of birefringent electrodynamics affect observationally testable relations.

  2. Birefringent corrugated waveguide

    SciTech Connect

    Moeller, C.P.

    1989-02-15

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE{sub 11} mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminium of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R{sub 0} from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R{sub 1} less than R{sub 0} at centers +b and {minus}b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric waveguides. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  3. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  4. Birefringent corrugated waveguide

    SciTech Connect

    Moeller, C.P.

    1990-03-06

    This patent describes a corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations which provides birefringence for rotation of polarization in the HE{sub 11} mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R{sub 0} from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R{sub 1} less than R{sub 0} at centers + b and {minus} B from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  5. Measurements of flow-induced birefringence in microfluidics

    PubMed Central

    Sun, Chen-li; Huang, Hung-Yen

    2016-01-01

    In this study, we demonstrate the use of a microscopic circular polariscope to measure the flow-induced birefringence in a microfluidic device that represents the kinematics of fluid motion optically. Unlike the commercial birefringence microscope employed in the previous studies, our approach is able to provide direct measurement of retardance, which quantifies the difference in refractive index of the fluid experienced by the ordinary and extraordinary rays, from one single image frame. This capability facilitates unsteady full-field quantitation of flow-induced birefringence in microfluidics that has never been achieved before. At low flow rates, we find that the value of the retardance is independent of the microfluidic design and proportional to the nominal strain rates. This linearity bridges the measurement of birefringence and the deformation rate in the microflow environment, which yields the stress information of the fluid flow. In addition, the μPIV results confirm that both extensional and shear strain rates contribute to the flow-induced birefringence so that the retardance distribution can be used to represent the field of the principal strain rate in a microfluidic device. The outcome of this study proves that our approach provides a non-invasive method that enables an intuitive full-field representation of stress in the instantaneous flow field in a microfluidic device. PMID:26858809

  6. Gauge-origin independent calculations of Jones birefringence

    NASA Astrophysics Data System (ADS)

    Shcherbin, Dmitry; Thorvaldsen, Andreas J.; Jonsson, Dan; Ruud, Kenneth

    2011-10-01

    We present the first gauge-origin independent formulation of Jones birefringence at the Hartree-Fock level of theory. Gauge-origin independence is achieved through the use of London atomic orbitals. The implementation is based on a recently proposed atomic orbital-based response theory formulation that allows for the use of both time- and perturbation-dependent basis sets [Thorvaldsen, Ruud, Kristensen, Jørgensen, and Coriani, J. Chem. Phys. 129, 214108 (2008)]. We present the detailed expressions for the response functions entering the Jones birefringence when London atomic orbitals are used. The implementation is tested on a set of polar and dipolar molecules at the Hartree-Fock level of theory. It is demonstrated that London orbitals lead to much improved basis-set convergence, and that the use of small, conventional basis sets may lead to the wrong sign for the calculated birefringence. For large basis sets, London orbitals and conventional basis sets converge to the same results.

  7. A method of measuring crystal birefringence dispersion

    SciTech Connect

    Suslikov, L.M.; Khazitarkhanov, Y.A.; Gad`mashi, Z.P.

    1994-07-01

    A method of measuring crystal birefringence dispersion is considered that is based on analysis of evolution of the birefringent interference spectrum depending on the angle between the light beam and optic axis of the crystal. Results of measuring the birefringence dispersion of layered Cs{sub 3}Sb{sub 2}Br{sub 9} crystals are presented. 6 refs., 1 fig.

  8. Optical dynamical processing: an approach using birefringent pupils.

    PubMed

    Trivi, M; Sicre, E E; Rabal, H J; Garavaglia, M J

    1988-04-01

    A new technique is proposed to perform several image-processing operations with the same optical system. Each operation can easily be selected by properly loading a birefringent photoelastic plate, which acts as the spatial filter of the-system. Thus different pupil transmittance configurations can be achieved, each of which is associated with a certain image transformation.

  9. Optical 90-deg hybrid of birefringent crystals for freely propagating laser beams

    NASA Astrophysics Data System (ADS)

    Wan, Lingyu; Zhi, Yanan; Zhou, Yu; Liu, Liren

    2010-12-01

    An optical 90-deg hybrid of birefringent crystals for freely propagating laser beams is presented. It consists principally of a quarter-wave plate, two pairs of birefringent crystal plates, and a polarization analyzer. The splitting and recombination of the signal and local-oscillator beams are achieved through the birefringence of the crystals, and a 90-deg phase shift is introduced between orthogonally polarized beam components by use of a quarter-wave plate. The optical hybrid has a self-compensating light path, and its correct function is demonstrated in a self-heterodyne measurement setup.

  10. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2009-09-28

    We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9 nm deformation for an optical power of 20 mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30 microm for a pump power of 67 mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

  11. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    PubMed Central

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  12. Hydrostatic pressure sensing with high birefringence photonic crystal fibers.

    PubMed

    Fávero, Fernando C; Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Silva, Vinícius V; Carvalho, Isabel C S; Llerena, Roberth W A; Valente, Luiz C G

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution.

  13. Polarization beam splitting using a birefringent graded photonic crystal.

    PubMed

    Cassan, Eric; Van Do, Khanh; Dellinger, Jean; Le Roux, Xavier; de Fornel, Frédérique; Cluzel, Benoit

    2013-02-15

    The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

  14. Stress effects in twisted highly birefringent fibers

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  15. Birefringence in time-dependent moving media

    NASA Astrophysics Data System (ADS)

    Lin, Shirong; Zhang, Ruoyang; Zhai, Yanwang; Wei, Jianye; Zhao, Qing

    2016-08-01

    Electromagnetic wave propagation in one- and two-dimensional time-dependent moving media is investigated in this paper. We identify another origin of linear birefringence caused by the component of the flow perpendicular to the wave vector. Previously, birefringence is induced by applying external electric and magnetic fields to non-crystalline material. Here it is shown that the time-varying velocity field also contributes to such a phenomenon. Our results indicate that the parallel component, time-dependent or not, will not yield birefringence. Furthermore, the time-dependent flow also results in a frequency shift. One-dimensional simulation is conducted to demonstrate these effects.

  16. Zero birefringence films of pullulan ester derivatives

    PubMed Central

    Danjo, Takahiro; Enomoto, Yukiko; Shimada, Hikaru; Nobukawa, Shogo; Yamaguchi, Masayuki; Iwata, Tadahisa

    2017-01-01

    High-performance films with almost zero-birefringence and zero-wavelength dispersion were succeeded to prepare from pullulan esters derivatives (PLEs) without any additives. Optical transmittance analysis, birefringence measurement of PLE cast film and hot stretched films, and infrared dichroism analysis were conducted to characterize optical properties of PLE films comparing with cellulose triacetate which is commercially used as low-birefringence in optical devices. The aims of this study, characterization of optical properties of pullulan esters, can develop a deep understanding of the fundamental knowing and applicability of polysaccharides. Accordingly, authors believe this paper will open the gate for researches in the application of polysaccharides. PMID:28417955

  17. Spectral contents readout of birefringent sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1989-01-01

    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations.

  18. Spinning wave plate design for retinal birefringence scanning

    NASA Astrophysics Data System (ADS)

    Irsch, K.; Gramatikov, B. I.; Wu, Y.-K.; Guyton, D. L.

    2009-02-01

    To enhance foveal fixation detection while bypassing the deleterious effects of corneal birefringence in retinal birefringence scanning (RBS), we developed a new RBS design introducing a double-pass spinning half wave plate (HWP) and a fixed double-pass retarder into the optical system. Utilizing the measured corneal birefringence from a data set of 300 human eyes, an algorithm and a related computer program, based on Mueller-Stokes matrix calculus, were developed in MATLAB for optimizing the properties of both wave plates. Foveal fixation detection was optimized with the HWP spun 9/16 as fast as the circular scan, with the fixed retarder having a retardance of 45° and fast axis at 90°. With this new RBS design, a significant statistical improvement of 7.3 times in signal strength, i.e. FFT power, was achieved for the available data set compared with the previous RBS design. The computer-model-optimized RBS design has the potential not only for eye alignment screening, but also for remote fixation sensing and eye tracking applications.

  19. Birefringence measurement in complex optical systems

    NASA Astrophysics Data System (ADS)

    Knell, Holger; Heuck, Hans-Martin

    2017-06-01

    State of the art optical systems become more complex. There are more lenses required in the optical design and optical coatings have more layers. These complex designs are prone to induce more thermal stress into the optical system which causes birefringence. In addition, there is a certain degree of freedom required to meet optical specifications during the assembly process. The mechanical fixation of these degrees of freedom can also lead to mechanical stress in the optical system and therefore to birefringence. To be able to distinguish those two types of stress a method to image the birefringence in the optical system is required. In the proposed setup light is polarized by a circular polarization filter and then is transmitted through a rotatable linear retarder and the tested optical system. The light then is reflected on the same path by a mirror. After the light passes the circular polarization filter on the way back, the intensity is recorded. When the rotatable retarder is rotated, the recorded intensity is modulated depending on the birefringence of the tested optical system. This modulation can be analyzed in Fourier domain and the linear retardance angle between the slow and the fast axis as well as the angle of the fast axis can be calculated. The retardance distribution over the pupil of the optical system then can be analyzed using Zernike decomposition. From the Zernike decomposition, the origin of the birefringence can be identified. Since it is required to quantify small amounts of retardance well below 10nm, the birefringence of the measurement system must be characterized before the measurement and considered in the calculation of the resulting birefringence. Temperature change of the measurement system still can produce measurement artifacts in the calculated result, which must also be compensated for.

  20. Crystal chemistry of birefringent hydrogrossular

    NASA Astrophysics Data System (ADS)

    Antao, Sytle M.

    2015-06-01

    Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green "jade" and 2. pink "jade"] were carried out with the Rietveld method, cubic space group and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca2.997Mg0.003)Σ3{Al1.794Fe{0.196/3+}Cr{0.004/3+}Mn{0.003/3+}Ti{0.002/4+}}Σ2[(SiO4)2.851(O4H4)0.151]Σ3 and (2) (Ca2.993Mg0.007)Σ3{Al1.977Fe{0.020/3+}Mn{0.003/3+}Cr{0.001/3+}}Σ2[(SiO4)2.272(O4H4)0.730]Σ3. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ2 and overall R ( F 2) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O-H bond distance (Å) are as follows: 74.4(1), a = 11.88874(4), and O-H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a = 11.9280(5), and O-H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a = 12.0591(1), and O-H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a = 11.9340(2), and O-H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the "Si-O" bond direction, which is written as Z-O, because of the general formula, X3Y2Z3O12, for garnet. Phase 1a is near end-member grossular, ideally Ca3Al2Si3O12. The deficiencies of the site occupancy factors ( sofs) for the Si (=Z) site indicate that there are significant [O4H4]4- replacing [SiO4]4-. The Z-O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z-O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites

  1. Dichroic Bragg reflectors based on birefringent porous silicon

    SciTech Connect

    Diener, J.; Kunzner, N.; Kovalev, D.; Gross, E.; Timoshenko, V. Yu.; Polisski, G.; Koch, F.

    2001-06-11

    Multilayers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection measurements. Alternating layers having different refractive indices exhibit additionally a strong in-plane anisotropy of their refractive index (birefringence). Therefore, a stack of layers, acting as a distributed Bragg reflector, has two distinct reflection bands, depending on the polarization of the incident linearly polarized light. This effect is governed by a three-dimensional (in-plane and in-depth) variation of the refractive index. These structures can yield optical effects which are difficult to achieve with conventional Bragg reflectors. {copyright} 2001 American Institute of Physics.

  2. PCTFE as a solution to birefringence in atom trap viewports

    SciTech Connect

    Warner, C. L.; Behr, J. A.; Gorelov, A.

    2014-11-15

    We have developed and characterized optical viewports with the glass-to-metal seal made by the plastic PCTFE (polychlorotrifluoroethylene). The goal is to reduce stress-induced birefringence while maintaining ultra-high vacuum compatibility. We have maintained a Stokes parameter S{sub 3} of 0.9986, and achieved <5 × 10{sup −11} Torr partial pressure of air. We have also measured the diffusion and permeation of helium through PCTFE and placed upper limits on nitrogen, oxygen, and argon permeation, as PCTFE has been suggested as an o-ring for transport of environmental noble gas samples, though we know of no other noble gas measurements.

  3. Form birefringent microstructures: modeling and design

    NASA Astrophysics Data System (ADS)

    Richter, I.; Sun, Pang Chen; Xu, Fang; Fainman, Yeshaiahu

    1995-04-01

    Diffraction characteristics of high-spatial-frequency gratings (HSF) are evaluated for application to polarization-selective computer generated holograms using two different approaches, second order effective-medium theory (EMT) and rigorous coupled-wave analysis (RCWA). The reflectivities and the phase differences for TE and TM polarized waves are investigated in terms of various input parameters, and results obtained with second order EMT and RCWA are compared. It is shown that while the reflection characteristics can be accurately modeled using the second order EMT, the phase difference created by form birefringence for TE and TM polarized waves requires the use of a more rigorous, RCWA approach. Design of HSF gratings in terms of their form birefringence and reflectivity properties is discussed in conjunction with polarization-selective computer generated holograms. A specific design optimization example furnishes a grating profile that provides a trade-off between largest form birefringence and lowest reflectivities.

  4. Design considerations of form birefringent microstructures

    NASA Astrophysics Data System (ADS)

    Richter, Ivan; Sun, Pang-Chen; Xu, Fang; Fainman, Yeshayahu

    1995-05-01

    Diffraction characteristics of high-spatial-frequency (HSF) gratings are evaluated for application to polarization-selective computer-generated second-order effective-medium theory (EMT) and rigorous coupled-wave analysis (RCWA). The reflectivities and the phase differences for TE-and TM-polarized waves are investigated in terms of various input parameters, and results obtained with second-order EMT and RCWA are compared. It is shown that although the reflection characteristics can be accurately modeled with the second-order EMT, the phase difference created by form birefringence for TE-and TM-polarized waves requires the use of a more rigorous, RCWA approach. The design of HSF gratings in terms of their form birefringence and reflectivity properties is discussed in conjunction with polarization-selective computer-generated holo-grams. A specific design optimization example furnishes a grating profile that provides a trade-off between the largest form birefringence and the lowest reflectivities.

  5. Electro-optical tunable birefringent filter

    SciTech Connect

    Levinton, Fred M

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  6. Optimized birefringence changes during isolated nerve activation.

    PubMed

    Foust, Amanda J; Beiu, Roxana M; Rector, David M

    2005-04-10

    Single trial, birefringence signals associated with action potentials from isolated lobster nerves were optimized with high-intensity light-emitting diodes (LEDs) and glass polarizers. The narrow spectral output of the LEDs allowed us to select specific wavelengths, increasing the effectiveness of the polarizers and minimizing the stray light in the system. The LEDs produced intensity profiles equivalent to narrowband filtered 100-W halogen light, and birefringence signals were comparable or superior in size and clarity to halogen lamp recordings. The results support a direct correlation between signal size and polarizer extinction coefficient. Increasing the sensitivity of birefringence detection through the use of LED light sources could ameliorate noninvasive brain imaging techniques that employ fast optical consequences associated with action potential propagation.

  7. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    SciTech Connect

    Wang, Chao; Jin, Wa; Ma, Jun; Jin, Wei Yang, Fan; Ho, Hoi Lut; Liao, Changrui; Wang, Yiping

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  8. Birefringent photonic crystal fiber coils and their application to transverse displacement sensing.

    PubMed

    Fan, Chen-Feng; Chiang, Chih-Lun; Yu, Chin-Ping

    2011-10-10

    We have experimentally investigated the birefringent properties of photonic crystal fiber (PCF) coils in cooperation with a Sagnac loop interferometer. By reducing the bending radius of the PCF coils, very clear interference patterns can be observed for the bending-induced stress effect. Increasing the fiber turns can result in more obvious interference patterns with smaller fringe spacing but has no contribution to the increment of the birefringence value. The fabricated PCF coil is employed in the transverse displacement sensing. Very high sensing sensitivity of 90.4 nm/mm can be achieved due to the large displacement-induced bending radius variations.

  9. Optical stress sensor based on electro-optic compensation for photoelastic birefringence in a single crystal

    SciTech Connect

    Li Changsheng

    2011-09-20

    An optical stress sensor is proposed by using a single crystal with both electro-optic and photoelastic effects. Different from previous crystal-based stress sensors, the proposed sensor is based on electro-optic compensation for stress-induced birefringence and does not need an additional quarter-wave plate or modulator, because the stress-sensing element is simultaneously used as an electro-optic compensator. Candidate sensing materials include electro-optic crystals of the 3 m symmetry group and all glass with large Kerr coefficients. A primary experiment has demonstrated that the stress-induced birefringence in lithium niobate crystal can be compensated by its electro-optic birefringence. The proposed stress sensor is compact and low cost, and it is possible to achieve closed-loop stress measurement.

  10. Research on spectroscopic imaging. Volume 1: Technical discussion. [birefringent filters

    NASA Technical Reports Server (NTRS)

    Title, A.; Rosenberg, W.

    1979-01-01

    The principals of operation and the capabilities of birefringent filters systems are examined. Topics covered include: Lyot, Solc, and partial polarizer filters; transmission profile management; tuning birefringent filters; field of view; bandpass control; engineering considerations; and recommendations. Improvements for field of view effects, and the development of birefringent filters for spaceflight are discussed in appendices.

  11. Use of shape induced birefringence for rotation in optical tweezers

    NASA Astrophysics Data System (ADS)

    Asavei, Theodor; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2010-08-01

    Since a light beam can carry angular momentum (AM) it is possible to use optical tweezers to exert torques to twist or rotate microscopic objects. The alignment torque exerted on an elongated particle in a polarized light field represents a possible torque mechanism. In this situation, although some exchange of orbital angular momentum occurs, scattering calculations show that spin dominates, and polarization measurements allow the torque to be measured with good accuracy. This phenomenon can be explained by considering shape birefringence with an induced polarizability tensor. Another example of a shape birefringent object is a microsphere with a cylindrical cavity. Its design is based on the fact that due to its symmetry a sphere does not rotate in an optical trap, but one could break the symmetry by designing an object with a spherical outer shape with a non spherical cavity inside. The production of such a structure can be achieved using a two photon photo-polymerization technique. We show that using this technique, hollow spheres with varying sizes of the cavity can be successfully constructed. We have been able to demonstrate rotation of these spheres with cylindrical cavities when they are trapped in a laser beam carrying spin angular momentum. The torque efficiency achievable in this system can be quantified as a function of a cylinder diameter. Because they are biocompatible and easily functionalized, these structures could be very useful in work involving manipulation, control and probing of individual biological molecules and molecular motors.

  12. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

    PubMed Central

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-01-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia. PMID:21750772

  13. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.

    PubMed

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-07-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates ("wave-plate-enhanced RBS") that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia.

  14. Compact Methods for Measuring Stress Birefringence

    DTIC Science & Technology

    2002-01-01

    of Arizona, Tucson, AZ 85721 bU. S. Army TACOM, Warren, MI 48397 ABSTRACT The recent development of channelled spectropolarimetry presents...imaging spectrometers into imaging spectropolarimeters. Keywords: polarimetry, spectropolarimetry , birefringence, photoelasticity 1. INTRODUCTION The...of-amplitude 4 designs are often employed. The technique of channelled spectropolarimetry ,5 while not widely known, offers advantages of its own and

  15. Polarized light in birefringent samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chue-Sang, Joseph; Bai, Yuqiang; Ramella-Roman, Jessica

    2016-02-01

    Full-field polarized light imaging provides the capability of investigating the alignment and density of birefringent tissue such as collagen abundantly found in scars, the cervix, and other sites of connective tissue. These can be indicators of disease and conditions affecting a patient. Two-dimensional polarized light Monte Carlo simulations which allow the input of an optical axis of a birefringent sample relative to a detector have been created and validated using optically anisotropic samples such as tendon yet, unlike tendon, most collagen-based tissues is significantly less directional and anisotropic. Most important is the incorporation of three-dimensional structures for polarized light to interact with in order to simulate more realistic biological environments. Here we describe the development of a new polarization sensitive Monte Carlo capable to handle birefringent materials with any spatial distribution. The new computational platform is based on tissue digitization and classification including tissue birefringence and principle axis of polarization. Validation of the system was conducted both numerically and experimentally.

  16. Fringes of equal tangential inclination by curvature-induced birefringence

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Hendawy, N. I.; Zaki, A. A.

    2003-02-01

    A new kind of interference fringes, fringes of equal tangential inclination by curvature-induced birefringence, is presented. These are two-beam interference fringes produced by bending a thin sheet of birefringent material into a part of an exact cylinder such that the curvature is constant. Due to this curvature there is a uniform birefringence being induced. The change in birefringence induced by applying different radii of curvatures to a Fortepan sheet is measured. The stored (fixed) or natural birefringence of this sheet is deduced.

  17. High-birefringence photonic crystal fiber structures based on the binary morse-thue fractal sequence

    NASA Astrophysics Data System (ADS)

    Al-Muraeb, Ahmed; Abdel-Aty-Zohdy, Hoda

    2016-09-01

    A novel index-guiding Silica glass-core hexagonal High-Birefringence Photonic Crystal Fiber (HB-PCF) is proposed, with five rings of standard cladding air circular holes arranged in four formations inspired by the Binary Morse-Thue fractal Sequence (BMTS). The form birefringence, confinement loss, chromatic dispersion, effective mode area, and effective normalized frequency are evaluated for the four PCFs operating within (1.8 - 2 μm) eye-safe wavelength range. Modeling and analysis of the four PCF formations are performed deploying full-vector analysis in Finite Element Method (FEM) using COMSOL Multiphysics. Respecting fabrication and in light of commercial availability in designing the proposed PCF structures, a high birefringence of up to (6.549 × 10-3 at 2 μm) is achieved with dispersionfree single-mode operation. Confinement loss as low as (3.2 × 10-5 - 6.5 × 10-4 dB/m for 1.8 - 2 μm range) is achieved as well. Comparison against previously reported PCF structures reveals the desirably higher birefringence of our BMTS HB-PCF. The proposed PCFs are of vital use in various optical systems (e.g.: multi-wavelength fiber ring laser systems, and tunable lasers), catering for applications such as: optical sensing, LIDAR systems, material processing, optical signal processing, and optical communication.

  18. New color filter with negative birefringence

    NASA Astrophysics Data System (ADS)

    Shao, Xibin; Yuan, Jianfeng; Wu, Yuan; Ma, Zhenjun; Li, Baozhong; He, Tianbei; Huang, Xinmin

    1998-02-01

    We have presented a special color film with negative optical-birefringence. It can work as color filter and viewing angle extension film of Normally White Twist Nematic Liquid Crystal Displays (NW TN-LCDs). To fabricate such film we synthesized oil-soluble high-performance polyimide (PI) which can be dissolved in the usual organic solvent and shows negative birefringence after lamination. Mixing PI with certain pigment of green, blue and red color in the solvent with suitable proportion individually and laminating on the glass substrate, we obtained color films of good transmission spectrum and suitable chromatic coordinates. The experimental results show that the color filter can work as compensation films of NW TN-LCDs.

  19. Birefringent porous silicon membranes for optical sensing.

    PubMed

    Alvarez, Jesús; Bettotti, Paolo; Suárez, Isaac; Kumar, Neeraj; Hill, Daniel; Chirvony, Vladimir; Pavesi, Lorenzo; Martínez-Pastor, Juan

    2011-12-19

    In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model to determine the contribution of the main depolarization sources to the overall depolarization process, and how it influences the measured spectra and the resolution of birefringence measurements.

  20. Photo Replication of Birefringent Phase Structures

    NASA Astrophysics Data System (ADS)

    Verstegen, Emile J. K.; Hendriks, Benno H. W.; van As, Marco A. J.; Tukker, Teus W.

    2004-07-01

    Dual layer blu-ray disc (BD) and dual layer small form factor optical drive (SFFO) as well as BD / digital versatile disc (DVD) / compact disc (CD) compatible systems, require phase structures to cope with the different amount of spherical aberration for the various different operating modes. Birefringent phase structures open up to the possibility to cope with these different amounts of aberration in the various readout modes, but so far no manufacturing methods are known which lead to low cost and stable structures. A novel replication method, based on the photo-polymerization of a liquid crystalline monomer is presented to make birefringent phase structures. Apart from enabling mass production, the process allows a phase structure to be directly produced on top of an ordinary objective lens, allowing weight and size reduction of the compatible optical pick up.

  1. Spectral-Content Readout Of Birefringent Sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1993-01-01

    Stresses and strains measured optically at temperatures up to 2,000 degrees F. Spectrum of light processed through polarizer, sensor, analyzer, and associated optical components measured and processed to extract amount of retardation and, equivalently, stress-induced birefringence in sensor. Method offers same advantages as electrical strain sensors, including acquisition of data from multiple locations and under dynamic conditions. Additional advantage: immunity of fiber-optic transmission to interference by electromagnetic interference at radio and lower frequencies.

  2. Reconsidering the origins of Forsbergh birefringence patterns

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Kumar, A.; McQuaid, R. G. P.; Glazer, A. M.; Thomas, P. A.; Gregg, J. M.

    2016-07-01

    In 1949, Forsbergh, Jr. reported spontaneous spatial ordering in the birefringence patterns seen in flux-grown BaTi O3 crystals under the transmission polarized light microscope [Phys. Rev. 76, 1187 (1949), 10.1103/PhysRev.76.1187]. Stunningly regular square-net arrays were often only found within a finite temperature window and could be induced on both heating and cooling, suggesting genuine thermodynamic stability. At the time, Forsbergh rationalized the patterns to have resulted from the impingement of ferroelastic domains, creating a complex tessellation of variously shaped domain packets. However, no direct evidence for the intricate microstructural arrangement proposed by Forsbergh has subsequently been found. Moreover, there are no robust thermodynamic arguments to explain the finite region of thermal stability, its occurrence just below the Curie temperature, and the apparent increase in entropy associated with the loss of the Forsbergh pattern on cooling. Despite decades of research on ferroelectrics, this ordering phenomenon and its thermodynamic origin have hence remained a mystery. In this paper, we reexamine the microstructure of flux-grown BaTi O3 crystals, which show Forsbergh birefringence patterns. Given an absence of any obvious arrays of domain polyhedra or even regular shapes of domain packets, we suggest an alternative origin for the Forsbergh pattern in which sheets of orthogonally oriented ferroelastic stripe domains simply overlay one another. We show explicitly that the Forsbergh birefringence pattern occurs if the periodicity of the stripe domains is above a critical value. Moreover, by considering well-established semiempirical models, we show that the significant domain coarsening needed to generate the Forsbergh birefringence is fully expected in a finite window below the Curie temperature. We hence present a much more straightforward rationalization of the Forsbergh pattern than that originally proposed in which exotic thermodynamic

  3. Transient birefringence effects in electromagnetically induced transparency

    SciTech Connect

    Parshkov, O M

    2015-11-30

    We report the results of numerical modelling of transient birefringence that arises as a result of electromagnetically induced transparency on degenerate quantum transitions between the states with J = 0, 1 and 2 in the presence of the Doppler broadening of spectral lines. It is shown that in the case of a linearly polarised control field, the effect of transient birefringence leads to a decay of the input circularly polarised probe pulse into separate linearly polarised pulses inside a medium. In the case of a circularly polarised control field, the effect of transient birefringence manifests itself in a decay of the input linearly polarised probe pulse into separate circularly polarised pulses. It is shown that the distance that a probe pulse has to pass in a medium before decaying into subpulses is considerably greater in the first case than in the second. The influence of the input probe pulse power and duration on the process of spatial separation into individual pulses inside a medium is studied. A qualitative analysis of the obtained results is presented. (nonlinear optical phenomena)

  4. Control of Wavelength Dispersion of Birefringence for Oriented Copolycarbonate Films Containing Positive and Negative Birefringent Units

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akihiko; Yatabe, Toshiaki

    2003-11-01

    The wavelength dispersion of birefringence for uniaxially oriented copolycarbonate films containing positive and negative birefringent units has been examined by polarization-modulated transmission spectro-ellipsometry, as a function of copolymerization ratio and stretching parameters. The copolymers were synthesized from 2,2-bis(4-hydroxyphenyl)propane (BPA), 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (BMPF) and phosgene by interfacial polycondensation. The films indicate reverse dispersion in the region of BMPF volume fraction from 0.65 to 0.80. The wavelength dispersion is controlled by the copolymerization ratio. The dispersion change of the 70 mol% BMPF copolycarbonate films as a function of stretching parameters is negligible. These behaviors are explained by the birefringence equation for a multicomponent system of the copolymer.

  5. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  6. Detecting strain in birefringent materials using spectral polarimetry

    NASA Technical Reports Server (NTRS)

    Ragucci, Anthony J. (Inventor); Cisar, Alan J. (Inventor); Huebschman, Michael L. (Inventor); Garner, Harold R. (Inventor)

    2010-01-01

    A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.

  7. Transfer matrix for treating stratified media including birefringent crystals.

    PubMed

    Essinger-Hileman, Thomas

    2013-01-10

    Birefringent crystals are extensively used to manipulate polarized light. The generalized transfer matrix developed allows efficient calculation of the full polarization state of light transmitted through and reflected by a stack of arbitrarily many discrete layers of isotropic and birefringent materials at any frequency and angle of incidence. The matrix of a uniaxial birefringent crystal with arbitrary rotation is calculated, along with its reduction to the matrix of an isotropic medium. This method is of great practical importance where tight control of systematic effects is needed in optical systems employing birefringent crystals, one example being wave plates used by cosmic microwave background polarimetry with wide field-of-view telescopes.

  8. Distributed measurement of birefringence dispersion in polarization-maintaining fibers.

    PubMed

    Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai

    2006-12-01

    A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.

  9. Preferential alignment of birefringent tissue measured with polarization sensitive techniques

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, J. C.; Ruiz, T.; Ghassemi, P.; Travis, T. E.; Shupp, J. W.; Chue-Sang, J.; Bai, Y.

    2015-02-01

    Assessing collagen alignment is of interest when evaluating a therapeutic strategy and evaluating its outcome in scar management. In this work we introduce a theoretical and experimental methodology for the quantification of collagen and birefringent media alignment based on polarized light transport. The technique relies on the fact that these materials exhibit directional anisotropy. A polarized Monte Carlo model and a spectro-polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging polarized light beam. Experiments conducted on birefringent phantoms, and biological samples consisting of highly packed parallel birefringent fibers, showed a good agreement with the analytical results.

  10. Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2016-04-01

    Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) provide novel opportunities to overcome several limitations of conventional, purely charge-based semiconductor lasers. Presumably the highest potential lies in the spin-VCSEL's capability for ultrafast spin and polarization dynamics which can be significantly faster than the intensity dynamics in conventional devices. By injecting spin-polarized carriers, these coupled spin-photon dynamics can be controlled and utilized for high-speed applications. While relaxation oscillations provide insights in the speed and direct modulation bandwidth of conventional devices, resonance oscillations in the circular polarization degree step in for the spin and polarization dynamics in spin-VCSELs. These polarization oscillations can be generated using pulsed spin injection and achieve much higher frequencies than the conventional intensity relaxation oscillations in these devices. Furthermore polarization oscillations can be switched on and off and it is possible to generate short polarization pulses, which may represent an information unit in polarization-based optical communication. The frequency of polarization oscillations is mainly determined by the birefringence-induced mode splitting between both orthogonal linearly polarized laser modes. Thus the polarization modulation bandwidth of spin-VCSELs can be increased by adding a high amount of birefringence to the cavity, for example by incorporating mechanical strain. Using this technique, we could demonstrate tunable polarization oscillations from 10 to 40 GHz in AlGaAs-based 850nm VCSELs recently. Furthermore a birefringence-induced mode splitting of more than 250 GHz could be demonstrated experimentally. Provided that this potential for ultrafast dynamics can be fully exploited, birefringent spin-VCSELs are ideal devices for fast short-haul optical interconnects. In this paper we review our recent progress on polarization dynamics of birefringent spin

  11. Electric birefringence spectroscopy of montmorillonite particles.

    PubMed

    Arenas-Guerrero, Paloma; Iglesias, Guillermo R; Delgado, Ángel V; Jiménez, María L

    2016-06-14

    Electric birefringence (EB) of suspensions of anisotropic particles can be considered an electrokinetic phenomenon in a wide sense, as both liquid motions and polarization of the electrical double layer (EDL) of the particles participate in the process of particle orientation under the applied field. The EB spectrum can be exploited for obtaining information on the dimensions, average value and anisotropy of the surface conductivity of the particles, and the concentration and Maxwell-Wagner polarization of the EDLs. It is thus a highly informative technique, applicable to non-spherical particles. In this paper, we investigate the birefringent response of plate-like montmorillonite particles as a function of the frequency and amplitude of the applied AC electric field, for different compositions (pH, ionic strength, particle concentration) of the suspensions. The transient electric birefringence (i.e., the decay of the refractive index anisotropy with time when the field is switched off) is used for estimating the average dimensions of the particle axes, by modeling it as an oblate spheroid. The obtained values are very similar to those deduced from electron microscopy determinations. The frequency spectra show a very distinct behaviour at low (on the order of a few Hz) and high (up to several MHz) frequencies: the α and Maxwell-Wagner-O'Konski relaxations, characteristic of EDLs, are detected at frequencies above 10 kHz, and they can be well explained using electrokinetic models for the polarization of EDLs. At low frequencies, in contrast, the birefringence changes to negative, an anomalous response meaning that the particles tend to orient with their symmetry axis parallel to the field. This anomaly is weaker at basic pH values, high ionic strengths and low concentrations. The results can be explained by considering the polydispersity of real samples: the fastest particles redistribute around the slowest ones, inducing a hydrodynamic torque opposite to that of

  12. Superluminal group velocity in a birefringent crystal

    SciTech Connect

    Halvorsen, Tore Gunnar; Leinaas, Jon Magne

    2008-02-15

    We examine the effect of superluminal signal propagation through a birefringent crystal, where the effect is not due to absorption or reflection, but to the filtration of a special polarization component. We first examine the effect by a stationary phase analysis, with results consistent with those of an earlier analysis of the system. We supplement this analysis by considering the transit of a Gaussian wave and find bounds for the validity of the stationary phase result. The propagation of the Gaussian wave is illustrated by figures.

  13. Measurement of birefringence inside a filament

    SciTech Connect

    Yuan Shuai; Wang, Tie-Jun; Chin, See Leang; Kosareva, Olga; Panov, Nikolay; Makarov, Vladimir; Zeng Heping

    2011-07-15

    We quantified the ultrafast birefringence induced in the filament in an atomic gas by measuring the filament-induced polarization rotation of a probe pulse. Based on the dephasing of the probe's orthogonal polarization components in argon, the experiment was done at 1 atm by copropagating a linearly polarized 400-nm probe pulse with an 800-nm pump pulse which generated the filament. The probe's elliptical polarization states were shown under various initial pump-probe polarization schemes. These states were verified by comparing the filament-induced probe polarization rotation angle and the ellipticity of the probe polarization.

  14. Method and apparatus for measuring birefringent particles

    DOEpatents

    Bishop, James K.; Guay, Christopher K.

    2006-04-18

    A method and apparatus for measuring birefringent particles is provided comprising a source lamp, a grating, a first polarizer having a first transmission axis, a sample cell and a second polarizer having a second polarization axis. The second polarizer has a second polarization axis that is set to be perpendicular to the first polarization axis, and thereby blocks linearly polarized light with the orientation of the beam of light passing through the first polarizer. The beam of light passing through the second polarizer is measured using a detector.

  15. Experiment to measure vacuum birefringence: Conceptual design

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno

    2016-03-01

    Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.

  16. Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media.

    PubMed

    Guo, Yihong; Liu, Celong; Zeng, Nan; He, Honghui; Du, E; He, Yonghong; Ma, Hui

    2014-06-01

    We report an anisotropic tissue model containing well-ordered birefringent cylinders. Using simulations and experiments, we examined the different polarization features for nonbirefringent and birefringent cylinders and analyzed the influence of the birefringent cylinders on the retardance obtained from Mueller matrix polar decomposition. For the well-ordered birefringent cylinders, retardance increases linearly with the intrinsic birefringence and the scattering coefficient. Furthermore, the cylinders with a larger diameter generate more retardance. Compared with the cylinder-birefringence model, in which birefringent medium exists between the scatterers, the intrinsic birefringence on the cylinders usually contributes much less to the total retardance.

  17. Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sakagichi, Takahiro; Koyama, Fumio

    2009-02-01

    A tunable Bragg reflector based on a tapered three-dimensional (3D) hollow waveguide (HWG) with variable taper angle has been proposed and demonstrated. A large grating coupling coefficient for a large reflection band and a giant birefringence of 0.01 have been achieved by optimizing the structure of the 3D HWG. The large birefringence causes a delay difference between the orthogonal polarizations and the variable taper angle provides tuning in the delay difference. A 13 ps tuning in differential group delay has been reported with a 3 mm long compact device, which can be used for adjustable compensation of polarization mode dispersion in optical fiber links.

  18. Smectic A Filled Birefringent Elements and Fast Switching Twisted Dual Frequency Nematic Cells Used for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-01-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.

  19. Liquid microlenses and waveguides from bulk nematic birefringent profiles.

    PubMed

    Čančula, Miha; Ravnik, Miha; Muševič, Igor; Žumer, Slobodan

    2016-09-19

    We demonstrate polarization-selective microlensing and waveguiding of laser beams by birefringent profiles in bulk nematic fluids using numerical modelling. Specifically, we show that radial escaped nematic director profiles with negative birefringence focus and guide light with radial polarization, whereas the opposite - azimuthal - polarization passes through unaffected. A converging lens is realized in a nematic with negative birefringence, and a diverging lens in a positive birefringence material. Tuning of such single-liquid lenses by an external low-frequency electric field and by adjusting the profile and intensity of the beam itself is demonstrated, combining external control with intrinsic self-adaptive focusing. Escaped radial profiles of birefringence are shown to act as single-liquid waveguides with a single distinct eigenmode and low attenuation. Finally, this work is an approach towards creating liquid photonic elements for all-soft matter photonics.

  20. Michelson-Morley with a Birefringent Cavity

    NASA Astrophysics Data System (ADS)

    Monsalve, Francisco J.; Hohensee, Michael; Müller, Holger

    2012-06-01

    We report on the progress of a birefringent cavity test of the isotropy of the speed of light. Previous experimental tests have constrained anisotropies in the speed of light at the level of parts in 10^17 [1-2]. These experiments search for frame-dependent variations in the resonant frequencies of two orthogonally mounted optical cavities. Uncorrelated fluctuations in the cavity lengths are a significant challenge for such experiments. Our experiment uses a single dielectric-filled cavity, and measures the difference in the resonant frequency of two orthogonally polarized modes. Anisotropies in the speed of light will manifest as a frame-dependent strain on the dielectric [3-4], giving rise to a frame-dependent variation in the cavity birefringence. By making the length of each cavity mode identical, we expect that our experiment will be less sensitive to thermal cavity fluctuations. [4pt] [1] S. Herrmann, A. Senger, K. M"ohle, M. Nagel, E.V. Kovalchuk and A. Peters, PRD 80, 105011 (2009).[2] Ch. Eisel, A. Yu. Nevsky, and S. Schiller, PRL 103, 090401 (2009).[3] H. M"uller, PRD 71, 045004 (2005).[4] V.A. Kosteleck'y and M. Mewes, PRD 80, 015020 (2009).

  1. Magnetic birefringence of natural and synthetic ferritin

    NASA Astrophysics Data System (ADS)

    Koralewski, M.; Pochylski, M.; Mitróová, Z.; Timko, M.; Kopčanský, P.; Melníková, L.

    2011-10-01

    Magnetically induced optical birefringence (Δn) was measured for magnetoferritin (MFer), horse spleen ferritin (HSF) and nanoscale magnetite aqueous suspensions. The anisotropy of optical polarizability was calculated. The average magnetic dipole moment calculated assuming the Langevin model was about 20,000 and 8500 μB per particle, for magnetite nanoparticle and magnetoferritin, respectively. Poor fitting results and the unphysical value of average magnetic moment per Fe ion for MFer excluded the use of the simple Langevin model for description of Δn for this compound. It was deduced that for MFer the estimated average magnetic moment should be about 1125 μB per molecule. A magnetic contribution from the protein shell was found to be negligible. Results from the low-field region permit the calculation of the Cotton-Mouton (C-M) constants and their comparison for the substances studied. It was shown that magnetic birefringence and C-M constant can be powerful parameters in identification of the magnetic core structure of ferritins, especially useful in biomedicine.

  2. Stokes parameters modulator for birefringent filters

    NASA Technical Reports Server (NTRS)

    Dollfus, A.

    1985-01-01

    The Solar Birefringent Filter (Filter Polarisiant Solaire Selectif FPSS) of Meudon Observatory is presently located at the focus of a solar refractor with a 28 cm lens directly pointed at the Sun. It produces a diffraction limited image without instrumental polarization and with a spectral resolution of 46,000 in a field of 6 arc min. diameter. The instrument is calibrated for absolute Doppler velocity measurements and is presently used for quantitative imagery of the radial velocity motions in the photosphere. The short period oscillations are recorded. Work of adapting the instrument for the imagery of the solar surface in the Stokes parameters is discussed. The first polarizer of the birefringent filter, with a reference position angle 0 deg, is associated with a fixed quarter wave plate at +45 deg. A rotating quarter wave plate is set at 0 deg and can be turned by incremented steps of exactly +45 deg. Another quarter wave plate also initially set at 0 deg is simultaneously incremented by -45 deg but only on each even step of the first plate. A complete cycle of increments produces images for each of the 6 parameters I + or - Q, I + or - U and I + or - V. These images are then subtracted by pairs to produce a full image in the three Stokes parameters Q, U and V. With proper retardation tolerance and positioning accuracy of the quarter wave plates, the cross talk between the Stokes parameters was calculated and checked to be minimal.

  3. Nematic liquid crystals exhibiting high birefringence

    NASA Astrophysics Data System (ADS)

    Thingujam, Kiranmala; Bhattacharjee, Ayon; Choudhury, Basana; Dabrowski, Roman

    2016-06-01

    Two fluorinated isothiocyanato nematic liquid crystalline compounds, 4'-butylcyclohexyl-3, 5-difluoro-4-isothiocyanatobiphenyl and 4'-pentylcyclohexyl-3, 5-difluoro-4-isothiocynatobiphenyl are studied in detail to obtain their different physical parameters. Optical polarizing microscopy, differential scanning calorimetry, density and dielectric studies have been carried out for the two samples. Both the samples were found to have high clearing temperature (>100 °C) and exhibit small enthalpy of transition. The two samples exhibit high optical birefringence (Δ n > 0.2). The values of order parameters for the two samples were obtained using different approaches, namely, Vuks', Neugebauer's, modified Vuks' and direct extrapolation method from birefringence data. Experimentally obtained values of order parameters have also been compared with theoretical Maier-Saupe values. The parallel and perpendicular components of dielectric permittivity values of the two compounds were also calculated and their anisotropy values were found to be small. The effect of temperature on the molecular dipole moment μ and the angle of inclination β of the dipole axis with the director have also been investigated in this work.

  4. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale

    NASA Astrophysics Data System (ADS)

    Nakamiya, Yoshihide; Homma, Kensuke

    2017-09-01

    Probing vacuum structures deformed by high intense fields is of great interest in general. In the context of quantum electrodynamics (QED), the vacuum exposed by a linearly polarized high-intensity laser field is expected to show birefringence. We consider the combination of a 10 PW laser system to pump the vacuum and 1 GeV photons to probe the birefringent effect. The vacuum birefringence can be measured via the polarization flip of the probe γ -rays which can also be interpreted as phase retardation of probe photons. We provide theoretically how to extract phase retardation of GeV probe photons via pairwise topology of the Bethe-Heitler process in a polarimeter and then evaluate the measurability of the vacuum birefringence via phase retardation given a concrete polarimeter design with a realistic set of laser parameters and achievable pulse statistics.

  5. Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers

    NASA Astrophysics Data System (ADS)

    Millot, G.; Dinda, P. Tchofo; Seve, E.; Wabnitz, S.

    2001-07-01

    The nonlinear interaction of two laser beams in normally dispersive highly birefringent optical fibers leads to a large set of fascinating physical effects such as modulational instability (MI) and stimulated Raman scattering (SRS). These two nonlinear phenomena have a positive role as a mechanism for the generation of short optical pulses and represent a drawback in fiber-optics transmissions. Indeed, we will show that an induced process of modulational instability may be exploited for the generation of THz train of vector dark solitons. The technique of frequency-resolved optical gating is used to completely characterize the intensity and phase of the dark soliton trains. On the other hand, we shall discuss control processes for MI and SRS in birefringent optical fibers. In particular, we analyze experiments showing that with dual-frequency, orthogonal polarization pumping one may achieve the simultaneous suppression of modulational instability and substantial reduction of stimulated Raman scattering.

  6. Designing of highly birefringence, dispersion shifted decagonal photonic crystal fiber with low confinement loss

    NASA Astrophysics Data System (ADS)

    De, Moutusi; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2017-09-01

    In this article we propose a decagonal photonic crystal fiber (D-PCF) consisting unique cladding without structural complexity having very high birefringent of the order of 10-2, less effective area of few square microns as well as low confinement loss of the order of 10-2 dB/m at 1.55 μm wavelength. The zero dispersion wavelength is also achieved in the near infrared region. This study clearly attributes to the fact that the zero dispersion wavelength at the near infrared region, very high birefringence and low confinement loss can be adjusted according to the necessity by changing the structural parameters with considerable fabrication tolerance. This fiber can prove itself useful in laser technology, telecommunication, non-linear application, sensor technology and also in making polarization maintaining devices.

  7. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  8. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes.

    PubMed

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-04

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6-20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  9. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    PubMed Central

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  10. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6-20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  11. Flow Birefringence in Polymer Melt Rheology.

    NASA Astrophysics Data System (ADS)

    Subramanian, Ramesh Mani

    Optical techniques that are sensitive to structural changes induced by a flow field applied to polymers during processing have been used to study the fundamental relationships between applied deformation, mechanical stresses, and flow -induced molecular orientation. But most of the work done so far has used opto-mechanical techniques (i.e. mechanical measurement of stress and deformation, and optical measurement of flow-induced molecular orientation). This thesis reports the development and application of non-intrusive, opto-electronic techniques for rheo-optical studies on a 300 Pa.s polydimethylsiloxane (PDMS) melt flowing through a 5.00 cm wide converging wedge cell at room temperature. The two techniques used as tools of rheological characterization in the present study are laser doppler anemometry (LDA) to compute strain rate from local velocity measurements, and flow birefringence (double refraction) for measurement of the anisotropic refractive index tensor which, for flexible polymer solutions and melts, provides information the state of stress in the material via the stress-optical law. Birefringence measurements in extensional flow up to a pressure drop of 689 kPa across the converging wedge cell indicated that stress tensor and polarizability or anisotropic refractive index tensor were linearly related for the polymer over a range of strain rate that extended well into the non-Newtonian region. Along the cell centerline, the extensional flow behaviour of the polymer was studied via birefringence measurements in the linear stress-optical region, and it was found to be extension-thinning in nature. Assuming no boundary layer error, the optical techniques used in the present study provide a valuable test for constitutive relations between stress and deformation in the polymer by comparing predicted orientation angles with experimental measurements in combined shear and extension flows. The two constitutive equations tested were the Power-law model and the

  12. Birefringent light propagation on anisotropic cosmological backgrounds

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Hojman, Sergio A.

    2017-08-01

    Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)—while, for earlier times, it matches a Kasner Universe—is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the "horizon" problem.

  13. Development of birefringent filters for spaceflight

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Pope, T. P.; Ramsey, H. E.; Schoolman, S. A.

    1976-01-01

    The critical problem for flight of a birefringent filter is the shock mounting of the calcite. The design presented here bonds the calcite block with silicon rubbers to the calcite holder. The calcite together with its all necessary polarizers and rotating achromatic plates are mounted together in units called a filter module. By using a set of modules containing calcite crystals of differing lengths, a filter can be produced. A description of the modules is given. Also described is a container for the filter modules, which can be used both to hermetically seal the system or contain an index matching oil. The response of a filter element while being controlled by the Lockheed Temperature Control is described and the determination of the wavelength sensitivity to temperature of calcite is explained. Operation of the filter using a software control algorithm instead of a hardware temperature controller is shown. Some radiation considerations of filter systems are given.

  14. Detection of birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Mirhej, Andrew; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.

  15. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    SciTech Connect

    Brakhane, Stefan Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  16. Linear birefringence of polymer foils determined by optical means

    NASA Astrophysics Data System (ADS)

    Scripa (Tudose), Adina Elena; Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2017-07-01

    An interferential method is used for determining the linear birefringence of the thin polymer foils. The channeled spectra of anisotropic polyethylene terephthalate (PET) transparent films, placed between two identical crossed polarizers were recorded and the linear birefringence was estimated by using the conditions of the minima and maxima of flux density in the channeled spectrum. This method is very fast, allowing the estimation of the linear birefringence over the entire visible range from a single recording of the channeled spectrum. The obtained results are consistent with those previously reported in the literature.

  17. Photonic quasi-crystal fiber with high birefringence

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Xiao, Wei; Cai, Weicheng; Liu, Exian; Feng, Bo; Wang, Ziming; Liang, Taiyuan; Wang, Shuo; Liu, Jianjun

    2016-03-01

    A high-birefringence photonic quasi-crystal fiber (HB-PQF) based on SiO2 is proposed. The relationships between birefringence and structure parameters and between beat length and structure parameters are researched by finite difference beam propagation method. With the optimization of fiber structure parameters, the birefringence is 1.4207×10-2, which is two orders of magnitude higher than the normally used fiber when the wavelength is 1.55 μm. The radius of the fiber is 6.5 μm. The HB-PQF in a communication sensor will have important application prospects.

  18. Note: Ultra-low birefringence dodecagonal vacuum glass cell.

    PubMed

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  19. Infrared birefringence spectra for cadmium sulfide and cadmium selenide.

    PubMed

    Chenault, D B; Chipman, R A

    1993-08-01

    Measurements of the birefringence spectra for cadmium sulfide and cadmium selenide from 2.5 to 16.5µm obtained with a rotating sample spectropolarimeter are presented. Because of the similarity in the birefringence spectra for cadmium sulfide and cadmium selenide, a highly achromatic IR retarder can be constructed from a combination of these materials. The ordinary and extraordinary refractive indices for cadmium sulfide are estimated in the region from 10.6 to 15 µm and for cadmium selenide from 10.6 to 16.5 µm by combining these birefringence data with an extrapolation of previous dispersion relations.

  20. Structural origin of magnetic birefringence in rutile-type antiferromagnets

    NASA Astrophysics Data System (ADS)

    Jauch, W.

    1991-10-01

    The microscopic origin of magnetic birefringence in the rutile-type antiferromagnets XF2 (X=Mn, Fe, Co, or Ni) is analyzed on the basis of the theory of structural birefringence developed by Ewald and Born. The general principles of the Ewald-Born theory are reviewed. The magnetic birefringence can be explained by a small exchange-induced internal displacement of the fluorine atoms. Predictions from theory are compared with accurate crystal-structure analyses based on γ-ray-diffraction data. The agreement found between theory and experiment is excellent.

  1. Rotational analysis of birefringent crystal particles based on modified theory in optical tweezers

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Zhu, Yanying; Yao, Wenying; Pei, Huan

    2015-04-01

    In order to achieve high-precision, controllable rotation of uniaxial birefringent crystal particles, we study the principle of optical rotation due to the transfer of spin angular momentum from light to birefringent crystal particles. The interaction process between the beam and particles is affected by various factors existed actually, for instance: the reflection of beam on the crystal surface, laser power, the set of angle between the crystal optical axis and surface, radius, phase difference between the ordinary ray and extraordinary ray. According to the analysis of these factors, the theoretical model of optical rotation is reconstructed. The theoretical curves of calcium carbonate and silicon particles chosen as experimental material between the rotational frequency and the radius are simulated and calculated. The result shows that the rotation frequency is inversely proportional to the cube of radius, and compared the performance of modified model with traditional model. The birefringent particles are rotated by optical tweezers in the experiment, and rotation frequency is measured with the same laser power. According to the experimental results of optical rotation, the modified Friese theoretical model is proved to be the reasonably and excellence, in addition, the result shows the maximum frequency of calcium carbonate is 19.1Hz, and the maximum frequency of silicon particles is 11.5Hz. The rationality of our experiment is testified by compared with theoretical analysis. Our study has great directive significance to the design of optical driven micro-mechanical motor and the material selection of rotor.

  2. Novel laser machining of optical fibers for long cavities with low birefringence.

    PubMed

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  3. Optical birefringence imaging of x-ray excited lithium tantalate

    NASA Astrophysics Data System (ADS)

    Durbin, S. M.; Landcastle, A.; DiChiara, A.; Wen, Haidan; Walko, D.; Adams, B.

    2017-08-01

    X-ray absorption in lithium tantalate induces large, long-lived (˜10-5 s) optical birefringence, visualized via scanning optical polarimetry. Similar birefringence measured from glass, sapphire, and quartz was two orders of magnitude weaker; much of this reduction can be accounted for by their smaller cross section for x-ray absorption. While x-ray induced charges can perturb local refractive indices and lead to birefringence, aligned dipoles in the non-centrosymmetric unit cell of ferroelectric LiTaO3 create electric fields that also induce birefringence via electro-optic coupling, which shows up as a dependence on crystal orientation. Time-resolved measurements from LiTaO3 show a prompt response on a picosecond time scale, which along with the long decay time suggest novel opportunities for optical detection of x-rays.

  4. Angular tuning of the magnetic birefringence in rippled cobalt films

    SciTech Connect

    Arranz, Miguel A.; Colino, José M.

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  5. Angular tuning of the magnetic birefringence in rippled cobalt films

    NASA Astrophysics Data System (ADS)

    Arranz, Miguel A.; Colino, José M.

    2015-06-01

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  6. Birefringence property of asymmetric structure photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Mingsheng; Yue, Yingjuan; Li, Yan

    2010-12-01

    The random offset of hole-position or random variation of hole-diameter always occur during the actual manufacture process of asymmetric structure photonic crystal fibers. Birefringence of asymmetric photonic crystal fibers with circular air holes and photonic crystal fibers with elliptical air holes are studied numerically based on the finite element method under the perturbation circumstance. The results indicate that when the intrinsic-birefringence of asymmetric photonic crystal fiber is smaller, the random offset of hole-position has larger influence than the variation of hole-diameter. Birefringence resulted from perturbation is less sensitive to asymmetric structures with large pitch or small air-hole. Moreover, the desired birefringence can be obtained by controlling the relative size of the two air holes or the ellipticity of the elliptical-hole.

  7. Highly birefringent photonic crystal fiber with hybrid cladding structure

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Zhou, Hua

    2010-12-01

    A novel highly birefringent photonic crystal fiber (PCF) with hybrid cladding is proposed. In this hybrid structural PCF, some air holes of the cladding are selectively filled with high refractive index material. The increased birefringence mainly results from that the symmetry is destroyed further in the designed PCF. The birefringence is theoretically investigated with variant structural parameters and refractive index of the filled material. The plane wave expansion method (PWE) and full-vector finite-element method (FEM) are respectively employed to investigate the optical properties of the proposed PCF. The numerical results show that the designed PCF can provide high birefringence and be well tuned by the structural parameters and refractive index of the filled material. It can be used as all-fiber polarization controllers and highly sensitive sensors.

  8. Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation

    NASA Astrophysics Data System (ADS)

    Liu, Tianyi; Exarhos, Annemarie L.; Alguire, Ethan C.; Gao, Feng; Salami-Ranjbaran, Elmira; Cheng, Kevin; Jia, Tiezheng; Subotnik, Joseph E.; Walsh, Patrick J.; Kikkawa, James M.; Fakhraai, Zahra

    2017-09-01

    Birefringence in stable glasses produced by physical vapor deposition often implies molecular alignment similar to liquid crystals. As such, it remains unclear whether these glasses share the same energy landscape as liquid-quenched glasses that have been aged for millions of years. Here, we produce stable glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene molecules that retain three-dimensional shapes and do not preferentially align in a specific direction. Using a combination of angle- and polarization-dependent photoluminescence and ellipsometry experiments, we show that these stable glasses possess a predominantly isotropic molecular orientation while being optically birefringent. The intrinsic birefringence strongly correlates with increased density, showing that molecular ordering is not required to produce stable glasses or optical birefringence, and provides important insights into the process of stable glass formation via surface-mediated equilibration. To our knowledge, such novel amorphous packing has never been reported in the past.

  9. On the existence of Jones birefringence and Jones dichroism.

    PubMed

    Arteaga, Oriol

    2010-05-01

    We claim that the so-called Jones birefringence and Jones dichroism effects, understood as new optical phenomena of difficult experimental observation, cannot be deduced from Jones publications and were proposed due to a misinterpretation of his original work.

  10. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    NASA Astrophysics Data System (ADS)

    Gan, Ma; Mgan, Ya; Kushtal Skomorovsky, Gi, Vi; Domyshev, Gn; Sadokhin, Vp

    2006-10-01

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 ×1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated.

  11. Optical tracking of nerve activity using intrinsic changes in birefringence

    NASA Astrophysics Data System (ADS)

    Badreddine, Ali H.

    Changes in birefringence (or dynamic birefringence) provide an arguably cleaner method of measuring IOS as compared to scattering methods. Other imaging methods have substantial limitations. Nerves inherently exhibit a static (rest condition) birefringence that is associated with the structural anisotropies of axonal protein filaments, membrane phospholipids and proteins, as well as surrounding tissues, which include Schwann cells and axon sheaths. The dynamic birefringence, or "crossed-polarized signal" (XPS), in neurons arises from activity in axons and occurs with a rapid momentary change, typically a decrease, in the birefringence when action potentials (APs) propagate along them. We improved the signal-to-noise to make detecting this signal an easier task, and present the XPS as a viable candidate for detecting AP activity in anisotropic nervous tissue. Our data collectively serves as a strong indication that there is a capacitive-charging-like effect directly inducing a gradual recovery (long tail) of the XPS to baseline, and also causing a smoothing of the XPS trace. A setup was constructed that successfully demonstrated the feasibility of tracking propagating compound APs in a peripheral nerve using the XPS. We made significant progress in the attempt to investigate birefringence of myelination. For the first time, the XPS in a myelinated tissue was detected, and it appears to be bipolar in nature. Further work in investigating the nature of this signal is needed, and is currently underway. Since changes in birefringence in neurons are associated instantaneously with electrophysiological phenomena, they are well-suited for fast imaging of propagating action potentials in neuronal tissue. In summary, imaging based on polarization sensing of changes in birefringence offers promise for an improved noninvasive method of detecting and tracking AP activity in myelinated and unmyelinated nerves and could be designed for pre-clinical and surgical applications.

  12. Cosmological birefringence constraints from CMB and astrophysical polarization data

    SciTech Connect

    Galaverni, M.; Gubitosi, G.; Paci, F.; Finelli, F. E-mail: giulia.gubitosi@imperial.ac.uk E-mail: finelli@iasfbo.inaf.it

    2015-08-01

    Cosmological birefringence is a rotation of the polarization plane of photons coming from sources of astrophysical and cosmological origin. The rotation can also depend on the energy of the photons and not only on the distance of the source and on the cosmological evolution of the underlying theoretical model. In this work, we constrain few selected models for cosmological birefringence, combining CMB and astrophysical data at radio, optical, X and γ wavelengths, taking into account the specific energy and distance dependences.

  13. Vacuum birefringence in high-energy laser-electron collisions

    NASA Astrophysics Data System (ADS)

    King, B.; Elkina, N.

    2016-12-01

    Real photon-photon scattering is a long-predicted phenomenon that is being searched for in experiment in the form of a birefringent vacuum at optical and x-ray frequencies. We present results of calculations and numerical simulations for a scenario to measure this effect using multi-MeV photons generated in the collision of electrons with a laser pulse. We find that the birefringence of the vacuum should be measurable using experimental parameters attainable in the near future.

  14. Singular optical manipulation of birefringent elastic media using nonsingular beams.

    PubMed

    Brasselet, Etienne

    2009-10-15

    It is shown that nonsingular light beams can generate singular birefringent patterns in homogeneous birefringent elastic media. These orientational defects of the optical-axis spatial distribution originate from an optical torque driven by a nonzero longitudinal field component. Singular radial and spin-dependent azimuthal light-induced elastic distortion patterns are described and experimentally observed in a uniform liquid-crystal film in the course of a focused circularly polarized Gaussian beam.

  15. Birefringence phantoms for polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Villiger, Martin; Beaudette, Kathy; Liu, Linbo; Bouma, Brett E.

    2017-02-01

    Polarization sensitive optical coherence tomography (PS-OCT) is increasingly used in a range of applications, both in bench-top and catheter-based imaging configurations. Reconstruction of tissue birefringence is subject to many system and processing-dependent artifacts. However, methods for the calibration and validation of PS-OCT are missing. Here, we report on a method to fabricate tissue-like imaging phantoms exhibiting clearly defined regions with controllable amounts of birefringence. We employed the photoelastic effect to enable the generation of controllable amounts of stress-induced birefringence in rubber samples, verified with polarized light microscopy. Pigmented ink was added to liquid latex solution to mold and cure rubber bands with controlled backscattering and transparency. Differently stretched segments were embedded in a stress-free background matrix to generate clearly defined areas with high birefringence contrast in an area of homogenous backscatter intensity. Arranged in planar geometry or on the outside of a glass capillary, the stretched rubber bands defined phantoms for bench-top and catheter-based imaging, respectively. Segmentation of the defined regions of interest in the reconstructed volumetric birefringence tomograms enabled assessing measurement consistency, between repeated imaging with a single system, or between independent imaging systems. Consistent and durable imaging phantoms are crucial for advancing PS-OCT imaging technology. Our tissue-like imaging phantoms exhibit clearly defined regions with controlled amounts of birefringence and facilitate testing, calibration, and validation of imaging systems and reconstruction strategies.

  16. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  17. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies.

    PubMed

    Strikwerda, Andrew C; Fan, Kebin; Tao, Hu; Pilon, Daniel V; Zhang, Xin; Averitt, Richard D

    2009-01-05

    We have fabricated a quarter-wave plate from a single layer of birefringent electric split-ring resonators (ELC). For comparison, an appropriately scaled double layer meanderline structure was fabricated. At the design frequency of 639 GHz, the ELC structure achieves 99.9% circular polarization while the meanderline achieves 99.6%. The me-anderline displays a larger bandwidth of operation, attaining over 99% circular polarization from 615 - 743 GHz, while the ELC achieves 99% from 626 - 660 GHz. However, both are broad enough for use with CW sources making ELCs a more attractive choice due to the ease of fabrication. Both samples are free standing with a total thickness of 70 microm for the meanderline structure and a mere 20 microm for the ELC highlighting the large degree of birefringence exhibited with metamaterial structures.

  18. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

  19. Quantifying strain birefringence halos around inclusions in diamond

    NASA Astrophysics Data System (ADS)

    Howell, D.; Wood, I. G.; Dobson, D. P.; Jones, A. P.; Nasdala, L.; Harris, J. W.

    2010-11-01

    The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, Updelta n(R_{text{i}} )_{text{av}} , to the peak value of birefringence that has been encountered; to first order Updelta n_{text{pk}} = (3/4)(L/R_{text{i}} ) Updelta n(R_{text{i}} )_{text{av}} . From this birefringence, the remnant pressure ( P i) can be calculated using the photoelastic relationship Updelta n_{text{pk}} = - (3/4)n3 q_{text{iso}} P_{text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied

  20. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.

    PubMed

    Irsch, Kristina; Gramatikov, Boris I; Wu, Yi-Kai; Guyton, David L

    2014-04-07

    We present an improved method for remote eye-fixation detection, using a polarization-modulated approach to retinal birefringence scanning (RBS), without the need for individual calibration or separate background measurements and essentially independent of corneal birefringence. Polarization-modulated RBS detects polarization changes generated in modulated polarized light passing through a unique pattern of nerve fibers identifying and defining the retinal region where fixation occurs (the fovea). A proof-of-concept demonstration in human eyes suggests that polarization-modulated RBS has the potential to reliably detect true foveal fixation on a specified point with an accuracy of at least ± 0.75°, and that it can be applied to the general population, including individuals with sub-optimal eyes and young children, where early diagnosis of visual problems can be critical. As could be employed in an eye-controlled display or in other devices, polarization-modulated RBS also enables and paves the way for new and reliable eye-fixation-evoked human-machine interfaces.

  1. Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating.

    PubMed

    Li, An; Hu, Qian; Chen, Xi; Kim, Byoung Yoon; Shieh, William

    2014-06-01

    We propose and demonstrate generation of Brillouin dynamic grating (BDG) in a few-mode fiber (FMF) with a Gaussian pulse pump and a counterpropagating continuous wave pump in LP01 mode. Brillouin optical time-domain analysis (BOTDA) is achieved by launching a third Gaussian pulse probe in LP11 mode. With coherent detection and time-domain analysis on the backreflected probe signal, the modal birefringence of the FMF is characterized via the distributed BDG with high spatial resolution and high accuracy.

  2. Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line.

    PubMed

    Borrego-Varillas, Rocio; Oriana, Aurelio; Ganzer, Lucia; Trifonov, Anton; Buchvarov, Ivan; Manzoni, Cristian; Cerullo, Giulio

    2016-12-12

    We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.

  3. Direct UV written planar Bragg gratings that feature zero fluence induced birefringence

    NASA Astrophysics Data System (ADS)

    Holmes, Christopher; Cooper, Peter A.; Fernando, Harendra N. J.; Stroll, Andreas; Gates, James C.; Krishnan, Chirenjeevi; Haynes, Roger; Mennea, Paolo L.; Carpenter, Lewis G.; Gawith, Corin B. E.; Roth, Martin M.; Charlton, Martin D.; Smith, Peter G. R.

    2015-12-01

    Direct UV writing is a planar fabrication process capable of simultaneously defining waveguides and Bragg gratings. The technique is fully computer controlled and uniquely uses a small focused spot ~7 μm in diameter for direct writing exposure. This work investigates its use to achieve phase trimming and Bragg grating definition in silica-on-silicon lithographic waveguides. It is observed that birefringence control using direct UV writing can be made independent of exposure fluence with this technique through tailoring substrate stress. The result is demonstrated experimentally and supported theoretically using finite element analysis.

  4. Birefringence and Enhanced Stability in Stable Organic Glasses

    NASA Astrophysics Data System (ADS)

    Liu, Tianyi; Exarhos, Annemarie; Cheng, Kevin; Jia, Tiezheng; Walsh, Patrick; Kikkawa, Jay; Fakhraai, Zahra

    Stable glasses can be prepared by physical vapor depositing organic molecules onto a cold substrate at slow rates. These glasses have many exceptional properties such as high thermal stability, high density, and birefringence. Regardless of the molecular shape or intermolecular interactions, birefringence has been observed in various stable glasses produced at low temperatures (below 80% of the molecule's glass transition temperature, Tg) . Here we prepare stable glasses of an organic molecule, 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene, that possesses a nearly isotropic shape and intrinsic fluorescence. Ellipsometry is used to show that all stable glasses prepared in the temperature range from 73% Tg to 97% Tgshow positive birefringence. Angle- and polarization- dependent photoluminescence measurements show isotropic molecular orientation in these optically birefringent glasses. Furthermore, the values of birefringence are strongly correlated with the enhanced density, implying a general origin of the observed anisotropy in stable glasses. This correlation can elucidate the role of packing in the formation of such high-density glasses. The authors would like to acknowledge Ethan Alguire and Joe Subotnik for simulation. Z.F. acknowledges funding from NSF CAREER (DMR-1350044). P.J.W. acknowledges funding from NSF (CHE-1152488). J.M.K acknowledges funding from NSF (DMR-1206270).

  5. Dynamics of creation photoinduced birefringence on (PAH/PAZO)n layer-by-layer films: Analysis of consecutive cycles

    NASA Astrophysics Data System (ADS)

    Timóteo, Ana Rita Monteiro; Ribeiro, Jorge H. F.; Ribeiro, Paulo A.; Raposo, Maria

    2016-01-01

    Reproducibility and reliability of data is an important subject in the development of organic devices for photonics applications. This work reports the analysis of successive photoinduced birefringence creation curves in layer-by-layer films of poly(allylamine hydrochloride) (PAH) and poly{1-(4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido)-1,2-ethanediyl, sodium salt} (PAZO) with different number of bilayers. The birefringence creation or writing curves are described by two processes: a faster one referring the contribution of trans-cis-trans photoisomerization cycles to the birefringence; and a slower one associated to the contribution of motion of the polymer chain to the birefringence. As the number of write-erase cycles increases, the characteristic times of these processes decreases, respectively, to values of 18 and 212 s independently of the number of bilayers of films while for the magnitudes the fast process prevailed relatively to the slow, by 70% against 30%. The observed behavior is explained by the thermal treatment given by the laser beam in the irradiated area with increase of free volume which contributes for the chromophore mobility. This conclusion was achieved by measuring the surface temperature during and after irradiation and analyzing by optical microscopy the film surface where an increase of holes and aggregation as a result of irradiation was observed. Infrared spectra of films after and before irradiation showed changes in the Cdbnd C absorbance indicating aggregation of azobenzene groups while changes in the protonated and deprotonated carboxylic acid groups are consistent with ionization degree diminishing which is explained by the removal of water molecules by heating caused by laser. The results presented in this paper indicates that an increase in the number of write-erase cycles contributes to reliable and reproducible birefringence characteristics of PAH/PAZO films - a good new from point of view of possible applications.

  6. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    NASA Astrophysics Data System (ADS)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  7. THE BIREFRINGENCE OF THE HUMAN RED CELL GHOSTS

    PubMed Central

    Ponder, Eric; Barreto, Delia

    1956-01-01

    The type of birefringence described by Mitchison, which extends some 0.5 µ in from the surface of the human red cell ghost in glycerol and which shows a maximum retardation of about 7 A, is only found in ghosts which are sufficiently well hemoglobinised to be seen with the ordinary microscope. Ghosts from which all hemoglobin has been lost are not visible with the ordinary microscope and are not birefringent, although they are clearly visible with phase contrast. About 90 per cent of the ghosts in glycerol preparations are of the latter type, the exact percentage being a function of time. Mitchison's measurements of birefringence, although reproducible, accordingly apply only to ghosts in which some hemoglobin still remains complexed with the lipoprotein layers of the red cell ultrastructure, and do not enable one to draw conclusions as to the thickness and orientation of the lipoprotein surface layers. PMID:13286451

  8. New compensation method for bulk optical sensors with multiple birefringences.

    PubMed

    Lee, K S

    1989-06-01

    The dielectric tensor of an anisotropic crystal with multiple perturbations is presented to include the effects of multiple perturbations. To study electromagnetic wave propagation in anisotropic crystals subject to various influences the perturbed dielectric tensor is substituted into Maxwell's equation. Then, a 2 x 2 transmission matrix formalism, based on a normal-mode approach, is extended to anisotropic crystals possessing multiple birefringences to develop compensation schemes for ac optical sensors employing the crystal. It is shown that a new compensation method utilizing two analyzers can eliminate the effects of both unwanted linear birefringences and unwanted circular birefringences on the stability of the ac bulk polarimetric optical sensor. The conditions (here referred to as the quenching condition) in which the compensation method becomes important are also derived for both the voltage (or electric field) and current (or magnetic field) sensors.

  9. Terahertz generation by optical rectification in uniaxial birefringent crystals

    NASA Astrophysics Data System (ADS)

    Rowley, J. D.; Wahlstrand, J. K.; Zawilski, K. T.; Schunemann, P. G.; Giles, N. C.; Bristow, A. D.

    2012-07-01

    The angular dependence of terahertz (THz) emission from birefringent crystals can differ significantly from that of cubic crystals. Here we consider optical rectification in uniaxial birefringent materials, such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP_2 and compared to (zincblende) GaP. Although the crystals share the same nonzero second-order tensor elements, the birefringence in chalcopyrite crystals cause the pump pulse polarization to evolve as it propagates through the crystal, resulting in a drastically different angular dependence in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut chalcopyrite crystals and predicts more efficient conversion for the {114} crystal cut over the {012}- and {110}-cuts.

  10. Dispersion of temperature coefficients of birefringence in some chalcopyrite crystals

    NASA Astrophysics Data System (ADS)

    Ghosh, G.

    1984-04-01

    The temperature coefficients of birefringence of three chalcopyrite crystals used in high-power laser optics have been fitted and interpolated. For ZnSiAs2, ZnSiP2, and CdSiP2, the change of birefringence with temperature is plotted against wavelength, and the predicted thermooptic coefficients of ZnSiAs2 are shown. Band gaps corresponding to the energy peaks E(2), E(3), and E(4) of ZnSiAs2, E(2) and E(3) of ZnSiP2, and E(1), E(2), and E(3) of CdSiP2 are the major contributors to the dispersion of the variation of birefringence with temperature.

  11. Laser induced optically and thermally reversible birefringence in azopolymers

    NASA Astrophysics Data System (ADS)

    Nazarova, D.; Nedelchev, L.; Ivanov, D.; Blagoeva, B.; Berberova, N.; Stoykova, E.; Mateev, G.; Kostadinova, D.

    2016-01-01

    Azopolymers are well known organic materials for polarization holographic recording due to the induced anisotropy under illumination with polarized light. They possess all the desirable characteristics of the known polarization-sensitive materials, as high sensitivity and reversibility, but excel them substantially in the magnitude of the photoinduced birefringence. This makes possible to record reversible polarization gratings with high diffraction efficiency. In this paper results of experimental investigations on the reversibility properties of birefringence photoinduced in azopolymers are reported, depending on the conditions of subsequent optical and thermal treatment. Thin films of different polymers were prepared in order to examine the kinetics of multiple recording and erasure of birefringence in different types of azopolymers. The reversibility of the polarization recording has been studied using two different method of erasure - by increased temperature and on illumination with circularly polarized light.

  12. Electric birefringence anomaly of solutions of ionically charged anisometric particles.

    PubMed

    Hoffmann, H; Gräbner, Dieter

    2015-02-01

    The term "electric birefringence anomaly" is known as the electric birefringence (EB) signal that occurs in solutions of ionically charged anisometric particles in a narrow concentration region. The signal is of opposite sign to the normal birefringence that occurs below and above this narrow concentration region. The normal electric birefringence signals in the dilute and more concentrated regions are due to the orientation of the particles in the direction of the applied electric field. The origin for the anomalous signal was not completely understood until now. The article summarises previous results in which the anomalous results had been observed but not well understood. It shows that the birefringence anomaly occurs in systems as diverse as micellar solutions, polyelectrolytes, solutions of clays, viruses and fibres. In all these systems the anomaly signals are present at the concentration when the length of the colloidal particles including the thickness of the electric double layer are about the same as the mean distance between the colloidal particles. Under these conditions the electric double layers of the particles overlap along the main axis of the particles but not in the direction across the particles. As a consequence of this situation a dipole is built up across the particles by the migration of the counter-ions of the particles in the electric field and this dipole leads to an orientation of the particles perpendicular to the electric field. The anomalous signal can usually be observed simultaneously with the normal signal. The amplitude of the anomalous signal can be larger than the amplitude of the normal signal. As a consequence the total birefringence changes its sign in the anomalous concentration region. The anomaly signal of the clays can also be explained by a fluctuating dipole around the particles, which is due to the fact that the centre of the ionic charges of the particles does not fall on the centre of the ionic charge of the counter

  13. A melting point for the birefringent component of muscle.

    PubMed

    Aronson, J F

    1966-09-01

    The A filament of the striated muscle sarcomere is an ordered aggregate of one or a few species of proteins. Ordering of these filaments into a parallel array is the basis of birefringence in the A region, and loss of birefringence is therefore a measure of decreased order. Heating caused a large decrease in the birefringence of glycerinated rabbit psoas muscle fibers over a narrow temperature range ( approximately 3 degrees C) and a large decrease in both the birefringence and optical density of the A region of Drosophila melanogaster fibrils. These changes were interpreted as a loss of A filament structure and were used to define a transition temperature (T(tr)) as a measure of the stability of the A region. Since the transition temperature was sensitive to pH, ionic strength, and urea, solvent conditions which often affect protein structure, it is an experimentally useful indicator for factors affecting the structure of the A filament. Fibers from glycerinated frog muscle were less stable over a wide pH range than fibers from glycerinated rabbit muscle, a fact which demonstrates a species difference in structure. Glycerinated rabbit fibrils heated to 70 degrees C shortened to about 40% of their initial length. The extent of shortening was not correlated with the loss of birefringence, and phase-contrast microscopy showed that this shortening occurred in the I region as well as in the A region. This response may be useful for studying the I filament and actin in much the same way that the decrease in birefringence was used for studying the A filament and myosin. The observations presented show that some properties of muscle proteins can be studied essentially in situ without the necessity of first dispersing the structure in solutions of high or low ionic strength.

  14. Birefringence compensated AWG demultiplexer with angled star couplers.

    PubMed

    Lang, Tingting; He, Jian-Jun; Kuang, Jing-Guo; He, Sailing

    2007-11-12

    A new approach to birefringence compensation in arrayed waveguide gratings (AWG) is proposed. The star couplers are designed according to Rowland circle construction with an oblique incident/diffraction angle, similar to the case of an echelle grating. Such an AWG design is more general and flexible, and the conventional AWG becomes its special case when the grating angle is zero. By appropriately designing the star coupler shape, the birefringence of the arrayed waveguides can be compensated by that of the slab waveguides. The details of the design method and simulation results are presented.

  15. Recent Advances in High-Birefringence Fiber Loop Mirror Sensors

    PubMed Central

    Frazão, Orlando; Baptista, José M.; Santos, José L.

    2007-01-01

    Recent advances in devices and applications of high-birefringence fiber loop mirror sensors are addressed. In optical sensing, these devices may be used as strain and temperature sensors, in a separate or in a simultaneous measurement. Other described applications include: refractive index measurement, optical filters for interrogate gratings structures and chemical etching control. The paper analyses and compares different types of high-birefringence fiber loop mirror sensors using conventional and microstructured optical fibers. Some configurations are presented for simultaneous measurement of physical parameters when combined with others optical devices, for example with a long period grating. PMID:28903273

  16. Recent Advances in High-Birefringence Fiber Loop Mirror Sensors.

    PubMed

    Frazão, Orlando; Baptista, José M T; Santos, José L

    2007-11-26

    Recent advances in devices and applications of high-birefringence fiber loopmirror sensors are addressed. In optical sensing, these devices may be used as strain andtemperature sensors, in a separate or in a simultaneous measurement. Other describedapplications include: refractive index measurement, optical filters for interrogate gratingsstructures and chemical etching control. The paper analyses and compares different types ofhigh-birefringence fiber loop mirror sensors using conventional and microstructured opticalfibers. Some configurations are presented for simultaneous measurement of physicalparameters when combined with others optical devices, for example with a long periodgrating.

  17. Flow birefringence in lyotropic mixtures in the isotropic phase

    SciTech Connect

    Fernandes, P.R.G.; Figueiredo Neto, A.M. )

    1995-01-01

    The flow-induced birefringence ([delta][ital n]) in lyotropic mixtures in the isotropic phase (ISO) was measured by means of optical techniques. As a function of temperature, the ISO is surrounded by two lamellar (LAM) phases. The shear flow produced by a perturbation in ISO induces a birefringent phase, which relaxes back to ISO with a typical relaxation time [tau]. [tau] increases near the transition to the more ordered LAM phases, and the behavior of [tau] versus temperature indicates the existence of a virtual nematic phase in the isotropic domain.

  18. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  19. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  20. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  1. Rashba Spin Orbit Interaction and Birefringent Electron Optics in Graphene

    NASA Astrophysics Data System (ADS)

    Asmar, Mahmoud; Ulloa, Sergio

    2013-03-01

    Analogies between geometrical optics and electron trajectories have resulted in a number of interesting proposals for device applications, where material interfaces play a similar role to that of transparent interfaces in physical optics. Optical birefringence in materials arising from crystal anisotropies are manifested as different group velocities for different polarizations of light. By making use of analytical solutions of the Dirac equation, and extending the partial wave component method of scattering to include spin dependent observables, we show that an equivalent phenomenon to optical birefringence in electron optics is feasible in two dimensional graphene. The electronic birefringence arises from the intrinsic graphene structure and requires the presence of Rashba spin-orbit interaction. The different group velocities depend on the chirality of the electronic states, mimicking the light polarization dependence of the group velocities in optical birefringent materials. In circular regions containing large Rashba interaction and reversed charge density (Veselago lenses), we predict the formation of sets of double caustics and cusps, where the spacing between the two different chiral cusps is proportional to the strength of the Rashba interaction in the system. Supported by NSF MWN/CIAM and NSF PIRE.

  2. Zero-birefringent polyimide for polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ho; Kang, Jae-Wook; Li, Xiangdan; Lee, Myong-Hoon; Kim, Jang-Joo

    2003-07-01

    A novel zero birefringent and photosensitive polyimide was synthesized. The polymer is soluble in solvents and contains a chalcone group for photo-crosslinking by UV exposure. The glass transition and decomposition temperature of the polymer were 254°C and 430°C before cross-linking. Evolution of the absorption spectra upon UV exposure indicated that the cross-linking reaction is related to the cycloaddition of the double bonds in the chalcone group to form cyclobutane. The photo-crosslinking reaction not only increased the thermal stability, but also induced a refractive index change of the films. The refractive index of the film was reduced upon UV exposure from 1.5862 to 1.5697 for TE mode and from 1.5807 to 1.5697 for TM mode, respectively, resulting in zero birefringence after curing. Loss of p-conjugation in the chalcone group by the crosslinking reaction is supposed to induce the reduction of the refractive indices and orbital change from sp2 to sp3 makes the polymer chain be kinked, resulting in decrease of birefringence. The polymer film showed optical loss of 0.41 dB/cm at 1.3 mm and 0.54 dB/cm at 1.55 mm. Zero birefringence and low optical loss combined with photo-processibility of the material are making it an excellent candidate for the high performance waveguide materials.

  3. Birefringence Determination of Magnetic Moments of Magnetotactic Bacteria

    PubMed Central

    Rosenblatt, Charles; de Araujo, F. Flavio Torres; Frankel, Richard B.

    1982-01-01

    A birefringence technique is used to determine the average magnetic moments <μ> of magnetotactic bacteria in culture. Differences in <μ> are noted between live and dead bacteria, as well as between normal density and high density samples of live bacteria. ImagesFIGURE 1 PMID:6814546

  4. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  5. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  6. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  7. Dispersion characterization of group birefringence in polarization-maintaining fiber using a Kerr phase-interrogator

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Baker, Chams; Bao, Xiaoyi

    2015-07-01

    We present a new approach to characterize dispersion of group birefringence in a long polarization-maintaining fiber (PMF). Two sinusoidal optical signals are respectively launched into fast and slow axes of a PMF under test. Wavelength dependent group-delay difference between two sinusoidal optical signals induced by group birefringence in the PMF is measured using a Kerr phase-interrogator, and dispersion of group birefringence is characterized from the group-delay difference. Measurements of wavelength dependent group birefringence and group birefringence dispersion for a 459.4-m Panda PMF are experimentally demonstrated.

  8. Positive and negative contribution to birefringence in a family of carbonates: A Born effective charges analysis

    NASA Astrophysics Data System (ADS)

    Jing, Qun; Yang, Guang; Hou, Juan; Sun, Maozhu; Cao, Haibin

    2016-12-01

    It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO3 groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO3 groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cd atoms give very small contribution to birefringence.

  9. Most calcium pyrophosphate crystals appear as non-birefringent

    PubMed Central

    Ivorra, J.; Rosas, J.; Pascual, E.

    1999-01-01

    OBJECTIVE—To determine the proportion of calcium pyrophosphate dihydrate (CPPD) crystals that appear as non-birefringent when observed under the polarised light microscope.
METHODS—Two observers examined independently 10 synovial fluid samples obtained during an episode of arthritis attributable to CPPD crystals. Ten synovial fluid samples from patients with acute gout were used as a reference. The examination was performed after placing a fluid sample in a Niebauer haemocytometric chamber; a crystal count was done first under ordinary light, then in the area corresponding to a 0.1 ml, under polarised light
RESULTS—The percentages of birefringence appreciated for CPPD were 18% (confidence intervals (CI) 12, 24) for observer 1, and 17% (CI 10, 24) for observer 2 (difference NS). The percentages of birefringence for monosodium urate were 127% (CI 103, 151) for observer 1 and 107% (CI 100, 114) for observer 2 (difference NS). Percentages above 100% indicate that crystals missed under ordinary light became apparent under polarised light.
CONCLUSION—Only about one fifth of all CPPD crystals identified by bright field microscopy show birefringence when the same synovial fluid sample is observed under polarised light. If a search for CPPD crystals is conducted under polarised light, the majority of the crystals will be missed. Ordinary light allows a better rate of CPPD crystal detection but observation under polarised light of crystals showing birefringence is required for definitive CPPD crystal identification.

 PMID:10460193

  10. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  11. An Elimination Method of Temperature-Induced Linear Birefringence in a Stray Current Sensor

    PubMed Central

    Xu, Shaoyi; Li, Wei; Xing, Fangfang; Wang, Yuqiao; Wang, Ruilin; Wang, Xianghui

    2017-01-01

    In this work, an elimination method of the temperature-induced linear birefringence (TILB) in a stray current sensor is proposed using the cylindrical spiral fiber (CSF), which produces a large amount of circular birefringence to eliminate the TILB based on geometric rotation effect. First, the differential equations that indicate the polarization evolution of the CSF element are derived, and the output error model is built based on the Jones matrix calculus. Then, an accurate search method is proposed to obtain the key parameters of the CSF, including the length of the cylindrical silica rod and the number of the curve spirals. The optimized results are 302 mm and 11, respectively. Moreover, an effective factor is proposed to analyze the elimination of the TILB, which should be greater than 7.42 to achieve the output error requirement that is not greater than 0.5%. Finally, temperature experiments are conducted to verify the feasibility of the elimination method. The results indicate that the output error caused by the TILB can be controlled less than 0.43% based on this elimination method within the range from −20 °C to 40 °C. PMID:28282953

  12. Annealing of linear birefringence in single-mode fiber coils - Application to optical fiber current sensors

    NASA Technical Reports Server (NTRS)

    Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.

    1991-01-01

    Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.

  13. Thulium-doped fiber laser using two FOLMs with a high birefringence fiber in the loop

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Bravo-Huerta, E.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.

    2017-02-01

    We report a linear cavity all-fiber Thulium-doped fiber (TDF) laser with tunable narrow linewidth operating near to 2 μm of wavelength. The TDF is pumped with a laser source at 1567 nm. The cavity is delimited by two fiber optical loop mirrors (FOLM) with high birefringence fiber in the loop (Hi-Bi FOLM) with different periodical wavelength-dependent reflection periods. The wavelength tuning range for the generated laser line of 44.3 nm depends on the Hi-Bi FOLM with long wavelength period of 54.4 nm. The generated laser spectral width, less than 0.05 nm, is determined by the Hi- Bi FOLM with narrow-band wavelength period of 1 nm. Discrete wavelength tuning is achieved by wavelength reflection displacement of the narrow-band Hi-Bi FOLM by temperature variation on the high birefringence fiber loop. The temperature changes are performed with a temperature electronic controller/meter with resolution of 0.06°C in a temperature range from 22.87 to 49.12°C. Dual-wavelength generation with a wavelengths separation of 47 nm is also obtained at the single wavelength tuning limits.

  14. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion.

    PubMed

    Pirnstill, Casey W; Malik, Bilal H; Gresham, Vincent C; Coté, Gerard L

    2012-09-01

    Over the past 35 years considerable research has been performed toward the investigation of noninvasive and minimally invasive glucose monitoring techniques. Optical polarimetry is one noninvasive technique that has shown promise as a means to ascertain blood glucose levels through measuring the glucose concentrations in the anterior chamber of the eye. However, one of the key limitations to the use of optical polarimetry as a means to noninvasively measure glucose levels is the presence of sample noise caused by motion-induced time-varying corneal birefringence. In this article our group presents, for the first time, results that show dual-wavelength polarimetry can be used to accurately detect glucose concentrations in the presence of motion-induced birefringence in vivo using New Zealand White rabbits. In total, nine animal studies (three New Zealand White rabbits across three separate days) were conducted. Using the dual-wavelength optical polarimetric approach, in vivo, an overall mean average relative difference of 4.49% (11.66 mg/dL) was achieved with 100% Zone A+B hits on a Clarke error grid, including 100% falling in Zone A. The results indicate that dual-wavelength polarimetry can effectively be used to significantly reduce the noise due to time-varying corneal birefringence in vivo, allowing the accurate measurement of glucose concentration in the aqueous humor of the eye and correlating that with blood glucose.

  15. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion

    PubMed Central

    Malik, Bilal H.; Gresham, Vincent C.; Coté, Gerard L.

    2012-01-01

    Abstract Objective Over the past 35 years considerable research has been performed toward the investigation of noninvasive and minimally invasive glucose monitoring techniques. Optical polarimetry is one noninvasive technique that has shown promise as a means to ascertain blood glucose levels through measuring the glucose concentrations in the anterior chamber of the eye. However, one of the key limitations to the use of optical polarimetry as a means to noninvasively measure glucose levels is the presence of sample noise caused by motion-induced time-varying corneal birefringence. Research Design and Methods In this article our group presents, for the first time, results that show dual-wavelength polarimetry can be used to accurately detect glucose concentrations in the presence of motion-induced birefringence in vivo using New Zealand White rabbits. Results In total, nine animal studies (three New Zealand White rabbits across three separate days) were conducted. Using the dual-wavelength optical polarimetric approach, in vivo, an overall mean average relative difference of 4.49% (11.66 mg/dL) was achieved with 100% Zone A+B hits on a Clarke error grid, including 100% falling in Zone A. Conclusions The results indicate that dual-wavelength polarimetry can effectively be used to significantly reduce the noise due to time-varying corneal birefringence in vivo, allowing the accurate measurement of glucose concentration in the aqueous humor of the eye and correlating that with blood glucose. PMID:22691020

  16. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence.

    PubMed

    Radosevich, Andrew J; Rogers, Jeremy D; Capoğlu, Ilker R; Mutyal, Nikhil N; Pradhan, Prabhakar; Backman, Vadim

    2012-11-01

    ABSTRACT. We present an open source electric field tracking Monte Carlo program to model backscattering in biological media containing birefringence, with computation of the coherent backscattering phenomenon as an example. These simulations enable the modeling of tissue scattering as a statistically homogeneous continuous random media under the Whittle-Matérn model, which includes the Henyey-Greenstein phase function as a special case, or as a composition of discrete spherical scatterers under Mie theory. The calculation of the amplitude scattering matrix for the above two cases as well as the implementation of birefringence using the Jones N-matrix formalism is presented. For ease of operator use and data processing, our simulation incorporates a graphical user interface written in MATLAB to interact with the underlying C code. Additionally, an increase in computational speed is achieved through implementation of message passing interface and the semi-analytical approach. Finally, we provide demonstrations of the results of our simulation for purely scattering media and scattering media containing linear birefringence.

  17. Observation of Birefringence of an Electrospinning Jet in Flight

    NASA Astrophysics Data System (ADS)

    Liu, Kaiyi; Reneker, Darrell

    2013-03-01

    Solutions of polystyrene in N,N-dimethylformamide, polyacrylonitrile in N,N-dimethylformamide, and polyethylene oxide in water were electrospun. The charged liquid jets in flight were illuminated with polarized light converged on the jets by a Fresnel lens with a black background at the center, and were observed using a high speed camera, coaxial with the Fresnel lens, behind an analyzer which was crossed with a polarizer in front of the light source. The first several turns of coiled jet after the onset of electrical bending instability showed birefringence for all solutions, while no obvious birefringence was observed in the straight segments of the jets. This indicated that molecular chains in the coiled jet were aligned under elongation to a higher extent than those in the thicker straight jet.

  18. Birefringence Measurements of Spherulites formed in β-Lactoglobulin

    NASA Astrophysics Data System (ADS)

    Hardin, Eric; Kirkwood, Brad; Loman, Jazmine; Herat, Athula; Mahmood, Rizwan; Domike, Kristin

    2009-03-01

    Many proteins have a propensity to aggregate into amyloid fibril containing spherulite-like structures. In some instances these spherulitic protein aggregates have been observed in people suffering from a number of neurodegenerative diseases, including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob's. However, the exact role these aggregates play in the body, their internal structure, and the aggregation mechanism still remains a mystery. The model protein used in our study, β-lactoglobulin (BLG), produce spherulites under low pH and high temperature conditions. We report birefringence measurement on BLG using phase retardation method as a function of temperature. Birefringence (˜0.0022 ± 0.0002) data suggest very weak ordering within the spherulites. These spherulites seem to disappear when we added an extensively studied thermotropic liquid crystal [4'-pentyl-4-cyanobiphenyl (5CB)] in β-Lactoglobulin + water+ hydrochloric acid. Our preliminary data suggests that the strong interaction energy between the two systems may lead to the destruction of spherulites.

  19. Reducing Birefringence Uncertainty in the Design of ATST Polarization Components

    NASA Astrophysics Data System (ADS)

    Sueoka, S. R.

    2014-10-01

    Scientific requirements for the Advanced Technology Solar Telescope push the limits of polarimetric calibration and modulation components. The super achromatic retarder and poly chromatic modulator designs comprise of a stack of wave plates with fast axes at different orientations. In order to design these elements over a broad wavelength range it is imperative to know the fundamental properties of the materials. Crystalline quartz, sapphire, and MgF2 have been selected as candidate materials due to their hardness, transmission, and unique birefringence properties. Previously published dispersion models for these crystals do not agree in areas of the design wavelength range. We performed a series of measurements to determine the birefringence from 0.38 μm to 5.0 μm in order to improve our design capabilities.

  20. Optical birefringence imaging of x-ray excited lithium tantalate

    DOE PAGES

    Durbin, S. M.; Landcastle, A.; DiChiara, A.; ...

    2017-08-04

    X-ray absorption in lithium tantalate induces large, long-lived (~10-5 s) optical birefringence, visualized via scanning optical polarimetry, likely arising from electrooptic coupling to x-ray induced electric fields. Similar birefringence measured from glass, sapphire, and quartz was two orders of magnitude weaker. This suggests that x-ray excited charges preferentially create ordered, aligned dipoles within the noncentrosymmetric unit cell of ferroelectric LiTaO3, enhancing the electric field compared to more isotropic charge distributions in the other materials. In conclusion, time-resolved measurements show a prompt response on a picosecond time scale, which along with the long decay time suggest novel approaches to optical detectionmore » of x-rays using ferroelectric materials.« less

  1. Birefringence Oscillations In An Organic Guest-Host System

    NASA Astrophysics Data System (ADS)

    Knabke, Gerhard; Franke, Hilmar; Frank, Werner F.

    1990-01-01

    The nonlinear dye N,N-Dihexyl-4 amino-4-nitrostilbene (DHANS) was incorporated in the polymer matrix of poly(α-methyl-styrene) (Pα MS). Dye concentrations between 1 and 10 weight % were investigated. Bulk samples of DHANS/Pα MS were prepared with a residual solvent content of 5 wt% in an optical cell between electrodes. Solid samples of high viscosity were obtained. Electrooptic measurements were perfomed for DC electric fields up to 30 RV/cm with a HeNe laser. Besides the usual Pockels- and Kerreffect we observed birefringence oscillations. For this experiment the Pα MS matrix has to be in the glass transition region. Parallel to the birefringence oscillations peaks in the DC current were measured. Frequency and amplitude of the oscillations depend on the external electric field. We suggest an interpretation of local discharging due to the anisotropic electrical conductivity of the dye molecules.

  2. Reducing stress-induced birefringence in optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Várallyay, Z.; Arashitani, Y.; Varga, G.

    2011-01-01

    Coated and ribboned optical fibers are liable to external stress of the coating materials which may induce additional birefringence in the fiber glass. This residual stress in the coating may increase the polarization mode dispersion (PMD) of the fibers with a value well above allowed in modern, optical telecommunication systems. We report our numerical efforts on reducing the stress caused birefringence in fiber ribbons optimizing the geometry as well as the material parameters of the coating materials. We found that changing the cross-sectional geometry of the fiber ribbon such as edge shape or the ratio of primary and secondary coatings may lead to significant stress and constitutively PMD reduction in optical fibers. Changing the stiffness or the glass transition temperature (GTT) of the different components may also yield optimal conditions for stress reduction according to our finite element analyzes.

  3. Artificial birefringent metallic planar structures for terahertz wave polarization manipulation.

    PubMed

    Wang, Lei; Jiang, Suhua; Hu, Haifeng; Song, Haomin; Zeng, Wei; Gan, Qiaoqiang

    2014-01-15

    We propose an artificial birefringent terahertz (THz) device constructed by subwavelength L-shaped hole arrays on a single metallic layer. This structure is able to work as a polarizer when the incident frequency is between the cut-off frequencies of two eigenmodes. When the incident wave is beyond cut-off frequencies of these two modes, it can be designed as an efficient half- or quarter-wave plate with extraordinary transmission properties. A big effective index difference from 0.254 to 0.768 is obtained using a subwavelength-thick planar structure, which can reduce the thickness of the device to one tenth of conventional quartz birefringent crystals for THz waves.

  4. Terahertz induced optical birefringence in polar and nonpolar liquids

    NASA Astrophysics Data System (ADS)

    Bodrov, Sergey; Sergeev, Yury; Murzanev, Aleksey; Stepanov, Andrey

    2017-08-01

    The terahertz induced optical birefringence in liquids with polar (acetone, chloroform) and nonpolar (benzene, carbon tetrachloride) molecules has been investigated. Fast and slow responses were extracted from the experimental data and compared with previous studies of the femtosecond optical Kerr effect. Terahertz Kerr constants were found and compared with known DC and optical constants. Analysis of the results obtained showed that, in contrast to the optical excitation, the interaction of a permanent dipole moment of molecules with a THz field makes a significant contribution to the transient birefringence and Kerr constants. This conclusion fully agrees with the direct comparison of the femtosecond optical and THz Kerr effects reported by Sajadi et al. [Nat. Commun. 8, 14963 (2017)].

  5. Light Scattering and Electric Birefringence Experiments on Micellar Solutions

    NASA Astrophysics Data System (ADS)

    Degiorgio, Vittorio; Piazza, Roberto

    We describe a selected number of recent light scattering experiments dealing with critical phenomena in nonionic and cationic micellar solutions, the dynamics of phase separation in nonionic amphiphile solutions near the critical point, studies of the sponge phase, aggregation of block copolymers, and conformational phase transitions in biological micelles. Electric birefringence has been increasingly utilized in the last few years for investigating the formation and growth of anisotropic aggregates in micellar solutions. In this article we discuss its application to the study of nonionic micellar solutions near the cloud point, and to the description of the sphere-to-rod transition of ionic and inverted micelles. In several situations the relaxation of the electric birefringence follows a stretched-exponential behaviour which reflects the presence in the micellar system of a wide distribution of relaxation times.

  6. Tuning micropillar cavity birefringence by laser induced surface defects

    SciTech Connect

    Bonato, Cristian; Ding Dapeng; Gudat, Jan; Exter, Martin P. van; Thon, Susanna; Kim, Hyochul; Petroff, Pierre M.; Bouwmeester, Dirk

    2009-12-21

    We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.

  7. Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics

    SciTech Connect

    Laemmerzahl, Claus; Hehl, Friedrich W.

    2004-11-15

    We consider premetric electrodynamics with a local and linear constitutive law for the vacuum. Within this framework, we find quartic Fresnel wave surfaces for the propagation of light. If we require (i) the Fresnel equation to have only real solutions and (ii) the vanishing of birefringence in vacuum, then a Riemannian light cone is implied. No proper Finslerian structure can occur. This is generalized to dynamical equations of any order.

  8. Fourier polarimetry of the birefringence distribution of myocardium tissue

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Dubolazov, O. V.; Ushenko, V. O.; Gorsky, M. P.; Soltys, I. V.; Olar, O. V.

    2015-11-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of causes of death due to coronary heart disease (CHD) and acute coronary insufficiency (ACI) were found.

  9. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    SciTech Connect

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  10. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    DOE PAGES

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less

  11. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver; Polarbear Collaboration

    2015-12-01

    We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E -mode and odd-parity B -mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B -modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B -mode power spectrum. Using the POLARBEAR measurements of the B -mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  12. Photoinduced Birefringence in Azo-Dye Doped Polyurethane

    NASA Astrophysics Data System (ADS)

    Aleksejeva, J.; Gerbreders, A.; Reinfelde, M.; Teteris, J.

    2011-01-01

    In this report we describe a photoinduced birefringence in disperse red (DR1) azo-dye doped polyurethane films. DR1 dye molecules in these films are chemically bound with the polyurethane polymer's main chain. Under laser radiation the DR1 molecules experience the isomerization process; as a result, the dipole moment of such a molecule changes and they align in the presence of electric field. Photo-birefringence was induced by linearly polarized laser radiation (532 nm, 448 nm, 375 nm and 632.8 nm) in the films with various concentrations of DR1 dye. The photo-induced birefringence (PIBR) Δn was measured at 634 nm wavelength, and its dependences on the pumping beam wavelength and intensity were evaluated. The Δn relaxation was studied both in the dark and under light illumi-nation. In DR1-doped polyurethane films the holographic recording was performed using laser light radiation (532 nm). The profile of surface relief grating (SRG) was studied using AFM. The relationship between SRG formation and PIBR is discussed.

  13. Anomalous birefringence of swollen lamellar phases : blue smectics

    NASA Astrophysics Data System (ADS)

    Nallet, F.; Barois, Ph.

    1994-06-01

    The birefringence of a lyotropic lamellar phase is calculated as a function of dilution. It is found to vanish and change sign, provided the natural birefringence of surfactant bilayers is positive. Dispersion is calculated about the point of zero birefringence. These predictions are illustrated with experiments of spectrophotometry: the intensity of light transmitted between crossed polarizers through several lamellar samples vanishes as expected at some particular wavelength. The dependence of the transmitted light on wavelength and cell thickness is consistent with theory. La biréfringence d'une phase lamellaire lyotrope est calculée en fonction de la dilution. Nous montrons qu'elle peut s'annuler à condition que la biréfringence naturelle des bicouches de tensioactif soit positive. La dispersion au voisinage du point de biréfringence nulle est calculée. Ces résultats sont confirmés par des mesures de spectrophotométrie : la transmission des échantillons étudiés entre polariseurs croisés s'annule exactement pour une longueur d'onde particulière. La variation de l'intensité transmise en fonction de la longueur d'onde et de l'épaisseur des échantillons est conforme aux prévisions du modèle.

  14. Quantum field theory based on birefringent modified Maxwell theory

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2014-04-01

    In the current paper the properties of a birefringent Lorentz-violating extension of quantum electrodynamics is considered. The theory results from coupling modified Maxwell theory, which is a CPT-even Lorentz-violating extension of the photon sector, to a Dirac theory of standard spin-1/2 particles. It is then restricted to a special birefringent case with one nonzero Lorentz-violating coefficient. The modified dispersion laws of electromagnetic waves are obtained plus their phase and group velocities are considered. After deriving the photon propagator and the polarization vectors for a special momentum configuration we prove both unitarity at tree level and microcausality for the quantum field theory based on this Lorentz-violating modification. These analytical proofs are done for a spatial momentum with two vanishing components and the proof of unitarity is supported by numerical investigations in case all components are nonvanishing. The upshot is that the theory is well behaved within the framework of our assumptions where there is a possible issue for negative Lorentz-violating coefficients. The paper shall provide a basis for the future analysis of alternative birefringent quantum field theories.

  15. Calculation of protein form birefringence using the finite element method.

    PubMed Central

    Pantic-Tanner, Z; Eden, D

    1999-01-01

    An approach based on the finite element method (FEM) is employed to calculate the optical properties of macromolecules, specifically form birefringence. Macromolecules are treated as arbitrarily shaped particles suspended in a solvent of refraction index n1. The form birefringence of the solution is calculated as the difference in its refractive index when all the particles of refractive index n2 are either parallel to or normal to the direction of the polarization of light. Since the particles of interest are small compared to the wavelength of light, a quasi-static approximation for the refractive index is used, i.e., that it is equal to the square root of the dielectric constant of the suspension. The average dielectric constant of the mixture is calculated using the finite element method. This approach has been tested for ellipsoidal particles and a good agreement with theoretical results has been obtained. Also, numerical results for the motor domains of ncd and kinesin, small arbitrarily shaped proteins with known x-ray structures, show reasonable agreement with the experimental data obtained from transient electric birefringence experiments. PMID:10354422

  16. Polarization entangled photon pair generation in optical fibers with birefringence

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhou, Qiang; Wang, Pengxiang; Huang, Yidong; Peng, Jiangde

    2011-09-01

    Spontaneous four-wave mixing (SFWM) in optical fibers is an important way to generate correlated/entangled photon pairs. When the pulsed pump light passes through the optical fiber, two kinds of SFWM will take place simultaneously. One is scalar scattering processes, in which two annihilated pump photons and generated photon pair are all polarized along the same fiber polarization axis. The other is vector scattering processes, in which two annihilated pump photons are polarized along different fiber polarization axes, either to the two photons of the generated pair. If the fiber has large group birefringence, the intensity of vector scattering processes will be suppressed at the phase matching frequencies of the scalar scattering processes. On the other hand, the walk-off effect of the pump pulse components polarized along the two fiber polarization axes also suppresses the vector scattering processes. Hence, by proper pump polarization and signal/idle frequency selection, photon pairs can be generated only by the two independent scalar scattering processes in optical fibers with birefringence, which provide a simple way to realize polarization entangled photon pair generation. In this paper, related experiments based on the high nonlinearity microstructure fiber (HN-MSF) with group birefringence and polarization maintained dispersion shifted fiber (PM-DSF) are introduced, showing their potential on developing practical quantum light sources.

  17. Self-mixing birefringent dual-frequency laser Doppler velocimeter.

    PubMed

    Chen, Junbao; Zhu, Hongbin; Xia, Wei; Guo, Dongmei; Hao, Hui; Wang, Ming

    2017-01-23

    A self-mixing birefringent dual-frequency laser Doppler velocimeter (SBD-LDV) for high-resolution velocity measurements is presented in this paper. The velocity information of the object can be accurately extracted from the self-mixing Doppler frequency shift of the birefringent light-carried microwave signal. We generate a virtual stable light-carried microwave by using a birefringent dual-frequency He-Ne laser which further simplifies the structure of the light source. Moreover, the optical configuration based on the laser self-mixing interference brings benefits of compact optical setup, self-alignment, and direction discriminability. Experimentally, we extracted the Doppler beat frequency signal by the low-frequency (millihertz) phase lock-in amplifier, measured the beat frequency precisely in time-domain with a low sampling rate and calculated the magnitude of velocity. Compared with the previous self-mixing LDV, the average velocity resolution of SBD-LDV is improved to 0.030 mm/s for a target with longitudinal velocity, benefiting from the high stability of light-carried microwave. It is of great meaning and necessity because it helps to provide an available velocimeter with high stability and an extremely compact configuration, making a potential contribution to the velocimetry in practical engineering application.

  18. Computational study to evaluate the birefringence of uniaxially oriented film of cellulose triacetate.

    PubMed

    Hayakawa, Daichi; Ueda, Kazuyoshi

    2015-01-30

    The intrinsic birefringence of a cellulose triacetate (CTA) film is evaluated using the polarizability of the monomer model of the CTA repeating unit, which is calculated using the density functional theory (DFT). Since the CTA monomer is known to have three rotational isomers, referred to as gg, gt, and tg, the intrinsic birefringence of these isomers is evaluated separately. The calculation indicates that the monomer CTA with gg and gt structures shows a negative intrinsic birefringence, whereas the monomer unit with a tg structure shows a positive intrinsic birefringence. By using these values, a model of the uniaxially elongated CTA film is constructed with a molecular dynamics simulation, and the orientation birefringence of the film model was evaluated. The result indicates that the film has negative orientation birefringence and that its value is in good agreement with experimental results.

  19. High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz

    NASA Astrophysics Data System (ADS)

    Yin, Guo-Bing; Li, Shu-Guang; Wang, Xiao-Yan; Liu, Shuo

    2011-09-01

    A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion property and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.

  20. Highly birefringent large mode area photonic crystal fiber-based sensor for interferometry applications

    NASA Astrophysics Data System (ADS)

    Ademgil, Huseyin

    2016-12-01

    In this work, highly birefringent large mode area (LMA) photonic crystal fiber (PCF) structure for interferometric sensor applications is proposed. The effective mode area, birefringence and the sensitivity coefficient of the proposed PCF structure by employing the full vectorial finite element method (FV-FEM) have been thoroughly investigated. The numerical results have shown that proposed structure simultaneously offers high birefringence of order 10-3, adequately LMA and high sensitivity for various liquid analytes by employing the elliptical liquid core holes.

  1. Telescope birefringence and phase errors in the Gravity instrument at the VLT interferometer

    NASA Astrophysics Data System (ADS)

    Lazareff, B.; Blind, N.; Jocou, L.; Eisenhauer, F.; Perraut, K.; Lacour, S.; Delplancke, F.; Schoeller, M.; Amorim, A.; Brandner, W.; Perrin, G.; Straubmeier, C.

    2014-07-01

    We use a numerical model of the birefringence in the VLT Interferometer (VLTI) and the Gravity instrument to study the astrometric phase errors that arise when two conditions are simultaneously present: differential birefringence between two VLTI arms, and different polarizations of the science and fringe tracker sources. We present measurements of the VLTI birefringence, that are used to validate our model. We show how a suitable alignment of the eigenvectors of the optical train eliminates the phase error.

  2. Dynamical decoupling in optical fibers: Preserving polarization qubits from birefringent dephasing

    NASA Astrophysics Data System (ADS)

    Roy Bardhan, Bhaskar; Anisimov, Petr M.; Gupta, Manish K.; Brown, Katherine L.; Jones, N. Cody; Lee, Hwang; Dowling, Jonathan P.

    2012-02-01

    One of the major challenges in quantum computation has been to preserve the coherence of a quantum system against dephasing effects of the environment. The information stored in photon polarization, for example, is quickly lost due to such dephasing, and it is crucial to preserve the input states when one tries to transmit quantum information encoded in the photons through a communication channel. We propose a dynamical decoupling sequence, to protect photonic qubits from dephasing, by integrating wave plates into optical fiber at prescribed locations. We simulate random birefringent noise along realistic lengths of optical fiber and study preservation of polarization qubits through such fibers enhanced with Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling. This technique can maintain photonic qubit coherence at high fidelity, making a step toward achieving scalable and useful quantum communication with photonic qubits.

  3. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  4. Femtosecond laser direct-write waveplates based on stress-induced birefringence.

    PubMed

    McMillen, Ben; Athanasiou, Christos; Bellouard, Yves

    2016-11-28

    The use of femtosecond lasers to introduce controlled stress states has recently been demonstrated in silica glass. We use this technique, in combination with chemical etching, to generate and control stress-induced birefringence over a well-defined region of interest, demonstrating direct-write wave plates with precisely tailored retardance levels. This tailoring enables the fabrication of laser-written polarization optics that can be tuned to any wavelength for which silica is transparent, and with a clear aperture free of any laser modifications. Using this approach, we achieve sufficient retardance to act as a quarter-wave plate. The stress distribution within the clear aperture is analyzed and modeled, providing a generic template that can be used as a set of design rules for laser-machined polarization devices.

  5. Birefringence properties of a polarization maintaining Panda fibre during Bragg grating regeneration

    NASA Astrophysics Data System (ADS)

    Polz, Leonhard; Jarsen, Andreas; Bartelt, Hartmut; Roths, Johannes

    2015-09-01

    Regeneration of fibre Bragg gratings under application of a high temperature annealing process in a high birefringent polarisation maintaining fibre of type Panda was investigated. During the annealing process, a distinct nonlinearity and hysteresis of the birefringence with temperature was observed. After the temperature process, the birefringence between slow and fast axis at room temperature was nearly doubled, which is in agreement with observations of other researchers. The hysteresis in birefringence might be explained by the crossing of the transition temperature of the stress applying parts and the relief of in-frozen mechanical and thermal stresses.

  6. Birefringence measurements in single crystal sapphire and calcite shocked along the a axis

    NASA Astrophysics Data System (ADS)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2017-01-01

    Calcite and sapphire were shock compressed along the <10 1 ¯0 > direction (a axis) in a plate impact configuration. Polarimetery and Photonic Doppler Velocimetery (PDV) were used to measure the change in birefringence with particle velocity in the shock direction. Results for sapphire agree well with linear photoelastic theory and current literature showing a linear relationship between birefringence and particle velocity up to 310 m s-1. A maximum change in birefringence of 5% was observed. Calcite however showed anomolous behaviour with no detectable change in birefringence (less than 0.1%) over the range of particle velocities studied (up to 75 m s-1).

  7. Nonlinear Cherenkov difference-frequency generation exploiting birefringence of KTP

    SciTech Connect

    Ni, R.; Du, L.; Wu, Y.; Hu, X. P. Zou, J.; Zhang, Y.; Zhu, S. N.; Sheng, Y.; Arie, A.

    2016-01-18

    In this letter, we demonstrate the realization of nonlinear Cherenkov difference-frequency generation (CDFG) exploiting the birefringence property of KTiOPO{sub 4} (KTP) crystal. The pump and signal waves were set to be along different polarizations, thus the phase-matching requirement of CDFG, which is, the refractive index of the pump wave should be smaller than that of the signal wave, was fulfilled. The radiation angles and the intensity dependence of the CDFG on the pump wave were measured, which agreed well with the theoretical ones.

  8. [Raw material synthesis and characterization of YVO4 birefringent crystal].

    PubMed

    Lin, Shu-kun; Li, Li-ting; Chen, Jian-zhong

    2003-06-01

    In this paper, synthesis of YOV4 birefringence crystal raw material in liquid phase was studied. Mostly, the effects of solution's pH values and some other synthesis conditions on purity and whiteness were discussed. Infra-red spectrometry, X-ray powder diffraction and UV spectrometry were used in the characterization of the raw material and single crystal, and in this way the best method of synthesis was defined. The result of the study indicates that the purity of the raw material had decisive effect on the crystal growth. Flawless crystal with the dimensions of phi 40 x 40 x 50 mm3 was grown by Czochralski (CZ) technique.

  9. Birefringence in a chiral medium, via temporal cloaking

    NASA Astrophysics Data System (ADS)

    Khan, Humayun; Haneef, Muhammad

    2017-05-01

    This paper reports theoretical investigation of birefringence in a chiral medium for the creation of temporal cloaking. The chiral medium splits the input probe beam into left/right circular polarized beams. These left/right circular polarized beams are then controlled and modified within the chiral medium. The left circular polarized beam delays by 24 ns whereas the right circular polarized beam advances by  -23 ns at a control field of rabbi frequency 6γ . This opens a 47 ns time gap for temporal cloaking to hide information without noise corruption and energy loss. The results have potential applications in communication devices for secure propagation of light pulse.

  10. X-ray natural birefringence in reflection from graphene

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H.-Ch.; Gilbert, M.; Wahab, H.; Timmers, H.; Choi, S.-H.; Gaupp, A.; Krivenkov, M.; Varykhalov, A.; Rader, O.; Legut, D.; Oppeneer, P. M.

    2016-07-01

    The existence of natural birefringence in x-ray reflection on graphene is demonstrated at energies spanning the carbon 1 s absorption edge. This new x-ray effect has been discovered with precision measurements of the polarization-plane rotation and the polarization-ellipticity changes that occur upon reflection of linearly polarized synchrotron radiation on monolayer graphene. Extraordinarily large polarization-plane rotations of up to 30∘, accompanied by a change from linearly to circularly polarized radiation have been measured for graphene on copper. Graphene on single crystalline cobalt, grown on tungsten, exhibits rotation values of up to 17∘. Both graphene systems show resonantly enhanced effects at the π* and σ* energies. The results are referenced against those obtained for polycrystalline carbon and highly oriented pyrolytic graphite (HOPG), respectively. As expected, polycrystalline carbon shows negligible rotation, whereas a huge maximum rotation of 140∘ has been observed for HOPG that may be considered a graphene multilayer system. HOPG is found to exhibit such large rotation values over a broad energy range, even well beyond the π* resonance energy due to the contributions of numerous graphene layers. To explain the origin of the observed natural birefringence of graphene, the Stokes parameters as well as the x-ray natural linear dichroism in reflection have been determined. It is shown that the birefringence directly results from the optical anisotropy related to the orthogonal alignment of π* and σ* bonds in the graphene layer. Our polarization analysis reveals a strong bonding of graphene on Co with a reduced σ* excitation energy and a strong tilt of 50 % of the pz orbitals towards diagonal orientation. In contrast, graphene on Cu is weakly bound with an orthogonal orientation of the pz orbitals. Exhibiting such a large natural birefringence that can be controlled through substrate choice, and because of excellent heat conductivity

  11. Highly sensitive recognition element based on birefringent porous silicon layers

    NASA Astrophysics Data System (ADS)

    Gross, E.; Kovalev, D.; Künzner, N.; Timoshenko, V. Yu.; Diener, J.; Koch, F.

    2001-10-01

    Anisotropically nanostructured silicon layers exhibit a strong in-plane birefringence. Their optical anisotropy parameters are found to be extremely sensitive to the presence of dielectric substances inside of the pores. Polarization-resolved transmittance measurements provide an extremely sensitive tool to analyze the adsorption of various atoms and molecules in negligible quantities. A variation of the transmitted linearly polarized light intensity up to two orders of magnitude combined with a fast optical response in the range of seconds make these layers a good candidate for sensor applications.

  12. Automated Detection of Ocular Alignment with Binocular Retinal Birefringence Scanning

    NASA Astrophysics Data System (ADS)

    Hunter, David G.; Shah, Ankoor S.; Sau, Soma; Nassif, Deborah; Guyton, David L.

    2003-06-01

    We previously developed a retinal birefringence scanning (RBS) device to detect eye fixation. The purpose of this study was to determine whether a new binocular RBS (BRBS) instrument can detect simultaneous fixation of both eyes. Control (nonmyopic and myopic) and strabismic subjects were studied by use of BRBS at a fixation distance of 45 cm. Binocularity (the percentage of measurements with bilateral fixation) was determined from the BRBS output. All nonstrabismic subjects with good quality signals had binocularity >75%. Binocularity averaged 5% in four subjects with strabismus (range of 0 -20%). BRBS may potentially be used to screen individuals for abnormal eye alignment.

  13. Fixed Delay Birefringence Imaging Interferometry for Spectral Drifting Surveys of an Astrocomb

    NASA Astrophysics Data System (ADS)

    Zhai, Yang; Xiao, Dong

    2015-08-01

    Astrocomb has been developed for exploring and investigation of extrasolar planets via radial velocity measurement based on Doppler spectroscopy. The energy loss, modal and speckle noise as well as non-linear output drift would degenerate the precision of astrocomb after coupling with multimode fiber. Due to its ultra-narrow spectral line space, traditional dispersion spectrometer and instrument are inapplicable investigating the beam quality and spectrum from the astrocomb. In this paper, we present a new technique based on fixed delay birefringence imaging interferometry with high throughput, high resolution and large field-of-view surveys for the spectral drift of astrocomb. This coherence system utilizes multi-optical Savart splitter and large interferometric delays to achieve the required spectral resolution. Such large interferometric delay scan usually causes a significant curvature of fringe pattern, so we update this Savart component with an extra sandwiched half-wave plate as a field-of-view compensator that enables target image and near-straight fringes for Fourier analysis can be obtained and captured by a two-dimensional CCD at the same time. Also, the instrumental design employs a secondary set of birefringent plates with opposite thermal properties to passively stabilize the system from phase drifting error caused by temperature fluctuations. Under the compensation, the spectral resolution could reach 105~106 in a narrow-band target region and the field-of-view will extend 3-5 times as large as a common interference imaging spectrometer and throughput will raise 1-2 orders of magnitude. The ultra-high spectral resolutions and field-of-view compensation principle are demonstrated experimentally.

  14. Crystallization and birefringence studies on fast structural changes followed by non-contact spectral birefringence and Raman spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Serhatkulu, Toprak Fakr

    2000-11-01

    The structural characteristics of the manufactured polymers such as crystallinity and orientation are controlled by the thermal-deformation history imposed by the processing machinery. Therefore it is essential to monitor these structural characteristics and use the information advantageously to optimize the properties of interest by controlling the process conditions. The focus of this study is to develop robust automated techniques to monitor birefringence and crystallization in real-time. In many of the polymer processing operations involving film stretching where the polymer undergoes a series of thermal deformation treatments, the quantitative changes that take place during the course of these processing operations is poorly understood partly as a result of very rapid structural changes that occur when the polymer's initial condition is not isotropic melt of isotropic solid. There is a great need to quantify the kinetics of the structural changes from preoriented/partially-crystallized states. As part of this dissertation, the birefringence development of preoriented polyethylene terephthalate (PET) films is monitored on-line by the developed spectral birefringence technique with the intent of simulating the heat-setting stage of a tenter film stretching process. Theoretical improvements, software development and optimization, and the equipment design and construction are some of the major tasks accomplished in this dissertation. The automated spectral birefringence technique not only allows the measurement of retardations to very high values, but also enables one to detect the changes in the trend in birefringence (such as a decrease as a result of relaxation, or an increase as a result of crystallization) and to investigate changes that occur very rapidly in the order of a few hundred milliseconds. The effects of stretching conditions on the kinetics of the structural changes in PET films were also investigated using characterization techniques such as

  15. Temperature-independent zero-birefringence polymer for liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shikanai, M. D.; Tagaya, A.; Koike, Y.

    2016-03-01

    A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.

  16. Process-induced birefringence variations in fiber optic embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Turpin, M.; Chazelas, J.; Stoppiglia, H.

    The use of embedded fiber optic sensors for the impact detection on woven-composite panels has been developed using interfero-polarimetric measurements. Preliminary results on the study of the process-induced birefringence properties modifications of two different types of specific optical fibers: Hi-Bi 'Bow-Tie' fibers and Side-hole birefringent 'FASE' fibers are discussed.

  17. Birefringence of a normal human red blood cell and related optomechanics in an optical trap

    NASA Astrophysics Data System (ADS)

    Nagesh, Belavadi Venkatakrishnaiah; Yogesha, Yogesha; Pratibha, Ramarao; Parthasarathi, Praveen; Iyengar, Shruthi Subhash; Bhattacharya, Sarbari; Ananthamurthy, Sharath

    2014-11-01

    A normal human red blood cell (RBC) when trapped with a linearly polarized laser, reorients about the electric polarization direction and then remains rotationally bound to this direction. This behavior is expected for a birefringent object. We have measured the birefringence of distortion-free RBCs in an isotonic medium using a polarizing microscope. The birefringence is confined to the cell's dimple region and the slow axis is along a diameter. We report an average retardation of 3.5±1.5 nm for linearly polarized green light (λ=546 nm). We also estimate a retardation of 1.87±0.09 nm from the optomechanical response of the RBC in an optical trap. We reason that the birefringence is a property of the cell membrane and propose a simple model attributing the origin of birefringence to the phospholipid molecules in the lipid bilayer and the variation to the membrane curvature. We observe that RBCs reconstituted in shape subsequent to crenation show diminished birefringence along with a sluggish optomechanical response in a trap. As the arrangement of phospholipid molecules in the cell membrane is disrupted on crenation, this lends credence to our conjecture on the origin of birefringence. Dependence of the birefringence on membrane contours is further illustrated through studies on chicken RBCs.

  18. Measuring birefringence of curved sheet and single crystals by double-exposure speckle photography

    NASA Astrophysics Data System (ADS)

    El-Dessouki, T. A.; Hendawy, N. I.; Zaki, A. A.

    2009-06-01

    In this work, a new theoretical and experimental approach for measuring birefringence of solid materials was described. Dispersions of birefringence of quartz, calcite crystals and Fortypan sheet were determined in the visible region. The results were compared with other interferometric methods to verify the accuracy of this approach.

  19. Theory of the birefringence due to dislocations in single crystal CVD diamond.

    PubMed

    Pinto, H; Jones, R

    2009-09-09

    Single crystal diamond grown by chemical vapour deposition (CVD) often exhibits strain induced birefringence arising from bundles of edge dislocations lying almost parallel to the [001] growth axis. The birefringent pattern changes when the crossed-polarizers are rotated with respect to the underlying lattice. For polarizers parallel to ⟨110⟩ directions, the birefringence pattern consists of four bright petals with dark arms along ⟨110⟩. For polarizers parallel to ⟨100⟩, the birefringence pattern consists of eight petals of weaker intensity with dark arms along ⟨110⟩ and ⟨100⟩ directions. We evaluate the birefringence intensity by using isotropic elasticity theory and find that these patterns can be explained by a specific dislocation arrangement which is consistent with x-ray topographic studies.

  20. On the birefringence of healthy and malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Basu, Himanish; Dharmadhikari, Jayashree A.; Sharma, Shobhona; Mathur, Deepak

    2013-12-01

    The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found to itself exercise a profound influence on the rotational dynamics by inducing stage-specific birefringence. Our measurements shed new light on the competition between shape- and form-birefringence in RBCs. We demonstrate the possibility of using birefringence to establish very early stages of infected parasites and of assessing various factors that contribute to birefringence in normal and infected cells. Our results have implications for the development and use of noninvasive techniques of quantifying changes in cell properties induced by malaria disease pathology.

  1. On the birefringence of healthy and malaria-infected red blood cells.

    PubMed

    Dharmadhikari, Aditya K; Basu, Himanish; Dharmadhikari, Jayashree A; Sharma, Shobhona; Mathur, Deepak

    2013-12-01

    The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found to itself exercise a profound influence on the rotational dynamics by inducing stage-specific birefringence. Our measurements shed new light on the competition between shape- and form-birefringence in RBCs. We demonstrate the possibility of using birefringence to establish very early stages of infected parasites and of assessing various factors that contribute to birefringence in normal and infected cells. Our results have implications for the development and use of noninvasive techniques of quantifying changes in cell properties induced by malaria disease pathology.

  2. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells.

    PubMed

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  3. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  4. Development and characterization of orthotropic-birefringent materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Koller, G. M.; Niiro, T.

    1984-01-01

    Materials were selected and fabrication procedures developed for orthotropic birefringent materials. An epoxy resin (Maraset 658/558 system) was selected as the matrix material. Fibers obtained from style 3733 glass cloth and type 1062 glass roving were used as reinforcement. Two different fabrication procedures were used. In the first one, layers of unidirectional fibers removed from the glass cloth were stacked, impregnated with resin, bagged and cured in the autoclave at an elevated temperature. In the second procedure, the glass roving was drywound over metal frames, impregnated with resin and cured at room temperature under pressure and vacuum in an autoclave. Unidirectional, angle-ply and quasi-isotropic laminates of two thicknesses and with embedded flaws were fabricated. The matrix and the unidirectional glass/epoxy material were fully characterized. The density, fiber volume ratio, mechanical, and optical properties were determined. The fiber volume ratio was over 0.50. Birefringent properties were in good agreement with predictions based on a stress proportioning concept and also, with one exception, with properties predicted by a finite element analysis. Previously announced in STAR as N81-26183

  5. Anisotropic Transverse Stress in Calcite and Sapphire Measured Using Birefringence

    NASA Astrophysics Data System (ADS)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2015-06-01

    Many significant geological minerals have anisotropic crystal structures leading to material properties that are anisotropic, including compressive elastic behaviour. A non-invasive approach to investigate the directional dependence of transverse stress in these materials during shock compression would supplement current understanding. As many geological minerals are transparent and hence optically anisotropic, measuring the change in birefringence induced by transverse stress in the material offers the possibility of a fast, non-invasive approach to probe transverse behaviour. Shock compression experiments have been performed on a-cut calcite and a-cut sapphire for strain rates of order 105 s-1 and up to longitudinal stresses of 2 GPa for calcite and 12 GPa for sapphire. We present measured changes in birefringence for these materials under shock compression, comparing with current and past literature as well as an in house optical model. The authors would like to thank Mr Steve Johnson and Mr David Pittman for technical support. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.

  6. Development of orthotropic birefringent materials for photoelastic stress analysis

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Niiro, T.; Koller, G. M.

    1981-01-01

    Materials were selected and fabrication procedures developed for orthotropic birefringent materials. An epoxy resin (Maraset 658/558 system) was selected as the matrix material. Fibers obtained from style 3733 glass cloth and type 1062 glass roving were used as reinforcement. Two different fabrication procedures were used. In the first one, layers of unidirectional fibers removed from the glass cloth were stacked, impregnated with resin, bagged and cured in the autoclave at an elevated temperature. In the second procedure, the glass roving was drywound over metal frames, impregnated with resin and cured at room temperature under pressure and vacuum in an autoclave. Unidirectional, angle-ply and quasi-isotropic laminates of two thicknesses and with embedded flaws were fabricated. The matrix and the unidirectional glass/epoxy material were fully characterized. The density, fiber volume ratio, mechanical, and optical properties were determined. The fiber volume ratio was over 0.50. Birefringent properties were in good agreement with predictions based on a stress proportioning concept and also, with one exception, with properties predicted by a finite element analysis.

  7. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  8. A simple and low-cost technique to fabricate and experience interference birefringent filters

    NASA Astrophysics Data System (ADS)

    Velasquez, Pablo; Moreno, Ignacio S.; Sanchez-Lopez, M. d. M.; Puerto, D.

    2004-10-01

    In this work we propose and demonstrate a very simple method to produce interference birefringent filters. We use the birefringence properties of usual commercial scotch, which acts as a uniaxial material. By superimposing several scotch layers with parallel orientation, and placing them between two crossed polarizers oriented at 45 degrees, we can measure the birefringence of the material. We use a portable fiber spectrophotometer to characterize the layers birefringence in the visible range. We developed a software to calculate the transmission properties of different types of birefringent filters, including folded and fan Solc filters. In the simulations we include the information of the material birefringence that we obtain experimentally, thus leading to a precise description of the transmission properties in the entire visible range. A very simple system permits to align the scotch layers with the proper angles and create a birefringent filter. We have designed several filters with different spectral properties. The measurement of the transmission obtained with the portable spectrophotometer confirms experimentally the prediction given by the simulation software.

  9. Determination of the magnetic field induced circular birefringence using the Mueller matrix of FBGs

    NASA Astrophysics Data System (ADS)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-04-01

    Different methods have already been developed to measure the magnetic field with fiber Bragg gratings (FBGs). They are based on the use of a magnetic fluid or magnetostrictive materials. In addition to these methods, a direct measurement of the magnetic field is also possible by determining the circular birefringence created by the magnetic field inside the fiber. In standard optical fiber, this circular birefringence is of the same order as the intrinsic fiber birefringence or even below. The polarization properties of FBGs are therefore used to perform such measurement since they allow to determine weak birefringence with higher accuracy than standard read-out techniques. However, the obtained accuracy is usually low due to the influence of the intrinsic fiber birefringence. To mitigate this issue, we study in this work the use of the diattenuation vector. This parameter is obtained from the Mueller matrix and we show that it evolves in response to a magnetic field. In practice, we analyze its response by both simulation and experiment. In our simulations, we solve numerically the coupled mode equations of the FBG. For the experiments, the Mueller matrix is measured by an optical vector analyzer for the gratings connected in transmission. We apply an increasing magnetic field on different Bragg gratings photo-written in SMF28 fibers. The rotation of the diattenuation vector is then used to retrieve the magnetic field induced circular birefringence. A linear increase of the reconstructed circular birefringence is reported for increasing magnetic field values in the range 0-1T.

  10. Including birefringence into time evolution of CMB: current and future constraints

    SciTech Connect

    Gubitosi, G.; Pagano, L.; Martinelli, M. E-mail: martinelli@thphys.uni-heidelberg.de

    2014-12-01

    We introduce birefringence effects within the propagation history of CMB, considering the two cases of a constant effect and of an effect that increases linearly in time, as the rotation of polarization induced by birefringence accumulates during photon propagation. Both cases result into a mixing of E and B modes before lensing effects take place, thus leading to the fact that lensing is acting on spectra that are already mixed because of birefringence. Moreover, if the polarization rotation angle increases during propagation, birefringence affects more the large scales that the small scales. We put constraints on the two cases using data from WMAP 9yr and BICEP 2013 and compare these results with the constraints obtained when the usual procedure of rotating the final power spectra is adopted, finding that this dataset combination is unable to distinguish between effects, but it nevertheless hints for a non vanishing value of the polarization rotation angle. We also forecast the sensitivity that will be obtained using data from Planck and PolarBear, highlighting how this combination is capable to rule out a vanishing birefringence angle, but still unable to distinguish the different scenarios. Nevertheless, we find that the combination of Planck and PolarBear is sensitive enough to highlight the existence of degeneracies between birefringence rotation and gravitational lensing of CMB photons, possibly leading to false detection of non standard lensing effects if birefringence is neglected.

  11. Thermal characterization of Bragg gratings in polarization-maintaining optical fibres: analysis of birefringence and regeneration

    NASA Astrophysics Data System (ADS)

    Abe, I.; de Oliveira, V.; Fiorin, R.; Kalinowski, H. J.

    2017-04-01

    This paper presents an analysis of birefringence and regeneration of fibre Bragg gratings (FBGs) in two types of polarization-maintaining (PM) optical fibres, bow tie and internal elliptical cladding (IEC), with different diameters. The thermal regeneration of FBGs in PM fibres with different degrees of saturation (weakly, slightly, and strongly saturated) is presented and the influence of the gratings’ saturation degree on the birefringence of PM fibres is shown. The birefringence values obtained for IEC fibres with 80 µm of diameter were for a strongly saturated seed grating of 5.3  ×  10-4 and 6.2  ×  10-4 refractive index units after the regeneration. The evolution of the fibre birefringence as a function of the temperature is presented and the results show hysteresis and nonlinear dependence of the birefringence on temperature. The thermal stability of regenerated gratings in PM fibres is demonstrated, and a sensitivity coefficient value of 0.0035 dBm min-1 at 900 °C was obtained. The results obtained show the feasibility of optimization of fibre birefringence; this could allow such fibers to be used as temperature sensors and even improve the birefringence after the grating regeneration.

  12. The Double Jones Birefringence in Magneto-electric Medium

    PubMed Central

    Mahmood, Waqas; Zhao, Qing

    2015-01-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave. PMID:26354609

  13. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  14. A broadband and compact femtosecond delay compensator with birefringent crystals

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Liu, Xinyi; Liu, Wei-Tao

    2017-03-01

    The accurate control of time delay is key to many applications of ultrafast femtosecond lasers, while it often requires high precision optomechanics and specialized optics that may limit the tunability. Here we report a compact, broadband, and low-cost design for the accurate delay control using birefringent crystals. As a demonstration, we used it to synchronize input beams for a difference frequency generation (DFG) stage pumped by a commercial 60 fs optical parametric amplifier (OPA). The DFG power can be boosted up to ~160% in a wide range of 2.8–14 µm, without causing appreciable narrowing of the pulse bandwidth. Our design can be readily incorporated into existing ultrafast laser systems to improve the performance, or for accurate delay control between ultrafast laser pulses.

  15. Compact optical isolator for fibers using birefringent wedges.

    PubMed

    Shirasaki, M; Asama, K

    1982-12-01

    A new type of optical isolator for fibers is proposed in this paper. A birefringent wedge used to separate and combine the polarized light is developed, giving the isolator low forward loss and high isolation. The antire-flection process at the fiber endface reduces the forward loss and reflected return. A forward loss of 0.8 dB, a backward loss of 35 dB, and a reflected return of -32 dB were obtained. These characteristics were measured from fiber to fiber using multimode fibers with 50-/microm core diam at a wavelength of 1.3 microm. Details of the design, fabrication, and characteristics of this isolator are presented.

  16. Birefringence and anisotropic optical absorption in porous silicon

    SciTech Connect

    Efimova, A. I. Krutkova, E. Yu.; Golovan', L. A.; Fomenko, M. A.; Kashkarov, P. K.; Timoshenko, V. Yu.

    2007-10-15

    The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surface bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.

  17. Spectral manipulation and complementary spectra with birefringence polarization control

    NASA Astrophysics Data System (ADS)

    Ding, Pan-Feng; Han, Pin

    2017-03-01

    A polarization control method using crystal birefringence is suggested to manipulate polychromatic light. This scheme can be used with narrower bandwidth to produce various spectral effects, such as a notch filter, a flat top, and triangle-type, nipple-type, and central-frequency-dominant distributions. A modulated spectrum with greater bandwidth can be used as an optical frequency ruler, and phenomena called complementary spectra are also proposed, where the two spectral distributions, produced by rotating the polarizer, complement each other in the sense that the peaks and valleys in one spectrum are the reverse in the other. These results benefit the controlling of the spectral shape and the measurement of an unknown optical frequency.

  18. Improvement in birefringent filters. IV - The alternate partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    The design and performance of a birefringent filter with alternate partial polarizers are analyzed. The properties of several filter configurations with imperfect intermediate polarizers are examined. It is shown that such filters have significant advantages in transmission and profile shape over both the standard Lyot and the contrast element Lyot filters. These theoretical advantages are demonstrated by the measured properties of an actual filter using the alternate partial polarizer (APP) design. This filter is a four-module eight-crystal APP device which has been built using Polaroid HN-38 for the perfect polarizers and two laminated sheets of HN-55 for the partial polarizers. The measured characteristics of the filter are found to be in good agreement with theory.

  19. The Double Jones Birefringence in Magneto-electric Medium

    NASA Astrophysics Data System (ADS)

    Mahmood, Waqas; Zhao, Qing

    2015-09-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave.

  20. Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers

    NASA Astrophysics Data System (ADS)

    Leiva, Ariel; Olivares, Ricardo

    2008-04-01

    The propagation of Gaussian optical pulses through optical PM-HiBi (Polarization Maintaining Highly Birefringent) fibers is analyzed and simulated. Based upon a model of propagation as described by Marcuse, et al., [1] and Sunnerud, et al., [2], and the use of PMD (Polarization Mode Dispersion) compensators and emulators used by Kogelnik, et al. [2], [3] and Lima, et al. [4], we construct a simple model that allows graphical representation of the distortion experienced by optical pulses when propagating in a PM-HiBi fiber for different initial polarizations. The results of our analysis have the benefit of being identical to the more elaborate models of [1], [2], while also providing the additional advantage of simple graphical representation.

  1. Directional eye fixation sensor using birefringence-based foveal detection

    NASA Astrophysics Data System (ADS)

    Gramatikov, Boris I.; Zalloum, Othman H. Y.; Wu, Yi Kai; Hunter, David G.; Guyton, David L.

    2007-04-01

    We recently developed and reported an eye fixation monitor that detects the fovea by its radial orientation of birefringent nerve fibers. The instrument used a four-quadrant photodetector and a normalized difference function to check for a best match between the detector quadrants and the arms of the bow-tie pattern of polarization states surrounding the fovea. This function had a maximum during central fixation but could not tell where the subject was looking relative to the center. We propose a linear transformation to obtain horizontal and vertical eye position coordinates from the four photodetector signals, followed by correction based on a priori calibration information. The method was verified on both a computer model and on human eyes. The major advantage of this new eye-tracking method is that it uses true information coming from the fovea, rather than reflections from other structures, to identify the direction of foveal gaze.

  2. Polarized X-ray Scattering and Birefringence in Magnetars

    NASA Astrophysics Data System (ADS)

    Barchas, Joseph; Baring, Matthew G.

    2017-01-01

    Interest in radiative processes in the super-strong magnetic regime germane to magnetars has grown over the last two decades. These processes have an inherently anisotropic and polarization-dependent character. Of particular interest is the resonant cyclotron scattering domain, where the Compton cross section is enhanced by orders of magnitude very near the cyclotron frequency -- for electrons in magnetar atmospheres, this is above 10 MeV in energy, and for protons this can be at 1-10 keV. The Compton process is dominant in the highly optically thick environs of magnetar atmospheres, and also in the magnetospheric locales for the production of the hard X-ray bursts. The detailed forms of X-ray spectra will depend intimately on the character of the Compton cross section and the emission zone geometry. The practical determination of the rate of Compton scattering depends on the polarization configuration of incoming photons. This in turn is sensitive to the details of radiation dispersion and transport in hot plasmaspheres near neutron stars. This birefringent dispersion present in strongly-magnetized plasmas can profoundly influence the determination of scattering probabilities. Such polarization transfer is usually addressed by simplifying to the transfer two normal mode intensities. The assumptions involved in this simplification such as orthonormality and "large Faraday depolarization" are valid for a wide range of parameter space, but are known to break down in important cases, such as near a cyclotron resonance. We explore the polarization transfer problem for Compton scattering including the regime where Faraday depolarization is not large. Accordingly, plasma birefringence and the generalized Faraday effect are considered explicitly as part of the transfer problem. Spectra generated from two Monte Carlo models of the transfer problem are presented, one treating isothermal atmospheres in the normal X-ray band, and the other addressing hard X-ray flares in

  3. Quantification of fatigue state in CFRP using ultrasonic birefringence

    NASA Astrophysics Data System (ADS)

    Fey, Peter; Kreutzbruck, Marc

    2016-02-01

    Fiber reinforced plastics are widely used in high performance application areas such as aerospace, automotive and wind energy. They are preferred over classic materials such as metals because of their superior weight to stiffness ratio. When subjected to cyclic or static loading, micro-cracks develop and hence their stiffness degrades. The rate of stiffness degradation depends on the angle between the fibers and the applied load. Because commonly used fiber reinforced composites consist of multiple layers with different fiber directions to cope with different loads applied to the material, the stiffness degradation has to be analyzed for each fiber direction. One method to analyze the stiffness degradation in fiber reinforced materials is ultrasonic birefringence. A birefringent effect as it is known for light in optics is also observed for ultrasonic shear waves in fiber reinforced composites because of their elastic anisotropy. The role of the polarization dependent refractive index is taken by the propagation velocity of shear waves. If polarized parallel to the fiber direction they have a higher velocity than polarized perpendicularly to the fiber direction. The velocity depends on shear stiffness of the material. A model to predict the behavior of shear waves in multi-ply layups has been presented previously by Rheinfurth, Fey, Allinger and Busse[1]. That model was used to manually match measured and simulated phase and amplitude curves for waves that traversed the material under different angles between polarization direction of the emitting transducer and fiber direction in the first ply. Here another mode of interpreting the simulated results is used: amplitude and phase for each transducer orientation angle are combined to a complex number. Displaying them in the complex plane for one half rotation of the transducer yields an ellipse. Semi axis lengths and orientation can be obtained by Fourier transform and are used to compare the simulation to measured

  4. Birefringence and DNA Condensation of Liquid Crystalline Chromosomes ▿

    PubMed Central

    Chow, Man H.; Yan, Kosmo T. H.; Bennett, Michael J.; Wong, Joseph T. Y.

    2010-01-01

    DNA can self-assemble in vitro into several liquid crystalline phases at high concentrations. The largest known genomes are encoded by the cholesteric liquid crystalline chromosomes (LCCs) of the dinoflagellates, a diverse group of protists related to the malarial parasites. Very little is known about how the liquid crystalline packaging strategy is employed to organize these genomes, the largest among living eukaryotes—up to 80 times the size of the human genome. Comparative measurements using a semiautomatic polarizing microscope demonstrated that there is a large variation in the birefringence, an optical property of anisotropic materials, of the chromosomes from different dinoflagellate species, despite their apparently similar ultrastructural patterns of bands and arches. There is a large variation in the chromosomal arrangements in the nuclei and individual karyotypes. Our data suggest that both macroscopic and ultrastructural arrangements affect the apparent birefringence of the liquid crystalline chromosomes. Positive correlations are demonstrated for the first time between the level of absolute retardance and both the DNA content and the observed helical pitch measured from transmission electron microscopy (TEM) photomicrographs. Experiments that induced disassembly of the chromosomes revealed multiple orders of organization in the dinoflagellate chromosomes. With the low protein-to-DNA ratio, we propose that a highly regulated use of entropy-driven force must be involved in the assembly of these LCCs. Knowledge of the mechanism of packaging and arranging these largest known DNAs into different shapes and different formats in the nuclei would be of great value in the use of DNA as nanostructural material. PMID:20400466

  5. Modulation instabilities in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hua; Ren, Hai-Dong; Pei, Shi-Xin; Cao, Zhao-Lou; Xian, Feng-Lin

    2016-12-01

    Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Pcr, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Pcr), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Pcr, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The MI analysis in this paper is verified by numerical simulation. Project supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 14KJB140009), the National Natural Science Foundation of China (Grant No. 11447113), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 2241131301064).

  6. Determination of the Dispersion of the Principal Refractive Indices for Birefringent Polypropylene Films

    NASA Astrophysics Data System (ADS)

    Bezruchenko, V. S.; Murauski, An. A.; Muravsky, Al. A.

    2014-07-01

    We present a novel method for determining the dispersion of the refractive indices of birefringent films, based on treatment of transmission spectra, in which we observe interference of light. The dispersion curves n x (λ) and n y (λ) were determined by treatment of transmission spectra obtained for normal incidence of radiation on a P2-25 birefringent fi lm, and n z (λ) was determined for oblique incidence of radiation. From the results of determination of the dispersions of the principal refractive indices of a birefringent P2-25 polypropylene film (Mogilevkhimvolokno OAO, Belarus), we established that the sample is a negative biaxial retarder with N z = 2.9.

  7. Numerical analysis of a side-hole birefringent photonic crystal fiber with high-pressure sensitivity

    NASA Astrophysics Data System (ADS)

    Li, Duanming; Zhang, Wei; Zhou, Guiyao

    2016-09-01

    A birefringent structured side-holes photonic crystal fiber (PCF) with high sensitivity is designed for pressure sensing. Simulation results show that the birefringence and relevant sensitivity are strongly influenced by the air-holes' sizes and the distance between the fiber core and side-hole. The modal birefringence and the polarimetric pressure sensitivity can be up to 3.943×10-3 and -3.67×10-5 MPa-1 at 1.55 μm, respectively. The proposed side-holes PCF possesses promising applications for pressure sensing.

  8. Determination of photoinduced and intrinsic birefringences in PMMA/DR13 guest-host film

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Fernando Fuzinatto; Shimizu, Flávio Makoto; Giacometti, José A.

    2014-07-01

    We report measurements and analysis of photoinduced birefringence (PIB) in polymeric stretched films, hence, with an intrinsic birefringence (IB) associated to the polymeric chain orientation. It was found that transmittance signal is dependent on the angle between the film stretching direction and the probe light polarization, increasing or decreasing relatively to IB signal. Theoretical analysis considered that light propagates through the film having a photoinduced and intrinsic birefringences with independent optical axes. The transmittance signal dependence on the film angle is correctly accounted and our approach could give a phenomenological elucidation to the effect known as the inverse relaxation effect.

  9. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres.

    PubMed Central

    Irving, M

    1993-01-01

    1. Muscle birefringence, the difference between the refractive indices of light polarized parallel and perpendicular to the muscle fibre axis, was measured at 3 degrees C in intact single fibres isolated from frog muscle. Resting birefringence was 2.20 +/- 0.02 x 10(-3) (mean +/- S.E.M., n = 44) at sarcomere length 2.4-2.7 microns and 2.35 +/- 0.03 x 10(-3) (n = 19) at 3.5-3.8 microns. 2. Birefringence decreased during isometric twitch or tetanic contractions. The peak change in a twitch at sarcomere length 2.6 microns, determined by two independent methods, was 0.150 +/- 0.017 x 10(-3) (mean +/- S.E.M., n = 6). The corresponding value after 0.4 s of tetanic stimulation was 0.167 +/- 0.012 x 10(-3) (n = 6). 3. The birefringence change had a shorter latency than tension and reached its half-maximum value earlier than tension. The difference in time to half-maximum in tetani was 11.5 +/- 1.3 ms (mean +/- S.E.M., n = 6) at 3 degrees C. After stimulation birefringence recovered to its pre-stimulus baseline more slowly than tension. 4. The birefringence decrease after 0.4 s of tetanic stimulation was linearly related to the expected degree of overlap between actin and myosin filaments in the sarcomere length range 2.6-3.6 microns. The amplitude of the birefringence decrease at full filament overlap (sarcomere length 2.2 microns) was estimated to be 0.235 +/- 0.015 x 10(-3). 5. Birefringence changes associated with shortening steps of 0.9% fibre length at sarcomere length 2.6 microns exhibited four phases corresponding to those of the tension transient. There was no consistent birefringence change during the length step itself. During the rapid tension recovery birefringence increased by 0.014 +/- 0.001 x 10(-3) (n = 3), measured from the end of the length step to 2 ms later. Birefringence continued to increase as tension recovery slowed, reaching a peak about 10 ms after the step, then recovered with a rate similar to that of the final tension recovery. 6. These

  10. Dielectric relaxation and birefringence study of 7.O5O.7 dimeric liquid crystal compound

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debanjan; Paul-Choudhury, Sandip; Alapati, Parameswara Rao; Bhattacharjee, Ayon

    2016-05-01

    Measurement of dielectric relaxation and birefringence phenomenon of dimeric liquid crystal compound with the dependence of temperature was reported in this paper. Homogeneous (HG) and homeotropic (HT) alignment of the cell are introduced to investigate the dielectric relaxation, activation energy and birefringence. Cole-Cole plots analyzed the dielectric relaxation of the dimeric compound. The observed Cole-Cole plots were semi-circular, and the relaxation mechanism obeys the non-Debye type of relaxation behaviour. Slater's perturbation equations have been used to analysis the activation energy of the compound. The birefringence of the compound has positively anisotropy and thin prism mechanism was used to study the anisotropy of the compound.

  11. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing

    SciTech Connect

    Krasinski, J.S.; Band, Y.B.; Chin, T.; Heller, D.F.; Morris, R.C.; Papanestor, P.

    1989-04-15

    Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

  12. Highly Birefringent Microstructure Fiber with Zero Dispersion Wavelength at 0.64 Micrometer

    NASA Astrophysics Data System (ADS)

    Konar, Swapan; Ghorai, Swapan K.; Bhattacharya, Rakhi

    In this article, we have designed a microstructure fiber, which consists of elliptical air holes at the core region. We have investigated its optical properties using finite difference time domain method. The fundamental mode of the proposed microstructure fiber can induce very high birefringenceE It has been realized that the value of birefringence is mainly decided by the shape of the air holes present in the first and second rings. The zero dispersion wavelengths of both fast and slow axes have been shifted to 0E64 micrometer. The proposed birefringent microstructure fiber may be useful in optical communication and sensors.

  13. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence

    NASA Astrophysics Data System (ADS)

    Pusch, Tobias; La Tona, Eros; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.; Michalzik, Rainer

    2017-04-01

    The birefringence splitting in vertical-cavity surface-emitting lasers offers an opportunity for spintronic-based high-frequency operation. By means of coupling of the carrier spin in the active region with the photons of the laser mode, the device can be excited to oscillations in the degree of circular polarization with a frequency corresponding to the birefringence splitting. On-chip frequency tunability of those oscillations is desirable for future applications. By asymmetric current-induced heating using the elasto-optic effect, we demonstrate a reversible tuning of the birefringence splitting of 45 GHz with less than 3 dB output power penalty.

  14. Development of birefringence imaging analysis method for observing cubic crystals in various phase transitions.

    PubMed

    Manaka, Hirotaka; Yagi, Genta; Miura, Yoko

    2016-07-01

    Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth.

  15. Development of birefringence imaging analysis method for observing cubic crystals in various phase transitions

    NASA Astrophysics Data System (ADS)

    Manaka, Hirotaka; Yagi, Genta; Miura, Yoko

    2016-07-01

    Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth.

  16. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  17. Hong-Ou-Mandel interference experiment of two independent heralded single photon sources in an optical fiber with birefringence

    NASA Astrophysics Data System (ADS)

    Ma, Tianyi; Zhou, Qiang; Zhang, Wei; Huang, Yidong; Cui, Xiaowei; Lu, Mingquan; Feng, Zhenming

    2012-11-01

    Single photon sources (SPSs) play important roles in quantum communication and quantum information processing. Spontaneous four wave mixing (SFWM) in optical fibers provides a promising way to realize practical heralded single photon sources (HSPSs), since it is compatible with current techniques of optical communications. In this paper, two independent HSPSs at 1.5μm band are realized in one polarization maintaining dispersion shifted fiber (PM-DSF) utilizing its large birefringence. When pulsed pump light passes through an optical fiber, two kinds of SFWM will take place simultaneously. One is scalar processes, in which two annihilated pump photons and generated photon pair are all polarized along the same fiber polarization axis. The other is vector processes, in which two annihilated pump photons are polarized along different fiber polarization axes, either for the two photons of the generated pair. In the PM-DSF, the large birefringence generates obvious walk-off effect on the two pump polarization components, which leads to an effective suppression of the vector processes. Hence, by proper pump polarization, correlated photon pairs (CPPs) with different polarization directions can be generated independently by the two scalar processes, which can be used to realize two independent HSPSs. The indistinguishability of the heralded photons generated by the two independent sources is demonstrated by an experiment of Hong-Ou-Mandel (HOM) interference. Using a fiber coupler as the beam splitter, a visibility of HOM dip of 76% is achieved, showing their potential on quantum information.

  18. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  19. Birefringence measurement of glass ion-exchanged waveguides: burying depth or cover layer influence

    NASA Astrophysics Data System (ADS)

    Jamon, D.; Garayt, J. P.; Jordan, E.; Parsy, F.; Ghibaudo, E.; Neveu, S.; Broquin, J.-E.; Royer, F.

    2016-02-01

    This paper deals with an experimental non-destructive technique for the measurement of polarization behavior of integrated optical waveguides. It is based on a high resolution polarimeter associated to an ellipsometric-type calibration which allows determining the full state of polarization of the output light. A magneto-optic perturbation is also added to generate TE/TM mode beating, whose spatial period is directly linked to the modal TE/TM birefringence. This equipment is first qualified by the measurement of modal birefringence in totally or partially buried ion exchanged waveguides. The results show that the value of the birefringence varies as a function of the diffusion aperture width or with the burying depth. By adding a magneto-optical cover layer, consisting in magnetic nanoparticles doped silica matrix obtained by a sol gel process 1, we evidence a huge increase of the beating magnitude and a decrease of the modal birefringence.

  20. Quantitative assessment of birefringent skin structures in scattered light confocal imaging using radially polarized light.

    PubMed

    Varghese, Babu; Verhagen, Rieko; Hussain, Altaf; Boudot, Clemence; Tai, Qiangqiang; Ding, Siqi; Holz, Jasmin Alexandra; Uzunbajakava, Natallia Eduarda

    2013-09-17

    The polarization characteristics of birefringent tissues could be only partially obtained using linearly polarized light in polarization sensitive optical imaging. Here we analyze the change in polarization of backscattered light from birefringent structures versus the orientations of the incident polarizations using linearly, circularly and radially polarized light in a cross-polarized confocal microscope. A spatially variable retardation plate composed of eight sectors of λ/2 wave plates was used to transform linearly polarized light into a radially polarized light. Based on the experimental data obtained from ex-vivo measurements on human scalp hairs and in-vivo measurements on hair and skin, we exemplify that the underestimation of the birefringence content resulting from the orientation related effects associated with the use of linearly polarized light for imaging tissues containing wavy birefringent structures could be minimized by using radially polarized light.

  1. Quantitative Assessment of Birefringent Skin Structures in Scattered Light Confocal Imaging Using Radially Polarized Light

    PubMed Central

    Varghese, Babu; Verhagen, Rieko; Hussain, Altaf; Boudot, Clemence; Tai, Qiangqiang; Ding, Siqi; Holz, Jasmin Alexandra; Uzunbajakava, Natallia Eduarda

    2013-01-01

    The polarization characteristics of birefringent tissues could be only partially obtained using linearly polarized light in polarization sensitive optical imaging. Here we analyze the change in polarization of backscattered light from birefringent structures versus the orientations of the incident polarizations using linearly, circularly and radially polarized light in a cross-polarized confocal microscope. A spatially variable retardation plate composed of eight sectors of λ/2 wave plates was used to transform linearly polarized light into a radially polarized light. Based on the experimental data obtained from ex-vivo measurements on human scalp hairs and in-vivo measurements on hair and skin, we exemplify that the underestimation of the birefringence content resulting from the orientation related effects associated with the use of linearly polarized light for imaging tissues containing wavy birefringent structures could be minimized by using radially polarized light. PMID:24048342

  2. Electric Birefringence: A Simple Apparatus for Determining Physical Parameters of Macromolecules and Colloids.

    ERIC Educational Resources Information Center

    Trimm, Harold H.; And Others

    1984-01-01

    Describes a birefringence apparatus that can be assembled for less than $100 and can be used to measure both the dimensions and dipole moments of many macromolecules. Details are given of the construction and manipulation of the apparatus. (JN)

  3. Quantum-electrodynamical birefringence vanishing in a thermal relativistic pair plasma

    PubMed Central

    Huang, Y. S.

    2015-01-01

    Quantum electrodynamical (QED) birefringence in a thermal relativistic pair plasma with the presence of the strong crossed field: , is proposed and investigated. We clarify the coupling relationship and competition between the QED effect and the plasma collective effect and find the critical condition that makes the birefringence vanish. In a relative weak electromagnetic field, the birefringence is dominated by the coupling of the QED-effect, the collective effect and the drift effect. In a relative strong electromagnetic field, we obtain the formulations stating the competition between the QED effect and the collective effect and then the critical conditions so that they are canceled with each other and the birefringence vanishes. With our results, a new possible scheme is proposed to estimate the thickness of the magnetosphere in a millisecond pulsar and the plasma density of a pulsar, if the magnetic field is known beforehand. PMID:26522493

  4. Electric Birefringence: A Simple Apparatus for Determining Physical Parameters of Macromolecules and Colloids.

    ERIC Educational Resources Information Center

    Trimm, Harold H.; And Others

    1984-01-01

    Describes a birefringence apparatus that can be assembled for less than $100 and can be used to measure both the dimensions and dipole moments of many macromolecules. Details are given of the construction and manipulation of the apparatus. (JN)

  5. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pierce, Mark C.; Strasswimmer, John; Park, B. H.; Cense, Barry; de Boer, Johannes F.

    2004-07-01

    Optical coherence tomography enables cross-sectional imaging of tissue structure to depths of around 1.5 mm, at high-resolution and in real-time. Incorporation of polarization-sensitivity enables the birefringent properties of tissues to be visualized and quantified. We present polarization-sensitive optical coherence tomography images and quantitative birefringence analysis of in vivo human skin. From measurements on a sample of 5 human volunteers, mean double-pass phase retardation rates of 0.340 +/- 0.143, 0.250 +/- 0.076 and 0.592 +/- 0.142°/μm were obtained for normal skin at the dorsal hand, temple and lower back regions respectively. Compared to these values measured in normal skin, a reduction in birefringence was observed and quantified in human skin following thermal injury. Conversely, increased birefringence was consistently measured at skin sites following wound healing and repair.

  6. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.

    2016-07-01

    A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.

  7. Measurement of modal birefringence in optical waveguides based on the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhong, Ze Bing; Fu, Zhi Cheng; Shi, Jian Dong; Tan, Qi Long; Huang, Wo Bin; Huang, Xu Guang

    2014-05-01

    A method for measuring the birefringence in planar waveguide circuits is theoretically proposed and validated. The method is based on the Mach-Zehnder interference and by measuring the spectral shift due to orthogonal polarization states. The birefringence of a silica waveguide is measured to be 2.33 × 10-4 at nearby 1550 nm. In addition, the birefringence variations with the wavelength and its dependence on the external stress are investigated with the proposed method experimentally. The results in measuring birefringence demonstrate a high accuracy with the order of 10-5, a wide dynamic range from 10-5 to 10-3, and a characteristic of multi-wavelength evaluation.

  8. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy.

    PubMed

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-01

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10(-8) and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

  9. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy

    SciTech Connect

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-15

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10{sup −8} and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

  10. Birefringence in the transparency region of GaAs/AlAs multiple quantum wells

    SciTech Connect

    Sirenko, A.A.; Etchegoin, P.; Fainstein, A.; Eberl, K.; Cardona, M.

    1999-09-01

    Birefringence measurements for in-plane propagation of light below the absorption edge in GaAs/AlAs multiple quantum wells (MQW{close_quote}s) are reported for different well/barrier widths. A remarkable drop in the low-frequency limit of the birefringence has been observed for MQW structures with small periods and ascribed to the presence of local fields. The temperature dependence of the birefringence is also studied and complementary results in InP quantum dot structures are also presented. The latter exhibit a strong resonant birefringence, which can be explained by the reduced dimensionality in the joint density of states for optical transitions in the dots. {copyright} {ital 1999} {ital The American Physical Society}

  11. Approach for fast numerical propagation of uniformly polarized random electromagnetic fields in dispersive linearly birefringent systems.

    PubMed

    Makowski, Piotr L; Domanski, Andrzej W

    2013-09-01

    An efficient simulation technique is proposed for computing propagation of uniformly polarized statistically stationary fields in linear nonimage-forming systems that includes dispersion of linear birefringence to all orders. The method is based on the discrete-time Fourier transformation of modified frequency profiles of the spectral Stokes parameters. It works under the condition that all (linearly) birefringent sections present in the system are described by the same phase birefringence dispersion curve, being a monotonic function of the optical frequency within the bandwidth of the light. We demonstrate the technique as a supplement for the Mueller-Stokes matrix formalism extended to any uniformly polarized polychromatic illumination. Accuracy of its numerical implementation has been verified by using parameters of a Lyot depolarizer made of a highly birefringent and dispersive monomode photonic crystal fiber.

  12. Modeling Interferometric Structures with Birefringent Elements: A Linear Vector-Space Formalism

    DTIC Science & Technology

    2013-11-12

    Coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 V APPLICATION ...24 Application to birefringent propagation and optical coupling . . . . . . . . . . . . . 26 Conclusion...in digital optical communications, which in- creasingly use phase modulation to avoid optical impairments[4, 5]. Evolving system metrics will

  13. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  14. Light-induced rotations of chiral birefringent microparticles in optical tweezers

    PubMed Central

    Donato, M. G.; Mazzulla, A.; Pagliusi, P.; Magazzù, A.; Hernandez, R. J.; Provenzano, C.; Gucciardi, P. G.; Maragò, O. M.; Cipparrone, G.

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  15. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  16. Investigating compression failure mechanisms in composite laminates with a transparent fiberglass-epoxy birefringent materials

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Williams, J. G.

    1984-01-01

    The response and failure of a + or - 45s class laminate was studied by transparent fiberglass epoxy composite birefringent material. The birefringency property allows the laminate stress distribution to be observed during the test and also after the test if permanent residual stresses occur. The location of initial laminate failure and of the subsequent failure propagation are observed through its transparency characteristics. Experimental results are presented.

  17. Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses.

    PubMed

    Papazoglou, Dimitris G; Loulakis, Michael J

    2006-05-15

    Birefringent computer-generated holograms are fabricated in bulk fused silica by tight focusing of infrared femtosecond laser pulses. The polarization properties of the elliptically polarized diffracted light are in excellent agreement with the theoretical model. We experimentally demonstrate that for such birefringent structures the signal-to-noise ratio increases by approximately 9 dB when polarization filtering is used to suppress the undiffracted beam.

  18. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM.

    PubMed

    NAKAJIMA, H; ALLEN, R D

    1965-05-01

    Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.

  19. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    SciTech Connect

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  20. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Nakajima, Hiromichi; Allen, Robert D.

    1965-01-01

    Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light. PMID:14287186

  1. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall.

    PubMed

    Ji, Hyo Jin; Park, Se-Hee; Cho, Kyung-Mo; Lee, Suk Keun; Kim, Jin Woo

    2017-05-01

    Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA.

  2. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall

    PubMed Central

    2017-01-01

    Objectives Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. Materials and Methods The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Results Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. Conclusions In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA. PMID:28503476

  3. Birefringence of the central cornea in children assessed with scanning laser polarimetry.

    PubMed

    Irsch, Kristina; Shah, Ashesh A

    2012-08-01

    Corneal birefringence is a well-known confounding factor with all polarization-sensitive technology used for retinal scanning and other intraocular assessment. It has been studied extensively in adults, but little is known regarding age-related differences. Specifically, no information is available concerning corneal birefringence in children. For applications that are geared towards children, such as retinal birefringence scanning for strabismus screening purposes, it is important to know the expected range of both corneal retardance and azimuth in pediatric populations. This study investigated central corneal birefringence in children (ages three and above), by means of scanning laser polarimetry (GDx-VCC™, Carl Zeiss Meditec, Inc.). Children's measures of corneal retardance and azimuth were compared with those obtained in adults. As with previous studies in adults, corneal birefringence was found to vary widely in children, with corneal retardance ranging from 10 to 77 nm, and azimuth (slow axis) ranging from -11° to 71° (measured nasally downward). No significant differences in central corneal birefringence were found between children and adults, nor were significant age-related differences found in general. In conclusion, establishing knowledge of the polarization properties of the central cornea in children allows better understanding, exploitation, or bypassing of these effects in new polarization-sensitive pediatric ophthalmic applications.

  4. Birefringence of the central cornea in children assessed with scanning laser polarimetry

    NASA Astrophysics Data System (ADS)

    Irsch, Kristina; Shah, Ashesh A.

    2012-08-01

    Corneal birefringence is a well-known confounding factor with all polarization-sensitive technology used for retinal scanning and other intraocular assessment. It has been studied extensively in adults, but little is known regarding age-related differences. Specifically, no information is available concerning corneal birefringence in children. For applications that are geared towards children, such as retinal birefringence scanning for strabismus screening purposes, it is important to know the expected range of both corneal retardance and azimuth in pediatric populations. This study investigated central corneal birefringence in children (ages three and above), by means of scanning laser polarimetry (GDx-VCC™, Carl Zeiss Meditec, Inc.). Children's measures of corneal retardance and azimuth were compared with those obtained in adults. As with previous studies in adults, corneal birefringence was found to vary widely in children, with corneal retardance ranging from 10 to 77 nm, and azimuth (slow axis) ranging from -11° to 71° (measured nasally downward). No significant differences in central corneal birefringence were found between children and adults, nor were significant age-related differences found in general. In conclusion, establishing knowledge of the polarization properties of the central cornea in children allows better understanding, exploitation, or bypassing of these effects in new polarization-sensitive pediatric ophthalmic applications.

  5. Effect of laser pulse propagation on ultrafast magnetization dynamics in a birefringent medium

    NASA Astrophysics Data System (ADS)

    de Jong, J. A.; Kalashnikova, A. M.; Pisarev, R. V.; Balbashov, A. M.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th

    2017-04-01

    Light propagation effects can strongly influence the excitation and the detection of laser-induced magnetization dynamics. We investigated experimentally and analytically the effects of crystallographic linear birefringence on the excitation and detection of ultrafast magnetization dynamics in the rare-earth orthoferrites (Sm0.5Pr0.5)FeO3 and (Sm0.55Tb0.45)FeO3, which possess weak and strong linear birefringence, respectively. Our finding is that the effect of linear birefringence on the result of a magneto-optical pump-probe experiment strongly depends on the mechanism of excitation. When magnetization dynamics, probed by means of the Faraday effect, is excited via a rapid, heat-induced phase transition, the measured rotation of the probe pulse polarization is strongly suppressed due to the birefringence. This contrasts with the situation for magnetization dynamics induced by the ultrafast inverse Faraday effect, where the corresponding probe polarization rotation values were larger in the orthoferrite with strong linear birefringence. We show that this striking difference results from an interplay between the polarization transformations experienced by pump and probe pulses in the birefringent medium.

  6. Fluorescence spectroscopy and birefringence of molecular changes in maturing rat tail tendon.

    PubMed

    Korol, Renee M; Finlay, Helen M; Josseau, Melanie J; Lucas, Alexandra R; Canham, Peter B

    2007-01-01

    Tissue remodeling during maturation, wound healing, and response to vascular stress involves molecular changes of collagen and elastin in the extracellular matrix (ECM). Two optical techniques are effective for investigating these changes--laser-induced fluorescence (LIF) spectroscopy and polarizing microscopy. LIF spectroscopy integrates the signal from both elastin and collagen cross-linked structure, whereas birefringence is a measure of only collagen. Our purpose is (1) to evaluate the rat tail tendon (RTT) spectroscopy against data from purified extracted protein standards and (2) to correlate the two optical techniques in the study of RTT and skin. Spectra from tissue samples from 27 male rats and from extracted elastin and collagen were obtained using LIF spectroscopy (357 nm). Birefringence was measured on 5-mum histological sections of the same tissue. Morphometric analysis reveals that elastin represents approximately 10% of tendon volume and contributes to RTT fluorescence. RTT maximum fluorescence emission intensity (FEI(max)), which includes collagen and elastin, increases with animal weight (R(2)=0.64). Birefringence, when plotted against weight, increases to a plateau (nonlinear correlation: R(2)=0.90), tendon having greater birefringence than skin. LIF spectroscopy and collagen fiber birefringence are shown to provide complementary measurements of molecular structure (tendon birefringence versus FEI(max) at R(2)=0.60).

  7. Research on the detection system of liquid concentration base on birefringence light transmission method

    NASA Astrophysics Data System (ADS)

    Li, Tianze; Zhang, Xia; Hou, Luan; Jiang, Chuan

    2010-10-01

    The characteristics of the beam transmitting in the optical fiber and the liquid medium are analyzed in this paper. On this basis, a new type of semiconductor optical position sensitive detector is used for a receiving device, a light transmission method of birefringence is presented,and a set of opto-electrical detection system which is applied to detect liquid concentration is designed. The system is mainly composed of semiconductor lasers,optical systems, Psd signal conditioning circuit, Single-chip System, A/D conversion circuit and display circuit. Through theoretical analysis and experimental simulations, the accuracy of this system has been verified. Some main factors affecting the test results are analyzed detailedly in this paper. The experiments show that the temperature drift and the light intensity have a very small impact on this system. The system has some advantages, such as the simple structure, high sensitivity, good stability, fast response time, high degree of automation, and so on. It also can achieve the real-time detection of liquid concentration conveniently and accurately. The system can be widely applied in chemical, food, pharmacy and many other industries. It has broad prospects of application.

  8. Temperature effect on a tilted birefringent filter in a tunable laser: A limitation for Raman spectroscopy

    SciTech Connect

    Burneau, A.; Humbert, B. )

    1989-12-15

    The temperature effect on the wave number selected by a tilted birefringent filter inside a dye laser cavity is measured and theoretically discussed. For a quartz plate at Brewster angle, the wave-number shift is observed between 1.1 and 1.35 cm{sup {minus}1} K{sup {minus}1} according to the angle between the crystal optical axis and the incident plane. A thorough calculation is fully in agreement with these results: the main part of the shift is related to the variation of refractive indices, but both the thickness expansion and the wavelength disperson of indices moderate the temperature effect. The observed shift is still larger than the width at half height of the exciting line necessary for Raman spectroscopy. A filter with three plates whose thicknesses are in ratio 1:4:16, which transmits a band of satisfactory width, cannot be used however if a rigorous temperature stability is not achieved. A practical solution is found by combining a 1:4 filter and a Fabry--Perot etalon.

  9. Magnetic birefringence study of isotropic suspensions of tobacco mosaic virus

    NASA Astrophysics Data System (ADS)

    Photinos, P.; Rosenblatt, C.; Schuster, T. M.; Saupe, A.

    1987-12-01

    The magnetic field induced birefringence in isotropic aqueous suspensions of tobacco mosaic virus (TMV) was measured as a function of temperature and concentration in high magnetic fields (100 kG). The temperature range was between 15 and 50 °C and the concentration range was between 4 and 20 mg/cm3. We find that the Cotton-Mouton constant (C) increases with decreasing temperature by 15%-20% over the entire range and extrapolates to infinity at a finite temperature of 110 to 150 K. At constant temperature, the measured ρ/C(ρ=number of TMV particles per cm3 of suspension) can be expanded in a power series of ρ, where the coefficients are expressed by the irreducible cluster integrals. At 20 °C the experimental values can be fitted to the linear form: ρ/λC=(2.09×1030-1.35×1015ρ)G2/cm3. For rigid cylindrical particles with l=3000 Å and d=180 Å, and using the rigid hard particle interaction model, we find for the first order coefficient 0.62×1015, i.e., a significant deviation for the rigid hard-rod model. This deviation is also indicated by the variation of C with temperature. We discuss the results on TMV and of similar measurements on phage fd in terms of the interparticle interaction and rigidity of the particles.

  10. Extension of the hole-drilling method to birefringent composites

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1982-01-01

    A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  11. Four-photon homoclinic instabilities in nonlinear highly birefringent media

    SciTech Connect

    De Angelis, C.; Santagiustina, M. ); Trillo, S. )

    1995-01-01

    We investigate the nonlinear dynamics of a nonconventional (i.e., pumped by a mixed-mode wave) modulational instability in a highly birefringent nonlinear dispersive medium. We find that the depleted regime of propagation beyond the linearized stage can be described analytically in a proper region of the parameter space. In this case the governing coupled nonlinear Schroedinger equations, which are not integrable, are reduced to an integrable one-dimensional nonlinear oscillator that rules the propagation of the pump wave and a single sideband pair. This approach permits us to predict the existence of stable and unstable manifolds of time-periodic solutions of the coupled nonlinear Schroedinger equations. The nonlinear dynamics governed by these equations mimics the period-doubling instabilities associated with the homoclinic separatrices in the reduced phase space. Moreover, our approach is also capable of describing the onset of spatial chaos that occurs when the parameter values are such that the additional degree of freedom represented by the conjugated sidebands becomes effective.

  12. Measurement of birefringence for optical recording disk substrates

    NASA Technical Reports Server (NTRS)

    Fu, Hong; Sugaya, S.; Erwin, J. K.; Goodman, T.; Yan, Z.; Tang, W. J.; Mansuripur, M.

    1993-01-01

    The birefringence of bare and coated substrates for magneto-optical recording is experimentally investigated using ellipsometry at the wavelengths of 632.8 nm and 780 nm. The rotation and ellipticity of the polarization state of the reflected or transmitted light is measured for different incident angles and different orientations of the incident linear polarization. The measured data is then fitted by a computer program which solves the Maxwell equations for the plane-wave propagation in a multilayer structure and minimizes the error between the measured and calculated data by adjusting the unknown parameters of the multilayer. This approach enables us to determine orientations of the three principal axes in the substrate and the corresponding refractive indices. A special feature of our ellipsometers is that a glass hemisphere is placed in contact with the substrate, which eliminates the refraction of the incident light and enables a maximum propagation angle of 70 degrees (with respect to the normal) in the substrate. This increases the sensitivity of the measurement. Certain anomalies were observed, which we believe are associated with the presence of grooves on these substrates.

  13. Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking.

    PubMed

    Gong, Peijun; Chin, Lixin; Es'haghian, Shaghayegh; Liew, Yih Miin; Wood, Fiona M; Sampson, David D; McLaughlin, Robert A

    2014-12-01

    We demonstrate the in vivo assessment of human scars by parametric imaging of birefringence using polarization-sensitive optical coherence tomography (PS-OCT). Such in vivo assessment is subject to artifacts in the detected birefringence caused by scattering from blood vessels. To reduce these artifacts, we preprocessed the PS-OCT data using a vascular masking technique. The birefringence of the remaining tissue regions was then automatically quantified. Results from the scars and contralateral or adjacent normal skin of 13 patients show a correspondence of birefringence with scar type: the ratio of birefringence of hypertrophic scars to corresponding normal skin is 2.2 ± 0.2 (mean ± standard deviation ), while the ratio of birefringence of normotrophic scars to normal skin is 1.1 ± 0.4 . This method represents a new clinically applicable means for objective, quantitative human scar assessment.

  14. Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Chin, Lixin; Es'haghian, Shaghayegh; Liew, Yih Miin; Wood, Fiona M.; Sampson, David D.; McLaughlin, Robert A.

    2014-12-01

    We demonstrate the in vivo assessment of human scars by parametric imaging of birefringence using polarization-sensitive optical coherence tomography (PS-OCT). Such in vivo assessment is subject to artifacts in the detected birefringence caused by scattering from blood vessels. To reduce these artifacts, we preprocessed the PS-OCT data using a vascular masking technique. The birefringence of the remaining tissue regions was then automatically quantified. Results from the scars and contralateral or adjacent normal skin of 13 patients show a correspondence of birefringence with scar type: the ratio of birefringence of hypertrophic scars to corresponding normal skin is 2.2±0.2 (mean±standard deviation), while the ratio of birefringence of normotrophic scars to normal skin is 1.1±0.4. This method represents a new clinically applicable means for objective, quantitative human scar assessment.

  15. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  16. Solar-assisted hydrogen generation by photoelectrocatalysis: electric birefringence and ellipsometric spectroscopy of the semiconductor/electrolyte interface. Annual report 3 Sep 82-31 Aug 83

    SciTech Connect

    Ang, P.G.P.; St. John, M.R.; Sammells, A.F.

    1983-09-01

    The project goals are to apply and develop electro-optical techniques (electric birefringence and ellipsometric spectroscopy) for in-situ investigation of modified and unmodified photoelectrode/liquid junctions. This information will be used in conjunction with other spectroscopic and photoelectro-chemical techniques to delineate those features, necessary at this interface, for the achievement of high photo-electrolysis efficiencies. The thorough understanding obtained for both the photoelectrode and its liquid junction with aqueous electrolytes will be directed toward the development of high-efficiency photo-electrochemical cells for hydrogen generation.

  17. Exposure and compositional factors that influence polarization induced birefringence in silica glass

    NASA Astrophysics Data System (ADS)

    Allan, Douglas C.; Mlejnek, Michal; Neukirch, Ulrich; Smith, Charlene M.; Smith, Frances M.

    2007-03-01

    Silica glass exhibits a permanent anisotropic response, referred to as polarization induced birefringence (PIB), when exposed to short wavelength, polarized light. The magnitude of the PIB has been empirically correlated with the OH content of the glass. Our recent studies pertaining to PIB have focused on careful characterization of PIB, with particular emphasis on understanding all of the contributions to the measured birefringence signal and finally extracting only that signal associated with birefringence arising from exposure to a polarized light beam. We will demonstrate that a critical contributor to the total birefringence signal is birefringence that comes from exposure beam inhomogeneities. After subtracting beam profile effects we are able to show that PIB is proportional to the OH content of the glass. Polarized infrared (IR) measurements were performed on glasses that developed PIB as a consequence of exposure to polarized 157-nm light. These studies reveal that there is preferential bleaching of a specific hydroxyl (OH) species in the glass with OH aligned parallel to the incident polarization undergoing more bleaching than those perpendicular. Further, we observe a very strong correlation between the measured PIB of these samples and the anisotropic bleaching. From these studies we propose a mechanism that can explain the role of hydroxyl in PIB.

  18. Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals.

    PubMed

    Mao, Nannan; Wu, Juanxia; Han, Bowen; Lin, Jingjing; Tong, Lianming; Zhang, Jin

    2016-05-01

    The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  20. At-sea Validation of a Birefringence Method for Determining PIC Concentrations in Seawater

    NASA Astrophysics Data System (ADS)

    Guay, C. K.; Bishop, J. K.

    2001-12-01

    We have previously described a spectrophotometer-based method for making optical measurements of particulate inorganic carbon (PIC) in seawater. This method, based on the extreme birefringence of calcium carbonate (CaCO3) relative to other major components of marine particulate matter, was developed in the laboratory using sample suspensions prepared from calcareous marine sediment material and varying amounts of non-birefringent diatomaceous earth. Here we report the first successful measurements of birefringence signals in natural seawater samples, which were obtained during a recent cruise to the North Pacific off the California coast. The spectrophotometer-based method was used onboard to measure PIC in samples collected from Niskin bottle casts in a variety of environments (nearshore to open ocean, eutrophic to oligotrophic). These samples contained a diverse mixture of particles, including calcareous, siliceous and organic material. Birefringence signals clearly above the detection level were observed in several samples, with the strongest signals occurring in productive surface waters off Point Concepcion. The spectrophotometer-based method was validated against PIC concentrations determined by chemical analysis of particulate matter collected by filtration of the Niskin bottle samples and from large-volume (1000's of L) in situ filtration performed immediately after the Niskin casts. In addition, these data were compared with in situ birefringence measurements made using a prototype profiling PIC sensor deployed on the rosette during the Niskin casts.

  1. Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography

    PubMed Central

    Sugiyama, Satoshi; Hong, Young-Joo; Kasaragod, Deepa; Makita, Shuichi; Uematsu, Sato; Ikuno, Yasushi; Miura, Masahiro; Yasuno, Yoshiaki

    2015-01-01

    A clinical grade prototype of posterior multifunctional Jones matrix optical coherence tomography (JM-OCT) is presented. This JM-OCT visualized depth-localized birefringence in addition to conventional cumulative phase retardation imaging through local Jones matrix analysis. In addition, it simultaneously provides a sensitivity enhanced scattering OCT, a quantitative polarization uniformity contrast, and OCT-based angiography. The probe beam is at 1-μm wavelength band. The measurement speed and the depth-resolution were 100,000 A-lines/s, and 6.6 μm in tissue, respectively. Normal and pathologic eyes are examined and several clinical features are revealed, which includes high birefringence in the choroid and lamina cribrosa, and birefringent layered structure of the sclera. The theoretical details of the depth-localized birefringence imaging and conventional phase retardation imaging are formulated. This formulation indicates that the birefringence imaging correctly measures a depth-localized single-trip phase retardation of a tissue, while the conventional phase retardation can provide correct single-trip phase retardation only for some specific types of samples. PMID:26713208

  2. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  3. High average power pulsed phase conjugate laser with birefringence correction. Revision 1

    SciTech Connect

    Bowers, M.W.; Hankla, A.K.; Jacobson, G.F.

    1994-05-01

    Nd:YAG rod lasers have been plagued with the inability to go to high average powers because of thermally induced birefringence and focusing. Several methods have been employed to correct for the birefringence and the thermal aberrations of such systems, but place stringent constraints on the laser heads and/or the system alignment. They have developed a scalable Nd: YAG master oscillator/power amplifier (MOPA) laser system which employs a novel phase conjugation scheme to correct both for the material and thermal distortions as well as the thermal birefringence in double pass amplifier systems. This method reduces the double pass depolarization from 42% to less than 2% and is easy to align.

  4. Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography

    DOEpatents

    De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart

    2001-01-01

    Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.

  5. Application of phase-to-amplitude conversion technique to linear birefringence measurements.

    PubMed

    Teng, Hui-Kang; Chou, Chien; Chang, Chia-Nan; Wu, Hsieh-Ting

    2003-04-01

    A novel technique that measures the linear birefringence of crystal quartz within the configuration of a Soliel-Babinet compensator (SBC) is proposed. A characteristic of this technique is that phase retardation introduced by quartz is amplitude modulation (AM) instead of phase modulation (PM). The linear birefringence is measured regardless of the azimuth angle of the SBC and the orientation of the linear polarization laser beam. Compared with the single-wedge method, the SBC is similar to a parallel plate that allows for a wider range of refracttive index of the test material to be measured. This proposed method uses a conventional amplitude demodulation method in conjunction with an optical heterodyne technique and a bandpass filter to produce a better signal-to-noise ratio. Although the SBC configuration is more complex than a single element, the independence of azimuth angle and the orientation of the linear polarized laser beam can enhance the sensitivity of the linear birefringence measurement.

  6. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Nancy Meng Ying; Juan Juan Hu, Dora; Shum, Perry Ping; Wu, Zhifang; Li, Kaiwei; Huang, Tianye; Wei, Lei

    2016-06-01

    Optical fiber based surface plasmon resonance (SPR) sensors are favored by their high sensitivity, compactness, remote and in situ sensing capabilities. Microstructured optical fibers (MOFs) possess microfluidic channels extended along the entire length right next to the fiber core, thereby enabling the infiltrated biochemical analyte to access the evanescent field of guided light. Since SPR can only be excited by the polarization vertical to metal surface, external perturbation could induce the polarization crosstalk in fiber core, thus leading to the instability of sensor output. Therefore for the first time we analyze how the large birefringence suppresses the impact of polarization crosstalk. We propose a high-birefringent MOF based SPR sensor with birefringence larger than 4 × 10-4 as well as easy infiltration of microfluidic analyte, while maintaining sensitivity as high as 3100 nm/RIU.

  7. En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chin, Lixin; Yang, Xiaojie; McLaughlin, Robert A.; Noble, Peter B.; Sampson, David D.

    2013-06-01

    A technique for generating en face parametric images of tissue birefringence from scans acquired using a fiber-based polarization-sensitive optical coherence tomography (PS-OCT) system utilizing only a single-incident polarization state is presented. The value of birefringence is calculated for each A-scan in the PS-OCT volume using a quadrature demodulation and phase unwrapping algorithm. The algorithm additionally uses weighted spatial averaging and weighted least squares regression to account for the variation in phase accuracies due to varying OCT signal-to-noise-ratio. The utility of this technique is demonstrated using a model of thermally induced damage in porcine tendon and validated against histology. The resulting en face images of tissue birefringence are more useful than conventional PS-OCT B-scans in assessing the severity of tissue damage and in localizing the spatial extent of damage.

  8. Form birefringence induced in multicomponent glass by femtosecond laser direct writing.

    PubMed

    Cao, Jing; Mazerolles, Léo; Lancry, Matthieu; Solas, Denis; Brisset, François; Poumellec, Bertrand

    2016-06-15

    We demonstrate a new kind of form birefringence in lithium niobium silicate glass induced by femtosecond laser direct writing. By combining electron backscatter diffraction and transmission electron microscopy, we reveal a self-assembled nanostructure consisting of periodic phase change: nonlinear optical nanocrystals embedded in a network of "walls" in a vitreous phase. These "walls" are aligned perpendicular to the laser polarization direction. This self-organized nanostructure may successfully explain the origin of the laser-induced birefringence in this multicomponent glass quite differently from pure silica. These findings highlight a spectacular modification of glass, and enable construction of a high contrast three-dimensional refractive index and birefringent structures at the micrometer scale in multicomponent glasses.

  9. Birefringence effects in multi-core fiber: coupled local-mode theory.

    PubMed

    Macho, Andrés; García-Meca, Carlos; Fraile-Peláez, F Javier; Morant, Maria; Llorente, Roberto

    2016-09-19

    In this paper, we evaluate experimentally and model theoretically the intra- and inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media including temporal and longitudinal birefringent effects. Specifically, extensive experimental results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence modifies the intra- and inter-core crosstalk behavior in both linear and nonlinear optical power regimes. To gain theoretical insight into the experimental results, we introduce an accurate multi-core fiber model based on local modes and perturbation theory, which is derived from the Maxwell equations including both longitudinal and temporal birefringent effects. Numerical calculations based on the developed theory are found to be in good agreement with the experimental data.

  10. Cosmic birefringence fluctuations and cosmic microwave background B-mode polarization

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon; Liu, Guo-Chin; Ng, Kin-Wang

    2015-06-01

    Recently, BICEP2 measurements of the cosmic microwave background (CMB) B-mode polarization has indicated the presence of primordial gravitational waves at degree angular scales, inferring the tensor-to-scalar ratio of r = 0.2 and a running scalar spectral index, provided that dust contamination is low. In this Letter, we show that the existence of the fluctuations of cosmological birefringence can give rise to CMB B-mode polarization that fits BICEP2 data with r < 0.11 and no running of the scalar spectral index. When dust contribution is taken into account, we derive an upper limit on the cosmological birefringence, Aβ2 < 0.0075, where A is the amplitude of birefringence fluctuations that couple to electromagnetism with a coupling strength β.

  11. Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer.

    PubMed

    Réhault, J; Borrego-Varillas, R; Oriana, A; Manzoni, C; Hauri, C P; Helbing, J; Cerullo, G

    2017-02-20

    We introduce a birefringent interferometer for Fourier transform (FT) spectroscopy in the mid-infrared, covering the vibrational fingerprint region (5-10 µm, 1000-2000 cm-1), which is crucial for molecular identification. Our interferometer employs the crystal calomel (Hg2Cl2), which combines high birefringence (ne-no≈0.55) with a broad transparency range (0.38-20 µm). We adopt a design based on birefringent wedges, which is simple and compact and guarantees excellent delay accuracy and long-term stability. We demonstrate FTIR spectroscopy, with a frequency resolution of 3 cm-1, as well as two-dimensional IR (2DIR) spectroscopy. Our setup can be extended to other spectroscopic modalities such as vibrational circular dichroism and step-scan FT spectroscopy.

  12. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    SciTech Connect

    Reyes-Vera, Erick Gómez-Cardona, Nelson D.; Chesini, Giancarlo; Cordeiro, Cristiano M. B.; Torres, Pedro

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.

  13. Birefringence imaging of biological tissue by spectral domain polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jing, Zhijun; Fan, Chuanmao; Jiang, Jingying; Gong, Qiang; Ma, Zhenhe; Zhang, Fan; Yao, Jianquan; Wang, R. K.

    2007-02-01

    A spectral domain Polarization sensitive optical coherence tomography (SDPS-OCT) system has been developed to acquire depth images of biological tissues such as porcine tendon, rabbit eye. The Stocks vectors (I, Q, U, and V) of the backscattered light from the biological tissues have been reconstructed. Further, the phase retardation and polarization degree between the two orthogonal polarizing states have been computed. Reconstructed images, i.e. birefringence images, from Stokes parameters, retardation and polarization degree of biological tissues show significant local variations in the polarization state. And the birefringence contrast of biological tissue possibly changes by some outside force. In addition, the local thickness of the birefringence layer determined with our system is significant. The results presented show SDPS-OCT is a potentially powerful technique to investigate tissue structural properties on the basis of the fact that any fibrous structure with biological tissues can influence the polarization state of light.

  14. Collinear mixing of orthogonally polarized waves via polarization hole burning in birefringent Er-doped fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Hernández, E.; Plata, M.

    2005-01-01

    We report on experimental observation of transient mixing of two mutually coherent waves of orthogonal polarizations collinearly propagating through birefringent Er-doped fiber. The dynamic grating responsible for this two-wave mixing (TWM) process is formed via effect of polarization hole burning (PHB) and has spatial period equal to the beat length of the fiber birefringence. Experiments were performed at the laser wavelength 1549 nm in 2-m long Er-doped fiber with 2-cm birefringence beat length without optical pumping. We observed that the transient collinear TWM has amplitude and characteristic relaxation time close to those of transient PHB effect measured for linearly polarized light and similar to corresponding characteristics of transient TWM observed for counter-propagating orthogonally polarized waves in the same fiber.

  15. Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber.

    PubMed

    Müller, G M; Gu, X; Yang, L; Frank, A; Bohnert, K

    2016-05-16

    We investigate the various contributions to the temperature dependence of an interferometric fiber-optic current sensor employing spun highly-birefringent sensing fiber, in particular, the contributions from the fiber retarder at the fiber coil entrance, the spun fiber's birefringence, and the Faraday effect. We theoretically and experimentally demonstrate that an appropriately designed retarder inherently compensates the temperature dependence of the fiber birefringence and the Faraday effect. We demonstrate insensitivity to temperature to within ± 0.2% between -40 and + 85 °C. Furthermore, we analyze the influence of the retarder parameters on the linearity of the recovered magneto-optic phase shift vs. current and determine a set of parameters that results in a perfectly linear relationship.

  16. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lei, Xueqin; Chen, Jiajia; Shi, Fuquan; Chen, Daru; Ren, Zhijun; Peng, Baojin

    2016-09-01

    In this study, the magneto-birefringence effect of magnetic fluid (MF) is adopted to form an innovative fiber optic magnetic field sensor. The sensitive section is fabricated via a D-shaped microstructure inscribed in a high-birefringence fiber Sagnac loop with a femtosecond laser. The D-shaped microstructure facilitates good combination of the optical-fiber Sagnac interferometer with the magneto-birefringence effect of MF without suffering from absorption loss and manual alignment. Experimental results show the good performance of the magnetic field fiver sensor, particularly its high stable extinction ratio. Preliminary results are provided, and the magnetic field sensitivity of 0.0823 nm/mT can be further improved by increasing the depth and length of the D-shaped microstructure.

  17. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  18. Note: mounting ultra-high vacuum windows with low stress-induced birefringence.

    PubMed

    Solmeyer, Neal; Zhu, Kunyan; Weiss, David S

    2011-06-01

    We have developed a way to mount ultra-high vacuum windows onto standard ConFlat(®) vacuum systems with very low stress-induced birefringence. Each window is sealed to a stainless steel flange with a compressed indium wire, and that flange is connected to a vacuum chamber with another indium seal. We find that deformation of a standard ConFlat flange during indium sealing dominates the stress on the window, so an extra-rigid flange is needed for minimal birefringence. With this mounting scheme, the typical residual birefringence is Δn = 2.3 × 10(-7) and is unchanged by a 120 °C bake.

  19. Highly birefringent photonic crystal fibers with triple defect core and squeezed lattice of air holes

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Yao, Jianquan; Sun, Jinhai; Cai, He

    2014-12-01

    We propose a novel highly birefringent photonic crystal fiber (PCF). It is composed of a triple defect core and a cladding with squeezed hexagonal lattice circular air holes. Using a full-vector finite element method (FEM) simulator (COMSOL Multiphysics), we study the modal birefringence of the fundamental modes in such PCFs. Numerical results show that the birefringence of the proposed PCF reaches the order of 10-2, which is larger than the triple defect core PCF without squeezed cladding, also is much larger than the single defect core PCF with squeezed cladding. Moreover, the proposed PCF also has a low confinement loss about 10dB/km at wavelength λ=1.55μm.

  20. Effect of dimerization on the field-induced birefringence in ferrofluids.

    PubMed

    Szczytko, Jacek; Vaupotič, Nataša; Osipov, Mihail A; Madrak, Karolina; Górecka, Ewa

    2013-06-01

    The magnetic-field-induced birefringence in a ferrofluid composed of spherical cobalt nanoparticles has been studied both experimentally and theoretically. The considerable induced birefringence determined experimentally has been attributed to the formation of chains of nanoparticles. The birefringence has been measured as a function of the external magnetic field and the volume fraction (f) of nanoparticles. It is quadratic in f as opposed to the Faraday effect, which is linear in f. Experimental results agree well with the theoretical model based on a simple density functional approach. For dilute solutions the experimental results can be explained by assuming that only dimers of nanoparticles are formed while the concentration of longer chains is negligible.

  1. Reflectance Spectrum and Birefringence of the Retinal Nerve Fiber Layer With Hypertensive Damage of Axonal Cytoskeleton

    PubMed Central

    Huang, Xiang-Run; Knighton, Robert W.; Spector, Ye Z.; Qiao, Jianzhong; Kong, Wei; Zhao, Qi

    2017-01-01

    Purpose Glaucoma damages the retinal nerve fiber layer (RNFL). This study used precise multimodal image registration to investigate the changes of the RNFL reflectance spectrum and birefringence in nerve fiber bundles with different degrees of axonal damage. Methods The reflectance spectrum of individual nerve fiber bundles in normal rats and rats with experimental glaucoma was measured from 400 to 830 nm and their birefringence was measured at 500 nm. Optical measurements of the same bundles were made at different distances from the optic nerve head (ONH). After the optical measurements, the axonal cytoskeleton of the RNFL was evaluated by confocal microscopy to assess the severity of cytoskeletal change. Results For normal bundles, the shape of the RNFL reflectance spectrum and the value of RNFL birefringence did not change along bundles. In treated retinas, damage to the cytoskeleton varied within and across retinas. The damage in retinal sectors was subjectively graded from normal-looking to severe. Change of spectral shape occurred near the ONH in all sectors studied. This change became more prominent and occurred farther from the ONH with increased damage severity. In contrast, RNFL birefringence did not show change in normal-looking sectors, but decreased in sectors with mild and moderate damage. The birefringence of severely damaged sectors was either within or below the normal range. Conclusions Varying degrees of cytoskeletal damage affect the RNFL reflectance spectrum and birefringence differently, supporting differences in the ultrastructural basis for the two optical properties. Both properties, however, may provide a means to detect disease and to estimate ultrastructural damage of the RNFL in glaucoma. PMID:28395028

  2. Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Tkaczyk, Tomasz; Kester, Robert; Descour, Michael R.

    2006-02-01

    A 7-mm OD, NA = 1 water immersion injection-molded plastic endoscope objective has been fabricated for a laser scanning fiber confocal reflectance microscope (FCRM) system specifically designed for in vivo detection of cervical and oral pre-cancers. Injection-molded optics was selected for the ability to incorporate aspheric surfaces into the optical design and its high volume capabilities. Our goal is high performance disposable endoscope probes. This objective has been built and tested as a stand-alone optical system, a Strehl ratio greater than 0.6 has been obtained. One of the limiting factors of optical performance is believed to be flow-induced birefringence. We have investigated different configurations for birefringence visualization and believe the circular polariscope is most useful for inspection of injection-molded plastic optics. In an effort to decrease birefringence effects, two experiments were conducted. They included: (1) annealing of the optics after fabrication and (2) modifying the injection molding prameters (packing pressures, injection rates, and hold time). While the second technique showed improvement, the annealing process could not improve quality without physically warping the lenses. Therefore, to effectively reduce flow-induced birefringence, molding conditions have to be carefully selected. These parameters are strongly connected to the physical part geometry. Both optical design and fabrication technology have to be considered together to deliver low birefringence while maintaining the required manufacturing tolerances. In this paper we present some of our current results that illustrate how flow-induced birefringence can degrade high performance injection-molded plastic optical systems.

  3. Nonplanar fiber-optic sensing head for the compensation of bending-induced birefringence in Faraday current sensors.

    PubMed

    Perciante, César D; Aparicio, Sofía; Illa, Ricardo; Ferrari, José A

    2015-06-20

    We demonstrate the compensation of bending-induced linear birefringence in single-mode fibers coiled in a nonplanar path by alternating orthogonal bending planes. This effect can be applied for the construction of birefringence-free fiber coils in Faraday sensor heads (e.g., in current sensors) to improve their sensitivity. Validation experiments are presented.

  4. Birefringence of Polymer Solutions in Time-Dependent Flows.

    NASA Astrophysics Data System (ADS)

    Geffroy-Aguilar, Enrique

    1990-01-01

    This is a study of changes of conformation of macromolecules in polymeric solutions which are subjected to time-dependent extensional flows generated by a two -roll mill flow device. The flows produced by the two-roll mill are linear, and two-dimensional. It has a stagnation point at the center of the flow field where the magnitudes of the strain-rates are greater than the vorticity. This study of conformational changes is based on data around the vicinity of the stagnation point, I for steady state flows, and several transient flow histories such as start -up, cessation, and double-step flows. We also present an analytical solution for the creeping flow generated by an infinitely long two-roll mill embedded in an unbounded fluid. This solution is used as a benchmark to compare the behavior of the polymer solutions when subjected to flows with different values for the ratio of rate-of-strain to vorticity. The conformational changes are determined experimentally using the Two-color Flow-Birefringence which provides an instantaneous and point-wise measure of the anisotropy of the fluid, together with the relative orientation of the anisotropy with respect to the principal axes of the flow field. Based on relaxation of the fluid anisotropy the characteristic time-scales of the polymer have been evaluated as a function of the flow field properties and the degree of conformational change of the macromolecules. Data for two polymeric solutions is presented. The first polymer system is the so-called test-fluid M1. This polymeric solution is shown to degrade significantly, even for small values of the velocity gradient, as measured by the changes in the macroscopic relaxation time-scales. The second solution is a concentrated polystyrene solution that presents overshoots and undershoots of the polymer conformation dependent of the ratio of vorticity to rate-of-strain. When subjected to large deformations, this polystyrene solution shows not only the possibility of a

  5. Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light

    DOEpatents

    Grek, Boris; Bartolick, Joseph; Kennedy, Alan D.

    2000-01-01

    A method and apparatus for measuring microstructures, anistropy and birefringence in polymers using laser scattered light includes a laser which provides a beam that can be conditioned and is directed at a fiber or film which causes the beam to scatter. Backscatter light is received and processed with detectors and beam splitters to obtain data. The data is directed to a computer where it is processed to obtain information about the fiber or film, such as the birefringence and diameter. This information provides a basis for modifications to the production process to enhance the process.

  6. Investigation of Vortex Development during Polymer Melt Flows by Flow Birefringence

    NASA Astrophysics Data System (ADS)

    Musil, Jan; Zatloukal, Martin; Gough, Tim; Martyn, Mike

    2011-07-01

    The vortex development of low-density polyethylene Lupolen 1840H polymer melt under various processing conditions has been investigated by flow induced stress birefringence technique. It has been revealed that effect of mass flow rate and temperature on the vortex size has non-monotonic character, which is in good agreement with laser-Doppler velocimetry based measurements reported for the same polymer in the open literature. This suggests that the flow induced stress birefringence technique can be considered as the quick and reasonably precise tool for vortices shape/size visualization and quantification at the slit die entry region.

  7. Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-11-03

    We investigate dark rogue wave dynamics in normally dispersive birefringent optical fibers, based on the exact rational solutions of the coupled nonlinear Schrödinger equations. Analytical solutions are derived up to the second order via a nonrecursive Darboux transformation method. Vector dark "three-sister" rogue waves as well as their existence conditions are demonstrated. The robustness against small perturbations is numerically confirmed in spite of the onset of modulational instability, offering the possibility to observe such extreme events in normal optical fibers with random birefringence, or in other Manakov-type vector nonlinear media.

  8. Investigating compression failure mechanisms in composite laminates with a transient fiberglass-epoxy birefringent material

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Williams, J. G.

    1984-01-01

    An experimental study is reported in which a nondestructive technique involving the use of a transparent fiberglass-epoxy composite birefringent material has been used to investigate compression failure mechanisms in graphite-epoxy laminates. It is shown that the birefringency and transparency of the fiberglass-epoxy material permits regions of high stress to be located and the mechanisms of local failure propagation to be identified within the laminate. The material may also be useful for studying stress fields and for identifying failure initiation and propagation mechanisms in a wide variety of composite-structure problems.

  9. Characterization on the effect of linear stress birefringence in a total reflection prism (TRP) ring resonator

    NASA Astrophysics Data System (ADS)

    Li, Dong; Bi, Chao; Jiang, Yajun; Zhao, Jianlin

    2016-10-01

    Based on the theory of Jones matrix and the condition of eigenmode self-consistency, we analyze the effect of linear stress birefringence of prismon the beam polarization (described with the ellipticity and loss of the eigenmodes) and null drift (described with the output frequency difference of the eigenmodes) in a TRP resonator. It is found that the linear stress birefringence of prisms can cause larger polarization ellipticity for both CW (clockwise) and CCW (counterclockwise) beams. The results may be useful for designing and optimizing the structure of super high precision TRP ring laser gyroscopes.

  10. Birefringence and vascular imaging of in vivo human skin by Jones-matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-02-01

    A customized 1310-nm Jones-matrix optical coherence tomography (JM-OCT) for dermatological investigation was constructed and used for in vivo normal human skin tissue imaging. This system can simultaneously measure the threedimensional depth-resolved local birefringence, complex-correlation based OCT angiography (OCT-A), degree-ofpolarization- uniformity (DOPU) and scattering OCT intensity. By obtaining these optical properties of tissue, the morphology, vasculature, and collagen content of skin can be deduced and visualized. Structures in the deep layers of the epithelium were observed with depth-resolved local birefringence and polarization uniformity images. These results suggest high diagnostic and investigative potential of JM-OCT for dermatology.

  11. Low-frequency and high-frequency all-fiber modulators based on birefringence modulation.

    PubMed

    Boyain, A R; Martínez-León, L; Cruz, J L; Diez, A; Andrés, M V

    1999-10-20

    In-line optical modulators with low insertion losses and high maximum optical powers are required for Q switching and cavity dumping of fiber lasers as well as for nonlinear optical-fiber experiments. We report the design of polarimetric all-fiber modulators based on optical-fiber birefringence modulation combined with an all-fiber polarizer. Birefringence modulation involves a piezoelectric ceramic tube. This simple technique permits efficient low-frequency and high-frequency harmonic modulation, up to the megahertz range, as well as modulation of pulses shorter than 1 micros.

  12. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384

  13. Orientational order of some liquid crystal/dye mixtures obtained from optical birefringence

    NASA Astrophysics Data System (ADS)

    Bielejewska, Natalia

    2016-04-01

    This study presents optical birefringence measurements as a function of temperature for the liquid crystal/dye mixtures. The optical birefringence of the liquid crystals used in liquid crystal displays technology is related to the order parameter , which is crucial from the development point of view. The properties of the dyes (4-dimethylamino-4‧-nitrostilbene and N,N‧-bis(2,5-di-tert-buthylphenyl)-3,4,9,10-perylenedicarboximide) as a guest molecule are tested over the whole region of nematic phase occurrence by three different methods: measurement with use of the plano-convex lens, Berek's compensator and photoelastic modulator.

  14. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  15. Estimation of the Intrinsic Birefringence of the A, B and V Crystalline Forms of Amylose

    USDA-ARS?s Scientific Manuscript database

    Optical birefringence (Delta n) for A, B, Va, Vh amylose crystals were calculated by vector summation of bond polarizabilities. Orientation of the O-H bond vectors in these amylose crystals is not well understood so results are given for likely O-H conformers. For B amylose, Delta n ranges from 0....

  16. Dynamics of laser-induced radial birefringence in silver-doped glasses.

    PubMed

    Ahangary, Ali Akbar; Bouchard, Frédéric; Santamato, Enrico; Karimi, Ebrahim; Khalesifard, Hamid Reza

    2015-09-01

    Silver ion-exchanged glass exhibits nonlinear optical properties upon interacting with intense light beams. The thermal effect due to the nanoparticles' light-absorption induces radial stress, and consequently, a radial birefringence on the glass surface. The induced birefringence possesses a topological charge of 1 in the transverse plane of the glass, i.e., cylindrical symmetry. Therefore, when the glass is illuminated with a circularly polarized light beam, a portion of the incoming beam flips its polarization handedness, since the plate is birefringent, and gains an orbital angular momentum of ±2 in units of the Planck constant. This is referred to as optical spin-to-orbital angular momentum conversion, and can be understood by means of the Pancharatnam-Berry phase. Here, we design a pump-probe setup to study and observe the dynamics of optical angular momentum coupling in real time. We show that this effect can be permanent or reversible, depending on the power and interaction time of the pump beam. In particular, an intrinsic power-dependent birefringence hysteresis is observed on the sample after interaction with and the relaxation of the irradiated point.

  17. The Interplay between Viscoelastic and Thermodynamic Properties Determines the Birefringence of F-Actin Gels

    PubMed Central

    Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick

    2005-01-01

    F-actin gels of increasing concentrations (25–300 μM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 μM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations ≥100 μM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 μM to S = 0.4 at 25 μM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 μM. PMID:15863487

  18. Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves

    PubMed Central

    Chen, Meng; Fan, Fei; Xu, Shi-Tong; Chang, Sheng-Jiang

    2016-01-01

    Subwavelength dielectric gratings are widely applied in the phase and polarization manipulation of light. However, the dispersion of the normal dielectric gratings is not flat while their birefringences are not enough in the THz regime. In this paper, we have fabricated two all-dielectric gratings with gradient grids in the THz regime, of which artificial birefringence is much larger than that of the equal-grid dielectric grating demonstrated by both experiments and simulations. The transmission and dispersion characteristics are also improved since the gradient grids break the periodicity of grating lattices as a chirp feature. From 0.6–1.4 THz, a broadband birefringence reaches 0.35 with a low dispersion and good linearity of phase shift, and the maximum phase shift is 1.4π. Furthermore, these gradient gratings are applied as half-wave plates and realize a linear polarization conversion with a conversion rate over 99%, also much higher than the equal-grid gratings. These gradient gratings show great advantages compared to the periodic gratings and provide a new way in the designing of artificial birefringence material. PMID:27934962

  19. Multiple scattering of polarized light in uniaxial turbid media with arbitrarily oriented linear birefringence

    NASA Astrophysics Data System (ADS)

    Otsuki, Soichi

    2017-01-01

    The effective scattering Mueller matrices obtained by the simulation were simplified to the reduced matrices and factorized using the Lu-Chipman polar decomposition, which afforded the polarization parameters in two dimensions. In general, the scalar retardance around the illumination point of a pencil beam shows a broad azimuthal dependence with an offset. Photons may behave quite differently under the birefringence according to their polarization state. In contrast, when the birefringence is oriented along the y-axis in the plane parallel to the surface (x-y) plane, for example, the azimuthal dependence of the scalar retardance shows clear maxima along the x- and y-axes and sharp valleys between the maxima. Photons propagating in the medium probably experience the retardance in nearly the same way when they are polarized linearly and circularly. Moreover, the polarization parameters generally become nonsymmetric with respect to the plane perpendicular to both the x-y plane and the plane containing the birefringence axis, which suggests that the pathway of the lateral propagation of photons from the illumination point to the surrounding is slightly oblique upward relative to the x-y plane. These results were also compared with the case in which the birefringence axis is perpendicular to the x-y plane.

  20. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often non-uniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R = 99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μm, with precision limited by both quantum and technical noise sources. We report a splitting of δν = 618(1) Hz, significantly less than the intrinsic cavity linewidth of δcav ≈ 3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δn/n = 6.38(1) × 10−6. PMID:27088133

  1. A photoelastic modulator-based birefringence imaging microscope for measuring biological specimens

    NASA Astrophysics Data System (ADS)

    Freudenthal, John; Leadbetter, Andy; Wolf, Jacob; Wang, Baoliang; Segal, Solomon

    2014-11-01

    The photoelastic modulator (PEM) has been applied to a variety of polarimetric measurements. However, nearly all such applications use point-measurements where each point (spot) on the sample is measured one at a time. The main challenge for employing the PEM in a camera-based imaging instrument is that the PEM modulates too fast for typical cameras. The PEM modulates at tens of KHz. To capture the specific polarization information that is carried on the modulation frequency of the PEM, the camera needs to be at least ten times faster. However, the typical frame rates of common cameras are only in the tens or hundreds frames per second. In this paper, we report a PEM-camera birefringence imaging microscope. We use the so-called stroboscopic illumination method to overcome the incompatibility of the high frequency of the PEM to the relatively slow frame rate of a camera. We trigger the LED light source using a field-programmable gate array (FPGA) in synchrony with the modulation of the PEM. We show the measurement results of several standard birefringent samples as a part of the instrument calibration. Furthermore, we show results observed in two birefringent biological specimens, a human skin tissue that contains collagen and a slice of mouse brain that contains bundles of myelinated axonal fibers. Novel applications of this PEM-based birefringence imaging microscope to both research communities and industrial applications are being tested.

  2. Photo-induced birefringence and all-optical switching effect in azobenzene-grafted polyurethanes

    NASA Astrophysics Data System (ADS)

    Tang, Tian; Zeng, Fang; Wu, Shuizhu; Tong, Zhen; Luo, Duanbin; She, Weilong

    2004-12-01

    In this study, azobenzene-containing chromophore 4-N,N‧-bis-(2-hydroxyethyl)amino-4‧-nitro-azobenzene were synthesized by using 4-nitroaniline and m-tolyldiethanoamine. Then they were polymerized with toluene 2,4-di-isocyanate (TDI) and polyethylene glycol (PEG) in N,N‧-dimethylformamide (DMF) to obtain novel polyurethanes which exhibit photo-induced birefringence properties. Polyols such as 1,4-dibutanol or tri-hydroxyl propane were introduced into the polyurethane structure to adjust the flexibility of the polymer chain segments. An experimental setup, in which the He-Ne lasers produced signal beams and Ar+ lasers the pump beams, was employed to investigate the photo-induced birefringence and optic-optic switching properties of these polyurethane materials. It is found that, with increasing pump beam power, the extent of both birefringence and optic switching response first slightly increased due to reorientation mechanism, and then decreased due to thermal effects. And the flexibility for the chain segment also has remarkable effects on birefringence extents and optic switching modulations.

  3. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  4. Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion.

    PubMed

    Li, Xuyou; Liu, Pan; Xu, Zhenlong; Zhang, Zhiyong

    2015-08-20

    Novel pentagonal photonic crystal fiber with high birefringence, large flattened negative dispersion, and high nonlinearity is proposed. The dispersion and birefringence properties of this structure are simulated and analyzed numerically based on the full vector finite element method (FEM). Numerical results indicate that the fiber obtains a large average dispersion of -611.9  ps/nm/km over 1,460-1,625 nm and -474  ps/nm/km over 1425-1675 nm wavelength bands for two kinds of optimized designs, respectively. In addition, the proposed PCF shows a high birefringence of 1.67×10-2 and 1.75×10-2 at the operating wavelength of 1550 nm. Moreover, the influence of the possible variation in the parameters during the fabrication process on the dispersion and birefringence properties is studied. The proposed PCF would have important applications in polarization maintaining transmission systems, residual dispersion compensation, supercontinuum generation, and the design of widely tunable wavelength converters based on four-wave mixing.

  5. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .

  6. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline.

  7. The measurement system of birefringence and Verdet constant of optical fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  8. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  9. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups

    SciTech Connect

    Emoto, Akira; Matsumoto, Taro; Shioda, Tatsutoshi; Ono, Hiroshi; Yamashita, Ayumi; Kawatsuki, Nobuhiro

    2009-10-01

    Polarization gratings with large birefringence are formed in photoreactive polymer liquid crystals with bistolane moiety and terminal cinnamic acid moiety by the use of polarized ultraviolet interference light and subsequent annealing. The polarized ultraviolet light causes the axis-selective photoreaction between the cinnamic acid groups and subsequent annealing induce the reorientation of peripheral molecules without cross-linking along the cross-linked groups. Long bistolane mesogenic moiety exhibits large birefringence in comparison with a biphenyl mesogenic moiety, the value of the induced birefringence in the bistolane mesogenic liquid crystalline (LC) polymer is strongly dependent on both the grating constant and the wavelength of the reconstruction light.

  10. Use of retinal nerve fiber layer birefringence as an addition to absorption in retinal scanning for biometric purposes.

    PubMed

    Agopov, Mikael; Gramatikov, Boris I; Wu, Yi-Kai; Irsch, Kristina; Guyton, David L

    2008-03-10

    We built a device sensitive to the birefringence of the retinal nerve fiber layer for biometric purposes. A circle of 20 degrees diameter on the retina was scanned around the optic disk with a spot of light from a 785 nm laser diode. The nonbirefringent blood vessels indenting or displacing the retinal nerve fiber layer were seen as "blips" in the measured birefringence-derived signal. For comparison, the reflection-absorption signature of the blood vessel pattern in the scanned circle was also measured. The birefringence-derived signal proved to add useful information to the reflectance-absorption signature for retinal biometric scanning.

  11. Vibration sensor based on highly birefringent Bragg gratings written in standard optical fiber by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Bueno, Antonio; Kinet, Damien; Caucheteur, Christophe; Chluda, Cédric; Mégret, Patrice; Wuilpart, Marc

    2014-05-01

    We present a vibration sensor based on highly birefringent fiber Bragg gratings written in standard single mode optical fiber and realized with UV femtosecond pulses. This vibration sensor takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes which induces intensity distribution changes in the two fiber Bragg grating reflection modes. The gratings are inscribed with the femtosecond line by line technique and have a birefringence value of 6 10-4. We demonstrate that theses gratings are temperature birefringence insensitive and ideal for vibration measurements.

  12. Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber.

    PubMed

    Han, Young-Geun; Chung, Youngjoo; Lee, Sang Bae; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki

    2009-04-20

    A simple configuration for simultaneous measurement of temperature and strain exploiting a temperature-insensitive birefringent interferometer based on a photonic crystal fiber incorporating an erbium-doped fiber (EDF) is investigated. The transmission peak power of the birefringent interferometer incorporating the EDF is changed by the temperature variation because the amplified spontaneous emission of the EDF strongly depends on temperature. The applied strain changes the peak wavelength of the birefringent interferometer connecting with the EDF, which can make it possible to discriminate concurrent sensitivities like temperature and strain. The temperature and strain sensitivities were -0.04 dB/ degrees C and 1.3 pm/microepsilon, respectively.

  13. Use of retinal nerve fiber layer birefringence as an addition to absorption in retinal scanning for biometric purposes

    NASA Astrophysics Data System (ADS)

    Agopov, Mikael; Gramatikov, Boris I.; Wu, Yi-Kai; Irsch, Kristina; Guyton, David L.

    2008-03-01

    We built a device sensitive to the birefringence of the retinal nerve fiber layer for biometric purposes. A circle of 20° diameter on the retina was scanned around the optic disk with a spot of light from a 785 nm laser diode. The nonbirefringent blood vessels indenting or displacing the retinal nerve fiber layer were seen as “blips” in the measured birefringence-derived signal. For comparison, the reflection-absorption signature of the blood vessel pattern in the scanned circle was also measured. The birefringence-derived signal proved to add useful information to the reflectance-absorption signature for retinal biometric scanning.

  14. PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications

    PubMed Central

    Ademgil, Huseyin; Haxha, Shyqyri

    2015-01-01

    In this paper, we report a design of high sensitivity Photonic Crystal Fiber (PCF) sensor with high birefringence and low confinement losses for liquid analyte sensing applications. The proposed PCF structures are designed with supplementary elliptical air holes in the core region vertically-shaped V-PCF and horizontally-shaped H-PCF. The full vectorial Finite Element Method (FEM) simulations performed to examine the sensitivity, the confinement losses, the effective refractive index and the modal birefringence features of the proposed elliptical air hole PCF structures. We show that the proposed PCF structures exhibit high relative sensitivity, high birefringence and low confinement losses simultaneously for various analytes. PMID:26694408

  15. Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers.

    PubMed

    Víllora, Encarnacion G; Shimamura, Kiyoshi; Sumiya, Keiji; Ishibashi, Hiroyuki

    2009-07-20

    BaMgF(4) is a ferroelectric fluoride which shows a very wide transparency range extending from 125 nm to 13 microm. The conjunction of these properties confers to BaMgF(4) a unique chance for optical applications in the UV and mid-IR wavelength regions, where other nonlinear materials cannot be used. In particular its application as frequency converter in all solid-state lasers is considered. The wavelength dispersion of the refractive indices along the three optical principal axes is measured in the transparent region, and the Sellmeier coefficients for the three refractive indices are determined. The conditions for nonlinear optical processes are calculated for birefringent-matching and quasi phase-matching, with special emphasis in the UV and IR wavelength regions. Quasi phase-matching can be achieved in the whole transparent wavelength region, in contrast to birefringent-matching, which can be obtained in a limited range 573-5634 nm. First demonstration of second harmonic generation by quasi phase-matching with a ferroelectric fluoride is shown by frequency-doubling the emissions of a 1064 nm Nd:YAG laser and a tunable Ti:sapphire laser. The shortest emission is obtained in the UV at 368 nm, indicating the potential of BaMgF(4) as nonlinear medium for the fabrication of all solid-state lasers in the vacuum-UV/UV and mid-IR wavelength regions.

  16. Measurement of Molecular Electric Quadrupole Moments Using AN Optical Birefringence Technique

    NASA Astrophysics Data System (ADS)

    Pierrus, John

    1990-01-01

    A system has been developed and used to measure the electric quadrupole moments of small gas molecules using a birefringence technique. The alignment of quadrupolar molecules in a non-uniform electric field induces birefringence in the medium proportional to the product of the optical anisotropy and the electric quadrupole moment. This induced birefringence is measured as a phase difference delta between orthogonal components of linearly polarized laser light traversing the medium. The electric quadrupole moment may be calculated from delta if the anisotropy in polarizability is known. At the gas pressures used in these measurements typical values of delta lie between 10^{-6} and 10 ^{-7} radians. Experimental difficulties encountered at these low signal levels are high noise and spurious effects due to strain-induced birefringence in the optical components of the apparatus. The experiment is modulated so that phase-sensitive detection may be used to recover the signal from the large background of noise. The small phase differences referred to above are measured by a nulling procedure in which a known effect is produced in anti-phase with the effect being measured. In earlier work the assumption has been made that when the output from the system is zero, the induced effect and nulling signal are equal to magnitude. Analysis using the Jones calculus is presented to show that this need not be so if strain-induced birefringence is present in the gas-cell windows. Initial difficulties associated with reproducing experimental data were traced in part to this spurious birefringence. A revised nulling procedure devised on the basis of the analysis significantly reduced scatter in the measurements. In common with previous workers serious problems were encountered with a Kerr nulling device, including short-term drifts of 10% and more in the calibration. After unsuccessful attempts to improve the Kerr-cell characteristics, it was replaced by a Faraday rotator which proved

  17. Photoinduced properties of Bis-azo chromophore host guest systems-birefringence and all optical tuneable polymer waveguide Bragg gratings

    NASA Astrophysics Data System (ADS)

    Janssens, Stefaan; Breukers, Robert; Swanson, Adam; Raymond, Sebastiampillai

    2017-07-01

    The photoinduced properties of recently synthesised and reported bis-azo dyes doped host-guest polymer films were investigated. The photochromic properties and photoinduced birefringence were characterised. The birefringence was found to be very stable, and 96% of the birefringence was retained after illumination of the films was stopped. The high two photon absorption cross section (1251GM) together with stable photoinduced birefringence makes these materials promising candidates for 3D optical storage. The reported photochromic properties were subsequently used to design and manufacture an all optical integrated device. A waveguide Bragg grating was fabricated, and the Bragg wavelength was controlled over 600 pm by the intensity dependence of the refractive index of the photochromic material.

  18. Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography

    PubMed Central

    Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki

    2017-01-01

    This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974

  19. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Juan; Dai, Ye; Tao, Wenjun; Gong, Min; Ma, Guohong; Zhao, Quanzhong; Qiu, Jianrong

    2016-02-01

    In this paper, we report the birefringence effect of surface self-assembly periodic nanostructures induced on 6H-SiC by femtosecond laser irradiation. Birefringence characteristic (e.g. cross-polarized image), measured by cross polarized microscopy, was found to be controlled by both single pulse energy and scanning velocity. Comparing birefringence measurement results of nanostructures and morphology characterization by Scanning electron microscopy, it is shown that ∼200 nm-period deep-subwavelength periodic ripples (DSWR) plays a dominating role in the birefringence effect. Raman spectra show that the change of retardance with pulse energy and scanning velocity is most possibly caused by the thickness variation of DSWR. Finally, a light attenuator based on a single layer of DSWR structure on 6H-SiC surface was constructed and tested by light source of 800 nm to have a tunable attenuating ratio of 69-100%.

  20. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    NASA Astrophysics Data System (ADS)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  1. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography.

    PubMed

    Cense, Barry; Chen, Teresa C; Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-08-01

    Thinning of the retinal nerve fiber layer and changes in retinal nerve fiber layer (RNFL) birefringence may both precede clinically detectable glaucomatous vision loss. Early detection of RNFL changes may enable treatment to prevent permanent loss of vision. Polarization-sensitive optical coherence tomography (PS-OCT) can provide objective information on RNFL thickness and birefringence. PS-OCT scans around the optic nerve head (ONH) of two healthy young volunteers were made using 10 concentric circles of increasing radius. Both the mean RNFL thickness and mean retinal nerve fiber birefringence for each of 48 sectors on a circle were determined with data analysis. Both the RNFL thickness and birefringence varied as a function of sector around the ONH. The RNFL became thinner with increasing distance from the ONH. In contrast, the birefringence did not vary significantly as a function of radius. Birefringence of healthy RNFL is constant as a function of scan radius but varies as a function of position around the ONH, with higher thickness values occurring superior and inferior to the ONH. Measured double-pass phase retardation per unit depth around the ONH ranged between 0.10 and 0.35 deg/microm, equivalent to birefringences of 1.2 x 10(-4) and 4.1 x 10(-4) respectively, measured at a wavelength of 840 nm. Consequently, when a spatially constant birefringence around the ONH is assumed, the conversion of scanning laser polarimetry (SLP) phase-retardation measurements to RNFL thickness may yield incorrect values. The data do not invalidate the clinical value of a phase-retardation measurement, but affect the conversion of phase retardation to RNFL thickness.

  2. Effect of thermally induced birefringence on performance of KD*P electro-optics crystal with rectangular shape.

    PubMed

    Yin, Xingliang; Jiang, Menghua; Sun, Zhe; Hui, Yongling; Lei, Hong; Li, Qiang

    2017-04-01

    In this paper, we present what we believe is the first demonstration of a new rectangular KD*P crystal as an electro-optic switch and calculations of the stress-induced birefringence and depolarization loss in the crystal. We simulated and experimentally demonstrate the thermal depolarization loss of crystal in both cylindrical and rectangular shape. The results show that by using a rectangular KD*P crystal, the effects of the thermally induced birefringence and depolarization can be lessened.

  3. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity

    PubMed Central

    Mehta, Shalin B.; Shribak, Michael; Oldenbourg, Rudolf

    2013-01-01

    Polarized light microscopy provides unique opportunities for analyzing the molecular order in man-made and natural materials, including biological structures inside living cells, tissues, and whole organisms. 20 years ago, the LC-PolScope was introduced as a modern version of the traditional polarizing microscope enhanced by liquid crystal devices for the control of polarization, and by electronic imaging and digital image processing for fast and comprehensive image acquisition and analysis. The LCPolScope is commonly used for birefringence imaging, analyzing the spatial and temporal variations of the differential phase delay in ordered and transparent materials. Here we describe an alternative use of the LC-PolScope for imaging the polarization dependent transmittance of dichroic materials. We explain the minor changes needed to convert the instrument between the two imaging modes, discuss the relationship between the quantities measured with either instrument, and touch on the physical connection between refractive index, birefringence, transmittance, diattenuation, and dichroism. PMID:24273640

  4. Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect

    NASA Astrophysics Data System (ADS)

    Haisha, Niu; YanXiong, Niu; Jiyang, Li

    2017-02-01

    A glass birefringence measurement system utilizing the reflective laser feedback (RLF) effect is presented. The measurement principle is analyzed based on the equivalent cavity of a Fabry-Perot interferometer, and the experiments are conducted with a piece of quartz glass with applied extrusion force. In the feedback system, aluminum film used as a feedback mirror is affixed to the back of the sample. When the light is reflected back into the cavity, as the reinjected light is imprinted with the birefringence information in the sample, the gain and polarization states of the laser are modulated. The variation of optical power and polarization states hopping is monitored to obtain the magnitude of the stress. The system has advantages such as simplicity and low-cost with a precision of 1.9 nm. Moreover, by adjusting the position of the aluminum, large-area samples can be measured anywhere at any place.

  5. Anomalous birefringence in andradite-grossular solid solutions: a quantum-mechanical approach

    NASA Astrophysics Data System (ADS)

    Lacivita, Valentina; D'Arco, Philippe; Orlando, Roberto; Dovesi, Roberto; Meyer, Alessio

    2013-11-01

    The static linear optical properties (refractive indices, birefringence and axial angle) of andradite-grossular (Ca3Fe2Si3O12-Ca3Al2Si3O12) solid solutions have been computed at the ab initio quantum-mechanical level through the Coupled Perturbed Kohn-Sham scheme, using an all-electron Gaussian-type basis set. Geometry relaxation after substitution of 1-8 Al for Fe atoms in the primitive cell of andradite yields 23 non-equivalent configurations ranging from cubic to triclinic symmetry. Refractive indices vary quite regularly between the andradite (1.860) and grossular (1.671) end-members; the birefringence δ and the axial angle 2 V at intermediate compositions can be as large as 0.02° and 89°, respectively. Comparison with experiments suffers from inhomogeneities and impurities of natural samples; however, semi-quantitative agreement is observed.

  6. A note on the birefringence angle estimation in CMB data analysis

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Maggio, G.; Molinari, D.; Natoli, P.

    2016-05-01

    Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of 5-10%. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.

  7. Birefringence dispersion compensation demodulation algorithm for polarized low-coherence interferometry.

    PubMed

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan

    2013-08-15

    A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.

  8. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  9. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  10. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber.

    PubMed

    Beravat, R; Wong, G K L; Xi, X M; Frosz, M H; St J Russell, P

    2016-04-01

    Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant.

  11. A novel synthesis approach for birefringent filters having arbitrarily amplitude transmittances

    NASA Astrophysics Data System (ADS)

    Halassi, Abde Rezzaq; Hamdi, Rachid; Bendimerad, Djalal Falih; Benkelfat, Badr-Eddine

    2016-06-01

    In this paper, we present a novel procedure for the synthesis of a filter having an arbitrarily specified amplitude transmittance. The filter configuration consists of N birefringent stages placed between a polarizer and an analyzer, with each stage containing an identical section and a variable section. An additional variable section is placed in front of the analyzer. The synthesis procedure is based on the resolution of a generalized nonlinear equation system directly deducted from the Jones matrix formalism to determine the angles of each stage, the angle of the analyzer and the phase shifts of the variable sections. A typical example of a 6-stage birefringent filter having an arbitrarily non-symmetric amplitude transmittance is shown and the opto-geometrical parameters are given to demonstrate the efficiency of the proposed synthesis procedure. The results obtained show an excellent agreement with those developed in the literature.

  12. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion.

    PubMed

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia

    2016-05-21

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed.

  13. Tunable Terahertz Electromagnetic Wave Generation Using Birefringent Crystal and Grating Pair

    NASA Astrophysics Data System (ADS)

    Yano, Ryuzi; Gotoh, Hideki

    2005-12-01

    We generated frequency-tunable terahertz (THz) waves with stable carrier-envelope phases (CEPs) by exciting a photoconductive antenna with intensity-modulated laser pulses. The modulation of a laser pulse by using a birefringent crystal and a grating pair produced two chirped laser pulses with a fixed time separation, or in other words, an intensity-modulated laser pulse. The stability of the CEP of the THz waves was governed by the stability of the time separation of the two laser pulses generated by the birefringent crystal. Because the crystal thickness was fixed, the CEP of the THz wave was stable and not affected by the mechanical vibration of the optical components. We also demonstrated the CEP control of the THz wave.

  14. Real-time imaging of action potentials in nerves using changes in birefringence

    PubMed Central

    Badreddine, Ali H.; Jordan, Tomas; Bigio, Irving J.

    2016-01-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time “movies”. This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  15. Terahertz-field-induced optical birefringence in common window and substrate materials.

    PubMed

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2015-11-02

    We apply intense terahertz (THz) electromagnetic pulses with field strengths exceeding 2 MV cm(-1) at ~1 THz to window and substrate materials commonly used in THz spectroscopy and determine the induced optical birefringence. Materials studied are diamond, sapphire, magnesium oxide (MgO), polymethylpentene (TPX), low-density polyethylene (LDPE), silicon nitride membrane (SiN) and crystalline quartz. We observe a Kerr-effect-type transient birefringence in all samples, except in quartz and Si, where, respectively, a linear electrooptic signal and a response beyond the perturbative regime are found. We extract the nonlinear refractive indices and the electrooptic coefficient (in the case of quartz) of these materials and discuss implications for their use as windows or substrates in THz pump-optical probe spectroscopy.

  16. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  17. Birefringence and residual stress induced by CO2 laser mitigation of damage growth in fused silica

    NASA Astrophysics Data System (ADS)

    Gallais, L.; Cormont, P.; Rullier, J. L.

    2009-10-01

    We investigate the residual stress field created near mitigated sites and its influence on the efficiency on the CO2 laser mitigation of damage growth process. A numerical model of CO2 laser interaction with fused silica is developed that take into account laser energy absorption, heat transfer, thermally-induced stress and birefringence. Specific photoelastic methods are developed to characterize the residual stress near mitigated sites in fused silica samples. The stress distribution and quantitative values of stress levels are obtained for sites treated with the CO2 laser in various conditions of energy deposition (beam size, pulse duration, incident power). The results obtained also show that the presence of birefringence/residual stress around the mitigated sites has a critical effect on their laser damage resistance.

  18. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  19. Correction of large birefringent effect of windows for in situ ellipsometry measurements.

    PubMed

    Jin, Lianhua; Kondoh, Eiichi

    2014-03-15

    To extract true optical properties of samples in a chamber with entrance and exit optical windows, oftentimes the windows were approximated as simple retarders where the retardation was small and premeasured under a given condition. The proposed method allows to cope with large birefringent effect of chamber windows thanks to its capability of extracting ellipsometric parameters (Δ, Ψ) of isotropic samples as well as measuring birefringent parameters (δ, θ) of each window separately and simultaneously. This method is, however, not valid for anisotropic samples. Ex situ results and extracted ellipsometric parameters results from in situ measurements of a silicon substrate and a SiO2 film thermally grown on the silicon substrate exhibited excellent agreement and provided significance of this method.

  20. Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring.

    PubMed

    Jewart, Charles M; Quintero, Sully Mejía; Braga, Arthur M B; Chen, Kevin P

    2010-12-06

    We present the design of an air hole microstructured photonic crystal fiber for pressure sensing applications. The air-hole photonic crystal lattices were designed to produce a large intrinsic birefringence of 1.16 x 10(-3). The impact of the surrounding air holes for pressure sensing to the propagation mode profiles and indices were studied and improved, which ensures single mode propagation in the fiber core defined by the photonic crystal lattice. An air hole matrix and a practical chemical etching process during the fiber perform preparation stage is proposed to produce an optical fiber with a birefringence-pressure coefficient of 43.89 x 10 (-6)MPa(-1) or a fiber Bragg grating pressure responsivity of 44.15 pm/MPa, which is a 17 times improvement over previous photonic crystal fiber designs.

  1. Suppression of Brewster delocalization anomalies in an alternating isotropic-birefringent random layered medium

    NASA Astrophysics Data System (ADS)

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2013-07-01

    We investigate the polarization dependence of localization length in alternating isotropic-birefringent stacks with uncorrelated thickness disorder. The birefringent layers can be positive uniaxial, negative uniaxial, or a mixture of both. Stacks which contain a mixture are shown to suppress the Brewster delocalization anomalies and, over all incident angles, exhibit p-polarization localization length maxima that are of similar magnitude to normal incidence. Furthermore, we propose a parameter set that enables the p-polarization localization length to monotonically decrease with angle of incidence. This investigation was inspired by weakly polarizing mirrors on the sides of silvery fish and provides a generic means to produce polarization-insensitive, broadband reflections from a random, all-dielectric layered medium.

  2. Zero-birefringence photosensitive poly(arylene ether) for optical waveguides

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Dan; Zhong, Zhen-Xin; Kim, Jang Joo; Lee, Myong-Hoon

    2005-01-01

    Novel photosensitive fluorinated poly(arylene ether) containing chalcone unit (F-PAECh) in the main chain was synthesized from decafluorinated chalcone and fluorinated bisphenol at low temperature for polymer optical waveguide application. Upon UV irradiation on the resulting polymer film, [2+2] cycloaddition of chalocone moiety induced the anisotropic decrease of the refractive indices (nTE and nTM) accompanied with crosslinking of polymer film. The decrease was more significant in in-plane direction than out-of-plane direction, and consequently, zero birefringence was obtained with 4.5 min of exposure. Zero-birefringence as well as its excellent optical properties of F-PAECh makes it a promising candidate material for use in high-performance wavelength division multiplexing components such as polarization-independent arrayed waveguide gratings and Bragg wavelength filters.

  3. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  4. A device for continuous monitoring of true central fixation based on foveal birefringence.

    PubMed

    Gramatikov, Boris; Irsch, Kristina; Müllenbroich, Marie; Frindt, Nicole; Qu, Yinhong; Gutmark, Ron; Wu, Yi-Kai; Guyton, David

    2013-09-01

    A device for continuous monitoring of central fixation utilizes birefringence, the property of the Henle fibers surrounding the human fovea, to change the polarization state of light. A circular scan of retinal birefringence, where the scanning circle encompasses the fovea, allows identification of true central fixation-an assessment much needed in various applications in ophthalmology, psychology, and psychiatry. The device allows continuous monitoring for central fixation over an extended period of time in the presence of fixation targets and distracting stimuli, which may be helpful in detecting attention deficit hyperactivity disorder, autism spectrum disorders, and other disorders characterized by changes in the subject's ability to maintain fixation. A proof-of-concept has been obtained in a small study of ADHD patients and normal control subjects.

  5. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle

    PubMed Central

    1979-01-01

    The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316

  6. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.

    PubMed

    Liu, Qiang; Gross, S; Dekker, P; Withford, M J; Steel, M J

    2014-11-17

    We consider the process of Faraday rotation in femtosecond laser direct-write waveguides. The birefringence commonly associated with such waveguides may be expected to impact the observable Faraday rotation. Here, we theoretically calculate and experimentally verify the competition between Faraday rotation and birefringence in two waveguides created by laser writing in a commercial magneto-optic glass. The magnetic field applied to induce Faraday rotation is nonuniform, and as a result, we find that the two effects can be clearly separated and used to accurately determine even weak birefringence. The birefringence in the waveguides was determined to be on the scale of Δn = 10(-6) to 10(-5). The reduction in Faraday rotation caused by birefringence of order Δn = 10(-6) was moderate and we obtained approximately 9° rotation in an 11 mm waveguide. In contrast, for birefringence of order 10(-5), a significant reduction in the polarization azimuth change was found and only 6° rotation was observed.

  7. A birefringence study of changes in myosin orientation during relaxation of skinned muscle fibers induced by photolytic ATP release.

    PubMed Central

    Peckham, M; Ferenczi, M A; Irving, M

    1994-01-01

    The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor. PMID:7811926

  8. Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber.

    PubMed

    Kudlinski, A; Bendahmane, A; Labat, D; Virally, S; Murray, R T; Kelleher, E J R; Mussot, A

    2013-04-08

    We report the experimental observation of scalar and cross-phase modulation instabilities by pumping a highly birefringent photonic crystal fiber in the normal dispersion regime at 45° to its principal polarization axes. Five sideband pairs (two scalar and three vector ones) are observed simultaneously in the spontaneous regime, four of which have a large frequency shift from the pump, in the range 79-93 THz. These results are in excellent agreement with phase-matching arguments and numerical simulations.

  9. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line.

    PubMed

    Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2012-08-01

    We introduce the translating wedge-based identical pulses encoding system, a novel device for the generation of collinear, interferometrically locked ultrashort pulse pairs. By means of birefringent wedges, we are able to control the pulse delay with attosecond precision and stability better that λ/360, without affecting the pulse duration and in a spectral range that spans from UV to mid-IR. This device is expected to dramatically simplify two-dimensional spectroscopy experiments.

  10. Raman-induced polarization stabilization of vector solitons in circularly birefringent fibers.

    PubMed

    Korneev, N; Kuzin, E A; Villagomez-Bernabe, B A; Pottiez, O; Ibarra-Escamilla, B; González-García, A; Durán-Sánchez, M

    2012-10-22

    Vector soliton propagation in circularly birefringent fibers was studied by perturbation analysis and numerically. The results show that in presence of both Raman self-frequency shift and group velocity difference between circularly polarized components the Raman cross-polarization term causes an energy transfer from the slower to the faster circular component of vector solitons. This effect leads to polarization stabilization of circularly polarized vector solitons.

  11. Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements

    NASA Astrophysics Data System (ADS)

    Abe, Ilda; Kalinowski, Hypolito J.; Frazão, Orlando; Santos, José L.; Nogueira, Rogério N.; Pinto, João L.

    2004-08-01

    We used a pair of Bragg gratings written in high birefringence fibre optics to measure, simultaneously, longitudinal and transverse strain and temperature. The Bragg gratings are superimposed in the same position of the fibre optic, so as to behave as a punctual sensor. The sensitivity of the spectral response of the device to longitudinal strain, transverse strain and temperature are all characterized, and the results of its application as a three-parameter sensor are also presented.

  12. Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion

    NASA Astrophysics Data System (ADS)

    Barlow, A. J.; Payne, D. N.; Hadley, M. R.; Mansfield, R. J.

    1981-10-01

    A method is reported whereby fibers can be reproducibly manufactured with negligible intrinsic birefringence or polarization mode dispersion (less than 0.02 ps/km). The fibers are produced by rotating the preform during drawing to impact a permanent twist and are referred to as spun fibers to distinguish them from fibers twisted after drawing. Such fibers will find application in the Faraday current monitor and for high-bandwidth telecommunications.

  13. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology.

    PubMed

    Omidi, Marjan; Khalili, Mohammad Ali; Ashourzadeh, Sareh; Rahimipour, Marzieh

    2014-03-01

    The aim of the present study was to investigate the relationship between the presence of the meiotic spindle and zona pellucida (ZP) birefringence with morphology of in vivo- and in vitro-matured human oocytes. Germinal vesicles (n=47) and MI (n=38) oocytes obtained from stimulated ovaries of patients undergoing intracytoplasmic sperm injection (ICSI) underwent IVM. Using a PolScope (OCTAX PolarAID; Octax, Herbon, Germany), the presence of spindles and ZP birefringence was assessed in both in vivo-matured (n=56) and IVM (n=56) oocytes. In addition, the morphology of each matured oocyte was evaluated microscopically. There were insignificant differences for ZP birefringence and meiotic spindle between the in vivo-matured and IVM MII oocytes. Subanalysis revealed that the rates of morphologically abnormal oocytes did not differ significantly between the two groups, except in the case of irregular shape (P=0.001), refractile body (P=0.001) and fragmented polar body (P=0.03), which were higher in IVM oocytes. In the case of in vivo-matured oocytes, a significantly higher percentage of oocytes with intracytoplasmic and both intra- and extracytoplasmic abnormalities have a low birefringent ZP (P=0.007 and P=0.02, respectively). There was no relationship between morphological abnormalities and spindle detection. The findings suggest that clinical IVM is a safe technology that maintains the high maturation rate and integrity of oocytes. In addition, the use of the non-invasive PolScope is recommended for the detection of oocytes most suitable for ICSI.

  14. Birefringence and Dichroizm of Porous Aluminum Oxide Filled with Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Cherkas, N. L.; Cherkas, S. L.

    2017-06-01

    Birefringence and dichroizm of a porous aluminum oxide layer filled with titanium dioxide is calculated for the model of an effective medium. Oblique incidence of ordinary and extraordinary waves is considered. A dependence of the layer transmittance on the angle of electromagnetic wave incidence is compared with the available experimental data. The sensitivity of the experimental technique suggested previously to the change of the refractive index of the pore filler is investigated.

  15. Birefringing arising from the reorientation of the polarizability anisotropy of molecules in collisionless gases

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Heritage, J. P.; Gustafson, T. K.; Chiao, R. Y.; Mctague, J. P.

    1974-01-01

    The refractive index change in a collisionless gas is evaluated from the Stark shifts of the rotational energy levels that arise from the polarizability anisotropy. For the limit of an extremely short-duration excitation, a multilevel coherent effect resulted in delayed refractive index bursts. Both stationary and transient responses of this birefringence to an optical field were considered for symmetric top molecules, with particular emphasis on the special case of linear molecules.

  16. Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Khaliji, Kaveh; Fallahi, Arya; Martin-Moreno, Luis; Low, Tony

    2017-05-01

    We explore the far-field scattering properties of anisotropic two-dimensional materials in ribbon array configuration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces, where linearly polarized incident light can be scattered into its orthogonal polarization or be converted into circular polarized light. We found wide modulation in both amplitude and phase of the scattered light via tuning the operating frequency or material's anisotropy and develop models to explain the observed scattering behavior.

  17. Non-osteoporotic women with low-trauma fracture present altered birefringence in cortical bone.

    PubMed

    Ascenzi, Maria-Grazia; Chin, Jesse; Lappe, Joan; Recker, Robert

    2016-03-01

    Areal bone mineral density (BMD) by DXA, although an important index, does not accurately assess risk of fragility fracture. Another bone structural parameter, the orientation of type I collagen, is known to add to risk determination, independently of BMD. Accordingly, we investigated the Haversian systems of transiliac crest biopsies from non-osteoporotic women with low-trauma fractures, matched to healthy women without fracture by age and BMD. We employed circularly polarized light (CPL) microscopy because 1) each of the extinct and bright birefringent signals of CPL corresponds to a specific collagen arrangement; and 2) CPL can employ magnification suitable to provide data, of manageable size, from the whole cortical component of a section of biopsy. Under CPL, the coaxial layers of osteons, called lamellae, appear either birefringent extinct or bright. On a section transverse to the Haversian system, the extinct lamella comprises mainly collagen forming small angles, and the bright lamella comprises mainly collagen forming large angles, relative to the general orientation of the Haversian system. We performed semi-automatic morphometry for birefringent and structural parameters for which we computed intra- and inter-observer errors. The statistical analysis used a linear mixed model to compare fracturing and non-fracturing groups while addressing pairing of fracturing and non-fracturing subjects, and linear regression to assess differences between matched subjects. We found significant reduction in 1) lamellar width and area for extinct lamella and bright lamella; 2) percentage of extinct birefringence in osteons, and 3) single osteon area; in the fracturing group; and in lamellar width in the fracturing subject of all pairs. Our results evidence the need to investigate, in a larger sample of subjects, the distribution of collagen orientation as a parameter diagnostic of increased fracture risk.

  18. Reconfigurable 1×2 wavelength selective switch using high birefringence nematic liquid crystals.

    PubMed

    Pinzón, Plinio Jesús; Pérez, Isabel; Vázquez, Carmen; Sánchez Pena, José Manuel

    2012-09-01

    A reconfigurable 1×2 wavelength selective switch, based on a Lyot filter and high birefringence nematic liquid crystals, is proposed. Simulations and experimental results of a reconfigurable switch are reported. Insertion losses from 3.4 dB and rejection ratios up to 15 dB are obtained in a two input channel system at 560 and 621 nm. Control voltages of 0 to 3 V(RMS) are used.

  19. Calculation of the mean differential group delay of periodically spun, randomly birefringent fibers.

    PubMed

    Galtarossa, Andrea; Griggio, Paola; Pizzinat, Anna; Palmieri, Luca

    2002-05-01

    Spinning is one of the most effective and well-known ways to reduce polarization mode dispersion of optical fibers. In spite of the popularity of spinning, a detailed theory of spin effects is still lacking. We report an analytical expression for the mean differential group delay of a randomly birefringent spun fiber. The result holds for any periodic spin function with a period shorter than the fiber's beat length.

  20. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    SciTech Connect

    Paranin, V D; Matyunin, S A; Tukmakov, K N

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  1. Measurement of birefringence of optical materials using a wedged plate interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, Putcha

    1990-01-01

    A nondestructive technique for measuring the birefringence of optical materials such as calcite using wedged plate interferometer is presented. The sample needed for measuring the refractive index must be polished in the form of a parallel plate. The method is based on the measurement of the longitudinal displacement of the focus when the parallel plate is inserted in a converging beam of light. The displacement of the focus is a measure of the refractive index of the optical material. In the case of a uniaxial crystal, the displacement of the focus for the extraordinary ray is different from the displacement of the focus for the ordinary ray. Hence the birefringence of the crystal is determined by measuring the difference between the two focii. It is possible to obtain an accuracy up to 0.0002 in the measurement of birefringence depending on the sample thickness. The method should find its application for the characterization of new crystals in various material research and crystal growth laboratories.

  2. Collagen birefringence assessment in heart chordae tendineae through PS-OCT

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Revuelta, José M.; González-Vargas, Nieves; Pontón, Alejandro; Calvo-Díez, Marta; López-Higuera, José M.; Conde, Olga M.

    2017-02-01

    Degenerative mitral regurgitation is a serious and frequent human heart valve disease. Malfunctioning of this valve brings the left-sided heart through a significant increase of pressure and volume overload. Severe degenerative mitral incompetence generally requires surgical repair or valve replacement with a bioprosthesis or mechanical heart valve. Degenerative disease affects the leaflets or/and the chordae tendineae, which link both leaflets to the papillary muscles. During mitral valve surgical repair, reconstruction of the valve leaflets, annulus and chordae are provided to prevent postoperative recurrence of valve regurgitation. The operative evaluation of the diseased and apparently normal chordae tendineae mainly depends of the surgeońs experience, without any other objective diagnosis tool. In this work, PS-OCT (Polarization Sensitive-Optical Coherence Tomography) is applied for the first time to evaluate the pathological condition of human chordae coming from the mitral valve. It consists on a prospective study to test the viability of this technique for the evaluation of the collagen core of chords. This core presents a strong birefringence due to the longitudinal and organized arrangement of its collagen bundles. Different densities and organizations of the collagen core translate into different birefringence indicators whose measurement become an objective marker of the core structure. Ex-vivo mitral degenerative chordae tendineae have been analyzed with PS-OCT. Intensity OCT is used to obtain complementary morphological information of the chords. Birefringence results correlate with the previously reported values for human tendinous tissue.

  3. Magneto-optical circular birefringence of a chiral medium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Surma, M.

    Measurements are reported of the magneto-optical circular birefringence of an intracentrifuged blood. The blood plasma is optically active. Under the influence of external magnetic field magnetooptical circular birefri2ngence of the in 3vestigated medium is observed as a superposition of linear (B), quadratic (B ) and cubic (B ) field dependence. The quantitative result of the observed effect is different for parallel ( ) and antiparallel ( ) light propagation k, to the direction of the magneti2c field B 3 acting on the medium. These results are the first experimental observation of the B and B effects and the different circular birefringence for a chiral medium in a magnetic field parallel and antiparallel to the light beam propagation. The parallel (k,B) and antiparallel (k,- B) effects are obse2rved clea 3rly for a magnetic field of induction B above 10T acting on the plasma. The B and B dependent effects are unambiguously recorded for B values above 20T. For different sources of human plasma the magneto-optical data differ slightly. The magneto-optical circular birefringence of the plasma investigated has been measured in high magnetic fields of up to 30T and with a 488nm wavelength laser beam.

  4. Nucleosome and DNA-protein condensed structures in solution from flow birefringence and intrinsic viscosity

    SciTech Connect

    Harrington, R.E.

    1980-10-01

    Highly sensitive streaming birefringence measurements combined with intrinsic viscosity are used to characterize the shape anisometry and optical anisotropy of nucleosomes over a range of salt concentration > 30 mM KCl and of structures obtained by the condensation of high molecular weight DNA with polylysine. These measurements appear useful for several reasons. Both streaming birefringence and intrinsic viscosity are hydrodynamic properties based upon the rotational diffusion of macromolecular particles and hence are inherently more sensitive to details of particle anisometry than are hydrodynamic properties based upon translational diffusion. An established body of both hydrodynamic and continuum dielectric optical theory is available with which to interpret streaming birefringence results. Extinction angles (i.e., mean orientation angles of particles in a velocity gradient) are entirely hydrodynamic properties, and hence can be interpreted through the rotational coefficient to characterize particle anisometry and to estimate absolute dimensions. The ratio of Maxwell coefficient to intrinsic viscosity is proportional to the absolute particle anisotropy. The high optical anisotropy of DNA relative to that of associated protein permits certain details of tertiary structure and shape anisometry to be estimated from the observed optical anisotropy compared to optical models involving the DNA alone. The method is essentially independent of solvent.

  5. Polymer optical microstructured fiber with birefringence induced by stress-applying elements.

    PubMed

    Mergo, Pawel; Martynkien, Tadeusz; Urbanczyk, Waclaw

    2014-05-15

    We report on the fabrication of a birefringent microstructured PMMA fiber with polystyrene stress-applying elements located in the solid part of the cladding. A microstructured part of the cladding composed of three rings of holes was made of a technical-grade PMMA by a drilling method. The fiber shows a relatively high birefringence of the order of 4×10(-5), which weakly depends upon wavelength in the investigated spectral range from 0.6 to 1 μm. The cross talk between polarization modes is lower than -20  dB for a 1 m long fiber, while the fiber loss is about 8  dB/m at 0.83 μm. We also studied the fiber response to temperature in the range from 20°C to 60°C. The temperature induced birefringence change is negative and shows a significant hysteresis in the first cycle, which gradually disappears in successive cycles.

  6. An Optimal Cure Process to Minimize Residual Void and Optical Birefringence for a LED Silicone Encapsulant

    PubMed Central

    Song, Min-Jae; Kim, Kwon-Hee; Yoon, Gil-Sang; Park, Hyung-Pil; Kim, Heung-Kyu

    2014-01-01

    Silicone resin has recently attracted great attention as a high-power Light Emitting Diode (LED) encapsulant material due to its good thermal stability and optical properties. In general, the abrupt curing reaction of the silicone resin for the LED encapsulant during the curing process induces reduction in the mechanical and optical properties of the LED product due to the generation of residual void and moisture, birefringence, and residual stress in the final formation. In order to prevent such an abrupt curing reaction, the reduction of residual void and birefringence of the silicone resin was observed through experimentation by introducing the multi-step cure processes, while the residual stress was calculated by conducting finite element analysis that coupled the heat of cure reaction and cure shrinkage. The results of experiment and analysis showed that it was during the three-step curing process that the residual void, birefringence, and residual stress reduced the most in similar tendency. Through such experimentation and finite element analysis, the study was able to confirm that the optimization of the LED encapsulant packaging process was possible. PMID:28788666

  7. Simultaneous retardation compensation during bending of plastic film coated with a polymer layer of opposite birefringence.

    PubMed

    Jeong, Jinyoung; Park, Dabin; Lee, Ji-Hoon

    2016-11-01

    We proposed a method of eliminating the bending-induced retardation of a plastic film by coating it with a polymer layer with an opposite birefringence. We coated a polystyrene (PS) or a poly(methyl methacrylate) (PMMA) layer on a polycarbonate (PC) plastic film. The bare PC film is composed of main-chain-type polymers and showed an increase in retardation with bending. The main-chains of the PC polymer are reoriented along the circular arc direction during bending, resulting in a positive birefringence. In contrast, the 11 wt. % PS-coated and the 19 wt. % PMMA-coated PC films showed minimal change in the retardation regardless of the radius of curvature. The PS and the PMMA polymers are of the side-chain-type, and the side-chains were aligned perpendicular to the circular arc direction during bending, resulting in a negative birefringence. Consequently, the bending-induced retardation of the PC film can be compensated by the PS or the PMMA layer during bending of the film. This method of compensating for the bending-induced retardation of the plastic film can be useful for flexible display applications.

  8. Retardance of bilayer anisotropic samples consisting of well-aligned cylindrical scatterers and birefringent media

    NASA Astrophysics Data System (ADS)

    Guo, Yihong; Zeng, Nan; He, Honghui; Liu, Celong; Du, E.; He, Yonghong; Ma, Hui

    2016-05-01

    Both cylindrical scatterers and birefringent media may contribute to the anisotropy of tissue, where anisotropy can be characterized using polarization techniques. Our previous studies have shown that a layer of well-aligned cylindrical scatterers displays anisotropic properties similar to those of a piece of birefringent media, whose equivalent extraordinary axis is along the axial direction of the cylinders. We focused on a sample consisting of two layers of anisotropic media, with each layer having a different orientation; the characteristics of this sample were representative of the properties of multilayer fibrous tissues. Using a Mueller matrix decomposition method, we examined in detail how the total retardance and the equivalent extraordinary axis of the bilayered sample varied with changes in the retardance of the two layers and the direction of the extraordinary axis. The results of this study showed that, in such bilayer samples, a layer of well-aligned cylindrical scatterers generated a retardance that behaved exactly like the retardance generated by a piece of birefringent media. The simulated results were also confirmed by the results of experiments using aligned glass fibers.

  9. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Wallenburg, Marika A.; Li, Shu-Hong; Weisel, Richard D.; Wilson, Brian C.; Li, Ren-Ke; Vitkin, I. Alex

    2010-07-01

    Myocardial infarction leads to structural remodeling of the myocardium, in particular to the loss of cardiomyocytes due to necrosis and an increase in collagen with scar formation. Stem cell regenerative treatments have been shown to alter this remodeling process, resulting in improved cardiac function. As healthy myocardial tissue is highly fibrous and anisotropic, it exhibits optical linear birefringence due to the different refractive indices parallel and perpendicular to the fibers. Accordingly, changes in myocardial structure associated with infarction and treatment-induced remodeling will alter the anisotropy exhibited by the tissue. Polarization-based linear birefringence is measured on the myocardium of adult rat hearts after myocardial infarction and compared with hearts that had received mesenchymal stem cell treatment. Both point measurement and imaging data show a decrease in birefringence in the region of infarction, with a partial rebound back toward the healthy values following regenerative treatment with stem cells. These results demonstrate the ability of optical polarimetry to characterize the micro-organizational state of the myocardium via its measured anisotropy, and the potential of this approach for monitoring regenerative treatments of myocardial infarction.

  10. Feasibility of a compact fiber optic probe for real time tracing of subsurface skin birefringence

    NASA Astrophysics Data System (ADS)

    Tugbaev, Vitaly; Myllyla, Risto

    2005-08-01

    A novel approach anticipates real time acquisition of spatially resolved polarization data to facilitate fast cross-sectional tracing collagen-related birefringence in skin down to reticular dermis, i.e. up to the depth of a few hundreds micrometers. It is based on a unique integration of a static-type interferometer in a time domain system intended for polarization-sensitive optical coherence tomography (PS-OCT). The design concept avoids any movable parts to evolve fringes over the traced depth, and exploits liquid crystal bistable switches to rapidly discriminate between orthogonal polarization components of the analyzable signal. The signal is transmitted through a polarization maintaining fiber and detected, by turns, in the single optical channel by the same line camera of appropriate format. The approach relies on the statements proven in the art. In particular, time-domain PS-OCT based on coherent detection of the fringe intensity in orthogonal polarization components of reflected signal allows identifying at least qualitatively collagen depletion regions in subsurface skin layers. Polarization state of light backscattered from sufficiently shallow depth in skin is defined mostly by linear birefringence of collagen fibers. Propagation of light in such linearly birefringent medium satisfies the reciprocity principle in optics.

  11. Multiple scattering of polarized light in uniaxial turbid media with arbitrarily oriented linear birefringence

    NASA Astrophysics Data System (ADS)

    Otsuki, S.

    2017-02-01

    The effective scattering Mueller matrices obtained by the simulation were simplified to the reduced matrices and factorized using the Lu-Chipman polar decomposition, which afforded the polarization parameters in two dimensions. In general, the scalar retardance around the illumination point of a pencil beam shows a broad azimuthal dependence with an offset. Photons may behave quite differently under the birefringence according to their polarization state. In contrast, when the birefringence is oriented along the y axis in the plane parallel to the surface (x-y) plane, for example, the azimuthal dependence of the scalar retardance shows clear maxima along the x and y axes and sharp valleys between the maxima. Photons propagating in the medium probably experience the retardance in nearly the same way, when they are polarized linearly and circularly. Moreover, the polarization parameters generally become nonsymmetric with respect to the plane perpendicular to both the x-y plane and the plane containing the birefringence axis, which suggests that the pathway of the lateral propagation of photons from the illumination point to the surrounding is slightly oblique upward relative to the x-y plane.

  12. X-ray Birefringence Imaging of Materials with Anisotropic Molecular Dynamics.

    PubMed

    Palmer, Benjamin A; Edwards-Gau, Gregory R; Kariuki, Benson M; Harris, Kenneth D M; Dolbnya, Igor P; Collins, Stephen P; Sutter, John P

    2015-02-05

    The X-ray birefringence imaging (XBI) technique, reported very recently, is a sensitive tool for spatially resolved mapping of the local orientational properties of anisotropic materials. In this paper, we report the first XBI measurements on materials that undergo anisotropic molecular dynamics. Using incident linearly polarized X-rays with energy close to the Br K-edge, the X-ray birefringence is dictated by the orientational properties of the C-Br bonds in the material. We focus on two materials (urea inclusion compounds containing 1,8-dibromooctane and 1,10-dibromodecane guest molecules) for which the reorientational dynamics of the brominated guest molecules (and hence the reorientational dynamics of the C-Br bonds) are already well characterized by other experimental techniques. The XBI results demonstrate clearly that, for the anisotropic molecular dynamics in these materials, the effective X-ray optic axis for the X-ray birefringence phenomenon is the time-averaged resultant of the orientational distribution of the C-Br bonds.

  13. Effects of birefringence on Fizeau interferometry that uses a polarization phase-shifting technique.

    PubMed

    Zhao, Chunyu; Kang, Dongyel; Burge, James H

    2005-12-10

    Interferometers that use different states of polarization for the reference and the test beams can modulate the relative phase shift by using polarization optics in the imaging system. Thus the interferometer can capture simultaneous images that have a fixed phase shift, which can be used for phase-shifting interferometry. As all measurements are made simultaneously, the interferometer is not sensitive to vibration. Fizeau interferometers of this type have an advantage compared with Twyman-Green-type systems because they are common-path interferometers. However, a polarization Fizeau interferometer is not strictly common path when both wavefronts are transmitted by an optic that suffers from birefringence. The two polarized beams see different phases owing to birefringence; as a result, an error can be introduced in the measurement. We study the effect of birefringence on measurement accuracy when different polarization techniques are used in Fizeau interferometers. We demonstrate that measurement error is reduced dramatically and can be eliminated if the reference and test beams are circularly polarized rather than linearly polarized.

  14. Dispersion of linearly polarized light propagating in a thin birefringent plate.

    PubMed

    Yang, Xifeng; Jia, Yaqing; Zhao, Youbo; Zhang, Tiequn; Zhu, Xiaonong

    2005-04-01

    We analyze theoretically the dispersion of linearly polarized light propagating in a uniaxial anisotropic medium where multibeam interference is present. Explicit expressions of the group-delay dispersion for transmitting waves are derived for the simplest situation, and the effect of dispersion on pulse broadening is analyzed for a few selected cases. Our results reveal that at normal incidence and in the situation where the optic axis is parallel to the surface of birefringent plate (in the x-y plane), the dispersion of the refracted wave decreases with the extent of birefringence. In particular, the dispersion for the electric field parallel to the polarization direction of the incident light changes with the rotation angle between the optic axis and the polarization direction of the incident field, whereas the dispersion for the refracted field whose direction is vertical to the polarization of incident light is independent of this angle. For oblique incidence, dispersion varies substantially for different incident angles. In the situation where the optic axis is in the x-z plane at either normal or oblique incidence, the dispersion increases in a periodically oscillating manner as a function of the relative thickness of the birefringent plate.

  15. Rocking filter induced mechanically in a highly birefringent microstructured polymer fiber.

    PubMed

    Statkiewicz-Barabach, Gabriela; Mergo, Pawel; Urbanczyk, Waclaw

    2014-11-10

    We present the possibility of mechanical inducement of a rocking filter in a birefringent microstructured polymer fiber, which resonantly couples polarization modes. A birefringence in the fiber used for rocking filter fabrication is induced by two large holes adjacent to the core. Because of the small pitch distance of the microstructured cladding, the phase and the group modal birefringence in this fiber are relatively high and equal, respectively, 1.2×10-4 and -2×10-4 at λ=800  nm, while the fiber loss is 5  dB/m at λ=850  nm. We demonstrate transmission characteristics of rocking filters mechanically induced in this fiber. A 22 dB deep first-order resonance located in the visible spectral range was observed, accompanied by a second-order resonance in the near-infrared. We also show that by changing the filter period and load applied to the fiber, one can tune the resonance position and depth.

  16. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

    NASA Astrophysics Data System (ADS)

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M.; Luna, Mónica; Briones, Fernando

    2012-04-01

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles’ performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  17. Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method.

    PubMed

    Drobczynski, Slawomir; Bueno, Juan M; Artal, Pablo; Kasprzak, Henryk

    2006-08-01

    We present an imaging polarimeter in transmission mode that is based on a carrier frequency method and allows a spatially resolved polarimetric description of nondichroic linear birefringent media. The apparatus incorporates a generator of polarization states in the incoming pathway and a Wollaston prism and a linear polarizer as the analyzer unit. A series of two fringe pattern images of the birefringent sample under study, corresponding to two independent polarization states of the generator unit, were recorded. From these images and by using Fourier analysis, the 2D distribution of azimuth angle and retardation were calculated. Two alternative generator units were used: (i) a linear polarizer combined with a rotatory quarter-wave plate and (ii) a liquid-crystal variable retarder. A uniform quarter-wave plate at different orientations was measured with both generator units to demonstrate the effectiveness and the accuracy of the method. The mean absolute deviations were 1.8 degrees and 4.1 degrees for the azimuth and the retardation, respectively, with the first generator unit, and 2.9 degrees and 4.4 degrees for the second one. Moreover, some nonuniform birefringent samples presenting wider ranges of azimuth and retardation were also tested.

  18. Wavelength-tunable mid-infrared femtosecond Raman soliton generation in birefringent ZBLAN photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Sharma, Sneha; Kumar, Jitendra

    2016-03-01

    A solid core high birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic crystal fiber (PCF) with low confinement loss is proposed for the generation of Raman soliton source in the mid-infrared region. The birefringence value of the PCF reaches the magnitude of 10- 3 and confinement loss is 0.05 dB/m at 3000 nm wavelength. Numerical simulation of femtosecond Raman soliton generation based on soliton self-frequency shift in the birefringent PCF is analyzed using the coupled nonlinear Schrodinger equation and split-step Fourier method. We investigate the dependence of output pulse width, wavelength shift, and conversion efficiency of Raman soliton formation on several input parameters. A femtosecond Raman soliton source with its wavelength tunable from 1500 to 3600 nm can be obtained. It is found that the maximum conversion efficiency is 93% when the wavelength is tuned by varying the initial input chirp.

  19. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution.

    PubMed

    Wang, Yunzheng; Zhang, Liqiang; Zhuo, Zhuang; Guo, Songzhen

    2016-07-20

    We propose a cross-splicing method, for the first time to our knowledge, to compensate the effect of fiber birefringence in a polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution. This method has been investigated numerically and experimentally. The results indicate that stable mode-locking pulses can be obtained in the cavity with this method; otherwise, no mode-locking states are achieved. The design processes of the laser cavity are presented. Pulses with single pulse energy of 2.1 nJ are generated at pump power of 460 mW. The spectral bandwidth and pulse duration are 17.5 nm and 11.7 ps, respectively. The tunability of the laser is also studied. The central wavelength can be tuned from 1023.2 to 1045.9 nm.

  1. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    SciTech Connect

    Raposo, Maria Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  2. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    NASA Astrophysics Data System (ADS)

    Raposo, Maria; Ferreira, Quirina; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; do Rego, Ana Maria Botelho

    2015-09-01

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  3. Time Circular Birefringence in Time-Dependent Magnetoelectric Media

    PubMed Central

    Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin

    2015-01-01

    Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928

  4. Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    1999-01-01

    We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.

  5. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring.

    PubMed

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-04-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed.

  6. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring

    PubMed Central

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-01-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  7. Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence

    SciTech Connect

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M. Edwards-Gau, Gregory R.; Kariuki, Benson M.; Palmer, Benjamin A.

    2016-07-27

    Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

  8. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers.

    PubMed

    Saitoh, Kunimasa; Varshney, Shailendra K; Koshiba, Masanori

    2007-12-24

    We propose a new design of hole-assisted fiber (HAF) that can compensate for the accumulated dispersion in single-mode fiber link along with dispersion slope, thus providing broadband dispersion compensation over C-band as well as can amplify the signal channels by utilizing the stimulated Raman scattering phenomena. The proposed dispersion-compensating HAF (DCHAF) exhibits the lowest dispersion coefficient of -550 ps/nm/km at 1550 nm with an effective mode area of 15.6 microm(2). A 2.52 km long module of DCHAF amplifies incoming signals by rendering a gain of 4.2 dB with +/-0.8 dB gain flatness over whole C-band. To obtain accurate modal properties of DCHAF, a full-vector finite element method (FEM) solver is employed. The macro-bend loss characteristics of the proposed DCHAF are evaluated using FEM solver in cylindrical coordinate systems of a curved DCHAF, and low bending losses (<10(-2) dB/m for 1 cm bending radius) are obtained for improved DCHAF design while keeping intact its dispersion compensation and Raman amplification properties. We have further investigated the birefringence characteristics that can give significant information on the polarization mode dispersion of DCHAF by assuming a certain deformation (eccentricity e = 7%) either in air-holes or in the doped core or in both at a same time. It is noticed that the distortion in air-holes induces a birefringence of 10(-5), which is larger by a factor of 10 than the birefringence caused due to the core ellipticity. A PMD of 11.3 ps/ radicalkm is obtained at 1550 nm for distorted air-holes DCHAF structure.

  9. Reversible change of birefringence sign by optical and thermal processes in an azobenzene polymethacrylate

    SciTech Connect

    Rodriguez, F.J.; Sanchez, C.; Villacampa, B.; Alcala, R.; Cases, R.; Millaruelo, M.; Oriol, L.

    2005-01-10

    Birefringence ({delta}n) induced in an azobenzene polymethacrylate by combination of biphotonic and thermotropic processes has subsequently been changed in sign by room temperature illumination with linearly polarized blue light. The sign of {delta}n can be reversed again, by simply heating up the film to 100 deg. C. This change of {delta}n between positive and negative values can be repeated several times. Besides, by appropriate choice of film thickness and blue light irradiation conditions the same absolute value for positive and negative {delta}n values can be obtained.

  10. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    NASA Astrophysics Data System (ADS)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  11. 2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line.

    PubMed

    Réhault, Julien; Maiuri, Margherita; Manzoni, Cristian; Brida, Daniele; Helbing, Jan; Cerullo, Giulio

    2014-04-21

    We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 μm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

  12. Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion

    DOE PAGES

    Erenso, Daniel

    2009-01-01

    The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.

  13. Evolution of polarization of a nonlinear pulse in birefringent fiber with quintic effects

    NASA Astrophysics Data System (ADS)

    Senthilnathan, K.; Porsezian, K.

    2002-09-01

    We investigate the evolution of polarization of a soliton pulse with quintic self and cross phase modulation effects in birefringent nonlinear fiber. To characterize the state of polarization of a soliton pulse, we derive a system of integro-differential equations. The solitary wave solutions are obtained to discuss the different state of polarization. Moreover, after constructing suitable conserved densities, we derive the undamped Duffing oscillator equation from the evolution of the Stokes parameters. The stability analysis is carried out by both analytical and numerical methods.

  14. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.

  15. Stretched exponential kinetics for photoinduced birefringence in azo dye doped PVA films

    NASA Astrophysics Data System (ADS)

    Yang, Hye Ri; Kim, Eun Ju; Lee, Sang Jo; Kim, Gun Yeup; Kwak, Chong Hoon

    2009-05-01

    We fabricated azo dye (methylorange) doped poly vinyl alcohol (MO/PVA) thin films and measured the photoinduced birefringence (PIB) kinetics for several pump beam intensities and for various MO concentrations by using the pump-probe technique. A novel approach to explain the transient behaviors of the photoinduced anisotropy is presented by employing an empirical stretched exponential time response in the course of the trans-cis-trans photoisomerization of azo molecules and is compared with the experimental data, showing excellent agreement. The stretched exponent is estimated to be β = 0.34 ± 0.04, revealing amorphous nature of the MO/PVA system.

  16. Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity.

    PubMed

    Kochetkova, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A

    2010-06-07

    A system of differential equations describing, neglecting diffraction, the propagation of laser radiation in a medium with birefringence and cubic nonlinearity is derived. It is shown that the efficiency of depolarization compensation by means of a 90 degrees polarization rotator or a Faraday mirror decreases with increasing B-integral (nonlinear phase incursion). Comparison of the effectiveness of the considered method in the case of incident linear and circular polarization showed that for the circular polarization the optimal angle of polarization rotator is different from 90 degrees and the degree of polarization is less than for the linear one.

  17. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  18. Chirality measurements using optical fibre long period gratings fabricated in high birefringent fibre

    NASA Astrophysics Data System (ADS)

    Korposh, S.; Tatam, R. P.; James, S. W.; Lee, S.-W.

    2015-07-01

    A Long period grating (LPG) with a period of 111 μm was fabricated in the highly birefringent (Hi-Bi) optical fibre with the aim of developing a sensor for chirality measurements. The LPG sensor was exposed to different concentrations of glucose D(+) and fructose D(-) in water, which have similar structures but exhibit opposite optical rotations, i.e. chirality. The behaviour of the resonance bands of the submodes corresponding to the two orthogonal polarization states was different depending on the chirality of the compound, thus allowing discrimination between two compounds.

  19. Gravity-induced birefringence within the framework of Poincare gauge theory

    SciTech Connect

    Preuss, Oliver; Solanki, Sami K.; Haugan, Mark P.; Jordan, Stefan

    2005-08-15

    Gauge theories of gravity provide an elegant and promising extension of general relativity. In this paper we show that the Poincare gauge theory exhibits gravity-induced birefringence under the assumption of a specific gauge invariant nonminimal coupling between torsion and Maxwell's field. Furthermore we give for the first time an explicit expression for the induced phase shift between two orthogonal polarization modes within the Poincare framework. Since such a phase shift can lead to a depolarization of light emitted from an extended source this effect is, in principle, observable. We use white dwarf polarimetric data to constrain the essential coupling constant responsible for this effect.

  20. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  1. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  2. Computer-controlled near-infrared polarimeter featuring a new type of stress-birefringent modulator

    SciTech Connect

    West, S.C.; Schmidt, G.D.; Pawlicki, R.; Rieke, G.H.; Angel, R.P.

    1988-07-01

    The development of an astronomical polarimeter for the spectral region 1-2.6 microns is reported. The instrument incorporates a fused silica stress-birefringent modulator capable of producing square-wave polarimetric modulation of over 95 percent efficiency from dc to 2 Hz and quarter-wave retardation at wavelengths up to the K photometric bands. Possible applications of this instrument are examined, including the search for comparatively weak magnetic fields in white dwarf accretion binaries, the study of the nature of polarization in faint active galactic nuclei, and near-IR survey of isolated magnetic white dwarfs. 32 references.

  3. Birefringence and scattering of light in colloidal solutions of magnetite in kerosene

    NASA Astrophysics Data System (ADS)

    Erin, K. V.

    2016-02-01

    The birefringence and dynamic and static scattering of light in colloidal solutions of magnetite nanoparticles in kerosene with different concentrations of the solid phase have been investigated. It is shown that these solutions contain both individual colloidal particles about 12 nm in diameter and their aggregates up to 100‒600 nm in diameter. The largest aggregates are formed in solutions with the lowest concentration (on the order of 0.001 vol % or lower). The presence of relatively large aggregates makes it possible to observe specific features of optical anisotropy relaxation in these solutions, which are related to the non-Rayleigh character of light scattering from magnetite-particle aggregates.

  4. Crystalline perfection, birefringence and laser damage threshold properties of piperidinium p-hydroxybenzoate

    SciTech Connect

    Sudhahar, S.; Zahid, I. MD; Kumar, M. Krishna; Kumar, R. Mohan

    2015-06-24

    Piperidinium p-hydroxybenzoate (PPHB) crystal was grown by slow evaporation method. Single crystal X-ray diffraction studies confirm that PPHB crystallizes in monoclinic crystal system with noncentrosymmetric space group Cc. The crystalline perfection of the grown crystal was evaluated by using high resolution X-ray diffractometry. UV-Visible transmission and birefringence studies were employed on the grown PPHB crystal. The laser induced damage threshold value was estimated using Nd:YAG laser. Thermal behavior of PPHB crystal has been investigated by TG-DTA analyses. Etching studies have been performed to assess the growth pattern of PPHB crystal.

  5. Single negative birefringence in stacked spoof plasmon metasurfaces by prism experiment.

    PubMed

    Beruete, M; Navarro-Cía, M; Falcone, F; Campillo, I; Sorolla, M

    2010-03-01

    We report negative and positive refraction in a prism made of stacked perforated thin surfaces for s and p polarization, respectively. By corrugating the subwavelength slits of a free-standing periodic arrangement, geometrically induced surface-plasmon-like currents are excited and transmission is allowed under s polarization (electric-field vector parallel to the slit). When several of those corrugated slit arrays are subwavelength stacked, the stack behaves as a negative effective index medium (because of double negativity) under s polarization, whereas it behaves as a positive effective index medium under p polarization. The birefringence has been confirmed by the usual wedge experiment in the millimeter-wave range.

  6. Design of infrared imaging birefringent interferometers for small-UAVs and handheld scanning systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pola Fossi, Armande; Ferrec, Yann; Guerineau, Nicolas; Roux, Nicolas; Kling, Emmanuel; Sauer, Hervé

    2016-10-01

    Hyperspectral imaging from unmanned aerial vehicles arouses a growing interest, as well for agriculture management as pollution monitoring or security purposes. Most of current instruments are in the visible or near infrared spectral range, but the midwave or longwave infrared may also be interesting. Among the available solutions for compact imaging spectrometers in this spectral range, static imaging Fourier transform spectrometers are well adapted, thanks to the absence of moving part, a 2D snapshot imaging, which can be useful for image registration, and a high flux collection efficiency. To reach a high compactness compliant with small UAVs, birefringent interferometers are good candidates. Indeed, they can be roughly seen as a plate which comes in front of the camera lens. We propose here firstly to expose the design rules of such instruments in the midwave or longwave infrared. The first point is about the material: highly birefringent uniaxial crystals materials are not so common in this spectral domain. For MWIR spectral imagers, TeO2 or YVO4 can be used. For LWIR instruments, current materials, like ZnGeP2 or AgGaS2 are available, but their birefringence is not so high. Calomel is a promising way, but not still available. The second point consists in defining the type of interferometer, like Savart interferometer, Wollaston interferometer, or other designs. To help this choice, we have developed a software tool to calculate the propagation of plane waves in a stack of birefringent plates. This allows us to choose the optimal assembly of the plates to reach the required spectral resolution. We will then present experimental results obtained with a MWIR prototype. This prototype, called SIBI,, works in the [3.7µm-4.8µm] spectral domain (or [2050cm 1-2700cm 1]), with a spectral resolution about 13cm 1. A first ground campaign was led in June 2015, on Mount Etna (Italy). This campaign was useful to emphasize the assets and drawbacks of this instrument

  7. The Exicor DUV birefringence measurement system and its application to measuring lithography-grade CaF2 lens blanks

    NASA Astrophysics Data System (ADS)

    Wang, Baoliang; Griffiths, C. O.; Rockwell, Rick R.; List, Jennifer; Mark, Doug

    2003-11-01

    Optical lithography continues its transition to shorter wavelengths to support the semiconductor industry"s production of faster microchips to meet evolving market demands. The next step for optical lithography is likely to use the F2 excimer laser at 157.63 nm (157 nm,according to the industry" s naming convention).At 157 nm, among the limited number of fluoride crystals with acceptable optical properties calcium fluoride is the only practical lens material for step and scan systems due to its readiness for mass production. Since the discovery of intrinsic birefringence in CaF2 at deep ultraviolet (DUV)wavelengths,the optical lithography industry has developed a critical interest in measuring birefringence at 157 nm. In response to this need, we have developed a DUV birefringence measurement system. In this article,we describe the working principle, system construction, technical performance and selected applications for measuring lithography grade calcium fluoride lens blanks at DUV wavelengths.

  8. Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis.

    PubMed

    Kim, Hyun-Min; Kim, Tae-Hun; Kim, Bongkyun; Chung, Youngjoo

    2010-07-10

    We report on a transverse load sensor with enhanced sensitivity through the use of a birefringent interferometer based on a highly birefringent photonic crystal fiber (HB-PCF). The transverse load sensitivity can be enhanced by using a fabricated HB-PCF having larger air holes on its fast axis. The transverse load sensitivity was measured to be high: approximately 2.17 nm/(N/cm). The temperature-induced undesirable effects can be ignored because transmission outputs of our HB-PCF were stable with the change of the temperature. The sensing probe can be compact because of its high birefringence with the order of 10(-3) and no bending loss.

  9. Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity.

    PubMed

    Kuzmina, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A; Shaykin, A A

    2011-10-24

    We consider a problem of laser radiation propagating in a medium with birefringence of two types: linear birefringence independent of intensity and polarization, and intensity and polarization dependent circular birefringence caused by cubic nonlinearity. It is shown theoretically and experimentally that the efficiency of the broadly employed method of linear depolarization compensation by means of a 90° polarization rotator decreases with increasing В-integral (nonlinear phase incursion induced by cubic nonlinearity). The accuracy of polarization transformation by means of a half-wave and a quarter-wave plate also decreases if В > 1. By the example of a λ/4 plate it is shown that this parasitic effect may be suppressed considerably by choosing an optimal angle of inclination of the optical axis of the plate.

  10. Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry.

    PubMed

    Hlubina, Petr; Martynkien, Tadeusz; Urbańczyk, Waclaw

    2003-11-03

    We present a white-light spectral interferometric technique employing a low-resolution spectrometer for measurement of the dispersion of the group and phase modal birefringence in an elliptical-core optical fi ber over a wide spectral range. The technique utilizes a tandem con fi guration of a Michelson interferometer and the optical fi ber to record a series of spectral interferograms and to measure the equalization wavelengths as a function of the optical path difference in the Michelson interferometer, or equivalently, the wavelength dependence of the group modal birefringence in the optical fi ber. Applying a polynomial fi t to the measured data, the wavelength dependence of the phase modal birefringence can also be determined.

  11. Accurate measurement of the residual birefringence in VECSEL: Towards understanding of the polarization behavior under spin-polarized pumping.

    PubMed

    Frougier, Julien; Baili, Ghaya; Sagnes, Isabelle; Dolfi, Daniel; George, Jean-Marie; Alouini, Mehdi

    2015-04-20

    In this paper we report birefringence measurements of an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well (MQWs) Vertical External Cavity Surface Emitting Laser (VECSEL) in oscillating conditions. The proposed technique relies on the measurement in the microwave domain of the beatnote between the oscillating mode and the amplified spontaneous emission of the cross-polarized non-lasing field lying in the following longitudinal mode. This technique is shown to offer extremely high sensitivity and accuracy enabling to track the amount of residual birefringence according to the laser operation conditions. The experience fits within the broader framework of polarization selection in spin-injected lasers.

  12. Imaging liquid crystalline mesophases in vivo and in vitro: measuring molecular birefringence and order parameter in liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ming; Newton, Richard H.; Haffegee, J.; Brown, Jacki Y.; Ross, Stephen; Bolton, John P.; Ho, Mae-Wan

    1996-12-01

    A recent technique optimizing the detection of small birefringences typical of biological liquid crystals has been described elsewhere. Here, we derive a liner relationship between color intensity, molecular birefringence and degree of phase alignment, based on which, a quantitative image analysis is developed. The image analysis is used to define the dynamics of the phase transition-like increase in color intensity accompanying the condensation of the body-wall musculature in the maturing Drosophila larva, to map the orientation of the collagen fibers in the intervertebral disc, and to investigate mesophases of pork skin collagen assembled in vitro.

  13. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber.

    PubMed

    Dong, Yongkang; Bao, Xiaoyi; Chen, Liang

    2009-09-01

    We demonstrate a time-domain distributed temperature sensing based on birefringence effect on transient Brillouin grating (TBG) in a polarization-maintaining photonic crystal fiber (PM-PCF), which uses two short pump pulses (2 ns) to excite a TBG and a long probe pulse (6 ns) to map the transient Brillouin grating spectrum (TBGS) associated with the birefringence. The 2 ns pump pulses defines a spatial resolution of 20 cm and a temperature measurement range of a few hundred degrees Celsius, and the long probe pulse provides a narrow TBGS with a temperature resolution of 0.07 degrees C.

  14. Dependence of measurement accuracy on the birefringence of PANDA fiber Bragg gratings in distributed simultaneous strain and temperature sensing.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi; Kageyama, Kazuro

    2017-02-20

    By both simulation and experiment, we studied the relationship of the measurement accuracy and the birefringence of the distributed simultaneous strain and temperature sensor using polarization-maintaining fiber Bragg gratings (PANDA-FBGs). The PANDA-FBGs were applied to an optical frequency domain reflectometry (OFDR) which is capable of distributed measurement at high spatial resolution and sampling rate. The simulated results had agreement with the experimental results that the measurement accuracy of both strain and temperature were improved by increasing the birefringence. Additionally, the efficiency of the accuracy improvements decreased when accuracy increased.

  15. Testing chameleon theories with light propagating through a magnetic field

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Mota, David F.

    2007-10-15

    It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axionlike particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental setup. As a consequence, the birefringence is always bigger than the dichroism in PVLAS-type experiments.

  16. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    PubMed

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  17. Optical Birefringence and Dichroism of Cuprate Superconductors in the THz regime

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Y.; Pan, Lidong; Kirzhner, T.; Koren, G.; Armitage, N. P.

    2014-03-01

    The presence of optical polarization anisotropies, such as Faraday/Kerr effects, linear birefringence, and magnetoelectric birefringence are evidence for broken symmetry states of matter. The recent discovery of a Kerr effect using near-IR light in the pseudogap phase of the cuprates can be regarded as a strong evidence for a spontaneous symmetry breaking and the existence of an anomalous long-range ordered state. In this work we present a high precision study of the polarimetry properties of the cuprates in the THz regime. While no Faraday effect was found in this frequency range to the limits of our experimental uncertainty (1.3 milli-radian or 0.07°), a small but significant polarization rotation was detected that derives from an anomalous linear dichroism. In YBa2Cu3Oy the effect has a temperature onset that mirrors the pseudogap temperature T* and is enhanced in magnitude in underdoped samples. In x = 1 / 8 La2-xBaxCuO4, the effect onsets above room temperature, but shows a dramatic enhancement near a temperature scale known to be associated with spin and charge ordered states. These features are consistent with a loss of both C4 rotation and mirror symmetry in the electronic structure of the CuO2 planes in the pseudogap state. Supported by the Gordon and Betty Moore Foundation through Grant GBMF2628 to NPA.

  18. Density and birefringence of a highly stable α,α,β-trisnaphthylbenzene glass

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel S.; Sepúlveda, A.; Pribil, Greg K.; Fakhraai, Zahra; Ediger, M. D.

    2012-05-01

    Spectroscopic ellipsometry has been used to understand the properties of α,α,β-trisnaphthylbenzene (ααβ-TNB) glasses vapor-deposited at a substrate temperature of 295 K (0.85 Tg). In a single temperature ramping experiment, a range of properties of the as-deposited glass can be measured, including density, fictive temperature, onset temperature, thermal expansion coefficient, and birefringence. The vapor-deposited ααβ-TNB glass is 1.3% more dense than the ordinary glass prepared by cooling at 1 K/min, is found to be birefringent, has a fictive temperature 35 K below that of the ordinary glass, and an onset temperature 20 K above that of the ordinary glass. The thermal expansion coefficient of the vapor-deposited ααβ-TNB glass is 14% lower than that of the ordinary glass, indicating that lower portions of the potential energy landscape have more harmonic potential minima than the parts accessible to the ordinary glass.

  19. Novel pressure sensor by diode-pumped birefringent Nd:YAG dual-frequency laser

    NASA Astrophysics Data System (ADS)

    Huang, Chunning; Li, Yan; Zhang, Shulian; Guo, Hui

    2002-09-01

    The prototype of a novel sensor based on laser frequency splitting technology is presented in this paper and the results of a series of experiments are reported. A scheme of the novel pressure sensor by diode-pumped birefringent Nd:YAG dual-frequency laser is brought forward. As a result of the stress birefringence the laser's longitudinal mode is split to two with frequency difference. Both the theoretical analysis and the experiments indicate that there is a direct ratio relation between the frequency difference and the pressure imposed on the Nd:YAG crystal. Therefore when the external pressure is sensed by the Nd:YAG dual-frequency laser and the beat frequency is measured by the frequency counter, the pressure value can be obtained from the magnitude of the beat frequency. The laser can operate under single mode or complex modes with little error to the experiment results. Some research work under different pumping ways is finished and it indicates that the beat frequency has little relation with pumping ways. The experiment has a good linearity (R greater than 0.999) with satisfied precision, sensitivity (5.27 MHz/kPa) and stability, which provides a good academic and experimental foundation for further research.

  20. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers

    PubMed Central

    Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary

    2017-01-01

    Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy. PMID:28261321

  1. Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Wang, Chia-Hung; Lee, Meng-Zhe

    2013-04-01

    To prepare dispersed Fe3O4 magnetic nanoparticles (MNPs), we adopt a co-precipitation method and consider surfactant amount, stirring speed, dispersion mode, and molar ratio of Fe3+/Fe2+. Via transmission electronic microscopy and X-ray diffractometry, we characterize the dispersibility and size of the products and determine the appropriate values of experimental parameters. The stirring speed is 1000 rpm in titration. There is simultaneous ultrasonic vibration and mechanical stirring in the titration and surface coating processes. The surfactant amount of oleic acid is 1.2 ml for molar ratios of Fe3+/Fe2+ as 1.7:1, 1.8:1, and 1.9:1. The average diameters of these Fe3O4 MNPs are 11 nm, and the ratios of saturation magnetization for these MNPs to that of bulk magnetite range from 45% to 65%, with remanent magnetization close to zero and low coercivity. Above all, the linear birefringence and dichroism measurements of the kerosene-based ferrofluid (FF) samples are investigated by a Stokes polarimeter. The influences of particle size distribution and magnetization in the birefringence and dichroism measurements of FFs are discussed.

  2. Irregular spin angular momentum transfer from light to small birefringent particles

    SciTech Connect

    Rothmayer, M.; Tierney, D.; Schmitzer, H.; Frins, E.; Dultz, W.

    2009-10-15

    The transfer of spin angular momentum from photons to small particles is a key experiment of quantum physics. The particles rotate clockwise or counterclockwise depending on the polarization of the light beam which holds them in an optical trap. We show that even perfectly disk shaped particles will in general not rotate with a constant angular speed. The particles will periodically accelerate and decelerate their rotational motion due to a varying spin angular momentum transfer from the light. Using the Poincare sphere we derive the equation of motion of a birefringent plate and verify the results by measuring the time dependent rotation of small crystals of Hg(I) iodide and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) in the trap of polarized optical tweezers. For small ellipticities of the polarized light in the tweezers the plate stops in a fixed orientation relative to the axes of the light ellipse. We discuss the origin of this halt and propose an application of small birefringent plates as self-adjusting optical retarders in micro-optics.

  3. The system spatial-frequency filtering of birefringence images of human blood layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    Among various opticophysical methods [1 - 3] of diagnosing the structure and properties of the optical anisotropic component of various biological objects a specific trend has been singled out - multidimensional laser polarimetry of microscopic images of the biological tissues with the following statistic, correlative and fractal analysis of the coordinate distributions of the azimuths and ellipticity of polarization in approximating of linear birefringence polycrystalline protein networks [4 - 10]. At the same time, in most cases, experimental obtaining of tissue sample is a traumatic biopsy operation. In addition, the mechanisms of transformation of the state of polarization of laser radiation by means of the opticoanisotropic biological structures are more varied (optical dichroism, circular birefringence). Hereat, real polycrystalline networks can be formed by different types, both in size and optical properties of biological crystals. Finally, much more accessible for an experimental investigation are biological fluids such as blood, bile, urine, and others. Thus, further progress of laser polarimetry can be associated with the development of new methods of analysis and processing (selection) of polarization- heterogeneous images of biological tissues and fluids, taking into account a wider set of mechanisms anisotropic mechanisms. Our research is aimed at developing experimental method of the Fourier polarimetry and a spatialfrequency selection for distributions of the azimuth and the ellipticity polarization of blood plasma laser images with a view of diagnosing prostate cancer.

  4. High Magnetic Field-Induced Birefringence in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ostapenko, T.; Nastishin, Yu.; Gleeson, J. T.; Sprunt, S. N.; Lavrentovich, O. D.; Collings, P. J.

    2009-03-01

    We studied the effect of magnetic-field induced birefringence of a 14% solution of disodium cromoglycate (DSCG) in water at temperatures above the nematic-isotropic coexistence region. According to Landau-deGennes mean field theory, we expect to find a linear relationship between the inverse of the induced birefringence, δn, and the quantity (T-T*), where T* is the stability limit of the isotropic phase. Using the 31 T resistive magnet at the National High Magnetic Field Laboratory, we observed that, as we increase the temperature above the coexistence region, we deviate from this linear dependence. Our data shows that δn goes to zero, whereas Landau-deGennes predicts that δn should decrease asymptotically. This may be due to the lack of isodesmic aggregate formation at a finite temperature above the coexistence region.Supported by NSF (DMR-0710544 and DMR-0606160). Work performed at NHMFL, supported by NSF cooperative agreements DMR-0084173, the State of Florida and the DOE.

  5. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    SciTech Connect

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  6. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NASA Astrophysics Data System (ADS)

    van Turnhout, Mark C.; Kranenbarg, Sander; van Leeuwen, Johan L.

    2009-09-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and anisotropy is challenging, because different collagen networks may yield equal qPLM results. We created a model and used the linear optical behavior of collagen to construct a Jones or Mueller matrix for a histological cartilage section in an optical qPLM train. Histological sections of tendon were used to validate the basic assumption of the model. Results show that information on collagen densities is needed for the interpretation of qPLM results in terms of collagen anisotropy. A parameter that is independent of the optical system and that measures collagen fiber anisotropy is introduced, and its physical interpretation is discussed. With our results, we can quantify which part of different qPLM results is due to differences in collagen densities and which part is due to changes in the collagen network. Because collagen fiber orientation and anisotropy are important for tissue function, these results can improve the biological and medical relevance of qPLM results.

  7. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi, Tonio

    2010-09-01

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: β-SiC and β-Si3N4 microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  8. Compact snapshot birefringent imaging Fourier transform spectrometer for remote sensing and endoscopy

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Banerjee, Bhaskar; Chan, Victoria C.; Dereniak, Eustace L.

    2012-09-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors and of a rat esophagus, demonstrating the sensor's ability to resolve spectral signatures in both standard outdoor lighting and environmental conditions, as well as in fluorescence spectroscopy.

  9. Multiwavelength fiber ring laser based on an SOA and Lyot birefringent filter

    NASA Astrophysics Data System (ADS)

    Wang, Minxue; Wu, Jian; Lin, Jintong

    2008-11-01

    This paper presents a detailed study on Wavelength Division Multiplexing - Passive Optical Network (WDM-PON) light source of spectrum sliced multiwavelength fiber ring laser and simple optical Lyot filter. First, the principle of the Lyot birefringent filter for comb generation of the multiwavelength laser is theoretically analyzed. Then we incorporate the Lyot filter and a semiconductor optical amplifier (SOA) as the gain medium into a ring laser cavity. Finally, we experimentally demonstrate an SOA based multiwavelength fiber ring laser using Lyot birefringent filter. Multiwavelength operation up to 25 laser lines with the signal-to-noise ratio over 30dB and 0.8nm wavelength spacing was demonstrated. The power equalize is within 2 dB and the line width 0.108nm is close to the equipment resolution. This multiwavelength laser source has also been proved to have good stability after consistently 90 min time evolution. In general, this multiwavelength laser source has the advantage of simple structure, multiwavelength operation, high SNR and good stability.

  10. Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation.

    PubMed

    Silva, Daniela Fátima Teixeira; Gomes, Anderson Stevens Leonidas; de Campos Vidal, Benedicto; Ribeiro, Martha Simões

    2013-04-01

    Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ = 632.8 nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P = 6.0 mW, I = 21.2 mW/cm(2), E ≈ 0.3 J, ED = 1.0 J/cm(2)) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization.

  11. Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media

    NASA Astrophysics Data System (ADS)

    Gusachenko, Ivan; Schanne-Klein, Marie-Claire

    2013-11-01

    Polarization-resolved second-harmonic microscopy has recently emerged as a valuable technique for in situ imaging of collagen structure in tissues. Nevertheless, collagen-rich tissues such as tendon, ligament, skin dermis, bone, cornea, or artery exhibit a heterogeneous and anisotropic architecture that results in complex optical properties. While experimental evidence of polarization distortions has been reported in various tissues, the physics of second-harmonic imaging within such tissues is not fully understood yet. In this work, we performed numerical simulations of polarization-resolved second-harmonic generation in a strongly focused regime within a birefringent tissue. We show that vectorial components due to strong focusing have a rather small effect on the measurement of the second-harmonic tensorial response, while birefringence and optical dispersion may affect these measurements dramatically. We show indeed that a difference in the focal field distribution for ordinary and extraordinary waves results in different phase-matching conditions, which strongly affects the relative efficacy of second-harmonic generation for different polarizations. These results are of great interest for extracting reliable quantitative parameters from second-harmonic images.

  12. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers

    NASA Astrophysics Data System (ADS)

    Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary

    2016-12-01

    Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.

  13. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    NASA Astrophysics Data System (ADS)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  14. Birefringence by a smoothly inhomogeneous locally isotropic medium: Three-dimensional case

    NASA Astrophysics Data System (ADS)

    Savchenko, A. Yu.; Zel'dovich, B. Ya.

    1994-09-01

    The propagation problem for electromagnetic waves in a smoothly inhomogeneous locally isotropic medium, which was considered for a layered case in V. S. Liberman and B. Ya. Zel'dovich, Phys. Rev. E 49, 2389 (1994) is generalized to a three-dimensional situation. Effective ``linear'' birefringence, i.e., coherent transformation of a right circularly polarized wave into the left one with the amplitude ~(λ/a) is predicted and calculated. It corresponds to the corrections δn~(λ/a)2 to the effective refractive index tensor, where a>>λ is the size of smooth inhomogeneity. An important feature is that linear birefringence appears only in the presence of gradients of impedance ρ(r)= √μ(r)/ɛ(r) , whereas the gradients of refractive index n(r)= √ɛ(r)μ(r) are not necessary in a general three-dimensional case. This is in contrast with a layered medium (one-dimensional case) where the net effect was proportional to the product (d lnρ/dz)(d lnn/dz).

  15. [Temperature-dependent optical activity and birefringence study of D-alanine single crystal].

    PubMed

    Li, Zong-Sheng; Gong, Yan; Wang, Wen-Qing; Du, Wei-Min

    2006-02-01

    The measurement of the anisotropy of optical acitivity and birefringence is one of the most important clues to studying physical properties of a biaxial crystal of D-alanine. In order to investigate a second-order phase transition predicted by A. Salam between two states of D-alanine, the behavior of birefringence and optical activity is useful for the phenomenological approach to the transition mechanism. The optical activity as a peculiar quantity can respond to the modulation of the crystal lattice and to the change in the bonding nature of constituent atoms. In the present paper, the authors use the PEM-90 photoelastic modulator to study the conformation change of D-alanine at the temperature ranging from 220 to 290 K. The temperature dependence of I(2f)/I(dc) showed that the conformation of D-alanine molecule in single crystal changed around 250 K. The obtained results provide an obvious evidence of optical rotation phase transition predicted by Salam.

  16. Multiple scattering of polarized light in turbid birefringent media: a Monte Carlo simulation.

    PubMed

    Otsuki, Soichi

    2016-07-20

    Multiple scattering of polarized light in a birefringent turbid plane medium was studied using a Monte Carlo simulation. The reduced effective scattering Mueller matrix obtained in the simulation was factorized in two dimensions using the Lu-Chipman decomposition, yielding polarization parameters that exhibited dependences on the azimuth and the radial distance around the illumination point. We propose a double-scattering model for the propagation of polarized photons in turbid infinite plane media. When the birefringence slow axis is along the azimuth of 90° on the plane surface, the retardance becomes the largest negative along the azimuth of 0° and the largest positive along the azimuth of 90° and increases with increasing the azimuth from 0° to 90°. This azimuthal dependence may result from the overlap of the contributions from the light propagations vertical to, and lateral along, the plane surface. Thus, the dependences on the azimuth and the radial distance of the polarization parameters, such as the retardance, its orientation, optical rotation, and the depolarization coefficients, are correctly predicted.

  17. Reduction of birefringence in a skin-layer of injection molded polymer strips using CO{sub 2} laser irradiation

    SciTech Connect

    Kurosaki, Yasuo; Satoh, Isao; Saito, Takushi

    1995-12-31

    Injection molding of polymers is currently utilized for numerous industrial applications. Because of high productivity and stable quality of molded products, the injection-molding process makes the production costs lower, and therefore, is expected to spread more widely in the future. This paper deals with a technique for improving the optical quality of injection molded polymer products using radiative heating. The birefringence frozen in a skin-layer of the molded part was reduced by CO{sub 2} laser heating, and the efficiency of this technique was investigated experimentally. Namely, a simple numerical calculation was performed to estimate the heating efficiency of CO{sub 2} laser in the polymer, effects of radiation heating on the skin-layer of the molded polymer were observed by using a mold with transparent windows, and the residual birefringence frozen in the final molded specimen was measured. The results clearly showed that the birefringence in the skin-layer of injection molded polymer strips was reduced with CO{sub 2} laser heating. The authors believe that the proposed method for reducing the birefringence frozen in injection-molded polymer products is suitable for practical molding, because process time required for the injection-molding is only slightly increased with this method.

  18. Investigation of stress-induced birefringence of tissue determined with polarisation sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Li, Qingyun; Villiger, Martin; Sampson, David D.

    2017-02-01

    Polarisation sensitive optical coherence tomography (PS-OCT) offers additional intrinsic contrast to probe differences between healthy tissue and cancer that are often barely visible due to limited scattering contrast in an OCT image. PS-OCT reconstructs tissue birefringence from phase-sensitive measurements of orthogonal polarisation components of backscattering. In material science, polarisation has been used to study stress distribution, including the birefringence induced by stress in an otherwise isotropic material. Similar effects in biological tissues have not been well studied yet; however, may have application to tissues subjected to stress, e.g., tendons, muscles, lens, cornea or airway smooth muscle (ASM). The objective of this work is to explore stress-induced birefringence in tissue. We employ an advanced swept source-based PS-OCT system capable of measurement of tissue local polarisation properties. The sample in both cases is illuminated with orthogonal, passively depth-encoded polarisation states. Light returning from the tissue is detected via a polarisation-diversity detection module and a Mueller formalism is used to reconstruct polarisation properties (including retardation, diattenuation, and depolarisation) of the tissue. In this study, we demonstrate the measurement of stress-induced birefringence in phantoms and in soft tissues with polarisation sensitive optical coherence tomography.

  19. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour

    PubMed Central

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.

    2016-01-01

    Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins. PMID:27364229

  20. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.

    2016-07-01

    Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.

  1. Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber

    NASA Astrophysics Data System (ADS)

    Mas Arabí, C.; Bessin, F.; Kudlinski, A.; Mussot, A.; Skryabin, D.; Conforti, M.

    2016-12-01

    We analyze the interaction between orthogonally polarized solitons and dispersive waves via four-wave mixing in a birefringent fiber. We calculate analytically the efficiency of the phase-sensitive scattering between orthogonally polarized solitons and dispersive waves. Experiments performed by using a photonic crystal fiber perfectly match the analytical predictions.

  2. All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature

    NASA Astrophysics Data System (ADS)

    Gu, Bobo; Yuan, Wu; Zhang, A. Ping; Bang, Ole

    2011-12-01

    A highly sensitive fiber-optic interferometric sensor based on an all-solid birefringent hybrid photonic crystal fiber (PCF) is demonstrated for measuring strain and temperature. A strain sensitivity of ~23.8 pm/μɛ and a thermal sensitivity of ~- 1.12 nm/°C are demonstrated in the experiment.

  3. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Miall, Margaret; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. An extensive investigation has been made of protein particle shape using the methods of flow-birefringence and anomalous viscosity measurement in the coaxial cell. 2. As a result of investigations on a number of proteins, it is concluded that they may be divided into four groups. Group A consists of those which show flow-anomaly both in the bulk phase and in the surface film. These also show flow-birefringence in the bulk phase. Examples: tobacco mosaic disease virus nucleoprotein; myosin. Though corpuscular proteins, they have elongated particles before denaturation. Group B consists of those which show flow-anomaly only (in the first instance) in the surface film, and no flow-birefringence in the bulk phase. They are probably close to spherical in shape in solution, but form elongated particles as they denature in the surface film. After this process has been completed, they may show flow-anomaly also in the bulk phase. Some proteins show flow-anomaly in the surface film immediately it forms, others only show it after a certain time has elapsed for the building up of the film. We designate the former as group B1 and the latter as group B2. Group B1, immediate surface film flow-anomaly. Examples: serum euglobulin, amphibian embryo euglobulin b. Group B2, slowly appearing surface film flow-anomaly. After the film has once been fully formed and then dispersed by shaking, the solution may have the properties of that of a protein in group B1; i.e., anomalous flow in the film may occur immediately on testing in the viscosimeter. Examples: avian ovalbumin, amphibian embryo pseudoglobulin. Group C consists of those proteins which show flow-anomaly neither in the bulk phase nor in the surface film, under the conditions used by us. They are probably close to spherical in shape. Examples: insulin, methaemoglobin, amphibian embryo euglobulin c, mucoproteins. 3. The theoretical significance of protein fibre molecules, whether native or formed by denaturation in the living

  4. Separating the Siamese twins: using a π-shifted Sagnac interferometer to control the relative weight/influence of circular and linear birefringence on the loop transmission facilitating their measurement.

    PubMed

    Want-Gauthier, Eric; Golub, Ilya

    2017-03-01

    We demonstrate a novel method to measure circular birefringence (CB) and linear birefringence (LB) present simultaneously in the device under study. By using a π-shifted Sagnac interferometer, the scheme eliminates the dependence on incoming polarization and on the orientation angle of the linear birefringence. Moreover, due to different handedness symmetry/response of CB and LB to counter-propagating waves, the technique allows us to control the relative influence of the two birefringences leading to a requirement of only two measurements to determine both of them. Thus, comparing to Stokes polarimeters and other methods, our scheme has advantages when characterizing media containing both birefringences. Our findings are experimentally confirmed.

  5. Laser-induced birefringence measurements by quantitative polarized-phase microscopy.

    PubMed

    Doualle, Thomas; Ollé, Alexandre; Cormont, Philippe; Monneret, Serge; Gallais, Laurent

    2017-04-15

    A technique that provides quantitative and spatially resolved retardance measurement is studied for application to laser-induced modification in transparent materials. The method is based on the measurement of optical path differences between two wavefronts carrying different polarizations, measured by a wavefront sensor placed in the image plane of a microscope. We have applied the technique to the investigation of stress distribution induced by CO2 laser processing of fused silica samples. By comparing experiments to the results of thermomechanical simulations we demonstrate quantitative agreement between measurements and simulations of optical retardance. The technique provides an efficient and simple way to measure retardance of less than 1 nm with a diffraction-limited spatial resolution in transparent samples, and coupled to thermomechanical simulations it gives access to birefringence distribution in the sample.

  6. Birefringence-dependent linearly-polarized emission in a liquid crystalline organic light emitting polymer.

    PubMed

    Lee, Dong-Myoung; Lee, You-Jin; Kim, Jae-Hoon; Yu, Chang-Jae

    2017-02-20

    We investigated the linearly polarized emission of uniformly aligned poly(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thia-diazol-4,8-diyl) (F8BT) with a liquid crystalline phase on a rubbed alignment layer. The polarization ratio, defined by the ratio of luminous intensities polarized parallel and perpendicular to the rubbed direction, gradually decreased with increasing thickness of the F8BT film. In the photoluminescence (PL) process, the polarized light is emitted throughout the whole F8BT film, while in the electroluminescence (EL) process, the polarized light is emitted at a certain region within the F8BT film. The thickness-dependent polarization ratios in both PL and EL processes were successfully described based on a simple model wherein the mean optical birefringence was expressed as a function of the thickness of the F8BT film.

  7. An ab initio investigation of the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution

    NASA Astrophysics Data System (ADS)

    Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth

    2007-10-01

    Using a recently developed quadratic response methodology for the calculation of frequency-dependent third-order properties of molecules in solution, we investigate the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution. These systems are chosen since accurate experimental data are available, allowing for a direct comparison of experimental observations with our theoretical estimates. Our model for describing the solvent effects is based on a dielectric continuum approach for the solvent, and uses a molecule-shaped cavity. Our results show qualitatively different Buckingham constants and effective quadrupole centers calculated with and without the solvent, and only when the solvent is included are the qualitative trends observed experimentally reproduced. It is demonstrated that a significant part of this effect arises from the geometry relaxation of the molecules in the solvent.

  8. Spatiotemporal solitons in birefringent media near the zero-dispersion point

    NASA Astrophysics Data System (ADS)

    Fitrakis, E. P.; Nistazakis, H. E.; Malomed, B. A.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    2006-09-01

    We present a new species of spatiotemporal solitons (STSs, alias light bullets) that may be formed through the interaction of two waves with different polarizations in a birefringent Kerr medium near the point at which the second-order group-velocity dispersion (GVD) vanishes in the presence of a uniform cw background in one component. The analysis is based on an asymptotic reduction of the two cross-phase, modulation-coupled (2+1)-dimensional nonlinear Schrödinger equations, incorporating the third-order GVD to the Davey-Stewartson (DS) systems of type I or II for the self-defocusing and focusing Kerr nonlinearity, respectively. The STSs are then predicted following the pattern of the dromion solutions of the DS-I system and lump solitons of the DS-II system. Strictly speaking, the solitons are unstable, but they are shown to be stable objects on experimentally relevant scales of the propagation distance.

  9. Hygroscopic study of hydroxypropylcellulose : Structure and strain-induced birefringence of capillary bridges.

    PubMed

    Godinho, M H; Pieranski, P; Sotta, P

    2016-09-01

    The hygroscopic method developed previously for studies of lyotropic liquid crystals is used for the first time in experiments with millimetric capillary bridges made of a hydroxypropylcellulose/water mixture. Composition of such very small samples is controlled via humidity of the surrounding air. By a slow and well-controlled drying of initially isotropic samples, the isotropic/anisotropic phase transition is crossed and polydomain pseudo-isotropic capillary bridges are prepared. Kept in an atmosphere of constant humidity, these bridges are stretched and the strain-induced birefringence [Formula: see text] n is measured as a function of the draw ratio [Formula: see text] . The variation of [Formula: see text] n with [Formula: see text] is interpreted in terms of an affine uniaxial deformation of the initial pseudo-isotropic texture.

  10. Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; Oldenbourg, Rudolf

    2003-06-01

    We propose image processing algorithms for measuring two-dimensional distributions of linear birefringence using a pair of variable retarders. Several algorithms that use between two and five recorded frames allow us to optimize measurements for speed, sensitivity, and accuracy. We show images of asters, which consist of radial arrays of microtubule polymers recorded with a polarized light microscope equipped with a universal compensator. Our experimental results confirm our theoretical expectations. The lowest noise level of 0.036 nm was obtained when we used the five-frame technique and four-frame algorithm without extinction setting. The two-frame technique allows us to increase the speed of measurement with acceptable image quality.

  11. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

    PubMed Central

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2017-01-01

    Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids. PMID:28393836

  12. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles.

    PubMed

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2017-04-10

    Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids.

  13. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

    NASA Astrophysics Data System (ADS)

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2017-04-01

    Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids.

  14. Growth and birefringence studies of semi organic non-linear optical LHB single crystal

    NASA Astrophysics Data System (ADS)

    Jayaramakrishnan, V.; Prasanyaa, T.; Haris, M.; Bhoopathi, G.

    2015-02-01

    In the last few decades nonlinear optical materials are getting attention in the field of optical data storage, telecommunication, second harmonic generation (SHG) and optical signal processing, etc. In the present work we are reporting the single crystal growth of L-Histidine with hydro-bromic acid. The L-Histidine bromide (LHB) single crystals have been harvested from the solution in a span of 34 days by adopting slow cooling solution growth technique. The grown crystals have been subjected to powder X-ray diffraction studies to identify the cell parameters and structure. The crystalline perfection has been defined by rocking curve (HRXRD) analysis. Optical transmission spectra reveal the optical properties of the grown crystals. The Modified channel spectrum (MCS) method has been adopted for the study of spectral dependence of linear birefringence over the wavelength range 480-620 nm. The second harmonic generation efficiency was tested by using Kurtz and Perry method, keeping KDP as reference.

  15. Features of extraordinary ray propagation in an optically anisotropic birefringent prism

    NASA Astrophysics Data System (ADS)

    Zisser, Iaroslav; Zisser, Irina

    2016-11-01

    Features of ordinary and extraordinary rays travelling through an optically anisotropic prism with total internal reflection on one of the faces are considered in the paper. Special attention is paid to the process of extraordinary ray reflection from the face of total internal reflection. Ray propagation was investigated for prisms made of four optically uniaxial crystals (TeO2, CaCO3, Hg2Cl2, Hg2J2) having different optical signs and values of birefringence. Possible ways of ray propagation through a prism at different angles of incidence on the prism and different directions of ray propagation within the prism were calculated. The examined features allow channels in fiber-optical communication systems to be split by optical means.

  16. Generation of a train of ultrashort pulses from a compact birefringent crystal array

    NASA Astrophysics Data System (ADS)

    Dromey, B.; Zepf, M.; Landreman, M.; O'Keeffe, K.; Robinson, T.; Hooker, S. M.

    2007-08-01

    A linear array of n calcite crystals is shown to allow the generation of a high contrast (>10:1) train of 2n high energy (>100 μJ) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup.

  17. Design of a sinc-sampled fiber Bragg grating fabricated in high birefringence fiber

    NASA Astrophysics Data System (ADS)

    Bai, Qing; Feng, De-Jun; Ji, Wei

    2011-09-01

    In this paper we design a new kind of sinc-sampled fiber Bragg grating which is fabricated in high birefringence fiber (HBF). The sampled grating has two sets of reflection spectra along two perpendicular polarization directions. The grating's channel number can be doubled approximately by designing the refractive index difference between the fast and slow axes of the fiber, which enhances the utilization ratio and reduces the claim for photosensitivity of the fiber. The group delay characteristics are theoretically studied and side-lobes are depressed by apodization as well to get the optimized spectra. The results show that the comb-like spectra of the grating have promising applications in both multi-wavelength polarized fiber lasers and fiber sensing networks.

  18. Measurement of the complex refractive-index spectrum for birefringent and absorptive liquids.

    PubMed

    Saito, M; Matsumoto, N; Nishimura, J

    1998-08-01

    The optical constants of birefringent and/or opaque liquids, e.g., liquid crystals and magnetic fluids, are difficult to measure at wavelengths at which a strong light source such as a laser or an arc lamp is not accessible. The refractive index n and the extinction coefficient kappa of these liquids can be simultaneously evaluated from the reflectance curves that are measured in the large incident angle range. A semicylindrical sample cell allows the spectral reflectance measurement with a weak light source even at large incident angles. By using this method, we evaluated the ordinary and the extraordinary indices of a nematic liquid crystal in the continuous wavelength range of 0.55-1.60 mum. The complex refractive indices of magnetic fluids were also evaluated, and the affect of the magnetic field was demonstrated.

  19. A quantitative collagen fibers orientation assessment using birefringence measurements: Calibration and application to human osteons

    PubMed Central

    Spiesz, Ewa M.; Kaminsky, Werner; Zysset, Philippe K.

    2011-01-01

    Even though mechanical properties depend strongly on the arrangement of collagen fibers in mineralized tissues, it is not yet well resolved. Only a few semi-quantitative evaluations of the fiber arrangement in bone, like spectroscopic techniques or circularly polarized light microscopy methods are available. In this study the out-of-plane collagen arrangement angle was calibrated to the linear birefringence of a longitudinally fibered mineralized turkey leg tendon cut at variety of angles to the main axis. The calibration curve was applied to human cortical bone osteons to quantify the out-of-plane collagen fibers arrangement. The proposed calibration curve is normalized to sample thickness and wavelength of the probing light to enable a universally applicable quantitative assessment. This approach may improve our understanding of the fibrillar structure of bone and its implications on mechanical properties. PMID:21970947

  20. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  1. Anisotropy induced wave birefringence in bounded supercritical plasma confined in a multicusp magnetic field

    NASA Astrophysics Data System (ADS)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-04-01

    Laboratory observation of rotation of the polarization axis (θc˜20°-40° with respect to vacuum) of a penetrating electromagnetic wave through a bounded supercritical plasma (plasma frequency ωp>wave frequency ω), confined in a multicusp magnetic field is reported. Birefringence of the radial and polar wave electric field components (Er and Eθ) has been identified as the cause for the rotation, similar to a magneto-optic medium, however, with distinct differences owing to the presence of wave induced resonances. Numerical simulation results obtained by solving the Maxwell's equations by incorporating the plasma and magnetostatic field inhomogeneities within a conducting boundary shows a reasonable agreement with the experimental results.

  2. Manipulating full photonic band gaps in two dimensional birefringent photonic crystals.

    PubMed

    Proietti Zaccaria, Remo; Verma, Prabhat; Kawaguchi, Satoshi; Shoji, Satoru; Kawata, Satoshi

    2008-09-15

    The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.

  3. Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre

    NASA Astrophysics Data System (ADS)

    Nasilowski, Tomasz; Skorupski, Krzysztof; Makara, Mariusz; Statkiewicz-Barabach, Gabriela; Mergo, Pawel; Marc, Pawel; Jaroszewicz, Leszek

    2011-05-01

    Microstructured fibres (MSF) or photonic crystal fibres (PCF) possess a number of unique properties enabling a wide range of novel applications either in the telecommunication or in the sensing domain. In this paper we show that highly birefringent (HB) MSF with a dedicated design that allows inscribing fibre Bragg gratings in the MSF core can serve as pressure or stress transducers with extremely large sensitivity of second order mode, while exhibiting a low sensitivity to temperature drifts. Therefore, Bragg gratings inscribed in such MSF may offer a viable alternative to traditional optical fibre sensors of much lower stress sensitivity that require temperature compensation mechanisms and that are not intrinsically capable of distinguishing stress and temperature.

  4. Temperature independent torsion sensor based on modal interferometry in ultra high-birefringent photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Frazão, Orlando; Jesus, C.; Baptista, José M.; Santos, José L.; Roy, Philippe

    2009-10-01

    A fiber-optic sensor for torsion measurement, based on a two-LP-mode operation in ultra high birefringent photonic crystal fiber (PCF) is described. The structure of the photonic crystal fiber presents two large asymmetric holes adjacent to the core fiber. When linearly polarized light is injected in x or in y directions, respectively, two different interferometers can be obtained. In one of these cases, as torsion is applied to the ultra Hi-Bi PCF a beat between the two interferometers is formed due to the simultaneous excitation of the two polarization states. The detection technique to read the torsion sensor is based on the analysis of the Fast Fourier Transform (FFT), which is an alternative and simple solution. The sensor exhibited reduced sensitivity to temperature and also to strain.

  5. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber

    NASA Astrophysics Data System (ADS)

    Yao, Chuanfei; Zhao, Zhipeng; Jia, Zhixu; Li, Qing; Hu, Minglie; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-09-01

    Tunable mid-infrared dispersive waves are generated in a birefringent fluorotellurite microstructured fiber (FTMF) pumped by a 1560 nm femtosecond fiber laser. The FTMF have two zero-dispersion wavelengths (ZDWs) for each polarization axis. The second ZDWs for the fast and slow axes of the FTMF are 2224 and 2042 nm, respectively. As the pump laser is polarized along the fast (or slow) axis of the FTMF, tunable mid-infrared dispersive waves from 2680 to 2725 nm (or from 2260 to 2400 nm) are generated in the FTMF when the Raman soliton meets the second zero-dispersion wavelength of the fast (or slow) axis with increasing the pump power. Our results show that the designed FTMFs are promising nonlinear media for generating tunable mid-infrared light sources.

  6. A birefringent etalon enhances the Faraday rotation of thin magneto-optical films

    NASA Astrophysics Data System (ADS)

    Almpanis, E.; Pantazopoulos, P. A.; Papanikolaou, N.; Yannopapas, V.; Stefanou, N.

    2017-07-01

    The magneto-optical response of a Faraday-active Fabry-Pérot etalon with birefringent mirrors is studied by means of electrodynamic simulations using the finite-element and the scattering-matrix methods. The specific structure under consideration consists of a magnetic garnet film sandwiched between two metallic layers, patterned with periodically spaced parallel grooves on their outer sides. Our results are analyzed by reference to the properties of the individual structural components and a consistent interpretation of the different spectral features observed is provided. It is shown that, by properly adjusting the geometrical parameters involved, strong Faraday rotation enhancement can be obtained through constructive synergy between the Fabry-Pérot resonant mode of the magneto-optical nanocavity and the slot plasmon mode localized in the grooves.

  7. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Zabolotna, N. I.; Pavlov, S. V.; Burcovets, D. M.; Novakovska, O. Yu.

    2013-12-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The complex statistic, correlation and fractal analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order, correlation moment, fratal parameters) of differentiation of histological sections of uterus wall tumor - group 1 (polypus) and group 2 (adenocarcinoma) are estimated.

  8. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels

    SciTech Connect

    Hattori, Koichi; Itakura, Kazunori

    2013-03-15

    Photons propagating in strong magnetic fields are subject to a phenomenon called the 'vacuum birefringence' where refractive indices of two physical modes both deviate from unity and are different from each other. We compute the vacuum polarization tensor of a photon in a static and homogeneous magnetic field by utilizing Schwinger's proper-time method, and obtain a series representation as a result of double integrals analytically performed with respect to proper-time variables. The outcome is expressed in terms of an infinite sum of known functions which is plausibly interpreted as summation over all the Landau levels of fermions. Each contribution from infinitely many Landau levels yields a kinematical condition above which the contribution has an imaginary part. This indicates decay of a sufficiently energetic photon into a fermion-antifermion pair with corresponding Landau level indices. Since we do not resort to any approximation, our result is applicable to the calculation of refractive indices in the whole kinematical region of a photon momentum and in any magnitude of the external magnetic field. - Highlights: Black-Right-Pointing-Pointer Vacuum birefringence is studied in the presence of externally applied magnetic field. Black-Right-Pointing-Pointer A general framework is given on the basis of a vacuum polarization tensor of photon. Black-Right-Pointing-Pointer A resummed vacuum polarization tensor is calculated analytically and exactly. Black-Right-Pointing-Pointer Contributions of all the Landau levels are obtained in the form of an infinite sum. Black-Right-Pointing-Pointer Threshold behavior of real-photon decay is obtained at the each Landau level.

  9. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal

    PubMed Central

    2013-01-01

    Background The fovea, which is the most sensitive part of the retina, is known to have birefringent properties, i.e. it changes the polarization state of light upon reflection. Existing devices use this property to obtain information on the orientation of the fovea and the direction of gaze. Such devices employ specific frequency components that appear during moments of fixation on a target. To detect them, previous methods have used solely the power spectrum of the Fast Fourier Transform (FFT), which, unfortunately, is an integral method, and does not give information as to where exactly the events of interest occur. With very young patients who are not cooperative enough, this presents a problem, because central fixation may be present only during very short-lasting episodes, and can easily be missed by the FFT. Method This paper presents a method for detecting short-lasting moments of central fixation in existing devices for retinal birefringence scanning, with the goal of a reliable detection of eye alignment. Signal analysis is based on the Continuous Wavelet Transform (CWT), which reliably localizes such events in the time-frequency plane. Even though the characteristic frequencies are not always strongly expressed due to possible artifacts, simple topological analysis of the time-frequency distribution can detect fixation reliably. Results In all six subjects tested, the CWT allowed precise identification of both frequency components. Moreover, in four of these subjects, episodes of intermittent but definitely present central fixation were detectable, similar to those in Figure 4. A simple FFT is likely to treat them as borderline cases, or entirely miss them, depending on the thresholds used. Conclusion Joint time-frequency analysis is a powerful tool in the detection of eye alignment, even in a noisy environment. The method is applicable to similar situations, where short-lasting diagnostic events need to be detected in time series acquired by means of

  10. Relationship between birefringence and neurotubule density in the primate retinal nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Aranibar, R. G.; Kemp, N. J.; Dwelle, J. C.; Byers, S. E.; Markey, M. K.; Milner, T. E.; Rylander, H. G.

    2007-02-01

    The relationship between retinal nerve fiber layer (RNFL) birefringence (Δn) and neurotubule density (NTD, retinal ganglion cell (RGC) neurotubules per unit RNFL area) was investigated by correlating measurements of these two parameters in 1 eye of a healthy cynomolgus monkey. Phase retardation per unit depth (PR/UD, proportional to Δn) was measured at 5.6-15 ° intervals around the optic nerve head (ONH) with an enhanced polarization-sensitive optical coherence tomography (EPS-OCT) instrument. Transverse tissue sections containing 3 RGC nerve fiber bundles from each peripapillary RNFL octant were imaged with a transmission electron microscope (TEM). Morphological measurements taken in TEM images were used by a novel algorithm to estimate NTD. Registered PR/UD and NTD data were then correlated using single- and multi-level models, yielding correlation coefficients in the range 0.49 <= r <= 0.61 (0.06 <= P <= 0.11). It was found that in order for the single-level correlation coefficient (r = 0.61) to be statistically significant (P <= 0.05) and powerful (Power >= 80%), NTD measurements in at least 16, rather than 8, RNFL sectors were needed. Interestingly, a single-level correlation coefficient of r = 0.81 (P = 0.01) was calculated between octant-averaged PR/UD and RGC axoplasmic area (A x, axon area less non-cytoskeletal organelle area) mode. A x represents a RGC axon's neurotubule-inhabitable area. Intuitively, a strong relationship should exist between A x and neurotubule number if neurotubules provide the primary structural support for RGC axons and structural requirements are the same in all RGC axons. If this relationship exists, error resulting from NTD estimation methods or preservation artifacts may have caused lower observed correlations of PR/UD with NTD than with A x mode, and more accurate methods of measuring in vivo NTD may be required to determine an accurate relationship between RNFL birefringence and NTD.

  11. Achieving excellence.

    PubMed

    Williams, R B

    1986-03-01

    The concept of achieving excellence in pharmacy through development of effective leadership is discussed. The majority of hospital pharmacy directors have had very little education and training in management and effective leadership. Yet, excellent leadership skills will be needed to transform pharmacy more completely into a health profession. The management style most likely to be effective in this era of change is one that encompasses a high regard for both people and production through shared responsibility, high participation, involvement, and commitment. The following recommendations are offered to help achieve excellence through effective leadership: the ethic of self-development must be instilled in aspiring managers; courses in human behavior, leadership, and management should be added to undergraduate pharmacy curricula; pharmacy technicians should be educated in college-based programs that focus on drug distribution; Master of Science programs in hospital pharmacy should be deleted or restructured to focus on leadership and management; regional "centers for excellence" in leadership education should be developed; general residency training should be incorporated in undergraduate education so that more advanced residencies can be offered to graduates; high-level, self-study programs in management and leadership need to be developed, and substantial research funds need to be dedicated to the study of hospital pharmacy management.

  12. Long period gratings and rocking filters written with a CO 2 laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Carvalho, J. P.; Anuszkiewicz, A.; Statkiewicz-Barabach, G.; Baptista, J. M.; Frazão, O.; Mergo, P.; Santos, J. L.; Urbanczyk, W.

    2012-02-01

    In this work, we demonstrate the possibility of fabricating short-length long-period gratings and rocking filters in highly birefringent Photonic Crystal Fiber using a CO 2 laser. In our experiments both kinds of gratings were made in the same Boron doped highly birefringent PCF using similar exposure parameters. We also present the sensing capabilities of both fabricated gratings to temperature, strain and hydrostatic pressure by interrogation of the wavelength shifts at different resonances.

  13. Sensing characteristics of long period gratings and rocking filters based on highly birefringent boron-doped photonic crystal fiber and fabricated by a CO2 laser

    NASA Astrophysics Data System (ADS)

    Carvalho, J. P.; Statkiewicz-Barabach, G.; Anuszkiewicz, A.; Baptista, J. M.; Frazão, O.; Wojcik, J.; Santos, J. L.; Urbanczyk, W.

    2010-04-01

    In this work, we demonstrate the possibility of fabricating short LPGs and rocking filters in highly birefringent Photonic Crystal Fiber using CO2 laser. In our experiments both kinds of gratings were made in the same Boron doped highly birefringent PCF using similar exposure parameters. We also present the sensing capabilities of both fabricated gratings to temperature, strain and hydrostatic pressure by interrogation of the wavelength shifts at the different resonances.

  14. Combined density functional/polarizable continuum model study of magnetochiral birefringence: Can theory and experiment be brought to agreement?

    NASA Astrophysics Data System (ADS)

    Jansík, Branislav; Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth; Coriani, Sonia

    2006-12-01

    The magnetic-field-induced axial birefringence (magnetochirality) of five closed-shell chiral molecules (three substituted oxiranes, carvone, and limonene) is studied at the density functional theory level using Becke's 3-parameter Lee-Yang-Parr functional and frequency-dependent quadratic response theory. The influence of the environment and the conformational distribution on the property is also studied. The environment effects are described by the polarizable continuum model in its integral-equation formulation. The effect of the conformational distribution is investigated by performing calculations on several conformers—for carvone and limonene—followed by Boltzmann averaging. The calculated values for the magnetochiral birefringence are compared to previous ab initio results and experimental data where available. The refined model presented here brings the ab initio values closer to experiment. Still, disagreements remain in some cases and it appears difficult to resolve these discrepancies.

  15. Effect of protective coating on random birefringence variations in anisotropic optical fibres in response to temperature changes

    NASA Astrophysics Data System (ADS)

    Morshnev, S. K.; Gubin, V. P.; Starostin, N. I.; Przhiyalkovsky, Ya. V.; Sazonov, A. I.

    2016-10-01

    This paper examines for the first time the nature of an anomalous scatter in the birefringence beat length in an anisotropic silica fibre upon changes in its temperature. The effect has been studied by a conventional interferometric technique, using a spectrum analyser. The dispersion of the scatter in the beat length has been shown to be considerably higher at short fibre lengths, which is due to the effect of the protective coating. To interpret the observed effects, a physical model has been proposed which considers random centres, such as microbends, which form and disappear in the protective coating of the fibre in response to temperature changes. The random nature of such local centres may lead to unpredictable changes in the birefringence of anisotropic fibres and, hence, to changes in the sensitivity and accuracy of Faraday effect current sensors.

  16. Simultaneous measurement of strain and temperature using a high birefringence fiber loop mirror and an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Xiao, Shilin; Chen, He; Zhu, Min; Bi, Meihua

    2010-12-01

    A fiber sensor configuration suitable for simultaneous measurement of temperature and strain is investigated. The sensor consists of a high-birefringence fiber loop mirror concatenating with an erbium-doped fiber. The high-birefringence fiber used in the configuration is capsule shaped polarization maintaining fiber, which serves as the sensor element. While the erbium-doped fiber acts as the temperature compensation module. By monitoring the peak power variation and peak wavelength shift, it is feasible to simultaneously measure temperature and strain. The experimental results show that the mean square errors for temperature and stain are 0.35°C and 13.34μɛ, respectively. The proposed sensor configuration shows several merits, including simple in structure, easy fabrication, low cost and high sensitivity.

  17. Combined density functional/polarizable continuum model study of magnetochiral birefringence: can theory and experiment be brought to agreement?

    PubMed

    Jansík, Branislav; Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth; Coriani, Sonia

    2006-12-21

    The magnetic-field-induced axial birefringence (magnetochirality) of five closed-shell chiral molecules (three substituted oxiranes, carvone, and limonene) is studied at the density functional theory level using Becke's 3-parameter Lee-Yang-Parr functional and frequency-dependent quadratic response theory. The influence of the environment and the conformational distribution on the property is also studied. The environment effects are described by the polarizable continuum model in its integral-equation formulation. The effect of the conformational distribution is investigated by performing calculations on several conformers-for carvone and limonene-followed by Boltzmann averaging. The calculated values for the magnetochiral birefringence are compared to previous ab initio results and experimental data where available. The refined model presented here brings the ab initio values closer to experiment. Still, disagreements remain in some cases and it appears difficult to resolve these discrepancies.

  18. Orientational dynamics of ferrofluids with finite magnetic anisotropy of the particles: relaxation of magneto-birefringence in crossed fields.

    PubMed

    Raikher, Yu L; Stepanov, V I; Bacri, J-C; Perzynski, R

    2002-08-01

    Dynamic birefringence in a ferrofluid subjected to crossed bias (constant) and probing (pulse or ac) fields is considered, assuming that the nanoparticles have finite magnetic anisotropy. This is done on the basis of the general Fokker-Planck equation that takes into account both internal magnetic and external mechanical degrees of freedom of the particle. We describe the orientation dynamics in terms of the integral relaxation time of the macroscopic orientation order parameter. To account for an arbitrary relation between the bias (external) and anisotropy (internal) fields, an interpolation expression for the integral relaxation time is proposed and justified. A developed description is used to interpret the measurements of birefringence relaxation in magnetic fluids with nanoparticles of high (cobalt ferrite) and low (maghemite) anisotropy. The proposed theory appears to be in full qualitative agreement with all the experimental data available.

  19. The high-birefringence asymmetric SF57 glass microstructured optical fiber at 1060.0 μm

    NASA Astrophysics Data System (ADS)

    Pei, Ting-Hang; Zhang, Zhifeng; Zhang, Yilei

    2017-07-01

    Many high-birefringence asymmetric microstructured optical fibers (MOFs) have been numerically designed and analyzed, but the fabrication of asymmetric MOF is challenging, especially those with elliptical structures. In this work, we designed, fabricated and modelled an asymmetric glass MOF in which the structure is asymmetric and the air holes are elliptical. SF57 glass was selected due to the high refraction index and low absorption in the Terahertz region. From simulations based on the finite difference (FD) method at 1060.0 μm, the polarizations of the first two modes are perpendicular to each other and the effective refraction indices are different, which lead to the birefringence of this MOF as high as 0.090. The plane-wave expansion method was used to verify the FD calculations, where both results are consistent and the difference is about 0.1%.

  20. Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing.

    PubMed

    Zhang, Ya-Ni; Ren, Li-Yong; Gong, Yong-Kang; Li, Xiao-Hui; Wang, Lei-Ran; Sun, Chuan-Dong

    2010-06-01

    We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/-2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 microm, and the corresponding nonlinearity coefficient and birefringence are about 150 W(-1) km(-1) and 2.5x10(-3) at 1.55 microm, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing.