Science.gov

Sample records for bisubstrate analogue inhibitors

  1. Towards the synthesis of bisubstrate inhibitors of protein farnesyltransferase: Synthesis and biological evaluation of new farnesylpyrophosphate analogues.

    PubMed

    Duez, Stéphanie; Coudray, Laëtitia; Mouray, Elisabeth; Grellier, Philippe; Dubois, Joëlle

    2010-01-15

    Protein farnesyltransferase (FTase) has recently appeared as a new target of parasitic diseases, a field poor in drugs in development. With the aim of creating new bisubstrate inhibitors of FTase, new farnesyl pyrophosphate analogues have been studied. Farnesyl analogues with a malonic acid function exhibited the best inhibitory activity on FTase. This group was introduced into our imidazole-containing model leading to new compounds with submicromolar activities. Kinetic experiments have been realized to determine their binding mode to the enzyme.

  2. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New design with improved properties

    SciTech Connect

    Shi, Genbin; Shaw, Gary; Liang, Yu-He; Subburaman, Priadarsini; Li, Yue; Wu, Yan; Yan, Honggao; Ji, Xinhua

    2012-07-11

    6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their K{sub d} and IC{sub 50} values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure.

  3. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New design with improved properties

    PubMed Central

    Shi, Genbin; Shaw, Gary; Liang, Yu-He; Subburaman, Priadarsini; Li, Yue; Wu, Yan; Yan, Honggao; Ji, Xinhua

    2011-01-01

    6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their Kd and IC50 values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure. PMID:22169600

  4. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New lead exhibits a distinct binding mode

    PubMed Central

    Shi, Genbin; Shaw, Gary; Li, Yue; Wu, Yan; Yan, Honggao; Ji, Xinhua

    2012-01-01

    6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthesis pathway catalyzing the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin, is an attractive target for developing novel antimicrobial agents. Previously, we studied the mechanism of HPPK action, synthesized bisubstrate analogue inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed a new generation of bisubstrate inhibitors by replacing the phosphate bridge with a piperidine-containing linkage. To further improve linker properties, we have synthesized a new compound, characterized its protein binding/inhibiting properties, and determined its structure in complex with HPPK. Surprisingly, this inhibitor exhibits a new binding mode in that the adenine base is flipped when compared to previously reported structures. Furthermore, the side chain of amino acid residue E77 is involved in protein-inhibitor interaction, forming hydrogen bonds with both 2' and 3' hydroxyl groups of the ribose moiety. Residue E77 is conserved among HPPK sequences, but interacts only indirectly with the bound MgATP via water molecules. Never observed before, the E77-ribose interaction is compatible only with the new inhibitor-binding mode. Therefore, this compound represents a new direction for further development. PMID:22727779

  5. Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation

    PubMed Central

    2013-01-01

    Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is the leading cause of bacterial infectious disease mortality. Biotin protein ligase (BirA) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases (ACCs) involved in lipid biosynthesis and is essential for Mtb survival. We previously developed a rationally designed bisubstrate inhibitor of BirA that displays potent enzyme inhibition and whole-cell activity against multidrug resistant and extensively drug resistant Mtb strains. Here we present the design, synthesis, and evaluation of a focused series of inhibitors, which are resistant to cyclonucleoside formation, a key decomposition pathway of our initial analogue. Improved chemical stability is realized through replacement of the adenosyl N-3 nitrogen and C-5′ oxygen atom with carbon as well as incorporation of a bulky group on the nucleobase to prevent the required syn-conformation necessary for proper alignment of N-3 with C-5′. PMID:24363833

  6. Bisubstrate Adenylation Inhibitors of Biotin Protein Ligase from Mycobacterium tuberculosis

    PubMed Central

    Duckworth, Benjamin P.; Geders, Todd W.; Tiwari, Divya; Boshoff, Helena I.; Sibbald, Paul A.; Barry, Clifton E.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2011-01-01

    SUMMARY The mycobacterial biotin protein ligase (MtBPL) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases involved in lipid biosynthesis that catalyze the first step in fatty acid biosynthesis and pyruvate coenzyme A carboxylase, a gluconeogenic enzyme vital for lipid catabolism. Here we describe the design, development and evaluation of a rationally designed bisubstrate inhibitor of MtBPL. This inhibitor displays potent sub-nanomolar enzyme inhibition and antitubercular activity against multi- and extensively drug resistant Mtb strains. We show that the inhibitor decreases in vivo protein biotinylation of key enzymes involved in fatty acid biosynthesis and that the anti-bacterial activity is MtBPL-dependent. Additionally, the gene encoding BPL was found to be essential in M. smegmatis. Finally, the X-ray co-crystal structure of inhibitor bound MtBPL was solved providing detailed insight for further structure-activity analysis. Collectively, these data suggest that MtBPL is a promising target for further antitubercular therapeutic development. PMID:22118677

  7. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors.

    PubMed

    Borodkin, Vladimir S; Schimpl, Marianne; Gundogdu, Mehmet; Rafie, Karim; Dorfmueller, Helge C; Robinson, David A; van Aalten, Daan M F

    2014-02-01

    Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C₃ linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates.

  8. Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors

    PubMed Central

    Borodkin, Vladimir S.; Schimpl, Marianne; Gundogdu, Mehmet; Rafie, Karim; Dorfmueller, Helge C.; Robinson, David A.; vanAalten, Daan M. F.

    2013-01-01

    Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C3 linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates. PMID:24256146

  9. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles.

    PubMed

    Georghiou, George; Kleiner, Ralph E; Pulkoski-Gross, Michael; Liu, David R; Seeliger, Markus A

    2012-02-19

    Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently identified, in a DNA-templated macrocycle library, inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated 'gatekeeper' mutant. We solved two cocrystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bisubstrate-competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.

  10. Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes.

    PubMed

    Yang, Jingsong; Copeland, Robert A; Lai, Zhihong

    2009-02-01

    High-throughput screening (HTS) is a common mechanism for identifying lead compounds for drug discovery efforts. Small molecules can inhibit enzymes by a variety of mechanisms, such as competitive, noncompetitive, and uncompetitive with respect to the substrate(s) of the catalytic reaction. To optimize the chances of finding the broadest diversity of inhibitor modalities during screening, one must run assays under ;;balanced'' conditions where the potency of inhibitors with various modes of action falls within a similar range. When an enzyme reaction involves more than one substrate, the definition and assessment of the apparent potency of inhibitors (IC(50)), in relation to their true potency (K(i)), can be nontrivial. This article provides a theoretical analysis, on the basis of the Cheng-Prusoff derivation, of the IC(50)/K( i) relationship of bisubstrate enzyme reactions following various sequential kinetic mechanisms, as well as the application and limitations of this information for defining optimal screening conditions for such enzymes. PMID:19196704

  11. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors

    PubMed Central

    Petrelli, Riccardo; De la Mora-Rey, Teresa; Tiwari, Divya; Liu, Feng; Dawadi, Surrendra; Nandakumar, Madhumitha; Rhee, Kyu Y.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2015-01-01

    Mycobacterium tuberculosis (Mtb) responsible for both latent and symptomatic tuberculosis (TB) remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with KD's below 2 nM. Additionally, we obtained high-resolution co-crystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhanced accumulation of a C-2′-α analog over the corresponding C-2′-β analog, consistent with their differential whole-cell activity. PMID:26299766

  12. Structures of Aquifex aeolicus KDO8P synthase in complex with R5P and PEP, and with a bisubstrate inhibitor: role of active site water in catalysis.

    PubMed

    Wang, J; Duewel, H S; Woodard, R W; Gatti, D L

    2001-12-25

    We have determined the crystal structures of the metalloenzyme 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase from Aquifex aeolicus in complex with phosphoenolpyruvate (PEP) and ribose 5-phosphate (R5P), and with a bisubstrate inhibitor that mimics the postulated linear reaction intermediate. R5P, which is not a substrate for KDO8P synthase, binds in a manner similar to that of arabinose 5-phosphate (A5P), which is the natural substrate. The lack of reactivity of R5P appears to be primarily a consequence of the loss of a water molecule coordinated to Cd(2+) and located on the si side of PEP. This water molecule is no longer present because it cannot form a hydrogen bond with C2-OH(R5P), which is oriented in a different direction from C2-OH(A5P). The bisubstrate inhibitor binds with its phosphate and phosphonate moieties occupying the positions of the phosphate groups of A5P and PEP, respectively. One of the inhibitor hydroxyls replaces water as a ligand of Cd(2+). The current work supports a mechanism for the synthesis of KDO8P, in which a hydroxide ion on the si side of PEP attacks C2(PEP), forming a tetrahedral-like intermediate with a buildup of negative charge at C3(PEP). The ensuing condensation of C3(PEP) with C1(A5P) would be favored by a proton transfer from the phosphate moiety of PEP to the aldehyde carbonyl of A5P to generate the hydroxyl. Overall, the process can be described as a syn addition of water and A5P to the si side of PEP.

  13. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  14. Deciphering the Structural Requirements of Nucleoside Bisubstrate Analogues for Inhibition of MbtA in Mycobacterium tuberculosis: A FB-QSAR Study and Combinatorial Library Generation for Identifying Potential Hits.

    PubMed

    Maganti, Lakshmi; Das, Sanjit Kumar; Mascarenhas, Nahren Manuel; Ghoshal, Nanda

    2011-10-01

    The re-emergence of tuberculosis infections, which are resistant to conventional drug therapy, has steadily risen in the last decade. Inhibitors of aryl acid adenylating enzyme known as MbtA, involved in siderophore biosynthesis in Mycobacterium tuberculosis, are being explored as potential antitubercular agents. The ability to identify fragments that interact with a biological target is a key step in fragment based drug design (FBDD). To expand the boundaries of quantitative structure activity relationship (QSAR) paradigm, we have proposed a Fragment Based QSAR methodology, referred here in as FB-QSAR, for deciphering the structural requirements of a series of nucleoside bisubstrate analogs for inhibition of MbtA, a key enzyme involved in siderophore biosynthetic pathway. For the development of FB-QSAR models, statistical techniques such as stepwise multiple linear regression (SMLR), genetic function approximation (GFA) and GFAspline were used. The predictive ability of the generated models was validated using different statistical metrics, and similarity-based coverage estimation was carried out to define applicability boundaries. To aid the creation of novel antituberculosis compounds, a bioisosteric database was enumerated using the combichem approach endorsed mining in a lead-like chemical space. The generated library was screened using an integrated in-silico approach and potential hits identified. PMID:27468106

  15. New rubrolide analogues as inhibitors of photosynthesis light reactions.

    PubMed

    Varejão, Jodieh O S; Barbosa, Luiz C A; Ramos, Gabriela Álvarez; Varejão, Eduardo V V; King-Díaz, Beatriz; Lotina-Hennsen, Blas

    2015-04-01

    Natural products called rubrolides have been investigated as a model for the development of new herbicides that act on the photosynthesis apparatus. This study comprises a comprehensive analysis of the photosynthesis inhibitory ability of 27 new structurally diverse rubrolide analogues. In general, the results revealed that the compounds exhibited efficient inhibition of the photosynthetic process, but in some cases low water solubility may be a limiting factor. To elucidate their mode of action, the effects of the compounds on PSII and PSI, as well as their partial reaction on chloroplasts and the chlorophyll a fluorescence transients were measured. Our results showed that some of the most active rubrolide analogues act as a Hill reaction inhibitors at the QB level by interacting with the D1 protein at the reducing side of PSII. All of the active analogues follow Tice's rule of 5, which indicates that these compounds present physicochemical properties suitable for herbicides.

  16. Design of potent substrate-analogue inhibitors of canine renin

    NASA Technical Reports Server (NTRS)

    Hui, K. Y.; Siragy, H. M.; Haber, E.

    1992-01-01

    Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.

  17. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work. PMID:26364215

  18. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work.

  19. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  20. Non-natural acetogenin analogues as potent Trypanosoma brucei inhibitors.

    PubMed

    Florence, Gordon J; Fraser, Andrew L; Gould, Eoin R; King, Elizabeth F B; Menzies, Stefanie K; Morris, Joanne C; Tulloch, Lindsay B; Smith, Terry K

    2014-11-01

    Neglected tropical diseases remain a serious global health concern. Here, a series of novel bis-tetrahydropyran 1,4-triazole analogues based on the framework of chamuvarinin, a polyketide natural product isolated from the annonaceae plant species are detailed. The analogues synthesized display low micromolar trypanocidal activities towards both bloodstream and insect forms of Trypanosoma brucei, the causative agent of African sleeping sickness, also known as Human African Trypanosomiasis (HAT). A divergent synthetic strategy was adopted for the synthesis of the key tetrahydropyran intermediates to enable rapid access to diastereochemical variation either side of the 1,4-triazole core. The resulting diastereomeric analogues displayed varying degrees of trypanocidal activity and selectivity in structure-activity relationship studies. Together, the biological potency and calculated lipophilicity values indicate that while there is room for improvement, these derivatives may represent a promising novel class of anti-HAT agents.

  1. Exploring functional cyclophellitol analogues as human retaining beta-glucosidase inhibitors.

    PubMed

    Li, Kah-Yee; Jiang, Jianbing; Witte, Martin D; Kallemeijn, Wouter W; Donker-Koopman, Wilma E; Boot, Rolf G; Aerts, Johannes M F G; Codée, Jeroen D C; van der Marel, Gijsbert A; Overkleeft, Herman S

    2014-10-21

    The natural product, cyclophellitol and its aziridine analogue are potent mechanism-based retaining β-glucosidase inhibitors. In this paper we explore the inhibitory potency of a number of cyclophellitol analogues against the three human retaining β-glucosidases, GBA, GBA2 and GBA3. We demonstrate that N-alkyl cyclophellitol aziridine is at least equally potent in inhibiting the enzymes evaluated as its N-acyl congener, whereas the N-sulfonyl analogue is a considerably weaker inhibitor. Our results complement the literature on the inhibitory potency of cyclophellitol analogues and hold promise for the future design of more effective activity-based retaining glycosidase probes with respect to probe stability in physiological media.

  2. Synthesis and evaluation of galacto-noeurostegine and its 2-deoxy analogue as glycosidase inhibitors.

    PubMed

    Salamone, Stéphane; Clement, Lise L; Viuff, Agnete H; Andersen, Ole Juul; Jensen, Frank; Jensen, Henrik H

    2015-08-01

    An epimer of the known glycosidase inhibitor noeurostegine, galacto-noeurostegine, was synthesised in 21 steps from levoglucosan and found to be a potent, competitive and highly selective galactosidase inhibitor of Aspergillus oryzae β-galactosidase. Galacto-noeurostegine was not found to be an inhibitor of green coffee bean α-galactosidase, yeast α-glucosidase and E. coli β-galactosidase, whereas potent but non-competitive inhibition against sweet almond β-glucosidase was established. The 2-deoxy-galacto-noeurostegine analogue was also prepared and found to be a less potent inhibitor of the same enzymes.

  3. Synthesis and evaluation of galacto-noeurostegine and its 2-deoxy analogue as glycosidase inhibitors.

    PubMed

    Salamone, Stéphane; Clement, Lise L; Viuff, Agnete H; Andersen, Ole Juul; Jensen, Frank; Jensen, Henrik H

    2015-08-01

    An epimer of the known glycosidase inhibitor noeurostegine, galacto-noeurostegine, was synthesised in 21 steps from levoglucosan and found to be a potent, competitive and highly selective galactosidase inhibitor of Aspergillus oryzae β-galactosidase. Galacto-noeurostegine was not found to be an inhibitor of green coffee bean α-galactosidase, yeast α-glucosidase and E. coli β-galactosidase, whereas potent but non-competitive inhibition against sweet almond β-glucosidase was established. The 2-deoxy-galacto-noeurostegine analogue was also prepared and found to be a less potent inhibitor of the same enzymes. PMID:26111992

  4. The phosphonomethyl analogue of 3-phosphoglycerate is a potent competitive inhibitor of phosphoglycerate mutases.

    PubMed Central

    McAleese, S M; Fothergill-Gilmore, L A; Dixon, H B

    1985-01-01

    The phosphonomethyl analogue of 3-phosphoglycerate (2-hydroxy-4-phosphonobutanoate) is a potent competitive inhibitor of cofactor-dependent phosphoglycerate mutase from yeast and of cofactor-independent phosphoglycerate mutase from wheat germ. For the yeast enzyme Ki is 1.3 mM (Km for substrate is 0.71 mM); for the wheatgerm enzyme Ki is 18 mM (Km for substrate is 0.86 mM). This analogue should be a useful tool for n.m.r. spectroscopic studies on the mechanism of action of the two mutases. The arsonomethyl analogue of 3-phosphoglycerate (4-arsono-2-hydroxybutanoate) was a relatively poor inhibitor. PMID:2996505

  5. Novel inhibitors of Mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues

    NASA Astrophysics Data System (ADS)

    Shmalenyuk, E. R.; Kochetkov, S. N.; Alexandrova, L. A.

    2013-09-01

    The review summarizes data on the synthesis and antituberculosis activity of pyrimidine nucleoside derivatives and their analogues. Enzymes from M. tuberculosis as promising targets for prototypes of new-generation drugs are considered. Nucleosides as inhibitors of drug-resistant M. tuberculosis strains are characterized. The bibliography includes 101 references.

  6. Synthesis and antibacterial evaluation of anziaic acid and analogues as topoisomerase I inhibitors

    PubMed Central

    Lin, Hao; Annamalai, Thirunavukkarasu; Bansod, Priyanka; Tse-Dinh, Yuk-Ching

    2013-01-01

    Naturally occurring anziaic acid was very recently reported as a topoisomerase I inhibitor with antibacterial activity. Herein total synthesis of anziaic acid and structural analogues is described and the preliminary structure-activity relationship (SAR) has been developed based on topoisomerase inhibition and whole cell antibacterial activity. PMID:24363888

  7. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  8. Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors

    PubMed Central

    Duveau, Damien Y.; Hu, Xin; Walsh, Martin J.; Shukla, Suneet; Skoumbourdis, Amanda P.; Boxer, Matthew B.; Ambudkar, Suresh V.; Shen, Min; Thomas, Craig J.

    2013-01-01

    The importance of the trifluoromethyl group in the polypharmacological profile of nilotinib was investigated. Molecular editing of nilotinib led to the design, synthesis and biological evaluation of analogues where the trifluoromethyl group was replaced by a proton, fluorine and a methyl group. While these analogues were less active than nilotinib toward Abl, their activity toward Kit was comparable, with the monofluorinated analogue being the most active. Docking of nilotinib and of analogues 2a–c to the binding pocket of Abl and of Kit showed that the lack of shape complementarity in Kit is compensated by the stabilizing effect from its juxtamembrane region. PMID:23273517

  9. Design, synthesis, biological and structural evaluation of functionalized resveratrol analogues as inhibitors of quinone reductase 2.

    PubMed

    St John, Sarah E; Jensen, Katherine C; Kang, Soosung; Chen, Yafang; Calamini, Barbara; Mesecar, Andrew D; Lipton, Mark A

    2013-10-01

    Resveratrol (3,5,4'-trihydroxylstilbene) has been proposed to elicit a variety of positive health effects including protection against cancer and cardiovascular disease. The highest affinity target of resveratrol identified so far is the oxidoreductase enzyme quinone reductase 2 (QR2), which is believed to function in metabolic reduction and detoxification processes; however, evidence exists linking QR2 to the metabolic activation of quinones, which can lead to cell toxicity. Therefore, inhibition of QR2 by resveratrol may protect cells against reactive intermediates and eventually cancer. With the aim of identifying novel inhibitors of QR2, we designed, synthesized, and tested two generations of resveratrol analogue libraries for inhibition of QR2. In addition, X-ray crystal structures of six of the resveratrol analogues in the active site of QR2 were determined. Several novel inhibitors of QR2 were successfully identified as well as a compound that inhibits QR2 with a novel binding orientation.

  10. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L.

    PubMed

    Parker, Erica N; Song, Jiangli; Kishore Kumar, G D; Odutola, Samuel O; Chavarria, Gustavo E; Charlton-Sevcik, Amanda K; Strecker, Tracy E; Barnes, Ashleigh L; Sudhan, Dhivya R; Wittenborn, Thomas R; Siemann, Dietmar W; Horsman, Michael R; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2015-11-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  11. Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors.

    PubMed

    Nishikawa, Keisuke; Fukuda, Hiroshi; Abe, Masato; Nakanishi, Kazunari; Taniguchi, Tomoya; Nomura, Takashi; Yamaguchi, Chihiro; Hiradate, Syuntaro; Fujii, Yoshiharu; Okuda, Katsuhiro; Shindo, Mitsuru

    2013-12-01

    1-O-cis-Cinnamoyl-β-D-glucopyranose is one of the most potent allelochemicals that has been isolated from Spiraea thunbergii Sieb by Hiradate et al. It derives its strong inhibitory activity from cis-cinnamic acid (cis-CA), which is crucial for phytotoxicity. By preparing and assaying a series of cis-CA analogues, it was previously found that the key features of cis-CA for lettuce root growth inhibition are a phenyl ring, cis-configuration of the alkene moiety, and carboxylic acid. On the basis of a structure-activity relationship study, the substituent effects on the aromatic ring of cis-CA were examined by systematic synthesis and the lettuce root growth inhibition assay of a series of cis-CA analogues having substituents on the aromatic ring. While ortho- and para-substituted analogues exhibited low potency in most cases, meta-substitution was not critical for potency, and analogues having a hydrophobic and sterically small substituent were more likely to be potent. Finally, several cis-CA analogues were found to be more potent root growth inhibitors than cis-CA.

  12. Synthesis of tartaric acid analogues of FR258900 and their evaluation as glycogen phosphorylase inhibitors.

    PubMed

    Varga, Gergely; Docsa, Tibor; Gergely, Pál; Juhász, László; Somsák, László

    2013-03-15

    Di-O-cinnamoylated, -p-coumaroylated, and -feruloylated d-, l- and meso-tartaric acids were synthesized as analogues of the natural product FR258900, a glycogen phosphorylase (GP) inhibitor with in vivo antihyperglycaemic activity. The new compounds inhibited rabbit muscle GP in the low micromolar range, and bound to the allosteric site of the enzyme. The best inhibitor was 2,3-di-O-feruloyl meso-tartaric acid and had Ki values of 2.0μM against AMP (competitive) and 3.36μM against glucose-1-phosphate (non-competitive).

  13. Oxamic acid analogues as LDH-C4-specific competitive inhibitors.

    PubMed

    Rodríguez-Páez, Lorena; Chena-Taboada, Miguel Angel; Cabrera-Hernández, Arturo; Cordero-Martínez, Joaquín; Wong, Carlos

    2011-08-01

    We performed kinetic studies to determine whether oxamate analogues are selective inhibitors of LDH-C4, owing to their potential usefulness in fertility control and treatment of some cancers. These substances were shown to be competitive inhibitors of LDH isozymes and are able to discriminate among subtle differences that differentiate the active sites of LDH-A4, LDH-B4 and LDH-C4. N-Ethyl oxamate was the most potent inhibitor showing the highest affinity for LDH-C4. However, N-propyl oxamate was the most selective inhibitor showing a high degree of selectivity towards LDH-C4. Non-polar four carbon atoms chains, linear or branched, dramatically diminished the affinity and selectivity towards LDH-C4. N-Propyl oxamate significantly reduced ATP levels, capacitation and mouse sperm motility, in line with results shown by others, suggesting that LDH-C4 plays an essential role in mouse fertility.

  14. Potential transition state analogue inhibitors for the penicillin-binding proteins.

    PubMed

    Pechenov, Aleksandr; Stefanova, Miglena E; Nicholas, Robert A; Peddi, Sridhar; Gutheil, William G

    2003-01-21

    Penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis. The development of new PBP inhibitors is a potentially viable strategy for developing new antibacterial agents. Several potential transition state analogue inhibitors for the PBPs were synthesized, including peptide chloromethyl ketones, trifluoromethyl ketones, aldehydes, and boronic acids. These agents were characterized chemically, stereochemically, and as inhibitors of a set of low molecular mass PBPs: Escherichia coli (EC) PBP 5, Neisseria gonorrhoeae (NG) PBP 3, and NG PBP 4. A peptide boronic acid was the most effective PBP inhibitor in the series, with a preference observed for a d-boroAla-based over an l-boroAla-based inhibitor, as expected given that physiological PBP substrates are based on d-Ala at the cleavage site. The lowest K(I) of 370 nM was obtained for NG PBP 3 inhibition by Boc-l-Lys(Cbz)-d-boroAla (10b). Competitive inhibition was observed for this enzyme-inhibitor pair, as expected for an active site-directed inhibitor. For the three PBPs included in this study, an inverse correlation was observed between the values for log K(I) with 10b and the values for log(k(cat)/K(m)) for activity against the analogous substrate, and K(m)/K(I) ratios were 90, 1900, and 9600 for NG PBP 4, EC PBP 5, and NG PBP 3, respectively. These results demonstrate that peptide boronic acids can be effective transition state analogue inhibitors for the PBPs and provide a basis for the use of these agents as probes of PBP structure, function, and mechanism, as well as a possible basis for the development of new PBP-targeted antibacterial agents. PMID:12525187

  15. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    PubMed

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed.

  16. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    PubMed

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. PMID:23721687

  17. Discovery of 3-Hydroxy-3-phenacyloxindole Analogues of Isatin as Potential Monoamine Oxidase Inhibitors.

    PubMed

    Tripathi, Rati K P; Krishnamurthy, Sairam; Ayyannan, Senthil R

    2016-01-01

    A series of 3-hydroxy-3-phenacyloxindole analogues of isatin were designed, synthesized, and evaluated in vitro for their inhibitory activity toward monoamine oxidase (MAO) A and B. Most of the synthesized compounds proved to be potent and selective inhibitors of MAO-A rather than MAO-B. 1-Benzyl-3-hydroxy-3-(4'-hydroxyphenacyl)oxindole (compound 18) showed the highest MAO-A inhibitory activity (IC50 : 0.009 ± 0.001 μM, Ki : 3.69 ± 0.003 nM) and good selectivity (selectivity index: 60.44). Kinetic studies revealed that compounds 18 and 16 (1-benzyl-3-hydroxy-3-(4'-bromophenacyl)oxindole) exhibit competitive inhibition against MAO-A and MAO-B, respectively. Structure-activity relationship studies suggested that the 3-hydroxy group is an essential feature for these analogues to exhibit potent MAO-A inhibitory activity. Computational studies revealed the possible molecular interactions between the inhibitors and MAO isozymes. The computational data obtained are congruent with experimental results. Further studies on the lead inhibitors, including co-crystallization of inhibitor-MAO complexes and in vivo evaluations, are essential for their development as potential therapeutic agents for the treatment of MAO-associated neurological disorders.

  18. Development of Pyrazolone and Isoxazol-5-one Cambinol Analogues as Sirtuin Inhibitors

    PubMed Central

    2015-01-01

    Sirtuins are a family of NAD+-dependent protein deacetylases that play critical roles in epigenetic regulation, stress responses, and cellular aging in eukaryotic cells. In an effort to identify small molecule inhibitors of sirtuins for potential use as chemotherapeutics as well as tools to modulate sirtuin activity, we previously identified a nonselective sirtuin inhibitor called cambinol (IC50 ≈ 50 μM for SIRT1 and SIRT2) with in vitro and in vivo antilymphoma activity. In the current study, we used saturation transfer difference (STD) NMR experiments with recombinant SIRT1 and 20 to map parts of the inhibitor that interacted with the protein. Our ongoing efforts to optimize cambinol analogues for potency and selectivity have resulted in the identification of isoform selective analogues: 17 with >7.8-fold selectivity for SIRT1, 24 with >15.4-fold selectivity for SIRT2, and 8 with 6.8- and 5.3-fold selectivity for SIRT3 versus SIRT1 and SIRT2, respectively. In vitro cytotoxicity studies with these compounds as well as EX527, a potent and selective SIRT1 inhibitor, suggest that antilymphoma activity of this compound class may be predominantly due to SIRT2 inhibition. PMID:24697269

  19. Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases.

    PubMed

    Heck, Marie-Pierre; Vincent, Stéphane P; Murray, Brion W; Bellamy, François; Wong, Chi-Huey; Mioskowski, Charles

    2004-02-25

    A series of monocyclic glycoamidines bearing different exocyclic amine, alcohol, or alkyl functionalities and bicyclic amidines derived from D-glucose and D-mannose were synthesized and tested as inhibitors of various glycosidases. All the prepared compounds demonstrated good to excellent inhibition toward glycosidases. In particular, the biscationic D-mannoamidine 9b bearing an exocyclic ethylamine moiety proved to be a selective competitive inhibitor of alpha- and beta-mannosidases (K(i) = 6 nM) making it the most potent inhibitor of these glycosidases reported to date. A favorable B(2,5) boat conformation might explain the selectivity of mannosidase inhibition compared to other glycosidases.

  20. Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes.

    PubMed

    Payne, Richard J; Bulloch, Esther M M; Toscano, Miguel M; Jones, Michelle A; Kerbarh, Olivier; Abell, Chris

    2009-06-01

    A library of 2,5-dihydrochorismate analogues were designed as inhibitors of the chorismate-utilising enzymes including anthranilate synthase, isochorismate synthase, salicylate synthase and 4-amino-4-deoxychorismate synthase. The inhibitors were synthesised in seven or eight steps from shikimic acid, sourced from star anise. The compounds exhibited moderate but differential inhibition against the four chorismate-utilising enzymes.

  1. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors.

    PubMed

    Zhu, Tian-Hua; Cao, Shu-Wen; Yu, Yan-Ying

    2013-11-01

    A series of hydroxy- and methoxy-substituted paeonol thiosemicarbazone analogues were synthesized as potential tyrosinase inhibitors and their inhibitory effects on mushroom tyrosinase and inhibitory mechanism were evaluated. Paeonol thiosemicarbazone analogues have been found exhibiting more remarkable inhibition than their indexcompounds on mushroom tyrosinase. Among them, compound 2,4-dihydroxy acetophenone-4-phenyl-3-thiosemicarbazone (d1) had the most potent inhibition activity with the IC50 value of 0.006 ± 0.001 mM, displayed as a reversible competitive inhibitor. The inhibitory ability of o- or p-substituted acetophenone thiosemicarbazones was: di-substituted acetophenone thiosemicarbazones>mono-substituted acetophenone thiosemicarbazones>non-substituted acetophenone thiosemicarbazones. Copper ions chelation assay explained that compound d1 exhibited competitive inhibition by forming a chelate with the copper ions at the catalytic domain of tyrosinase as well as indicate a 1.5:1 binding ratio of compound d1 with copper ions. In the fluorescence spectrum study, compound d1 behaved stronger fluorescence quenching on tyrosinase towards d1-Cu(2+) complex, inhibiting tyrosinase mainly by means of chelating the two copper ions in the active site. The newly synthesized compounds may serve as structural templates for designing and developing novel tyrosinase inhibitors.

  2. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors.

    PubMed

    Zhu, Tian-Hua; Cao, Shu-Wen; Yu, Yan-Ying

    2013-11-01

    A series of hydroxy- and methoxy-substituted paeonol thiosemicarbazone analogues were synthesized as potential tyrosinase inhibitors and their inhibitory effects on mushroom tyrosinase and inhibitory mechanism were evaluated. Paeonol thiosemicarbazone analogues have been found exhibiting more remarkable inhibition than their indexcompounds on mushroom tyrosinase. Among them, compound 2,4-dihydroxy acetophenone-4-phenyl-3-thiosemicarbazone (d1) had the most potent inhibition activity with the IC50 value of 0.006 ± 0.001 mM, displayed as a reversible competitive inhibitor. The inhibitory ability of o- or p-substituted acetophenone thiosemicarbazones was: di-substituted acetophenone thiosemicarbazones>mono-substituted acetophenone thiosemicarbazones>non-substituted acetophenone thiosemicarbazones. Copper ions chelation assay explained that compound d1 exhibited competitive inhibition by forming a chelate with the copper ions at the catalytic domain of tyrosinase as well as indicate a 1.5:1 binding ratio of compound d1 with copper ions. In the fluorescence spectrum study, compound d1 behaved stronger fluorescence quenching on tyrosinase towards d1-Cu(2+) complex, inhibiting tyrosinase mainly by means of chelating the two copper ions in the active site. The newly synthesized compounds may serve as structural templates for designing and developing novel tyrosinase inhibitors. PMID:24120880

  3. Pharmacotherapy of intraocular pressure - part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides.

    PubMed

    Costagliola, Ciro; dell'Omo, Roberto; Romano, Mario R; Rinaldi, Michele; Zeppa, Lucia; Parmeggiani, Francesco

    2009-12-01

    The second part of this two part review (please see Expert Opinion on Pharmacotherapy 10(16)) reports the characteristics of other antiglaucoma medications: systemic (acetazomide) and topical (dorzolamide and brinzolamide) carbonic anhydrase inhibitors, which suppress aqueous humour formation; and prostaglandin analogues (latanoprost and travoprost) and prostamides (bimatoprost), which raise aqueous humour outflow. The pharmacologic properties of each compound and its efficacy in the medical treatment of glaucoma, mainly the primary open-angle form, are discussed briefly, focusing on the clinical evidence supporting their use. PMID:19929706

  4. Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase inhibitors and antiviral agents: recent advances.

    PubMed

    De Clercq, E

    1998-01-01

    Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process. PMID:9708366

  5. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  6. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  7. C-22-substituted steroid derivatives as substrate analogues and inhibitors of cytochrome P-450scc.

    PubMed

    Sheets, J J; Vickery, L E

    1983-02-10

    Spectral and kinetic studies are reported for the effects of C-22-substituted steroids on purified bovine adrenocortical cytochrome P-450scc. The results are consistent with the recent proposal that the potency of 22-amino-23,24-bisnor-5-cholen-3 beta-ol as an inhibitor of the enzyme arises from a dual interaction, the binding of the steroid ring to the cholesterol site and bonding of the amine to the heme iron (Sheets, J.J., and Vickery, L.E., (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5773-5777). An analogue of the inhibitor with the 5,6 double bond reduced, 22-amino-23,24-bisnor-5 alpha-cholan-3 beta-ol, was synthesized by a similar procedure. A complex of this form with P-450scc produced a 422 nm Soret absorption maximum as found for the parent compound, indicating nitrogen coordination to the heme iron. A decrease in the spectral dissociation constant and inhibitory potency was also observed and is consistent with binding of the steroid ring to the cholesterol site on the enzyme. The 22-hydroxy analogue, 23,24-bisnor-5-cholene-3 beta,22-diol, was also prepared. This derivative produced a complex with P-450scc having a Soret peak at 417 nm as in the substrate-free form of the enzyme; the diol was also a competitive inhibitor, but exhibited decreased potency relative to the amine form. These results provide additional support for the role of amine coordination in producing the 422 nm species and in contributing to tight binding.

  8. Conjugation of Cisplatin Analogues and Cyclooxygenase Inhibitors to Overcome Cisplatin Resistance

    PubMed Central

    Neumann, Wilma; Crews, Brenda C.; Sárosi, Menyhárt B.; Daniel, Cristina M.; Ghebreselasie, Kebreab; Scholz, Matthias S.; Marnett, Lawrence J.

    2015-01-01

    Cyclooxygenase (COX) is an enzyme involved in tumorigenesis and is associated with tumor cell resistance against platinum-based antitumor drugs. Cisplatin analogues were conjugated with COX inhibitors (indomethacin, ibuprofen) to study the synergistic effects that were previously observed in combination treatments. The conjugates ensure concerted transport of both drugs into cells, and subsequent intracellular cleavage enables a dual-action mode. Whereas the platinum(II) complexes showed cytotoxicities similar to those of cisplatin, the platinum(IV) conjugates revealed highly increased cytotoxic activities and were able to completely overcome cisplatin-related resistance. Although some of the complexes are potent COX inhibitors, the conjugates appear to execute their cytotoxic action via COX-independent mechanisms. Instead, the increased lipophilicity and kinetic inertness of the conjugates seem to facilitate cellular accumulation of the platinum drugs and thus improve the efficacy of the antitumor agents. These conjugates are important tools for the elucidation of the direct influence of COX inhibitors on platinum-based anticancer drugs in tumor cells. PMID:25318459

  9. A lysophosphatidic acid analogue is revealed as a potent inhibitor of phosphatidylcholine synthesis, inducing apoptosis.

    PubMed Central

    Gueguen, Geneviéve; Granci, Virginie; Rogalle, Pierre; Briand-Mésange, Fabienne; Wilson, Michéle; Klaébé, Alain; Tercé, François; Chap, Hugues; Salles, Jean-Pierre; Simon, Marie-Françoise; Gaits, Frédérique

    2002-01-01

    A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase. This effect was not direct but required dephosphorylation of PNPAs by ecto-lipid phosphate phosphatase before cellular uptake of the generated N-palmitoyl-norleucinols (PNOHs). Inhibition of cholinephosphotransferase by the derivative (S)PNOH was confirmed by an in vitro assay. (S)PNPA proapoptotic effects led us to clarify the mechanism linking cholinephosphotransferase inhibition to apoptosis. Three proapoptotic responses were observed: the activation of caspase-3, the production of ceramides from newly synthesized pools (as demonstrated by the inhibitor Fumonisin B1) and finally the activation of stress-activated protein kinase, p38 and c-Jun N-terminal kinases 1/2, as a result of ceramide increase. Thus our data demonstrate that synthetic analogues of LPA might display stereospecific effects leading to apoptosis independently of classical LPA-activated pathways. PMID:12197836

  10. Biological Evaluation and 3D-QSAR Studies of Curcumin Analogues as Aldehyde Dehydrogenase 1 Inhibitors

    PubMed Central

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-01-01

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor. PMID:24840575

  11. Design, synthesis, and biological evaluation of novel analogues of archazolid: a highly potent simplified V-ATPase inhibitor.

    PubMed

    Menche, Dirk; Hassfeld, Jorma; Sasse, Florenz; Huss, Markus; Wieczorek, Helmut

    2007-03-15

    Novel analogues of the V-ATPase inhibitors archazolid A and B with modifications of the free hydroxyl groups and the side chain were designed by molecular modeling, synthesized by derivatization of the parent natural product and evaluated for V-ATPase inhibition and growth inhibition of murine connective tissue cells.

  12. Interaction studies to evaluate 2- carboxyphenolate analogues as inhibitor of anti-apoptotic protein Bcl-2.

    PubMed

    Al-Karaawi, Mohammed A

    2013-01-01

    Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, pro-apoptotic proteins bind anti-apoptotic proteins, thus allowing apoptosis to go forward. An excess of anti-apoptotic proteins can prevent apoptosis. Designed molecules that imitate the roles of pro-apoptotic proteins can promote the death of cancer cells. In this work we have applied an insilico approach to study the binding of 2-carboxyphenolate analogues as potent inhibitors of anti-apoptotic protein Bcl-2. Molecular docking study was performed in order to find specific binding mode using AutoDock. From the docking results it was observed that zinc 2- carboxyphenolate showed strong inhibition with Bcl-2 with docking energy of -4.6 kcal/mol. The effects of the Zinc 2- hydroxybenzoate on apoptosis in HT-1080 cell lines were also analysed, which shows strong evidence for their apoptotic mode of action using flow cytometric analysis of Annexin-V. Our study gave valuable insights on inhibitor specificity of anti-apoptotic proteins and might be considered as potent chemopreventive agents. PMID:23847403

  13. Hydroxybenzaldoximes Are D-GAP-Competitive Inhibitors of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase.

    PubMed

    Bartee, David; Morris, Francine; Al-Khouja, Amer; Freel Meyers, Caren L

    2015-08-17

    1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low-micromolar inhibitors, competitive against D-glyceraldehyde 3-phosphate (D-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D-GAP-competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis.

  14. Aromatase inhibitors with or without gonadotropin-releasing hormone analogue in metastatic male breast cancer: a case series

    PubMed Central

    Zagouri, F; Sergentanis, T N; Koutoulidis, V; Sparber, C; Steger, G G; Dubsky, P; Zografos, G C; Psaltopoulou, T; Gnant, M; Dimopoulos, M-A; Bartsch, R

    2013-01-01

    Background: Data regarding the safety and effectiveness of aromatase inhibitors (AIs) as monotherapy or combined with gonadotropin-releasing hormone (GnRH) analogue in male breast cancer are scarce. Methods: In this retrospective chart review, cases of male breast cancer patients treated with AIs with or without a GnRH analogue were evaluated. Results: Twenty-three men were included into this case series. Aromatase inhibitors in combination with or without a GnRH analogue were given as first-line therapy in 60.9% and as second-line therapy in 39.1% of patients, respectively. All patients had visceral metastases, whereas in five of them bone lesions coexisted. In all cases AIs were tolerated well, and no case of grade 3 and 4 adverse events was reported. A partial response was observed in 26.1% of patients and stable disease in 56.5%. Median overall survival (OS) was 39 months and median progression-free survival (PFS) was 13 months. Regarding OS and PFS, no significant effects of GnRH analogue co-administration or type of AI were noted. Conclusion: Our study shows that AIs with or without GnRH analogues may represent an effective and safe treatment option for hormone-receptor positive, pretreated, metastatic, male breast cancer patients. PMID:23722469

  15. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  16. Design, synthesis and bioevaluation of novel umbelliferone analogues as potential mushroom tyrosinase inhibitors.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-Us-Sahar Sadaf

    2015-12-01

    A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96 µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.

  17. The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase.

    PubMed

    Brown, Murray J; Carter, Paul S; Fenwick, Ashley S; Fosberry, Andrew P; Hamprecht, Dieter W; Hibbs, Martin J; Jarvest, Richard L; Mensah, Lucy; Milner, Peter H; O'Hanlon, Peter J; Pope, Andrew J; Richardson, Christine M; West, Andrew; Witty, David R

    2002-11-01

    The antimicrobial natural product chuangxinmycin has been found to be a potent and selective inhibitor of bacterial tryptophanyl tRNA synthetase (WRS). A number of analogues have been synthesised. The interaction with WRS appears to be highly constrained, as only sterically smaller analogues afforded significant inhibition. The only analogue to show inhibition comparable to chuangxinmycin also had antibacterial activity. WRS inhibition may contribute to the antibacterial action of chuangxinmycin.

  18. LC-ESI-MS/MS analysis of phosphodiesterase-5 inhibitors and their analogues in foods and dietary supplements in Korea.

    PubMed

    Jeong, Ji Hye; Lee, Ji Hyun; Kim, Hyung Joo; Park, Hyoung Joon; Hwang, In Sun; Han, Kyoung Moon; Yoon, Chang-Yong; Cho, Sooyeul; Kim, Woo Seong

    2016-01-01

    A number of 188 food and dietary supplement samples were collected from 2009 to the first half of 2013 in Korean online and offline stores. A method to identify phosphodiesterase-5 (PDE-5) inhibitors and their analogues using liquid chromatography-electrospray ionisation-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) was validated. Limit of detection and limit of quantitation of liquid-type and solid-type negative samples ranged from 0.05 to 3.33 ng/mL or ng/g and from 0.15 to 10.00 ng/mL or ng/g, respectively. Recoveries ranged from 83% to 112%. Nineteen PDE-5 inhibitors and their analogues were detected, with tadalafil group compounds being the most frequently observed (53.0%), followed by the sildenafil group (42.5%). Tadalafil concentrations ranged from 0.08 to 138.69 mg/g. Compounds were most frequently detected in capsules (in 40 of 80 adulterated samples). To protect public health and food safety, appropriate monitoring of PDE-5 inhibitors and their analogues in foods and dietary supplements is recommended. PMID:25263347

  19. Possible role for water dissociation in the slow binding of phosphorus-containing transition-state-analogue inhibitors of thermolysin.

    PubMed

    Bartlett, P A; Marlowe, C K

    1987-12-29

    A number of phosphonamidate and phosphonate tripeptide analogues have been studied as transition-state-analogue inhibitors of the zinc endopeptidase thermolysin. Those with the form Cbz-GlyP(Y)Leu-X [ZGP(Y)LX, X = NH2 or amino acid, Y = NH or O linkage] are potent (Ki = 9-760 nM for X = NH, 9-660 microM for X = O) but otherwise ordinary in their binding behavior, with second-order rate constants for association (kon) greater than 10(5) M-1 s-1. Those with the form Cbz-XP(Y)-Leu-Ala [ZXP(Y)LA,XP = alpha-substituted phosphorus amino acid analogue] are similarly potent (Ki for ZFPLA = 68 pM) but slow binding (kon less than or equal to 1300 M-1 s-1). Several kinetic mechanisms for slow binding behavior are considered, including two-step processes and those that require prior isomerization of inhibitor or enzyme to a rare form. The association rates of ZFPLA and ZFP(O)LA are first order in inhibitor concentration up to 1-2 mM, indicating that any loose complex along the binding pathway must have a dissociation constant above this value. The crystallographic investigation described in the preceding paper [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry (preceding paper in this issue)] identifies a specific water molecule in the active site that may hinder binding of the alpha-substituted inhibitors. The implication of this observation for a mechanism for slow binding is discussed.

  20. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  1. Synthesis and biological evaluation of 2-phenoxyacetamide analogues, a novel class of potent and selective monoamine oxidase inhibitors.

    PubMed

    Shen, Wei; Yu, Shian; Zhang, Jiaming; Jia, Weizheng; Zhu, Qing

    2014-11-14

    Monoamine oxidases (EC 1.4.3.4; MAOs), a family of FAD-containing enzymes, is an important target for antidepressant drugs. In this paper, a series of 2-phenoxyacetamide analogues were synthesized, and their inhibitory potency towards monoamine oxidases A (MAO-A) and B (MAO-B) were evaluated using enzyme and cancer cell lysate. 2-(4-Methoxyphenoxy)acetamide (compound 12) (SI=245) and (2-(4-((prop-2-ynylimino)methyl)phenoxy)acetamide (compound 21) (IC50MAO-A=0.018 μM, IC50MAO-B=0.07 μM) were successfully identified as the most specific MAO-A inhibitor, and the most potent MAO-A/-B inhibitor, respectively. The inhibitory activities of these two compounds in living cells were also further evaluated utilizing HepG2 and SHSY-5Y cell lysates.

  2. Synthesis and Structure activity relationships of EGCG Analogues, A Recently Identified Hsp90 Inhibitor

    PubMed Central

    Khandelwal, Anuj; Hall, Jessica

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230

  3. Molecular Docking Evaluation of Imidazole Analogues as Potent Candida albicans 14α-Demethylase Inhibitors.

    PubMed

    Rani, Nidhi; Kumar, Praveen; Singh, Randhir; Sharma, Ajay

    2015-01-01

    Candida albicans is one of the most important causes of life-threating fungal infections. Lanosterol 14α-demethylase (Cytochrome P450DM) is the target enzyme of azole antifungal agents. The study involved selection and modeling of the target enzyme followed by refinement of the model using molecular dynamic simulation. The modeled structure of enzyme was validated using Ramachandran plot and Sequence determination technique. A series of chlorosubstituted imidazole analogues were evaluated for Cytochrome P450 inhibitory activity using molecular docking studies. The imidazole analogues were prepared using Chem sketch and molecular docking was performed using Molergo Virtual Docker program. The docking study indicated that all the imidazole analogues (AN1-AN45) and standard drugs i.e., Ketoconazole, Clotrimazole and Miconazole have interaction with protein residue of 14α-demethylase, Heme cofactor and the water molecules present in the active site. PMID:26081558

  4. Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor.

    PubMed

    Khandelwal, Anuj; Hall, Jessica A; Blagg, Brian S J

    2013-08-16

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90; however, structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Antiproliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of the four most potent analogues was further evaluated by Western blot analyses and degradation of Hsp90-dependent client proteins. The prenyl-substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as a novel scaffold that exhibits Hsp90 inhibitory activity. PMID:23834230

  5. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate?

    PubMed

    Foote, J; Schachman, H K

    1985-11-01

    The active sites of aspartate transcarbamoylase from Escherichia coli were titrated by measuring the decrease in the enzyme-catalyzed arsenolysis of N-carbamoyl-L-aspartate caused by the addition of the tight-binding inhibitor, N-phosphonacetyl-L-aspartate. Because the enzyme is a poor catalyst for this non-physiological reaction, high concentrations are required for the assays (more than 1000-fold the dissociation constant of the reversibly bound inhibitor) and, therefore, virtually all of the bisubstrate analog is bound. From the endpoint of the titration, 5.7 active sites were calculated, in excellent agreement with the number, six, based on the structure of the enzyme. Simple inhibition was observed only when the molar ratio of inhibitor to enzyme exceeded five; under these conditions, as shown in earlier physical chemical studies, the R-conformational state of the enzyme is the sole or predominant species. At low ratios of inhibitor to enzyme, the addition of inhibitor caused an increase in activity which is attributable to the conversion of the enzyme from the low-activity T-state to the much more active R-state. Comparison of the linear increase in activity as a function of inhibitor concentration at the low molar ratio (0.01, i.e. 1 inhibitor/600 active sites) with the activity lost at the high ratio provided a direct value for the mean number of active sites converted from the T-state to the R-state as a result of the binding of one bisubstrate analog to an enzyme molecule. This number was four with Mg X ATP or carbamoyl phosphate present and 4.7 for the enzyme in the presence of Mg X PPi, values approaching or identical to the theoretical maximum, 4.7, for a concerted transition with all of the active sites of the molecule changing from the T- to R-state upon the formation of a binary complex of hexameric enzyme with a single inhibitor. With the enzyme in the absence of effectors or with Mg X CTP present, the titrations showed that an average of two and

  6. Design, synthesis, and SAR of embelin analogues as the inhibitors of PAI-1 (plasminogen activator inhibitor-1).

    PubMed

    Chen, Fanglei; Zhang, Guiping; Hong, Zebin; Lin, Zhonghui; Lei, Min; Huang, Mingdong; Hu, Lihong

    2014-05-15

    The natural product embelin was found to have PAI-1 inhibitory activity with the IC50 value of 4.94μM. Based on the structure of embelin, a series of analogues were designed, synthesized, and evaluated for their ability to inhibit PAI-1. The SAR study on these compounds disclosed that the inhibitory potency largely depended on the hydroxyl groups at C2 and C5, and the length of the alkyl chains at C3 and C6. Compound 11 displayed the best PAI-1 inhibitory potency with the IC50 value of 0.18μM.

  7. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Kwon, Kang Sung; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-06-15

    The present studies reports the synthesis of hydoxylated thymol analogues (4a-e) and (6a-c) as mushroom tyrosinase inhibitors. The title compounds were obtained in good yield and characterized by FTIR, (1)H NMR, (13)C NMR, Mass spectral data and X-ray crystallography in case of compound (6a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6b) showed tyrosinase inhibitory activity (IC50 15.20 μM) comparable to kojic acid (IC50 16.69 μM) while 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate (4d) exhibited higher antioxidant potential (IC50 11.30 μM) than standard ascorbic acid (IC50 24.20 μM). The docking studies of synthesized thymol analogues was also performed against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC50 values. The predicted binding affinities are in good agreement with the IC50 values as compound (6b) showed highest binding affinity -7.1 kcal/mol. The kinetic mechanism analyzed by Lineweaver-Burk plots exhibited that compound (4d) and (6b) inhibit the enzyme by two different pathways displayed mixed-type inhibition. The inhibition constants Ki calculated from Dixon plots for compounds (4d) and (6b) are 34 μM and 25 μM respectively. It was also found from kinetic analysis that derivative (6b) formed reversible enzyme inhibitor complex. It is propose on the basis of our investigation that title compound (6b) may serve as lead structure for the design of more potent tyrosinase inhibitors.

  8. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Kwon, Kang Sung; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-06-15

    The present studies reports the synthesis of hydoxylated thymol analogues (4a-e) and (6a-c) as mushroom tyrosinase inhibitors. The title compounds were obtained in good yield and characterized by FTIR, (1)H NMR, (13)C NMR, Mass spectral data and X-ray crystallography in case of compound (6a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6b) showed tyrosinase inhibitory activity (IC50 15.20 μM) comparable to kojic acid (IC50 16.69 μM) while 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate (4d) exhibited higher antioxidant potential (IC50 11.30 μM) than standard ascorbic acid (IC50 24.20 μM). The docking studies of synthesized thymol analogues was also performed against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC50 values. The predicted binding affinities are in good agreement with the IC50 values as compound (6b) showed highest binding affinity -7.1 kcal/mol. The kinetic mechanism analyzed by Lineweaver-Burk plots exhibited that compound (4d) and (6b) inhibit the enzyme by two different pathways displayed mixed-type inhibition. The inhibition constants Ki calculated from Dixon plots for compounds (4d) and (6b) are 34 μM and 25 μM respectively. It was also found from kinetic analysis that derivative (6b) formed reversible enzyme inhibitor complex. It is propose on the basis of our investigation that title compound (6b) may serve as lead structure for the design of more potent tyrosinase inhibitors. PMID:26025140

  9. Sterculic Acid and Its Analogues Are Potent Inhibitors of Toxoplasma gondii

    PubMed Central

    Hao, Pan; Alaraj, Intisar Q. M.; Dulayymi, Juma’a R. Al; Baird, Mark S.; Liu, Jing; Liu, Qun

    2016-01-01

    Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an EC50 value of 36.2 μM, compared with EC50 values of 248-428 μM for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis. PMID:27180571

  10. Synthesis of rubrolide analogues as new inhibitors of the photosynthetic electron transport chain.

    PubMed

    Barbosa, Luiz C A; Maltha, Célia R A; Lage, Mateus R; Barcelos, Rosimeire C; Donà, Alice; Carneiro, José W M; Forlani, Giuseppe

    2012-10-24

    Many natural products have been used as a model for the development of new drugs and agrochemicals. Following this strategy 11 rubrolide analogues, bearing electron-withdrawing and -donating groups at both benzene rings, were prepared starting from commercially available mucobromic acid. The ability of all compounds to inhibit the photosynthetic electron transport chain in the chloroplast was investigated. The rubrolide analogues were effective in interfering with the light-driven ferricyanide reduction by isolated chloroplasts. The IC(50) values of the most active derivatives are in fact only 1 order of magnitude higher than those of commercial herbicides sharing the same mode of action, such as Diuron (0.27 μM). QSAR studies indicate that the most efficient compounds are those having higher ability to accept electrons, either by a reduction process or by an electrophilic reaction mechanism. The results obtained suggest that the rubrolide analogues represent promising candidates for the development of new active principles targeting photosynthesis to be used as herbicides.

  11. Structure-activity relationship of Garcinia xanthones analogues: Potent Hsp90 inhibitors with cytotoxicity and antiangiogenesis activity.

    PubMed

    Xu, Xiaoli; Wu, Yue; Hu, Mingyang; Li, Xiang; Gu, Congying; You, Qidong; Zhang, Xiaojin

    2016-10-01

    Hsp90 has long been recognized as an attractive and crucial molecular target for cancer therapy. Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported as a natural inhibitor of Hsp90. Here, we present the structure-activity relationship of Garcinia xanthones analogues as Hsp90 inhibitors and identify that compound 25, with a simplified skeleton, had an improved inhibitory effect toward Hsp90. Compound 25 inhibited the ATPase activity of Hsp90 with an IC50 value of 3.68±0.18μM. It also exhibited potent antiproliferative activities in some solid tumor cells. In SK-BR-3 cells with high Hsp90 expression, compound 25 induced the degradation of Hsp90 client proteins including Akt and Erk1/2 without causing the heat shock response. Additionally, compound 25 inhibited angiogenesis in HUVEC cells through Hsp90 regulation of the HIF-1α pathway. These results demonstrate that compound 25 as an Hsp90 inhibitor with a new structure could be further studied for the development of tumor therapy. PMID:27527413

  12. Photocontrol of the mitotic kinesin Eg5 using a novel S-trityl-L-cysteine analogue as a photochromic inhibitor.

    PubMed

    Ishikawa, Kumiko; Tohyama, Kanako; Mitsuhashi, Shinya; Maruta, Shinsaku

    2014-04-01

    Because the mitotic kinesin Eg5 is essential for the formation of bipolar spindles during eukaryotic cell division, it has been considered as a potential target for cancer treatment. A number of specific and potent inhibitors of Eg5 are known. S-trityl-L-cysteine is one of the inhibitors of Eg5 whose molecular mechanism of inhibition was well studied. The trityl group of S-trityl-L-cysteine was shown to be a key moiety required for potent inhibition. In this study, we synthesized a novel photochromic S-trityl-L-cysteine analogue, 4-(N-(2-(N-acetylcysteine-S-yl) acetyl) amino)-4'- (N-(2-(N-(triphenylmethyl)amino)acetyl)amino)azobenzene (ACTAB), composed of a trityl group, azobenzene and N-acetyl-L-cysteine, which exhibits cis-trans photoisomerization in order to photocontrol the function of Eg5. ACTAB exhibited cis-trans photoisomerization upon alternating irradiation at two different wavelengths in the visible range, 400 and 480 nm. ACTAB induced reversible changes in the inhibitory activity of ATPase and motor activities correlating with the cis-trans photoisomerization. Compared with cis-ACTAB, trans-ACTAB reduced ATPase activity and microtubule gliding velocity more significantly. These results suggest that ACTAB could be used as photochromic inhibitor of Eg5 to achieve photocontrol of living cells.

  13. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    SciTech Connect

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark

    2012-07-11

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  14. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue

    PubMed Central

    Saha, Tapan; Maitra, Ratnava

    2013-01-01

    Summary A common approach to the important protein kinase inhibitor (−)-balanol and an azepine-ring-modified balanol derivative has been developed using an efficient fragment coupling protocol which proceeded in good overall yield. PMID:24454570

  15. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

    PubMed

    Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-09-01

    Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. PMID:25116004

  16. Development of Simplified Heterocyclic Acetogenin Analogues as Potent and Selective Trypanosoma brucei Inhibitors.

    PubMed

    Florence, Gordon J; Fraser, Andrew L; Gould, Eoin R; King, Elizabeth F; Menzies, Stefanie K; Morris, Joanne C; Thomson, Marie I; Tulloch, Lindsay B; Zacharova, Marija K; Smith, Terry K

    2016-07-19

    Neglected tropical diseases caused by parasitic infections are an ongoing and increasing concern. They are a burden to human and animal health, having the most devastating effect on the world's poorest countries. Building upon our previously reported triazole analogues, in this study we describe the synthesis and biological testing of other novel heterocyclic acetogenin-inspired derivatives, namely 3,5-isoxazoles, furoxans, and furazans. Several of these compounds maintain low-micromolar levels of inhibition against Trypanosoma brucei, whilst having no observable inhibitory effect on mammalian cells, leading to the possibility of novel lead compounds for selective treatment.

  17. Parkinson's disease management. Part II- discovery of MAO-B inhibitors based on nitrogen heterocycles and analogues.

    PubMed

    Reis, Joana; Encarnação, Igor; Gaspar, Alexandra; Morales, Aliuska; Milhazes, Nuno; Borges, Fernanda

    2012-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder mainly characterized by a progressive neurodegeneration of the dopaminergic neurons. The available pharmacological therapy for PD aims to stop the progress of symptoms, reduce disability, slowing the neurodegenerative process and/or preventing long-term complications along the therapy. The main strategic developments that have led to progress in the medical management of PD have focused on improvements in dopaminergic therapies. Despite all the recent research, there are only a few classes of drugs approved for the treatment of motor related symptoms of PD which primarily act on the dopaminergic neurons system: L-dopa, dopamine agonists, monoamine oxidase-B (MAO-B) and catechol-O-methyl transferase (COMT) inhibitors. Anticholinergic drugs and glutamate antagonists are also available but are not commonly used in routine practice. As no effective therapeutic strategy has yet been attended, other solutions must be investigated. Privileged structures, such as indoles, arylpiperazines, biphenyls and benzopyranes are currently ascribed as helpful approaches. Different families of nitrogen and oxygen heterocycles, such as pyrazoles, hydrazinylthiazoles, xanthones, coumarins or chromones have also been extensively used as scaffolds in medicinal chemistry programs for searching novel MAO-B inhibitors. Nitrogen derivatives play a key role in this subject with several studies pointing out hydrazines, thiazoles or indoles as important scaffolds for the development of novel MAO-B inhibitors. This review comprises an overview of the state of the art on the actual pharmacological therapy for PD followed by a specific focus on the discovery and development of nitrogen-based heterocyclic compounds analogues as promising MAO-B inhibitors.

  18. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors.

    PubMed

    Weigel, Lena F; Nitsche, Christoph; Graf, Dominik; Bartenschlager, Ralf; Klein, Christian D

    2015-10-01

    Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-mimicking groups with modulated basicity. The most promising compounds were (4-amidino)-L-phenylalanine-containing inhibitors, which reached nanomolar affinities against dengue virus protease. The type and position of the substituents on the phenylglycine and phenylalanine side chains has a significant effect on the inhibitory activity against dengue virus protease and selectivity against other proteases. In addition, the non-natural, basic amino acids described here may have relevance for the development of other peptidic and peptidomimetic drugs such as inhibitors of the blood clotting cascade.

  19. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes.

    PubMed

    Scott, Sarah A; Spencer, Cierra T; O'Reilly, Matthew C; Brown, Kyle A; Lavieri, Robert R; Cho, Chul-Hee; Jung, Dai-Il; Larock, Richard C; Brown, H Alex; Lindsley, Craig W

    2015-02-20

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.

  20. Design of novel quinazoline derivatives and related analogues as potent and selective ALK5 inhibitors

    SciTech Connect

    Gellibert, F.; Fouchet, M.-H.; Nguyen, V.-L.; Wang, R.; Krysa, G.; de Gouville, A.-C.; Huet, S.; Dodic, N.

    2009-07-23

    Starting from quinazoline 3a, we designed potent and selective ALK5 inhibitors over p38MAP kinase from a rational drug design approach based on co-crystal structures in the human ALK5 kinase domain. The quinazoline 3d exhibited also in vivo activity in an acute rat model of DMN-induced liver fibrosis when administered orally at 5 mg/kg (bid).

  1. Bivalent Inhibitors of Protein Kinases

    PubMed Central

    Gower, Carrie M.; Chang, Matthew E. K.; Maly, Dustin J.

    2015-01-01

    Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described. PMID:24564382

  2. The 2′-Trifluoromethyl Analogue of Indomethacin Is a Potent and Selective COX-2 Inhibitor

    PubMed Central

    2013-01-01

    Indomethacin is a potent, time-dependent, nonselective inhibitor of the cyclooxygenase enzymes (COX-1 and COX-2). Deletion of the 2′-methyl group of indomethacin produces a weak, reversible COX inhibitor, leading us to explore functionality at that position. Here, we report that substitution of the 2′-methyl group of indomethacin with trifluoromethyl produces CF3–indomethacin, a tight-binding inhibitor with kinetic properties similar to those of indomethacin and unexpected COX-2 selectivity (IC50 mCOX-2 = 267 nM; IC50 oCOX-1 > 100 μM). Studies with site-directed mutants reveal that COX-2 selectivity results from insertion of the CF3 group into a small hydrophobic pocket formed by Ala-527, Val-349, Ser-530, and Leu-531 and projection of the methoxy group toward a side pocket bordered by Val-523. CF3–indomethacin inhibited COX-2 activity in human head and neck squamous cell carcinoma cells and exhibited in vivo anti-inflammatory activity in the carrageenan-induced rat paw edema model with similar potency to that of indomethacin. PMID:23687559

  3. Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors.

    PubMed

    Hierold, Judith; Baek, Sohee; Rieger, Rene; Lim, Tae-Gyu; Zakpur, Saman; Arciniega, Marcelino; Lee, Ki Won; Huber, Robert; Tietze, Lutz F

    2015-11-16

    The recent discovery of c-Jun NH2-terminal kinase JNK1 suppression by natural quercetagetin (1) is a promising lead for the development of novel anticancer agents. Using both X-ray structure and docking analyses we predicted that 5'-hydroxy- (2) and 5'-hydroxymethyl-quercetagetin (3) would inhibit JNK1 more actively than the parent compound 1. Notably, our drug design was based on the active enzyme-ligand complex as opposed to the enzyme's relatively open apo structure. In this paper we test our theoretical predictions, aided by docking-model experiments, and report the first synthesis and biological evaluation of quercetagetin analogues 2 and 3. As calculated, both compounds strongly suppress JNK1 activity. The IC50 values were determined to be 3.4 μM and 12.2 μM, respectively, which shows that 2 surpasses the potency of the parent compound 1 (IC50 =4.6 μM). Compound 2 was also shown to suppress matrix metalloproteinase-1 expression with high specificity after UV irradiation. PMID:26541354

  4. Cyclopentyl-pyrimidine based analogues as novel and potent IGF-1R inhibitor.

    PubMed

    Aware, Valmik; Gaikwad, Nitin; Chavan, Sambhaji; Manohar, Sonal; Bose, Julie; Khanna, Smriti; B-Rao, Chandrika; Dixit, Neeta; Singh, Kishori Sharan; Damre, Anagha; Sharma, Rajiv; Patil, Sambhaji; Roychowdhury, Abhijit

    2015-03-01

    A series of novel 2-amino-4-pyrazolecyclopentylpyrimidines have been prepared and evaluated as IGF-1R tyrosin kinase inhibitors. The in vitro activity was found to depend strongly on the substitution pattern in the 2- amino ring, 4-pyrazolo moieties and size of fused saturated ring with the central pyrimidine core. A stepwise optimization by combination of active fragments led to discovery of compound 6f and 6k, two structures with IGF-1R IC50 of 20 nM and 10 nM, respectively. 6f was further profiled for its anti cancer activity across various cell lines and pharmacokinetic studies in Sprague Dawley rats. PMID:25559205

  5. Cyclopentyl-pyrimidine based analogues as novel and potent IGF-1R inhibitor.

    PubMed

    Aware, Valmik; Gaikwad, Nitin; Chavan, Sambhaji; Manohar, Sonal; Bose, Julie; Khanna, Smriti; B-Rao, Chandrika; Dixit, Neeta; Singh, Kishori Sharan; Damre, Anagha; Sharma, Rajiv; Patil, Sambhaji; Roychowdhury, Abhijit

    2015-03-01

    A series of novel 2-amino-4-pyrazolecyclopentylpyrimidines have been prepared and evaluated as IGF-1R tyrosin kinase inhibitors. The in vitro activity was found to depend strongly on the substitution pattern in the 2- amino ring, 4-pyrazolo moieties and size of fused saturated ring with the central pyrimidine core. A stepwise optimization by combination of active fragments led to discovery of compound 6f and 6k, two structures with IGF-1R IC50 of 20 nM and 10 nM, respectively. 6f was further profiled for its anti cancer activity across various cell lines and pharmacokinetic studies in Sprague Dawley rats.

  6. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors.

    PubMed

    Dong, Ming-Hui; Chen, Hai-Feng; Ren, Yu-Jie; Shao, Fang-Ming

    2016-01-15

    In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q(2) and a non-cross-validation r(2), which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.

  7. Sangivamycin, a nucleoside analogue, is a potent inhibitor of protein kinase C.

    PubMed

    Loomis, C R; Bell, R M

    1988-02-01

    Protein kinase C functions prominently in cell regulation via its pleiotropic role in signal transduction processes. Certain oncogene products resemble elements involved in transmembrane signaling, elevate cellular sn-1,2-diacylglycerol second messenger levels, and activate protein kinase C. Sangivamycin was unique among the nucleoside compounds tested in its ability to potently inhibit protein kinase C activity. Inhibition was competitive with respect to ATP for both protein kinase C and the catalytic fragment of protein kinase C prepared by trypsin digestion. Sangivamycin was a noncompetitive inhibitor with respect to histone and lipid cofactors (phosphatidylserine and diacylglycerol). Sangivamycin inhibited native protein kinase C and the catalytic fragment identically, with apparent Ki values of 11 and 15 microM, respectively. Sangivamycin was an effective an inhibitor of protein kinase C as H-7, an isoquinolinsulfonamide. Sangivamycin did not inhibit [3H]phorbol-12,13-dibutyrate binding to protein kinase C. Sangivamycin did not exert its action through the lipid binding/regulatory domain; inhibition was not affected by the presence of lipid or detergent. Unlike H-7, sangivamycin selectively inhibited protein kinase C compared to cAMP-dependent protein kinase. The discovery that protein kinase C is inhibited by sangivamycin and other antitumor agents suggests that protein kinase C may be a target for rational design of antitumor compounds. PMID:3338987

  8. Synthesis and Pharmacological Evaluation of Indole Derivatives as Deaza Analogues of Potent Human Neutrophil Elastase Inhibitors.

    PubMed

    Crocetti, Letizia; Schepetkin, Igor A; Ciciani, Giovanna; Giovannoni, Maria Paola; Guerrini, Gabriella; Iacovone, Antonella; Khlebnikov, Andrei I; Kirpotina, Liliya N; Quinn, Mark T; Vergelli, Claudia

    2016-09-01

    Preclinical Research A number of N-benzoylindoles were designed and synthesized as deaza analogs of previously reported potent and selective HNE inhibitors with an indazole scaffold. The new compounds containing substituents and functions that were most active in the previous series were active in the micromolar range (the most potent had IC50  = 3.8 μM) or inactive. These results demonstrated the importance of N-2 in the indazole nucleus. Docking studies performed on several compounds containing the same substituents but with an indole or an indazole scaffold, respectively, highlight interesting aspects concerning the molecule orientation and H-bonding interactions, which could help to explain the lower activity of this new series. Drug Dev Res, 2016.   © 2016 Wiley Periodicals, Inc. PMID:27474878

  9. Hydroxyquinoline-derived compounds and analoguing of selective MCL-1 inhibitors using a functional biomarker

    PubMed Central

    Richard, David J.; Lena, Ryan; Bannister, Thomas; Blake, Noel; Pierceall, William E.; Carlson, Nicole E.; Keller, Christina Eberhart; Koenig, Marcel; He, Yuanjun; Minond, Dmitriy; Mishra, Jitendra; Cameron, Michael; Spicer, Timothy; Hodder, Peter; Cardone, Michael H.

    2013-01-01

    Anti-apoptotic Bcl-2 family proteins are important oncology therapeutic targets. To date, BH3 mimetics that abrogate anti-apoptotic activity have largely been directed at Bcl-2 and/or Bcl-xL. One observed mechanism of resistance to these inhibitors is increased Mcl-1 levels in cells exposed to such therapeutics. For this reason, and because Mcl-1 is important in the onset of lymphoid, myeloid, and other cancers, it has become a target of great interest. However, small molecule inhibitors displaying potency and selectivity for Mcl-1 are lacking. Identifying such compounds has been challenging due to difficulties in translating the target selectivity observed at the biochemical level to the cellular level. Herein we report the results of an HTS strategy coupled with directed hit optimization. Compounds identified have selective Mcl-1 inhibitory activity with greater than 100-fold reduced affinity for Bcl-xL. The selectivity of these compounds at the cellular level was validated using BH3 profiling, a novel personalized diagnostic approach. This assay provides an important functional biomarker that allows for the characterization of cells based upon their dependencies on various anti-apoptotic Bcl-2 proteins. We demonstrate that cells dependent on Mcl-1 or Bcl-2/Bcl-xL for survival are commensurately responsive to compounds that genuinely target those proteins. The identification of compound 9 with uniquely validated and selective Mcl-1 inhibitory activity provides a valuable tool to those studying the intrinsic apoptosis pathway and highlights an important approach in the development of a first-in-class cancer therapeutic. PMID:23993674

  10. Synthesis of multibranched australine derivatives from reducing castanospermine analogues through the Amadori rearrangement of gem-diamine intermediates: selective inhibitors of β-glucosidase.

    PubMed

    Sánchez-Fernández, Elena M; Álvarez, Eleuterio; Ortiz Mellet, Carmen; García Fernández, José M

    2014-12-01

    A practical one-pot synthesis of bi- and triantennated australine analogues from a pivotal sp(2)-iminosugar-type reducing castanospermine precursor is reported. The transformation involves a gem-diamine intermediate that undergoes the indolizidine → pyrrolizidine Amadori-type rearrangement and proceeds under strict control of the generalized anomeric effect to afford a single diastereomer. The final compounds behave as selective competitive inhibitors of β-glucosidase and are promising candidates as pharmacological chaperones for Gaucher disease.

  11. Quinolyl analogues of norlobelane: novel potent inhibitors of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Ding, Derong; Nickell, Justin R; Dwoskin, Linda P; Crooks, Peter A

    2015-07-01

    We have previously shown that quinolyl moieties are attractive structural replacements for the phenyl groups in lobelane. These quinolyl analogues had improved water-solubility over lobelane and retained the potent vesicular monoamine transporter-2 (VMAT-2) inhibitory properties of the parent compound, with quinlobelane (4) exhibiting potent inhibition of uptake at VMAT-2 (Ki=51nM). However, the VMAT-2 inhibitory properties of quinolyl analogues of norlobelane, which is equipotent with lobeline as an inhibitor of [(3)H]dopamine (DA) uptake at VMAT-2, have not been reported. In the current communication, we describe the synthesis of some novel des-methyl quinolyl analogues of lobelane that exhibit greater affinity (Ki=178-647nM) for the dihydrotetrabenazine binding site located on VMAT-2 compared with lobelane (Ki=970nM), norlobelane (Ki=2310nM) and quinlobelane (Ki=2640nM). The most potent compounds, 14 and 15, also exhibited inhibition of [(3)H]DA uptake at VMAT-2 (Ki=42nM) which was comparable to both lobelane (Ki=45nM) and norlobelane (Ki=43nM). Results reveal that binding affinity at VMAT-2 serves as an accurate predictor of inhibition of the function of VMAT-2 for the majority of these analogues. These novel analogues are under consideration for further development as treatments for methamphetamine abuse.

  12. Cellular response to antitumor cis-Dichlorido platinum(II) complexes of CDK inhibitor Bohemine and its analogues.

    PubMed

    Liskova, Barbora; Zerzankova, Lenka; Novakova, Olga; Kostrhunova, Hana; Travnicek, Zdenek; Brabec, Viktor

    2012-02-20

    The cellular and molecular pharmacology of the new class of anticancer drugs, in which the CDK inhibitor bohemine and its analogues are coordinated to Pt(II) to form cisplatin derivatives, was investigated. The results revealed the unique anticancer profile of a cisplatin-derived platinum(II) dichlorido complex involving N(7)-coordinated bohemine (C1). Although the IC(50) values were ∼6-fold higher for C1 than for cisplatin in cisplatin-sensitive tumor cells, the tumor cells in which C1 was also active are those which acquired resistance to cisplatin. In addition, among the novel conjugates of bohemine and its analogues with cisplatin, marked selectivity of C1 for tumor cells relative to the nontumorigenic, normal cells was observed. However, coordination of bohemine to platinum in C1 considerably reduced one of the dual functionalities anticipated to be effective after C1 reaches the nucleus. Further studies performed in the cells with wt p53 status show differences between cisplatin and C1 at the level of cell cycle regulation. Impedance-based real-time monitoring of the effects of C1 and cisplatin on cell growth supported the thesis that critical differences exist in the rate and mechanisms of cell kill caused by the two agents and that C1 was a more potent inducer of apoptosis and/or necrosis than cisplatin. The results also showed that the distinct differences in cell killing observed for C1 and cisplatin might be associated with processes at the DNA level. The DNA binding experiments carried out in a cell-free medium demonstrated that modification reactions resulting in the irreversible coordination of C1 to DNA were slower than that of cisplatin. Transcription mapping experiments and determination of interstrand cross-linking efficiency of C1 suggested that several aspects of DNA binding mode of C1 and cisplatin were similar. It was concluded that C1 remains a promising prototype of compounds for the generation of novel drug candidates with cytotoxicity

  13. Potential inhibitors of L-asparagine biosynthesis. 5. Electrophilic amide analogues of (S)-2,3-diaminopropionic acid.

    PubMed

    Mokotoff, M; Logue, L W

    1981-05-01

    Three electrophilic amide analogues of (S)-2,3-diaminopropionic acid (1, DAP) have been prepared as potential inhibitors of L-asparagine synthetase (ASase, from Novikoff hepatoma, EC 6.3.5.4). DAP was selectively blocked by the carbobenzoxy (Cbz) group to give 3-N-Cbz-DAP (2a). Esterification of 2a with isobutylene afforded tert-butyl 3-N-carbobenzoxy-(S)-2,3-diaminopropionate (3a), which was then blocked at the 2 position with the tert-butoxycarbonyl (Boc) group to give tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-[(carbobenzoxy)amino]propionate (4). Selective cleavage of the Cbz group by H2/Pd gave the key intermediate tert-butyl 2-N-(tert-butoxycarbonyl)-(S)-2,3-diaminopropionate (5), which was acylated, via the N-hydroxysuccinimide esters, with bromoacetic acid, dichloroacetic acid, and fumaric acid monoethyl ester to give tert-butyl 2-[(S)-(tert-butoxycarbonyl)-amino]-3-(2-bromoacetamido)propionate (6a), tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-(2,2-dichloroacetamido)propionate (6b), and tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-(ethoxycarbonyl)acrylamido]-propionate (6c), respectively. Deblocking of 6a-c gave the corresponding amino acids (S)-2-amino-3-(2-bromoacetamido)propionic acid hydrobromide (7a), (S)-2-amino-3-(2,2-dichloroacetamido)propionic acid (7b), and ethyl N-[(S)-2-amino-2-carboxyethyl]fumarate (7c). By a slightly different procedure, 5 was converted in two steps to (S)-2-amino-3-acetamidopropionic acid hydrobromide (7d). The inhibition of ASase by 7a-c at 1 mM was 93, 19, and 37%, respectively, while 7d was without inhibition at 2 mM. Compounds 7a-c failed to increase the life span of mice infected with B16 melanoma.

  14. Synthesis and Evaluation of Eight- and Four-membered Iminosugar Analogues as Inhibitors of Testicular Ceramide-specific Glucosyltransferase, Testicular β-Glucosidase 2, and other Glycosidases

    PubMed Central

    Lee, Jae Chul; Francis, Subhashree; Dutta, Dinah; Gupta, Vijayalaxmi; Yang, Yan; Zhu, Jin-Yi; Tash, Joseph S.; Schönbrunn, Ernst

    2012-01-01

    Eight- and four-membered analogues of N-butyldeoxynojirimycin (NB-DNJ), a reversible male contraceptive in mice, were prepared and tested. A chiral pool approach was used for the synthesis of the target compounds. Key steps for the synthesis of the eight-membered analogues involve: ringclosing metathesis and Sharpless asymmetric dihydroxylation, and for the four-membered analogues: Sharpless epoxidation, epoxide ring opening (azide), and Mitsunobu reaction to form the four-membered ring. (3S,4R,5S,6R,7R)-1-Nonylazocane-3,4,5,6,7-pentaol (6), was moderately active against rat-derived ceramide-specific glucosyltransferase and four of the other eight-membered analogues were weakly active against rat-derived β-glucosidase 2. Among the four-membered analogues, ((2R,3s,4S)-3-hydroxy-1-nonylazetidine-2,4-diyl)dimethanol (25), displayed selective inhibitory activity against mouse-derived ceramide-specific glucosyltransferase and was about half as potent as NB-DNJ against the rat-derived enzyme. ((2S,4S)-3-Hydroxy-1-nonyl-azetidine-2,4-diyl)dimethanol (27) was found to be a selective inhibitor of β-glucosidase 2, with potency similar to NB-DNJ. Additional glycosidase assays were performed to identify potential other therapeutic applications. The eight-membered iminosugars exhibited specificity for almond-derived β-glucosidase and the 1-nonylazetidine 25 inhibited α-glucosidase (Saccharomyces cerevisiae) with an IC50 of 600 nM and β-glucosidase (almond) with an IC50 of 20 µM. Only N-nonyl derivatives were active, emphasizing the importance of a long lipophilic side chain for inhibitory activity of the analogues studied. PMID:22432895

  15. Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues.

    PubMed

    Węglarz-Tomczak, Ewelina; Vassiliou, Stamatia; Mucha, Artur

    2016-08-15

    A collection of fifty phosphonic and phosphinic acids was screened for inhibition of ERAP1 and ERAP2, the human endoplasmic reticulum aminopeptidases. The cooperative action of these enzymes is manifested by trimming a variety of antigenic precursors to be presented on the cell surface by major histocompatibility class I. The SAR studies revealed several potent compounds, particularly among the phosphinic dipeptide analogues, that were strong inhibitors of ERAP2 (Ki=100-350nM). A wide structural diversity of the applied organophosphorus compounds, predominantly non-proteinogenic analogues, allowed identification of representatives selective toward only one form of ERAP. For example, N'-substituted α,β-diaminophosphonates and phosphinates exhibited potency only toward ERAP2, which is in agreement with the P1 basic substrate-oriented specificity. Such discriminating ligands are invaluable tools for elucidating the precise role of a particular aminopeptidase in the concerted function of antigen processing and in human diseases. PMID:27390066

  16. Tyrosine kinase inhibitors. 11. Soluble analogues of pyrrolo- and pyrazoloquinazolines as epidermal growth factor receptor inhibitors: synthesis, biological evaluation, and modeling of the mode of binding.

    PubMed

    Palmer, B D; Trumpp-Kallmeyer, S; Fry, D W; Nelson, J M; Showalter, H D; Denny, W A

    1997-05-01

    A new route to N-1-substituted pyrazolo- and pyrroloquinazolines has been developed from the known quinazolones 19 and 23, via conversion to the corresponding thiones, S-methylation to the thioethers, N-1-alkylation, and coupling with 3-bromoaniline. C-3-Substituted pyrroloquinazolines were prepared by Mannich base chemistry. A series of compounds bearing solubilizing side chains at these positions has been prepared and evaluated for inhibition of the tyrosine kinase activity of the isolated epidermal growth factor receptor (EGFR) and of its autophosphorylation in EGF-stimulated A431 cells. Several analogues, particularly C-3-substituted pyrroloquinazolines, retained high potency in both assays. A model for the binding of the general class of 4-anilinoquinazolines to the EGFR was constructed from structural information (particularly for the catalytic subunit of the cAMP-dependent protein kinase) and structure-activity relationships (SAR) in the series. In this model, the pyrrole ring in pyrroloquinazolines (and the 6- and 7-positions of quinazoline and related pyridopyrimidine inhibitors) occupies the entrance of the ATP binding pocket of the enzyme, with the pyrrole nitrogen located at the bottom of the cleft and the pyrrole C-3 position pointing toward a pocket corresponding to the ribose binding site of ATP. This allows considerable bulk tolerance for C-3 substituents and lesser but still significant bulk tolerance for N-1 substituents. The observed high selectivity of these compounds for binding to EGFR over other similar tyrosine kinases is attributed to the 4-anilino ring binding in an adjacent hydrophobic pocket which has an amino acid composition unique to the EGFR. The SAR seen for inhibition of the isolated enzyme by the pyrazolo- and pyrroloquinazolines discussed here is fully consistent with this binding model. For the N-1-substituted compounds, inhibition of autophosphorylation in A431 cells correlates well with inhibition of the isolated enzyme, as

  17. New Insights into the Design of Inhibitors of Human S-Adenosylmethionine Decarboxylase: Studies of Adenine C[superscript 8] Substitution in Structural Analogues of S-Adenosylmethionine

    SciTech Connect

    McCloskey, Diane E.; Bale, Shridhar; Secrist, III, John A.; Tiwari, Anita; Moss, III, Thomas H.; Valiyaveettil, Jacob; Brooks, Wesley H.; Guida, Wayne C.; Pegg, Anthony E.; Ealick, Steven E.

    2009-04-02

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and depends on a pyruvoyl group for the decarboxylation process. The crystal structures of the enzyme with various inhibitors at the active site have shown that the adenine base of the ligands adopts an unusual syn conformation when bound to the enzyme. To determine whether compounds that favor the syn conformation in solution would be more potent AdoMetDC inhibitors, several series of AdoMet substrate analogues with a variety of substituents at the 8-position of adenine were synthesized and analyzed for their ability to inhibit hAdoMetDC. The biochemical analysis indicated that an 8-methyl substituent resulted in more potent inhibitors, yet most other 8-substitutions provided no benefit over the parent compound. To understand these results, we used computational modeling and X-ray crystallography to study C{sup 8}-substituted adenine analogues bound in the active site.

  18. New Insights into the Design of Inhibitors of Human S-Adenosylmethionine Decarboxylase: Studies of Adenine C8 Substitution in Structural Analogues of S-Adenosylmethionine†

    PubMed Central

    2009-01-01

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and depends on a pyruvoyl group for the decarboxylation process. The crystal structures of the enzyme with various inhibitors at the active site have shown that the adenine base of the ligands adopts an unusual syn conformation when bound to the enzyme. To determine whether compounds that favor the syn conformation in solution would be more potent AdoMetDC inhibitors, several series of AdoMet substrate analogues with a variety of substituents at the 8-position of adenine were synthesized and analyzed for their ability to inhibit hAdoMetDC. The biochemical analysis indicated that an 8-methyl substituent resulted in more potent inhibitors, yet most other 8-substitutions provided no benefit over the parent compound. To understand these results, we used computational modeling and X-ray crystallography to study C8-substituted adenine analogues bound in the active site. PMID:19209891

  19. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue.

    PubMed

    Wilkinson, K D; Smith, S E; O'Connor, L; Sternberg, E; Taggart, J J; Berges, D A; Butt, T

    1990-08-14

    A nonhydrolyzable analogue of ubiquitin adenylate has been synthesized for use as a specific inhibitor of the ubiquitination of proteins. Ubiquitin adenylate is a tightly bound intermediate formed by the ubiquitin activating enzyme. The inhibitor adenosyl-phospho-ubiquitinol (APU) is the phosphodiester of adenosine and the C-terminal alcohol derived from ubiquitin. APU is isosteric with the normal reaction intermediate, the mixed anhydride of ubiquitin and AMP, but results from the replacement of the carbonyl oxygen of Gly76 with a methylene group. This stable analogue would be expected to bind to both ubiquitin and adenosine subsites and result in a tightly bound competitive inhibitor of ubiquitin activation. APU inhibits the ATP-PPi exchange reaction catalyzed by the purified ubiquitin activating enzyme in a manner competitive with ATP (Ki = 50 nM) and noncompetitive with ubiquitin (Ki = 35 nM). AMP has no effect on the inhibition, confirming that the inhibitor binds to the free form of the enzyme and not the thiol ester form. This inhibition constant is 10-fold lower than the dissociation constants for each substrate and 30-1000-fold lower than the respective Km values for ubiquitin and ATP. APU also effectively inhibits conjugation of ubiquitin to endogenous proteins catalyzed by reticulocyte fraction II with an apparent Ki of 0.75 microM. This weaker inhibition is consistent with the fact that activation of ubiquitin is not rate limiting in the conjugation reactions catalyzed by fraction II. APU is similarly effective as an inhibitor of the ubiquitin-dependent proteolysis of beta-lactoglobulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. "One-shot" analysis of PDE-5 inhibitors and analogues in counterfeit herbal natural products using an LC-DAD-QTOF system.

    PubMed

    Bortolini, Claudio; Pivato, Antonio; Bogialli, Sara; Pastore, Paolo

    2015-08-01

    A highly selective and robust method for simultaneous screening and confirmation of target and non-target phosphodiesterase type 5 (PDE-5) inhibitor analogues within a single chromatographic run in counterfeit herbal products was developed. The protocol, based on an easy and rapid extraction with a water/acetonitrile 1 % formic acid solution, followed by sonication and centrifugation, exploits an LC-diode array detector-quadrupole-time-of-flight (DAD-QTOF) system. The extraction method was optimized both at high concentrations and at trace levels. These two situations are typically encountered in pharmaceutical formulations and herbal food supplements. Carryover effects, never reported before and occurring mainly for vardenafil, were overcome using a polymer-based column. An in-house validation was carried out using five blanks of different bulk matrices spiked with seven standard analytes, namely yohimbine, sildenafil, vardenafil, tadalafil, homosildenafil, pseudovardenafil and hydroxyhomovardenafil. Reliable quantitation was possible using a conventional standard solution for all the pharmaceutical and herbal samples considered, as matrix effects were eliminated. Accuracy ranged from 80.9 to 108.1 % with overall relative standard deviation (RSD) <11 % (N = 15), measured at 1.0, 5.0 and 10.0 μg/g. Limits of detection (LODs) obtained ensured the determination of cross contaminations at nanogram per gram levels. A database with 82 PDE-5 inhibitor analogues was implemented for automatic non-target analysis. Among the 26 samples of dietary supplements and herbal remedies bulk marketed for erectile dysfunctions, three samples were found to be contaminated with both registered and unregistered synthetic PDE-5 inhibitors, i.e. yohimbine, sildenafil, dimethylsildenafil and thiodimethylsildenafil or thiomethisosildenafil. The occurrence of such contaminations, both at trace levels and at pharmaceutical dosage, indicates the illicit use of synthetic PDE-5 analogues

  1. "One-shot" analysis of PDE-5 inhibitors and analogues in counterfeit herbal natural products using an LC-DAD-QTOF system.

    PubMed

    Bortolini, Claudio; Pivato, Antonio; Bogialli, Sara; Pastore, Paolo

    2015-08-01

    A highly selective and robust method for simultaneous screening and confirmation of target and non-target phosphodiesterase type 5 (PDE-5) inhibitor analogues within a single chromatographic run in counterfeit herbal products was developed. The protocol, based on an easy and rapid extraction with a water/acetonitrile 1 % formic acid solution, followed by sonication and centrifugation, exploits an LC-diode array detector-quadrupole-time-of-flight (DAD-QTOF) system. The extraction method was optimized both at high concentrations and at trace levels. These two situations are typically encountered in pharmaceutical formulations and herbal food supplements. Carryover effects, never reported before and occurring mainly for vardenafil, were overcome using a polymer-based column. An in-house validation was carried out using five blanks of different bulk matrices spiked with seven standard analytes, namely yohimbine, sildenafil, vardenafil, tadalafil, homosildenafil, pseudovardenafil and hydroxyhomovardenafil. Reliable quantitation was possible using a conventional standard solution for all the pharmaceutical and herbal samples considered, as matrix effects were eliminated. Accuracy ranged from 80.9 to 108.1 % with overall relative standard deviation (RSD) <11 % (N = 15), measured at 1.0, 5.0 and 10.0 μg/g. Limits of detection (LODs) obtained ensured the determination of cross contaminations at nanogram per gram levels. A database with 82 PDE-5 inhibitor analogues was implemented for automatic non-target analysis. Among the 26 samples of dietary supplements and herbal remedies bulk marketed for erectile dysfunctions, three samples were found to be contaminated with both registered and unregistered synthetic PDE-5 inhibitors, i.e. yohimbine, sildenafil, dimethylsildenafil and thiodimethylsildenafil or thiomethisosildenafil. The occurrence of such contaminations, both at trace levels and at pharmaceutical dosage, indicates the illicit use of synthetic PDE-5 analogues

  2. Stable Analogues of OSB-AMP: Potent Inhibitors of MenE, the o-Succinylbenzoate-CoA Synthetase from Bacterial Menaquinone Biosynthesis

    PubMed Central

    Lu, Xuequan; Zhou, Rong; Sharma, Indrajeet; Li, Xiaokai; Kumar, Gyanendra; Swaminathan, Subramanyam

    2012-01-01

    MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (Ki = 5.4 ± 0.1 nM) and a non-competitive inhibitor with respect to OSB (Ki = 11.2 ± 0.9 nM). These data are consistent with a bi uni uni bi ping-pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with Kiapp of 22 ± 8 nM and ecMenE with KiOSB=128±5nM. Putative active site residues, Arg-222, which may interact with the OSB aromatic carboxylate, and Ser-302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design. PMID:22109989

  3. Recognition and excision properties of 8-halogenated-7-deaza-2'-deoxyguanosine as 8-oxo-2'-deoxyguanosine analogues and Fpg and hOGG1 inhibitors.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2015-05-26

    Cellular DNA continuously suffers various types of damage, and unrepaired damage increases disease progression risk. 8-Oxo-2'-deoxyguanine (8-oxo-dG) is excised by repair enzymes, and their analogues are of interest as inhibitors and as bioprobes for study of these enzymes. We have developed 8-halogenated-7-deaza-2'-deoxyguanosine derivatives that resemble 8-oxo-dG in that they adopt the syn conformation. In this study, we investigated their effects on Fpg (formamidopyrimidine DNA glycosylase) and hOGG1 (human 8-oxoguanine DNA N-glycosylase 1). Relative to 8-oxo-dG, Cl- and Br-deaza-dG were good substrates for Fpg, whereas they were less efficient substrates for hOGG1. Kinetics and binding experiments indicated that, although hOGG1 effectively binds Cl- and Br-deaza-dG analogues with low Km values, their lower kcat values result in low glycosylase activities. The benefits of the high binding affinities and low reactivities of 8-oxo-dG analogues with hOGG1 have been successfully applied to the competitive inhibition of the excision of 8-oxoguanine from duplex DNA by hOGG1.

  4. Comparison of three development approaches for Stationary Phase Optimised Selectivity Liquid Chromatography based screening methods Part II: A group of structural analogues (PDE-5 inhibitors in food supplements).

    PubMed

    Deconinck, E; Ghijs, L; Kamugisha, A; Courselle, P

    2016-02-01

    Three approaches for the development of a screening method to detect adulterated dietary supplements, based on Stationary Phase Optimised Selectivity Liquid Chromatography were compared for their easiness/speed of development and the performance of the optimal method obtained. This comparison was performed for a heterogeneous group of molecules, i.e. slimming agents (Part I) and a group of structural analogues, i.e. PDE-5 inhibitors (Part II). The first approach makes use of primary runs at one isocratic level, the second of primary runs in gradient mode and the third of primary runs at three isocratic levels to calculate the optimal combination of segments of stationary phases. In each approach the selection of the stationary phase was followed by a gradient optimisation. For the PDE-5 inhibitors, the group of structural analogues, only the method obtained with the third approach was able to differentiate between all the molecules in the development set. Although not all molecules are baseline separated, the method allows the identification of the selected adulterants in dietary supplements using only diode array detection. Though, due to the mobile phases used, the method could also be coupled to mass spectrometry. The method was validated for its selectivity following the guidelines as described for the screening of pesticide residues and residues of veterinary medicines in food.

  5. Comparison of three development approaches for Stationary Phase Optimised Selectivity Liquid Chromatography based screening methods Part II: A group of structural analogues (PDE-5 inhibitors in food supplements).

    PubMed

    Deconinck, E; Ghijs, L; Kamugisha, A; Courselle, P

    2016-02-01

    Three approaches for the development of a screening method to detect adulterated dietary supplements, based on Stationary Phase Optimised Selectivity Liquid Chromatography were compared for their easiness/speed of development and the performance of the optimal method obtained. This comparison was performed for a heterogeneous group of molecules, i.e. slimming agents (Part I) and a group of structural analogues, i.e. PDE-5 inhibitors (Part II). The first approach makes use of primary runs at one isocratic level, the second of primary runs in gradient mode and the third of primary runs at three isocratic levels to calculate the optimal combination of segments of stationary phases. In each approach the selection of the stationary phase was followed by a gradient optimisation. For the PDE-5 inhibitors, the group of structural analogues, only the method obtained with the third approach was able to differentiate between all the molecules in the development set. Although not all molecules are baseline separated, the method allows the identification of the selected adulterants in dietary supplements using only diode array detection. Though, due to the mobile phases used, the method could also be coupled to mass spectrometry. The method was validated for its selectivity following the guidelines as described for the screening of pesticide residues and residues of veterinary medicines in food. PMID:26653459

  6. Analogues of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, As Anti-Cancer Agents

    PubMed Central

    2013-01-01

    The rhodacyanine, MKT-077, has antiproliferative activity against cancer cell lines through its ability to inhibit members of the heat shock protein 70 (Hsp70) family of molecular chaperones. However, MKT-077 is rapidly metabolized, which limits its use as either a chemical probe or potential therapeutic. We report the synthesis and characterization of MKT-077 analogues designed for greater stability. The most potent molecules, such as 30 (JG-98), were at least 3-fold more active than MKT-077 against the breast cancer cell lines MDA-MB-231 and MCF-7 (EC50 values of 0.4 ± 0.03 and 0.7 ± 0.2 μM, respectively). The analogues modestly destabilized the chaperone clients, Akt1 and Raf1, and induced apoptosis in these cells. Further, the microsomal half-life of JG-98 was improved at least 7-fold (t1/2 = 37 min) compared to MKT-077 (t1/2 < 5 min). Finally, NMR titration experiments suggested that these analogues bind an allosteric site that is known to accommodate MKT-077. These studies advance MKT-077 analogues as chemical probes for studying Hsp70s roles in cancer. PMID:24312699

  7. Structure-based de novo design, molecular docking and molecular dynamics of primaquine analogues acting as quinone reductase II inhibitors.

    PubMed

    Murce, Erika; Cuya-Guizado, Teobaldo Ricardo; Padilla-Chavarria, Helmut Isaac; França, Tanos Celmar Costa; Pimentel, Andre Silva

    2015-11-01

    Primaquine is a traditional antimalarial drug with low parasitic resistance and generally good acceptance at higher doses, which has been used for over 60 years in malaria treatment. However, several limitations related to its hematotoxicity have been reported. It is believed that this toxicity comes from the hydroxylation of the C-5 and C-6 positions of its 8-aminoquinoline ring before binding to the molecular target: the quinone reductase II (NQO2) human protein. In this study we propose primaquine derivatives, with substitution at position C-6 of the 8-aminoquinoline ring, planned to have better binding to NQO2, compared to primaquine, but with a reduced toxicity related to the C-5 position being possible to be oxidized. On this sense the proposed analogues were suggested in order to reduce or inhibit hydroxylation and further oxidation to hemotoxic metabolites. Five C-6 substituted primaquine analogues were selected by de novo design and further submitted to docking and molecular dynamics simulations. Our results suggest that all analogues bind better to NQO2 than primaquine and may become better antimalarials. However, the analogues 3 and 4 are predicted to have a better activity/toxicity balance.

  8. Stable Analogues of OSB-AMP: Potent Inhibitors of MenE the o-succinylbenzoate-CoA Synthetase from Bacterial Menaquinone Biosynthesis

    SciTech Connect

    Lu X.; Swaminathan S.; Zhou R.; Sharma I.; Li X.; Kumar G.; Tonge P. J.; Tan D. S.

    2012-01-02

    MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K{sub i} = 5.4 {+-} 0.1 nM) and a noncompetitive inhibitor with respect to OSB (K{sub i} = 11.2 {+-} 0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K{sub i}{sup app} = 22 {+-} 8 nM and ecMenE with K{sub i}{sup OSB} = 128 {+-} 5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.

  9. A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20alpha-hydroxysteroid dehydrogenase.

    PubMed

    Dhagat, Urmi; Carbone, Vincenzo; Chung, Roland P-T; Matsunaga, Toshihiro; Endo, Satoshi; Hara, Akira; El-Kabbani, Ossama

    2007-11-01

    20alpha-hydroxysteroid dehydrogenase (AKR1C1) plays a key role in the metabolism of progesterone and other steroid hormones, thereby regulating their action at the pre-receptor level. AKR1C1 is implicated in neurological and psychiatric conditions such as catamenial epilepsy and depressive disorders. Increased activity of AKR1C1 is associated with termination of pregnancy and the development of breast cancer, endometriosis and endometrial cancer. Inhibition of the undesired activity of AKR1C1 will help reduce risks of premature birth, neurological disorders and the development of cancer. In order to identify potential leads for new inhibitors of AKR1C1 we adopted a virtual screening-based approach using the automated DOCK program. Approximately 250,000 compounds from the NCI database were screened for potential ligands based on their chemical complementarity and steric fit within the active site of AKR1C1. Kinetic analysis revealed 3,5-diiodosalicylic acid, an analogue of salicylic acid, as a potent competitive inhibitor with respect to the substrate 5beta-pregnane-3alpha,20alpha-diol with a K(i) of 9 nM. Aspirin, which is a well known salicylic acid-based drug, was also found to inhibit AKR1C1 activity. This is the first report to show aspirin (IC(50)=21 microM) and its metabolite salicylic acid (IC(50)=7.8 microM) as inhibitors of AKR1C1.

  10. Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.

    PubMed

    Xu, Lan; Chong, Youhoon; Hwang, Inkyu; D'Onofrio, Anthony; Amore, Kristen; Beardsley, G Peter; Li, Chenglong; Olson, Arthur J; Boger, Dale L; Wilson, Ian A

    2007-04-27

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  11. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    SciTech Connect

    Xu, L.; Chong, Y.; Hwang, I.; D'Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst. /Yale U.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  12. Characterization of thien-2-yl 1S,2R-milnacipran analogues as potent norepinephrine/serotonin transporter inhibitors for the treatment of neuropathic pain.

    PubMed

    Dyck, Brian; Tamiya, Junko; Jovic, Florence; Pick, Rebecca R; Bradbury, Margaret J; O'Brien, Julie; Wen, Jenny; Johns, Michael; Madan, Ajay; Fleck, Beth A; Foster, Alan C; Li, Binfeng; Zhang, Mingzhu; Tran, Joe A; Vickers, Troy; Grey, Jonathan; Saunders, John; Chen, Chen

    2008-11-27

    Thien-2-yl 1S,2R-milnacipran analogues were synthesized and characterized as norepinephrine/serotonin transporter inhibitors. These compounds possessed higher potencies than 1S,2R-milnacipran (2R-1) while maintaining low molecular weight and moderate lipophilicity, which are the important features for the pharmacological and pharmacokinetic characteristics of milnacipran (1). Thus, compound 5c exhibited IC50 values of 2.3 and 32 nM, respectively, at NET and SERT, which were more than 10-fold better than those of 1 (NET IC50 = 77 nM, SERT IC50 = 420 nM). Moreover, 5c achieved the same efficacy as 1, but with much lower doses, in a rodent spinal nerve ligation pain model. In addition, 5c displayed desirable pharmacokinetic properties in several species, including high oral availability and significant brain penetration.

  13. Synthesis and biological evaluation of nucleoside analogues than contain silatrane on the basis of the structure of acyclovir (ACV) as novel inhibitors of hepatitis B virus (HBV).

    PubMed

    Han, Anyue; Li, Lingna; Qing, Kuiyou; Qi, Xiaolu; Hou, Leping; Luo, Xintong; Shi, Shaohua; Ye, Faqing

    2013-03-01

    Hepatitis B virus (HBV) infection causes major public health problems worldwide. Acyclovir (ACV) is mainly used to inhibit herpes simplex virus (HSV) rather than HBV. In this study, we used the combination principle to design and synthesize nucleoside analogues that contain silatrane on the basis of the structure of ACV. We found that the compounds were effective inhibitors of HBV, both in vitro and in vivo. All of the compounds showed suppressive activity on the expression of HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) in the HepG2.2.15 cell line with low cytotoxicity. One of compounds was studied in HBV transgenic mice model, and the test results showed its ability to reduce the levels of HBsAg, HBeAg and HBV DNA by ELASE and qPCR. Furthermore, significant improvement of T lymphocyte was observed after treatment, as evaluated by flow cytometry (FCM).

  14. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog

    PubMed Central

    ZHAO, GENGXIANG; ALLEWELL, NORMA M.; TUCHMAN, MENDEL; SHI, DASHUANG

    2013-01-01

    N -acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  15. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.

    PubMed

    Zhao, Gengxiang; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-25

    N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  16. Design, Synthesis and Structure-Activity Relationship Studies of Novel 4 (1-adamantyl) Phenyl Analogues as HIF-1α Inhibitors.

    PubMed

    Xia, Yan; Duan, Qiong; Zhao, Bao-Hua; Li, Dong-Feng; Hou, Rui-Bin

    2016-01-01

    Hypoxia inducible factor-1 (HIF-1) is a key mediator during cancer cells to adapt tumor hypoxic condition. In this study, a series of adamantane-based compounds were synthesized and evaluated as potential inhibitors of HIF-1α. Examination of their structure-activity relationship (SAR) identified the adamantane-containing indole derivative 20a as a potent inhibitor of HIF-1α in Hep3B cell lines under tumor hypoxia (IC50 = 0.02 µM). The study herein may provide valuable information for the development of novel therapeutics against cancer and tumor angiogenesis. PMID:26548744

  17. Transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase incorporating acyclic ribooxacarbenium ion mimics

    PubMed Central

    Clinch, Keith; Evans, Gary B.; Fröhlich, Richard F. G.; Gulab, Shivali A.; Gutierrez, Jemy A.; Mason, Jennifer M.; Schramm, Vern L.; Tyler, Peter C.; Woolhouse, Anthony D.

    2012-01-01

    Several acyclic hydroxy-methylthio-amines with 3 to 5 carbon atoms were prepared and coupled via a methylene link to 9-deazaadenine. The products were tested for inhibition against human MTAP and E. coli and N. meningitidis MTANs and gave Ki values as low as 0.23 nM. These results were compared to those obtained with 1st and 2nd generation inhibitors (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-5-methylthio-d-ribitol (MT-Immucillin-A, 3) and (3R,4S)-1-[9-deazaadenin-9-yl)methyl]3-hydroxy-4-methylthiomethylpyrrolidine (MT-DADMe-Immucillin-A, 4). The best inhibitors were found to exhibit binding affinities of approximately 2- to 4-fold those of 3 but were significantly weaker than 4. Cleavage of the 2,3 carbon–carbon bond in MT-Immucillin-A (3) gave an acyclic product (79) with a 21,500 fold loss of activity against E. coli MTAN. In another case, N-methylation of a side chain secondary amine resulted in a 250-fold loss of activity against the same enzyme [(±)-65 vs (±)-68]. The inhibition results were also contrasted with those acyclic derivatives previously prepared as inhibitors for a related enzyme, purine nucleoside phosphorylase (PNP), where some inhibitors in the latter case were found to be more potent than their cyclic counterparts. PMID:22854195

  18. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-01

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.

  19. Promotion of purine nucleotide binding to thymidylate synthase by a potent folate analogue inhibitor, 1843U89.

    PubMed Central

    Weichsel, A; Montfort, W R; Cieśla, J; Maley, F

    1995-01-01

    A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl. Images Fig. 3 Fig. 4 Fig. 5 PMID:7724588

  20. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  1. Efavirenz, nelfinavir, and stavudine rescue combination therapy in HIV-1-positive patients heavily pretreated with nucleoside analogues and protease inhibitors.

    PubMed

    Seminari, E; Maggiolo, F; Villani, P; Suter, F; Pan, A; Regazzi, M B; Paolucci, S; Baldanti, F; Tinelli, C; Maserati, R

    1999-12-15

    Tolerability, activity, and pharmacokinetic parameters of a combination therapy with efavirenz (EFV), nelfinavir (NFV), and stavudine (d4T) were evaluated in this study. Forty-seven HIV-1-infected study subjects, naive to NFV and nonnucleoside reverse transcriptase inhibitors (NNRTIs), who had experienced virologic failure while being treated with combination antiretroviral therapies including protease inhibitors (PIs), were enrolled. At baseline, HIV-1 viral load in plasma was 4.8 log10, CD4+ count was 204 cells/microl (both mean values); patients had received a mean of 3.1 different treatments (range, 2-5 treatments). Study medications were generally well tolerated; 7 of 47 patients (14.8%) were dropped from the study because of related drug toxicity. At week 24, mean plasma viral load (pVL) was reduced by 1.9 log10, with mean CD4+ count increased to 324 cells/microl (+/-59% from baseline); pVL was below the limit of detection (500 copies/ml) in 46.1% of patients. An extended follow-up study was performed at 12 months. Results showed a reduction of 1.7 log10 in pVL from basal values that was consistent with values observed at months 3 and 6. A history of previous use of PIs represented a negative prognostic marker. Sequencing analysis, performed in a subset of patients, showed the presence of multiple point mutations associated with PI resistance. Pharmacokinetic analysis demonstrated a marked interindividual variability in NFV plasma concentrations, producing in 4 of 18 patients (22%) trough concentrations lower than minimum effective concentration. In pretreated patients, further studies are needed to characterize the pharmacokinetic factors that affect response to therapy and the association of these results with the 95% inhibitory concentration (IC95) determined by phenotyping.

  2. A new approach to the design of novel inhibitors of Na+,K+-ATPase: 17alpha-substituted seco-D 5beta-androstane as cassaine analogues.

    PubMed

    De Munari, S; Barassi, P; Cerri, A; Fedrizzi, G; Gobbini, M; Mabilia, M; Melloni, P

    1998-07-30

    A new three-dimensional model for the relative binding mode of cassaine 1 and digitoxigenin 2 at the digitalis receptor site is proposed on the basis of the structural and conformational similarities among 1, 2 and its 14,15-seco analogues 3 and 4. Accordingly, the speculation that also 17alpha-substituted derivatives of the digitalis 5beta,14beta-androstane skeleton could efficiently bind to the Na+,K+-ATPase receptor is put forward and verified through the synthesis of some related compounds. The binding affinity shown by 2-(N,N-dimethylamino)ethyl 3beta, 14-dihydroxy-5beta,14beta-androstane-17alpha-acrylate 6 (IC50 = 5.89 microM) and, much more significantly, by the corresponding 14, 15-seco-14-oxo derivative 9 (IC50 = 0.12 microM) substantiates the new hypothesis and opens new prospects to the design of novel inhibitors of Na+,K+-ATPase as potential positive inotropic compounds. PMID:9685243

  3. 1,4-bis(3-oxo-2,3-dihydropyridazin-6-yl)benzene analogues: potent phosphodiesterase inhibitors and inodilators.

    PubMed

    Coates, W J; Prain, H D; Reeves, M L; Warrington, B H

    1990-06-01

    1,4-Bis(3-oxo-2,3-dihydropyridazin-6-yl)benzene and a series of related bis(azinone) compounds were synthesized. These novel compounds were evaluated for inhibition of the low Km, cAMP-selective, cGMP-inhibited phosphodiesterase (PDE III) derived from cat heart and hemodynamic activity in the ganglion- and beta-blocked anesthetized cat. The most potent PDE III inhibitor of the series was 6-[4-(5-methyl-3-oxo-2,3,4,5-tetrahydropyridazin-6-yl)-phenyl]p yridazin- 3(2H)-one (IC50 = 0.07 microM), which also retained the greatest inotrope and vasodilator (inodilator) potency (ED50 for first derivative of left ventricular pressure (dLVP/dt(max)) = 0.02 mumol/kg, ED15 for 15% fall in perfusion pressure = 0.01 mumol/kg). The structure-activity relationships observed within the bis(azinone) series were consistent with those reported for formally analogous 6-(4-substituted-phenyl)pyridazin-3(2H)-one-based PDE III-inhibiting inodilators with less-extended phenyl substituents (see e.g. Sircar et al. J. Med. Chem. 1987, 30, 1955, Moos et al. J. Med. Chem. 1987, 30, 1963). PDE III inhibitory potency is associated with overall planar topology of the phenylpyridazinone moiety and the presence of two critically separated electronegative centers. A methyl group at the 5-position of a dihydropyridazinone ring leads to enhanced potency. However, the generally higher levels of PDE III inhibitory potency shown by compounds in the bis(azinone) series relative to earlier 6-(4-substituted-phenyl)pyridazin-3(2H)-one derivatives appears to derive from a closer to optimal separation of two interacting points in the inhibitor molecule achieved through the more extended bis(azinone) structure. Correlation between the pharmacological and PDE III inhibitory activities of compounds in the bis(azinone) series provides additional evidence for PDE III being an important mediator of inodilator action. PMID:2342068

  4. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  5. Is RK-682 a promiscuous enzyme inhibitor? Synthesis and in vitro evaluation of protein tyrosine phosphatase inhibition of racemic RK-682 and analogues.

    PubMed

    Carneiro, Vânia M T; Trivella, Daniela B B; Scorsato, Valéria; Beraldo, Viviane L; Dias, Mariana P; Sobreira, Tiago J P; Aparicio, Ricardo; Pilli, Ronaldo A

    2015-06-01

    RK-682 (1) is a natural product known to selectively inhibit protein tyrosine phosphatases (PTPases) and is used commercially as a positive control for phosphatase inhibition in in vitro assays. Protein phosphatases are involved in several human diseases including diabetes, cancer and inflammation, and are considered important targets for pharmaceutical development. Here we report the synthesis of racemic RK-682 (rac-1) and a focused set of compounds, including racemic analogues of 1, dihydropyranones and C-acylated Meldrum's acid derivatives, the later obtained in one synthetic step from commercially available starting material. We further characterized the behavior of some representative compounds in aqueous solution and evaluated their in vitro PTPase binding and inhibition. Our data reveal that rac-1 and some derivatives are able to form large aggregates in solution, in which the aggregation capacity is dependent on the acyl side chain size. However, compound aggregation per se is not able to promote PTPase inhibition. Our data disclose a novel family of PTPase inhibitors (C-acylated Meldrum's acid derivatives) and that rac-1 and derivatives with an exposed latent negatively charged substructure (e.g.: the tetronic acid core of 1) can bind to the PTPase binding site, as well promiscuously to protein surfaces. The combined capacity of compounds to bind to proteins together with their intrinsic capacity to aggregate in solution seems essential to promote enzyme aggregation and thus, its inhibition. We also observed that divalent cations, such as magnesium frequently used in enzyme buffer solutions, can deplete the inhibitory activity of rac-1, thus influencing the enzyme inhibition experiment. Overall, these data help to characterize the mechanism of PTPase inhibition by rac-1 and derivatives, revealing that enzyme inhibition is not solely dependent on compound binding to the PTPase catalytic site as generally accepted in the literature. In addition, our

  6. Mechanism of a GatCAB amidotransferase: aspartyl-tRNA synthetase increases its affinity for Asp-tRNA(Asn) and novel aminoacyl-tRNA analogues are competitive inhibitors.

    PubMed

    Huot, Jonathan L; Balg, Christian; Jahn, Dieter; Moser, Jürgen; Emond, Audrey; Blais, Sébastien P; Chênevert, Robert; Lapointe, Jacques

    2007-11-13

    The trimeric GatCAB aminoacyl-tRNA amidotransferases catalyze the amidation of Asp-tRNAAsn and/or Glu-tRNAGln to Asn-tRNAAsn and/or Gln-tRNAGln, respectively, in bacteria and archaea lacking an asparaginyl-tRNA synthetase and/or a glutaminyl-tRNA synthetase. The two misacylated tRNA substrates of these amidotransferases are formed by the action of nondiscriminating aspartyl-tRNA synthetases and glutamyl-tRNA synthetases. We report here that the presence of a physiological concentration of a nondiscriminating aspartyl-tRNA synthetase in the transamidation assay decreases the Km of GatCAB for Asp-tRNAAsn. These conditions, which were practical for the testing of potential inhibitors of GatCAB, also allowed us to discover and characterize two novel inhibitors, aspartycin and glutamycin. These analogues of the 3'-ends of Asp-tRNA and Glu-tRNA, respectively, are competitive inhibitors of the transamidase activity of Helicobacter pylori GatCAB with respect to Asp-tRNAAsn, with Ki values of 134 microM and 105 microM, respectively. Although the 3' end of aspartycin is similar to the 3' end of Asp-tRNAAsn, this analogue was neither phosphorylated nor transamidated by GatCAB. These novel inhibitors could be used as lead compounds for designing new types of antibiotics targeting GatCABs, since the indirect pathway for Asn-tRNAAsn or Gln-tRNAGln synthesis catalyzed by these enzymes is not present in eukaryotes and is essential for the survival of the above-mentioned bacteria.

  7. Lobelane analogues containing 4-hydroxy and 4-(2-fluoroethoxy) aromatic substituents: Potent and selective inhibitors of [(3)H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Joolakanti, Shyamsunder R; Nickell, Justin R; Janganati, Venumadhav; Zheng, Guangrong; Dwoskin, Linda P; Crooks, Peter A

    2016-05-15

    A series of lobelane and GZ-793A analogues that incorporate aromatic 4-hydroxy and 4-(2-fluoroethoxy) substituents were synthesized and evaluated for inhibition of [(3)H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and the dopamine transporter (DAT), and [(3)H]serotonin uptake at the serotonin transporter (SERT). Most of these compounds exhibited potent inhibition of DA uptake at VMAT2 in the nanomolar range (Ki=30-70nM). The two most potent analogues, 7 and 14, both exhibited a Ki value of 31nM for inhibition of VMAT2. The lobelane analogue 14, incorporating 4-(2-fluoroethoxy) and 4-hydroxy aromatic substituents, exhibited 96- and 335-fold greater selectivity for VMAT2 versus DAT and SERT, respectively, in comparison to lobelane. Thus, lobelane analogues bearing hydroxyl and fluoroethoxy moieties retain the high affinity for VMAT2 of the parent compound, while enhancing selectivity for VMAT2 versus the plasmalemma transporters.

  8. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIβ and the crystal structure of phosphatidylinositol 4-kinase IIα containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design.

    PubMed

    Klima, Martin; Baumlova, Adriana; Chalupska, Dominika; Hřebabecký, Hubert; Dejmek, Milan; Nencka, Radim; Boura, Evzen

    2015-07-01

    Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.

  9. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors.

    PubMed

    Loidreau, Yvonnick; Marchand, Pascal; Dubouilh-Benard, Carole; Nourrisson, Marie-Renée; Duflos, Muriel; Lozach, Olivier; Loaëc, Nadège; Meijer, Laurent; Besson, Thierry

    2012-12-01

    A useful and rapid access to libraries of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues was designed and optimized for the first time via microwave-accelerated condensation and Dimroth rearrangement of the starting anilines with N'-(2-cyanoaryl)-N,N-dimethylformimidamides obtained by reaction of thiophene precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ɛ, GSK3α/β, DYRK1A and CLK1) was estimated. N-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine series of compounds (4a-j) turned out to be particularly promising for the development of new pharmacological inhibitors of CK1 and CLK1 kinases. PMID:23124214

  10. Comparative potencies of 3,4-methylenedioxymethamphetamine (MDMA) analogues as inhibitors of [3H]noradrenaline and [3H]5-HT transport in mammalian cell lines

    PubMed Central

    Montgomery, T; Buon, C; Eibauer, S; Guiry, P J; Keenan, A K; McBean, G J

    2007-01-01

    Background and purpose: Illegal ‘ecstasy' tablets frequently contain 3,4-methylenedioxymethamphetamine (MDMA)-like compounds of unknown pharmacological activity. Since monoamine transporters are one of the primary targets of MDMA action in the brain, a number of MDMA analogues have been tested for their ability to inhibit [3H]noradrenaline uptake into rat PC12 cells expressing the noradrenaline transporter (NET) and [3H]5-HT uptake into HEK293 cells stably transfected with the 5-HT transporter (SERT). Experimental approach: Concentration–response curves for the following compounds at both NET and SERT were determined under saturating substrate conditions: 4-hydroxy-3-methoxyamphetamine (HMA), 4-hydroxy-3-methoxymethamphetamine (HMMA), 3,4-methylenedioxy-N-hydroxyamphetamine (MDOH), 2,5-dimethoxy-4-bromophenylethylamine (2CB), 3,4-dimethoxymethamphetamine (DMMA), 3,4-methylenedioxyphenyl-2-butanamine (BDB), 3,4-methylenedioxyphenyl-N-methyl-2-butanamine (MBDB) and 2,3-methylenedioxymethamphetamine (2,3-MDMA). Key results: 2,3-MDMA was significantly less potent than MDMA at SERT, but equipotent with MDMA at NET. 2CB and BDB were both significantly less potent than MDMA at NET, but equipotent with MDMA at SERT. MBDB, DMMA, MDOH and the MDMA metabolites HMA and HMMA, were all significantly less potent than MDMA at both NET and SERT. Conclusions and implications: This study provides an important insight into the structural requirements of MDMA analogue affinity at both NET and SERT. It is anticipated that these results will facilitate understanding of the likely pharmacological actions of structural analogues of MDMA. PMID:17891159

  11. Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid.

    PubMed

    Sosič, Izidor; Barreteau, Hélène; Simčič, Mihael; Sink, Roman; Cesar, Jožko; Zega, Anamarija; Grdadolnik, Simona Golič; Contreras-Martel, Carlos; Dessen, Andréa; Amoroso, Ana; Joris, Bernard; Blanot, Didier; Gobec, Stanislav

    2011-07-01

    D-Glutamic acid-adding enzyme (MurD) catalyses the essential addition of d-glutamic acid to the cytoplasmic peptidoglycan precursor UDP-N-acetylmuramoyl-l-alanine, and as such it represents an important antibacterial drug-discovery target enzyme. Based on a series of naphthalene-N-sulfonyl-d-Glu derivatives synthesised recently, we synthesised two series of new, optimised sulfonamide inhibitors of MurD that incorporate rigidified mimetics of d-Glu. The compounds that contained either constrained d-Glu or related rigid d-Glu mimetics showed significantly better inhibitory activities than the parent compounds, thereby confirming the advantage of molecular rigidisation in the design of MurD inhibitors. The binding modes of the best inhibitors were examined with high-resolution NMR spectroscopy and X-ray crystallography. We have solved a new crystal structure of the complex of MurD with an inhibitor bearing a 4-aminocyclohexane-1,3-dicarboxyl moiety. These data provide an additional step towards the development of sulfonamide inhibitors with potential antibacterial activities. PMID:21524830

  12. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    PubMed

    Baldry, Mara; Kitir, Betül; Frøkiær, Hanne; Christensen, Simon B; Taverne, Nico; Meijerink, Marjolein; Franzyk, Henrik; Olsen, Christian A; Wells, Jerry M; Ingmer, Hanne

    2016-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization. PMID:26731096

  13. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety.

    PubMed

    Chaudhary, Vikas; Venghateri, Jubina B; Dhaked, Hemendra P S; Bhoyar, Anil S; Guchhait, Sankar K; Panda, Dulal

    2016-04-14

    Combretastatin A-4 (CA-4) in phosphate and serine pro-drug forms is under phase II clinical trials. With our interest of discovering CA-4 inspired new chemical entities, a novel series of 4,5-diaryl-2-aminoimidazole analogues of the compound was designed and synthesized by an efficient and diversity feasible route involving atom economical arene C-H bond arylation. Interestingly, four compounds showed potent cell-based antiproliferative activities in nanomolar concentrations. Among the compounds, compound 12 inhibited the proliferation of several types of cancer cells much more efficiently than CA-4. It depolymerized microtubules, induced spindle defects, and stalled mitosis in cells. Compound 12 bound to tubulin and inhibited the polymerization of tubulin in vitro. In addition, podophyllotoxin and CA-4 inhibited the binding of compound 12 to tubulin. The distinctive pharmacophoric features of the bridging motif as well as quinoline nucleus were explored. We noted also a valuable quality of compound 12 as a potential probe in characterizing new CA-4 analogues.

  14. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions

    PubMed Central

    Baldry, Mara; Kitir, Betül; Frøkiær, Hanne; Christensen, Simon B.; Taverne, Nico; Meijerink, Marjolein; Franzyk, Henrik; Olsen, Christian A.; Wells, Jerry M.; Ingmer, Hanne

    2016-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure–function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization. PMID:26731096

  15. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis

    PubMed Central

    Cai, Bao-qin; Jin, Hai-xiao; Yan, Xiao-jun; Zhu, Peng; Hu, Gui-xiang

    2014-01-01

    Aim: To investigate the structural basis underlying potency and selectivity of a series of novel analogues of thieno[2,3-d]pyrimidin-4-yl hydrazones as cyclin-dependent kinase 4 (CDK4) inhibitors and to use this information for drug design strategies. Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis (CoMFA) were conducted on a training set of 48 compounds. Partial least squares (PLS) analysis was employed. External validation was performed with a test set of 9 compounds. Results: The obtained 3D-QSAR model (q2=0.724, r2=0.965, r2pred=0.945) and 3D-QSSR model (q2=0.742, r2=0.923, r2pred=0.863) were robust and predictive. Contour maps with good compatibility to active binding sites provided insight into the potentially important structural features required to enhance activity and selectivity. The contour maps indicated that bulky groups at R1 position could potentially enhance CDK4 inhibitory activity, whereas bulky groups at R3 position have the opposite effect. Appropriate incorporation of bulky electropositive groups at R4 position is favorable and could improve both potency and selectivity to CDK4. Conclusion: These two models provide useful information to guide drug design strategies aimed at obtaining potent and selective CDK4 inhibitors. PMID:24122012

  16. Biaryl analogues of conformationally constrained tricyclic tropanes as potent and selective norepinephrine reuptake inhibitors: synthesis and evaluation of their uptake inhibition at monoamine transporter sites.

    PubMed

    Zhou, Jia; Zhang, Ao; Kläss, Thomas; Johnson, Kenneth M; Wang, Cheng Z; Ye, Yan Ping; Kozikowski, Alan P

    2003-05-01

    A series of novel conformationally constrained tricyclic tropane derivatives containing a biaryl moiety, (Z)-9-(biarylylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes, were synthesized and evaluated for their ability to inhibit reuptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) by the DA, 5-HT, and NE transporters. Most of the compounds containing a methoxycarbonyl substituent at C-10 exhibit moderate to high inhibitory activity at the NET but lower activity at the DAT and SERT. Among these new compounds, some potent, NET-selective ligands were identified. The p-methoxy derivative 11a has a K(i) value of 39 nM for uptake inhibition at the NET and moderate to high selectivity over the SERT (100-fold) and the DAT (20-fold). Compound 11f exhibits a remarkable potency (K(i) = 9.7 nM) at the NET and a 25-fold selectivity over both the SERT and the DAT. Analogue 23 containing a thiophene ring as a bioisosteric replacement of the phenyl ring Ar(1) displays a high activity (K(i) = 10.3 nM) for the NET and similar selectivity over the SERT (50-fold) and the DAT (37-fold). The selectivity profile of biaryl analogues differs from that of the monoaryl series, as most members of that series display excellent potency at and selectivity for the SERT (J. Med. Chem. 2002, 45, 1930). This finding suggests that the different shape and size of the lipophilic recognition pocket that encompasses the aryl ring(s) of these tropanes are major determinants of a ligand's transporter activity at either the NET or the SERT. Some of the compounds in this series may also be valuable in sorting out the contribution of the individual transporters to cocaine's reinforcing properties.

  17. Bicyclic (galacto)nojirimycin analogues as glycosidase inhibitors: effect of structural modifications in their pharmacological chaperone potential towards β-glucocerebrosidase.

    PubMed

    Aguilar-Moncayo, Matilde; García-Moreno, M Isabel; Trapero, Ana; Egido-Gabás, Meritxell; Llebaria, Amadeu; Fernández, José M García; Mellet, Carmen Ortiz

    2011-05-21

    A molecular-diversity-oriented approach for the preparation of bicyclic sp(2)-iminosugar glycomimetics related to nojirimycin and galactonojirimycin is reported. The synthetic strategy takes advantage of the ability of endocyclic pseudoamide-type atoms in five-membered cyclic iso(thio)ureas and guanidines to undergo intramolecular nucleophilic addition to the masked carbonyl group of monosaccharides. The stereochemistry of the resulting hemiaminal stereocenter is governed by the anomeric effect, with a large preference for the axial (pseudo-α) orientation. A library of compounds differing in the stereochemistry at the position equivalent to C-4 in monosaccharides (D-gluco and D-galacto), the heterocyclic core (cyclic isourea, isothiourea or guanidine) and the nature of the exocyclic nitrogen substituent (apolar, polar, linear or branched) has been thus prepared and the glycosidase inhibitory activity evaluated against commercial glycosidases. Compounds bearing lipophilic substituents behaved as potent and very selective inhibitors of β-glucosidases. They further proved to be good competitive inhibitors of the recombinant human β-glucocerebrosidase (imiglucerase) used in enzyme replacement therapy (ERT) for Gaucher disease. The potential of these compounds as pharmacological chaperones was assessed by measuring their ability to inhibit thermal-induced denaturation of the enzyme in comparison with N-nonyl-1-deoxynojirimycin (NNDNJ). The results indicated that amphiphilic sp(2)-iminosugars within this series are more efficient than NNDNJ at stabilizing β-glucocerebrosidase and have a strong potential in pharmacological chaperone (PC) and ERT-PC combined therapies.

  18. The re-expression of the epigenetically silenced e-cadherin gene by a polyamine analogue lysine-specific demethylase-1 (LSD1) inhibitor in human acute myeloid leukemia cell lines

    PubMed Central

    Murray-Stewart, Tracy; Woster, Patrick M.; Casero, Robert A.

    2013-01-01

    Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl- H3K4 histone marks that are associated with active gene expression. As most posttranslational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N5-[3,3-(diphenyl)propyl]-N1-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the reexpression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the ecadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated

  19. Recent advances in designing substrate-competitive protein kinase inhibitors.

    PubMed

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  20. Phosphorous-containing analogues of aspartame.

    PubMed

    Nelson, V; Mastalerz, P

    1984-12-01

    Four analogues of aspartame (aspartylphenylalanine methyl ester) were prepared in which one of the carboxylate groups was replaced by a phosphonate group. None of the peptides so obtained was sweet, in contrast with the parent compound which is over 100 times sweeter than sucrose. These results contrast with several published reports of phosphonate analogues of amino acids and peptides which are potent inhibitors of enzymes containing acceptor sites for the parent compound.

  1. The versatile binding mode of transition-state analogue inhibitors of tyrosinase towards dicopper(II) model complexes: experimental and theoretical investigations.

    PubMed

    Orio, Maylis; Bochot, Constance; Dubois, Carole; Gellon, Gisèle; Hardré, Renaud; Jamet, Hélène; Luneau, Dominique; Philouze, Christian; Réglier, Marius; Serratrice, Guy; Belle, Catherine

    2011-11-25

    We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 μM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(μ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(μ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes. PMID:22025275

  2. Structure-Activity Relationship of (18)F-Labeled Phosphoramidate Peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-Targeted Inhibitor Analogues for PET Imaging of Prostate Cancer.

    PubMed

    Dannoon, Shorouk; Ganguly, Tanushree; Cahaya, Hendry; Geruntho, Jonathan J; Galliher, Matthew S; Beyer, Sophia K; Choy, Cindy J; Hopkins, Mark R; Regan, Melanie; Blecha, Joseph E; Skultetyova, Lubica; Drake, Christopher R; Jivan, Salma; Barinka, Cyril; Jones, Ella F; Berkman, Clifford E; VanBrocklin, Henry F

    2016-06-23

    A series of phosphoramidate-based prostate specific membrane antigen (PSMA) inhibitors of increasing lipophilicity were synthesized (4, 5, and 6), and their fluorine-18 analogs were evaluated for use as positron emission tomography (PET) imaging agents for prostate cancer. To gain insight into their modes of binding, they were also cocrystallized with the extracellular domain of PSMA. All analogs exhibited irreversible binding to PSMA with IC50 values ranging from 0.4 to 1.3 nM. In vitro assays showed binding and rapid internalization (80-95%, 2 h) of the radiolabeled ligands in PSMA(+) cells. In vivo distribution demonstrated significant uptake in CWR22Rv1 (PSMA(+)) tumor, with tumor to blood ratios of 25.6:1, 63.6:1, and 69.6:1 for [(18)F]4, [(18)F]5, and [(18)F]6, respectively, at 2 h postinjection. Installation of aminohexanoic acid (AH) linkers in the phosphoramidate scaffold improved their PSMA binding and inhibition and was critical for achieving suitable in vivo imaging properties, positioning [(18)F]5 and [(18)F]6 as favorable candidates for future prostate cancer imaging clinical trials. PMID:27228467

  3. Highly Specific, Bi-substrate-Competitive Src Inhibitors from DNA-Templated Macrocycles

    PubMed Central

    Georghiou, George; Kleiner, Ralph E.; Pulkoski-Gross, Michael

    2011-01-01

    Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently discovered from a DNA-templated macrocycle library inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated gatekeeper mutant. We solved two co-crystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bi-substrate competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties, and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance. PMID:22344177

  4. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain.

    PubMed

    Chan, David C M; Fu, Hongning; Forsch, Ronald A; Queener, Sherry F; Rosowsky, Andre

    2005-06-30

    As part of a search for dihydrofolate reductase (DHFR) inhibitors combining the high potency of piritrexim (PTX) with the high antiparasitic vs mammalian selectivity of trimethoprim (TMP), the heretofore undescribed 2,4-diamino-6-(2',5'-disubstituted benzyl)pyrido[2,3-d]pyrimidines 6-14 with O-(omega-carboxyalkyl) or omega-carboxy-1-alkynyl groups on the benzyl moiety were synthesized and tested against Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium DHFR vs rat DHFR. Three N-(2,4-diaminopteridin-6-yl)methyl)-2'-(omega-carboxy-1-alkynyl)dibenz[b,f]azepines (19-21) were also synthesized and tested. The pyridopyrimidine with the best combination of potency and selectivity was 2,4-diamino-5-methyl-6-[2'-(5-carboxy-1-butynyl)-5'-methoxy]benzyl]pyrimidine (13), with an IC(50) value of 0.65 nM against P. carinii DHFR, 0.57 nM against M. avium DHFR, and 55 nM against rat DHFR. The potency of 13 against P. carinii DHFR was 20-fold greater than that of PTX (IC(50) = 13 nM), and its selectivity index (SI) relative to rat DHFR was 85, whereas PTX was nonselective. The activity of 13 against P. carinii DHFR was 20 000 times greater than that of TMP, with an SI of 96, whereas that of TMP was only 14. However 13 was no more potent than PTX against M. avium DHFR, and its SI was no better than that of TMP. Molecular modeling dynamics studies using compounds 10 and 13 indicated a slight binding preference for the latter, in qualitative agreement with the IC(50) data. Among the pteridines, the most potent against P. carinii DHFR and M. avium DHFR was the 2'-(5-carboxy-1-butynyl)dibenz[b,f]azepinyl derivative 20 (IC(50) = 2.9 nM), whereas the most selective was the 2'-(5-carboxy-1-pentynyl) analogue 21, with SI values of >100 against both P. carinii and M. avium DHFR relative to rat DHFR. The final compound, 2,4-diamino-5-[3'-(4-carboxy-1-butynyl)-4'-bromo-5'-methoxybenzyl]pyrimidine (22), was both potent and selective against M. avium DHFR (IC(50) = 0.47 nM, SI

  5. Synthesis and anticancer evaluation of spermatinamine analogues.

    PubMed

    Moosa, Basem A; Sagar, Sunil; Li, Song; Esau, Luke; Kaur, Mandeep; Khashab, Niveen M

    2016-03-15

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcysteine carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines, that is, cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5-10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines. PMID:26874403

  6. Hydroxybenzaldoximes are d-GAP-competitive inhibitors of E. coli 1-deoxy-d-xylulose-5-phosphate synthase

    PubMed Central

    Bartee, David; Morris, Francine; Al-khouja, Amer

    2015-01-01

    1-Deoxy-d-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branchpoint, serving also as a precursor in the biosynthesis of vitamins B1 and B6 which are critical for central metabolism. Toward identifying novel bisubstrate analog inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low micromolar inhibitors, competitive against d-glyceraldehyde 3-phosphate (d-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of d-GAP-competitive DXP synthase inhibitors offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis. PMID:26174207

  7. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  8. Analogues of thiolactomycin as potential antimalarial agents.

    PubMed

    Jones, Simon M; Urch, Jonathan E; Kaiser, Marcel; Brun, Reto; Harwood, John L; Berry, Colin; Gilbert, Ian H

    2005-09-22

    Analogues of the natural antibiotic thiolactomycin (TLM), an inhibitor of the condensing reactions of type II fatty acid synthase, were synthesized and evaluated for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum. Alkylation of the C4 hydroxyl group led to the most significant increase in growth inhibition (over a 100-fold increase in activity compared to TLM). To investigate the mode of action, the P. falciparum KASIII enzyme was produced for inhibitor assay. A number of TLM derivatives were identified that showed improved inhibition of this enzyme compared to TLM. Structure-activity relationships for enzyme inhibition were identified for some series of TLM analogues, and these also showed weak correlation with inhibition of parasite growth, but this did not hold for other series. On the basis of the lack of a clear correlation between inhibition of pfKASIII activity and parasite growth, we conclude that pfKASIII is not the primary target of TLM analogues. Some of the analogues also inhibited the growth of the parasitic protozoa Trypanosoma cruzi, T. brucei, and Leishmania donovani.

  9. Carbacaprazamycins: Chemically Stable Analogues of the Caprazamycin Nucleoside Antibiotics.

    PubMed

    Ichikawa, Satoshi; Yamaguchi, Mayumi; Hsuan, Lee Shang; Kato, Yuta; Matsuda, Akira

    2015-04-10

    Carbacaprazamycins, which are chemically stable analogues of caprazamycins, were designed and synthesized. These analogues were active against drug-resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and their activities were comparable to those of the parent caprazamycins. The effect of treatment with carbacaprazamycin on morphological changes in S. aureus indicated that the mode of action was completely different from those of existing peptidoglycan inhibitors. PMID:27622529

  10. Nonstationary analogue black holes

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2014-12-01

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics.

  11. Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases.

    PubMed

    Loidreau, Yvonnick; Marchand, Pascal; Dubouilh-Benard, Carole; Nourrisson, Marie-Renée; Duflos, Muriel; Loaëc, Nadège; Meijer, Laurent; Besson, Thierry

    2013-01-01

    Novel N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines (1) and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues (2) were designed and prepared for the first time via microwave-accelerated multi-step synthesis. Various anilines were condensed with N'-(2-cyanaryl)-N,N-dimethylformimidamide intermediates obtained by reaction of 3-amino-6-methoxybenzofuran-2-carbonitrile (3) and 3-amino-6-methoxybenzothiophene-2-carbonitrile (4) precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) was estimated. Compounds (2a-z) turned out to be particularly promising for the development of new pharmacological dual inhibitors of CLK1 and DYRK1A kinases. PMID:23237976

  12. Further studies on conformationally constrained tricyclic tropane analogues and their uptake inhibition at monoamine transporter sites: synthesis of (Z)-9-(substituted arylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes as a novel class of serotonin transporter inhibitors.

    PubMed

    Zhang, Ao; Zhou, Guochun; Hoepping, Alexander; Mukhopadhyaya, Jayanta; Johnson, Kenneth M; Zhang, Mei; Kozikowski, Alan P

    2002-04-25

    A novel series of conformationally constrained tricyclic tropane analogues, (Z)-9-(substituted arylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes, were prepared, and their abilities to inhibit high-affinity uptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) into rat brain nerve endings (synaptosomes) were evaluated. First, a systematic screening of a variety of different substituents on the phenyl ring indicated that the substitution pattern plays an important role in the monoamine transporter activity. Most compounds in this series possessed a very low activity at the DA transporter (DAT) but a good to excellent affinity for the 5-HT transporter (SERT). In the case of para-substituted phenyl analogues, the electronic character of the substituent did not affect uptake inhibition as dramatically as observed in some benztropine analogues. Among these compounds, the 4-bromophenyl and 4-isopropylphenyl analogues 8d and 8j exhibited the highest potency at the SERT with a K(i) value of 10 nM. In the 3,4-disubstituted phenyl series, even more potent and highly selective compounds were discovered. Compound 8o has a K(i) value of 2.3 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 2360, and a NET/SERT uptake ratio of 200. Compound 8p exhibited a K(i) value of 1.8 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 1740, and a NET/SERT uptake ratio of 151. These compounds are 3-4-fold more potent than the antidepressant medication fluoxetine, and the selectivities for SERT over DAT and NET are also better than those of fluoxetine. Second, a variety of functional modifications on the ester moiety were investigated. Substitution by other esters or amides as well as alkenes did not increase potency, while most of the acetates or benzoates (16-21, 23, and 24) and the ketone 28 exhibited significantly improved activity. A good hydrogen-bonding ability of the substituent is believed to be required for high activity. The most potent and

  13. Biodegradable analogues of DDT*

    PubMed Central

    Metcalf, Robert L.; Kapoor, Inder P.; Hirwe, Asha S.

    1971-01-01

    Despite the immense utility of DDT for vector control its usefulness is prejudiced by its stability in the environment and by the low rate at which it can be degraded biologically. Metabolic studies in insects, in mice, and in a model ecosystem with several food chains have shown that DDT analogues with substituent groups readily attacked by multifunction oxidases undergo a substantial degree of biological degradation and do not appear to be stored readily in animal tissues or concentrated in food chains. Detailed metabolic pathways have been worked out and it is clear that comparative biochemistry can be used to develop DDT analogues that are adequately persistent yet biodegradable. A number of new DDT analogues have been evaluated for insecticidal activity against flies and mosquitos and for their potential usefulness as safe, persistent, and biodegradable insecticides. PMID:5315354

  14. Human immunodeficiency virus type 1 (HIV-1) strains selected for resistance against the HIV-1-specific [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro- 5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)]-beta-D-pentofurano syl (TSAO) nucleoside analogues retain sensitivity to HIV-1-specific nonnucleoside inhibitors.

    PubMed Central

    Balzarini, J; Karlsson, A; Vandamme, A M; Pérez-Pérez, M J; Zhang, H; Vrang, L; Oberg, B; Bäckbro, K; Unge, T; San-Félix, A

    1993-01-01

    We recently reported that a newly discovered class of nucleoside analogues--[2',5'-bis-O-(tert-butyldimethylsilyl)- 3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)]-beta-D - pentofuranosyl derivatives of pyrimidines and purines (designated TSAO)--are highly specific inhibitors of human immunodeficiency virus type 1 (HIV-1) and targeted at the nonsubstrate binding site of HIV-1 reverse transcriptase (RT). We now find that HIV-1 strains selected for resistance against three different TSAO nucleoside derivatives retain sensitivity to the other HIV-1-specific nonnucleoside derivatives (tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione (TIBO), 1-[(2-hydroxyethoxy)methyl]-6-phenylthiothymine, nevirapine, and pyridinone L697,661, as well as to the nucleoside analogues 3'-azido-3'-deoxythymidine, ddI, ddC, and 9-(2-phosphonylmethoxyethyl)adenine. Pol gene nucleotide sequence analysis of the TSAO-resistant and -sensitive HIV-1 strains revealed a single amino acid substitution at position 138 (Glu-->Lys) in the RT of all TSAO-resistant HIV-1 strains. HIV-1 RT in which the Glu-138-->Lys substitution was introduced by site-directed mutagenesis and expressed in Escherichia coli could not be purified because of rapid degradation. However, HIV-1 RT containing the Glu-138-->Arg substitution was stable. It lost its sensitivity to the TSAO nucleosides but not to the other HIV-1-specific RT inhibitors (i.e., TIBO and pyridinone). Our findings point to a specific interaction of the 4''-amino group on the 3'-spiro-substituted ribose moiety of the TSAO nucleosides with the carboxylic acid group of glutamic acid at position 138 of HIV-1 RT. PMID:7688467

  15. Natural Analogue Synthesis Report

    SciTech Connect

    A. M. Simmons

    2002-05-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the ''Yucca Mountain Site Description'' (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide

  16. Discovery of 3-benzyl-1,3-benzoxazine-2,4-dione analogues as allosteric mitogen-activated kinase kinase (MEK) inhibitors and anti-enterovirus 71 (EV71) agents.

    PubMed

    Sun, Jing; Niu, Yan; Wang, Chao; Zhang, Hao; Xie, Bingyu; Xu, Fengrong; Jin, Hongwei; Peng, Yihong; Liang, Lei; Xu, Ping

    2016-08-15

    Enterovirus 71 (EV71) is a kind of RNA virus and one of the two causes of Hand, foot and mouth disease (HFMD). Inhibitors that target key components of Ras/Raf/MEK/ERK pathway in host cells could impair replication of EV71. A series of 3-benzyl-1,3-benzoxazine-2,4-diones were designed from a specific MEK inhibitor G8935, by replacing the double bond between C3 and C4 within the coumarin scaffold with amide bond. One compound (9f) showed submicromolar inhibitory activity among the 12 derivatives. Further optimization on 9f led to two active compounds (9k and 9m) with nanomolar bioactivities (55nM and 60nM). The results of enzymatic assays also demonstrated that this series of compounds were allosteric inhibitors of unphosphorylated MEK1. The binding mode of compound 9k was predicted by molecular dynamic simulation and the key interactions were same as published MEK1/2 allosteric inhibitors. In the cell-based assays, compounds 9k and 9m could effectively suppress the ERK1/2 pathway, expression of EV71 VP1, and EV71 induced cytopathic effect (CPE) in rhabdomyosarcoma (RD) cells. PMID:27288186

  17. Discovery of 3-benzyl-1,3-benzoxazine-2,4-dione analogues as allosteric mitogen-activated kinase kinase (MEK) inhibitors and anti-enterovirus 71 (EV71) agents.

    PubMed

    Sun, Jing; Niu, Yan; Wang, Chao; Zhang, Hao; Xie, Bingyu; Xu, Fengrong; Jin, Hongwei; Peng, Yihong; Liang, Lei; Xu, Ping

    2016-08-15

    Enterovirus 71 (EV71) is a kind of RNA virus and one of the two causes of Hand, foot and mouth disease (HFMD). Inhibitors that target key components of Ras/Raf/MEK/ERK pathway in host cells could impair replication of EV71. A series of 3-benzyl-1,3-benzoxazine-2,4-diones were designed from a specific MEK inhibitor G8935, by replacing the double bond between C3 and C4 within the coumarin scaffold with amide bond. One compound (9f) showed submicromolar inhibitory activity among the 12 derivatives. Further optimization on 9f led to two active compounds (9k and 9m) with nanomolar bioactivities (55nM and 60nM). The results of enzymatic assays also demonstrated that this series of compounds were allosteric inhibitors of unphosphorylated MEK1. The binding mode of compound 9k was predicted by molecular dynamic simulation and the key interactions were same as published MEK1/2 allosteric inhibitors. In the cell-based assays, compounds 9k and 9m could effectively suppress the ERK1/2 pathway, expression of EV71 VP1, and EV71 induced cytopathic effect (CPE) in rhabdomyosarcoma (RD) cells.

  18. Inhibition of thermolysin by phosphonamidate transition-state analogues: measurement of 31P-15N bond lengths and chemical shifts in two enzyme-inhibitor complexes by solid-state nuclear magnetic resonance.

    PubMed

    Copié, V; Kolbert, A C; Drewry, D H; Bartlett, P A; Oas, T G; Griffin, R G

    1990-10-01

    31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2271586

  19. Inhibition of thermolysin by phosphonamidate transition-state analogues: measurement of 31P-15N bond lengths and chemical shifts in two enzyme-inhibitor complexes by solid-state nuclear magnetic resonance.

    PubMed

    Copié, V; Kolbert, A C; Drewry, D H; Bartlett, P A; Oas, T G; Griffin, R G

    1990-10-01

    31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  1. Digitoxin Analogues with Improved Anticytomegalovirus Activity

    PubMed Central

    2014-01-01

    Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure–activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication. PMID:24900847

  2. The action of structural analogues of ethidium bromide on the mitochondrial genome of yeast.

    PubMed

    Hall, R M; Mattick, J S; Nagley, P; Cobon, G S; Eastwood, F W; Linnane, A W

    1977-12-01

    We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moieyt has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants in Saccharomyces cervisiae. The drugs also cause a loss of mtDNA from the cells in vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replication per se, as shown by direct in vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA in S. cervisiae. PMID:339057

  3. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  4. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  5. Transition State Analogues of Plasmodium falciparum and Human Orotate Phosphoribosyltransferases*

    PubMed Central

    Zhang, Yong; Evans, Gary B.; Clinch, Keith; Crump, Douglas R.; Harris, Lawrence D.; Fröhlich, Richard F. G.; Tyler, Peter C.; Hazleton, Keith Z.; Cassera, María B.; Schramm, Vern L.

    2013-01-01

    The survival and proliferation of Plasmodium falciparum parasites and human cancer cells require de novo pyrimidine synthesis to supply RNA and DNA precursors. Orotate phosphoribosyltransferase (OPRT) is an indispensible component in this metabolic pathway and is a target for antimalarials and antitumor drugs. P. falciparum (Pf) and Homo sapiens (Hs) OPRTs are characterized by highly dissociative transition states with ribocation character. On the basis of the geometrical and electrostatic features of the PfOPRT and HsOPRT transition states, analogues were designed, synthesized, and tested as inhibitors. Iminoribitol mimics of the ribocation transition state in linkage to pyrimidine mimics using methylene or ethylene linkers gave dissociation constants (Kd) as low as 80 nm. Inhibitors with pyrrolidine groups as ribocation mimics displayed slightly weaker binding affinities for OPRTs. Interestingly, p-nitrophenyl riboside 5′-phosphate bound to OPRTs with Kd values near 40 nm. Analogues designed with a C5-pyrimidine carbon–carbon bond to ribocation mimics gave Kd values in the range of 80–500 nm. Acyclic inhibitors with achiral serinol groups as the ribocation mimics also displayed nanomolar inhibition against OPRTs. In comparison with the nucleoside derivatives, inhibition constants of their corresponding 5′-phosphorylated transition state analogues are largely unchanged, an unusual property for a nucleotide-binding site. In silico docking of the best inhibitor into the HsOPRT active site supported an extensive hydrogen bond network associated with the tight binding affinity. These OPRT transition state analogues identify crucial components of potent inhibitors targeting OPRT enzymes. Despite their tight binding to the targets, the inhibitors did not kill cultured P. falciparum. PMID:24158442

  6. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by gram-positive and gram-negative bacteria.

    PubMed

    Pereira, Ulisses A; Barbosa, Luiz C A; Maltha, Célia R A; Demuner, Antônio J; Masood, Mohammed A; Pimenta, Andréa L

    2014-02-15

    Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 μg/mL (1.3 μM, compound 3d) and 0.7 μg/mL (1.3 μM, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition.

  7. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed Central

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-01-01

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  8. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-02-15

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  9. Computational modeling and validation studies of 3-D structure of neuraminidase protein of H1N1 influenza A virus and subsequent in silico elucidation of piceid analogues as its potent inhibitors.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Bajpaib, Preeti; Kandpal, K N; Desai, G S; Tiwari, Ashok K

    2013-01-01

    Emergence of the drug resistant variants of the Influenza A virus in the recent years has aroused a great need for the development of novel neuraminidase inhibitors for controlling the pandemic. The neuraminidase (NA) protein of the influenza virus has been the most potential target for the anti-influenza. However, in the absence of any experimental structure of the drug targeting NA protein of H1N1 influenza A virus as zanamivir and oseltamivir, the comprehensive study of the interaction of the drug molecules with the target protein has been missing. Hence in this study a computational 3-D structure of neuraminidase of H1N1 influenza A virus has been developed using homology modeling technique, and the same was validated for its reliability by ProSA web server in term of energy profile & Z scores and PROCHECK program followed by Ramachandran plot. Further, the developed 3-D model had been employed for docking studies with the class of compounds as Piceid and its analogs. In this context, two novel compounds (ChemBank ID 2110359 and 3075417) were found to be more potent inhibitors of neuraminidase than control drugs as zanamivir and oseltamivir in terms of their robust binding energies, strong inhibition constant (Ki) and better hydrogen bond interactions between the protein-ligand complex. The interaction of these compounds with NA protein has been significantly studied at the molecular level.

  10. Inhibition of monoamine oxidase by benzoxathiolone analogues.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2016-02-15

    Inhibitors of the monoamine oxidase (MAO) enzymes are considered useful therapeutic agents, and are used in the clinic for the treatment of depressive illness and Parkinson's disease. In addition, MAO inhibitors are also under investigation for the treatment of certain cardiovascular pathologies and as possible aids to smoking cessation. In an attempt to discover novel classes of compounds that inhibit the MAOs, the current study examines the human MAO inhibitory properties of a small series of 2H-1,3-benzoxathiol-2-one analogues. The results show that the benzoxathiolones are potent MAO-B inhibitors with IC50 values ranging from 0.003 to 0.051 μM. Although the benzoxathiolones are selective for the MAO-B isoform, two compounds display good MAO-A inhibition with IC50 values of 0.189 and 0.424 μM. Dialysis studies show that a selected compound inhibits the MAOs reversibly. It may thus be concluded that the benzoxathiolone class is suitable for the design and development of MAO-B inhibitors, and that in some instances good MAO-A inhibition may also be achieved.

  11. Using and interpreting analogue designs.

    PubMed

    Cook, Bryan G; Rumrill, Phillip D

    2005-01-01

    Researchers in rehabilitation counseling and disability studies sometimes use analogue research, which involves materials that approximate or describe reality (e.g., written vignettes, videotaped exemplars) rather than investigating phenomena in real-world settings. Analogue research often utilizes experimental designs, and it thereby frequently possesses a high degree of internal validity. Analogue research allows investigators to exercise tight control over the implementation of the independent or treatment variable and over potentially confounding variables, which enables them to isolate the effects of those treatment variables on selected outcome measures. However, the simulated nature of analogue research presents an important threat to external validity. As such, the generalizability of analogue research to real-life settings and situations may be problematic. These and other issues germane to analogue research in vocational rehabilitation are discussed in this article, illustrated with examples from the contemporary literature.

  12. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  13. 2',5'-Bis-O-(tert-butyldimethylsilyl)-3'-spiro-5''-(4''-amino-1'',2''- oxathiole-2'',2'-dioxide)pyrimidine (TSAO) nucleoside analogues: highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase.

    PubMed Central

    Balzarini, J; Pérez-Pérez, M J; San-Félix, A; Schols, D; Perno, C F; Vandamme, A M; Camarasa, M J; De Clercq, E

    1992-01-01

    A series of pyrimidine nucleoside analogues containing [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5''-(4''-amino- 1'',2''-oxathiole-2'',2''-dioxide)]-beta-D-ribofuranose as the pentose were found to inhibit human immunodeficiency virus type 1 [HIV-1(IIIB)] replication at a concentration of 0.06-0.8 microM but were not cytotoxic at a 1000- to 10,000-fold higher concentration. These nucleoside derivatives were also effective against various other HIV-1 strains, including those resistant to 3'-azido-3'-deoxythymidine, but not against HIV-2, simian immunodeficiency virus, Moloney murine sarcoma virus, or other RNA or DNA viruses. They proved to be highly specific inhibitors of the RNA-dependent DNA polymerase function of the HIV-1 reverse transcriptase, showing no marked inhibition of the HIV-1 reverse transcriptase-associated DNA-dependent DNA polymerase activity, HIV-2 reverse transcriptase, DNA polymerase alpha, herpes simplex virus 1 DNA polymerase, or Thermus aquaticus DNA polymerase. Images PMID:1374900

  14. Migrastatin analogues target fascin to block tumour metastasis

    SciTech Connect

    Chen, L.; Jakoncic, J.; Yang, S.; Zhang, J.; Huang, X.Y.

    2010-04-15

    Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.

  15. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined. PMID:27575269

  16. Glycosylasparaginase inhibition studies: competitive inhibitors, transition state mimics, noncompetitive inhibitors.

    PubMed

    Risley, J M; Huang, D H; Kaylor, J J; Malik, J J; Xia, Y Q

    2001-01-01

    Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between asparagine and N-acetylglucosamine in the catabolism of N-linked glycoproteins. Previously only three competitive inhibitors, one noncompetitive inhibitor, and one irreversible inhibitor of glycosylasparaginase activity had been reported. Using human glycosylasparaginase from human amniotic fluid, L-aspartic acid and four of its analogues, where the alpha-amino group was substituted with a chloro, bromo, methyl or hydrogen, were competitive inhibitors having Ki values between 0.6-7.7 mM. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction. A proposed phosphono transition state mimic and a sulfo transition state mimic were competitive inhibitors with Ki values 0.9 mM and 1.4 mM, respectively. These results support a mechanism for the enzyme-catalyzed reaction involving formation of a tetrahedral high-energy intermediate. Three analogues of the natural substrate were noncompetitive inhibitors with Ki values between 0.56-0.75 mM, indicating the presence of a second binding site that may recognize (substituted)acetamido groups.

  17. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  18. Discovery of Biarylaminoquinazolines as Novel Tubulin Polymerization Inhibitors

    PubMed Central

    Ferrarese, Alessandro; Brun, Paola; Castagliuolo, Ignazio; Conconi, Maria Teresa; La Regina, Giuseppe; Bai, Ruoli; Silvestri, Romano; Hamel, Ernest; Chilin, Adriana

    2014-01-01

    Cell cycle experiments with our previously reported 4-biphenylaminoquinazoline (1–3) multityrosine kinase inhibitors revealed an activity profile resembling that of known tubulin polymerization inhibitors. Novel 4-biarylaminoquinazoline analogues of compound 2 were synthesized and evaluated as inhibitors of several tyrosine kinases and of tubulin. Although compounds 1–3 acted as dual inhibitors, the heterobiaryl analogues possessed only anti-tubulin properties and targeted the colchicine site. Furthermore, molecular modeling studies allowed the rationalization of the pharmacodynamic properties of the compounds. PMID:24801610

  19. Synthesis of chamaecypanone C analogues from in situ-generated cyclopentadienones and their biological evaluation.

    PubMed

    Dong, Suwei; Qin, Tian; Hamel, Ernest; Beutler, John A; Porco, John A

    2012-12-01

    A rhodium-catalyzed dehydrogenation protocol for the conversion of 3,5-diarylcyclopentenones to the corresponding 2,4-diarylcyclopentadienones has been developed. With this protocol, analogues of the cytotoxic agent chamaecypanone C have been synthesized via Diels-Alder cycloaddition between the cyclopentadienones and in situ-generated o-quinols. Biological evaluation of these analogues revealed a compound with higher activity as a microtubule inhibitor and cytotoxic agent in comparison with the parent structure. PMID:23110297

  20. Synthesis of Chamaecypanone C Analogues from in situ-Generated Cyclopentadienones and their Biological Evaluation

    PubMed Central

    Dong, Suwei; Qin, Tian; Hamel, Ernest; Beutler, John A.; Porco, John A.

    2012-01-01

    A rhodium-catalyzed dehydrogenation protocol has been developed for conversion of 3,5-diarylcyclopentenones to the corresponding 2,4-diarylcyclopentadienones. Using this protocol, analogues of the cytotoxic agent chamaecypanone C have been synthesized via Diels-Alder cycloaddition between the cyclopentadienones and in situ-generated ortho-quinols. Biological evaluation of these analogues revealed a compound with higher activity as a microtubule inhibitor and cytotoxic agent in comparison with the parent structure. PMID:23110297

  1. Transition States and transition state analogue interactions with enzymes.

    PubMed

    Schramm, Vern L

    2015-04-21

    Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but

  2. Design, Synthesis and Biological Evaluation of a Structurally Simplified Syringolin A Analogues.

    PubMed

    Chiba, Takuya; Kitahata, Shun; Matsuda, Akira; Ichikawa, Satoshi

    2016-01-01

    In this study, we designed and synthesized a structurally simplified syringolin A analogue 4, which could have a switched hydrogen bonding interaction with the β5 subunit of 20S proteasome. This analogue exhibits potent β5 proteasome inhibitory activity with an IC50 value of 107 nM. It also shows cytotoxicity against a range of human cancer cells at submicromolar level (109-254 nM). This analogue is expected to be a lead compound as a next generation proteasome inhibitor because of its simple structure. PMID:27373636

  3. Perspectives on purine analogues.

    PubMed

    Cheson, B D

    1996-12-01

    The purine analogs, fludarabine, 2-chlorodeoxy-adenosine, and 2'-deoxycoformycin, have revolutionized our approach to the treatment of a variety of indolent lymphoid malignancies. Because of their impressive single agent activity, they should be considered as an initial therapeutic option, not only for hairy cell leukemia, but also for chronic lymphocytic leukemia, indolent non-Hodgkin's lymphomas, and Waldenström's macroglobulenemia. Combinations of purine analogs with alkylatng agents, topisomerase II inhibitors, and other new compounds are in development, and their role as radiation sensitizers is being explored in clinical trials. Substantial activity has also been noted in several of the rheumatologic and immunologic disorders, and in multiple sclerosis. Continued progress requires innovative strategies which can modulate the biology and immunology of these diseases toward the goal of curing these patients. PMID:9137964

  4. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  5. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    PubMed

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  6. Similarity in drugs: reflections on analogue design.

    PubMed

    Wermuth, Camille G

    2006-04-01

    A survey of novel small-molecule therapeutics reveals that the majority of them result from analogue design and that their market value represents two-thirds of all small-molecule sales. In natural science, the term analogue, derived from the Latin and Greek analogia, has always been used to describe structural and functional similarity. Extended to drugs, this definition implies that the analogue of an existing drug molecule shares structural and pharmacological similarities with the original compound. Formally, this definition allows the establishment of three categories of drug analogues: analogues possessing chemical and pharmacological similarities (direct analogues); analogues possessing structural similarities only (structural analogues); and chemically different compounds displaying similar pharmacological properties (functional analogues). PMID:16580977

  7. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  8. Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents.

    PubMed

    Jones, Simon M; Urch, Jonathan E; Brun, Reto; Harwood, John L; Berry, Colin; Gilbert, Ian H

    2004-02-15

    A series of analogues of the naturally occurring antibiotic thiolactomycin (TLM) have been synthesised and evaluated for their ability to inhibit the growth of the malaria parasite, Plasmodium falciparum. Thiolactomycin is an inhibitor of Type II fatty acid synthase which is found in plants and most prokaryotes, but not an inhibitor of Type I fatty acid synthase in mammals. A number of the analogues showed inhibition equal to or greater than TLM. The introduction of hydrophobic alkyl groups at the C3 and C5 positions of the thiolactone ring lead to increased inhibition, the best showing a fourteenfold increase in activity over TLM. In addition, some of the analogues showed activity when assayed against the parasitic protozoa, Trypanosoma cruzi and Trypanosoma brucei.

  9. Biological evaluation of a novel sorafenib analogue, t-CUPM.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Liu, Jun-Yan; Wettersten, Hiromi I; Morisseau, Christophe; Wu, Jian; Weiss, Robert H; Hammock, Bruce D

    2015-01-01

    Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase. In the current work, we present the biological data on our lead sorafenib analogue, t-CUPM, demonstrating that this analogue retains cytotoxicity similar to sorafenib in various human cancer cell lines and strongly inhibits growth in the NCI-60 cell line panel. Co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, failed to rescue the cell viability responses of both sorafenib and t-CUPM, and immunofluorescence microscopy shows similar mitochondrial depolarization and apoptosis-inducing factor release for both compounds. These data suggest that both compounds induce a similar mechanism of caspase-independent apoptosis in hepatoma cells. In addition, t-CUPM displays anti-proliferative effects comparable to sorafenib as seen by a halt in G0/G1 in cell cycle progression. The structural difference between sorafenib and t-CUPM significantly reduces inhibitory spectrum of kinases by this analogue, and pharmacokinetic characterization demonstrates a 20-fold better oral bioavailability of t-CUPM than sorafenib in mice. Thus, t-CUPM may have the potential to reduce the adverse events observed from the multikinase inhibitory properties and the large dosing regimens of sorafenib.

  10. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  11. Platelet Inhibitors.

    PubMed

    Shifrin, Megan M; Widmar, S Brian

    2016-03-01

    Antithrombotic medications have become standard of care for management of acute coronary syndrome. Platelet adhesion, activation, and aggregation are essential components of platelet function; platelet-inhibiting medications interfere with these components and reduce incidence of thrombosis. Active bleeding is a contraindication for administration of platelet inhibitors. There is currently no reversal agent for platelet inhibitors, although platelet transfusion may be used to correct active bleeding after administration of platelet inhibitors. PMID:26897422

  12. Phosphonate analogue substrates for enolase.

    PubMed

    Anderson, V E; Cleland, W W

    1990-11-20

    Phosphonate analogues in which the bridge between C-2 and phosphorus is a CH2 group are slow substrates for yeast enolase. The pH variation of the kinetic parameters for the methylene analogue of 2-phosphoglycerate suggests that the substrate binds as a dianion and that Mg2+ can bind subsequently only if a metal ligand and the catalytic base are unprotonated. Primary deuterium isotope effects of 4-8 on V/KMg, but ones of only 1.15-1.32 on V for dehydration, show that proton removal to give the carbanion intermediate largely limits V/KMg and that a slow step follows which largely limits V (presumably carbanion breakdown). Since there is a D2O solvent isotope effect on V for the reverse reaction of 5, but not an appreciable one on the forward reaction, it appears that the slow rates with phosphonate analogues result from the fact that the carbanion intermediate is more stable than that formed from the normal substrates, and its reaction in both directions limits V. Increased stability as a result of replacement of oxygen by carbon at C-2 of the carbanion is the expected chemical behavior. PMID:2271661

  13. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  14. Policy issues in space analogues

    NASA Astrophysics Data System (ADS)

    Auger, Robin N.; Facktor, Debra D.

    Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.

  15. Role of the backbone conformation at position 7 in the structure and activity of marinostatin, an ester-linked serine protease inhibitor.

    PubMed

    Taichi, Misako; Yamazaki, Toshimasa; Nishiuchi, Yuji

    2012-09-01

    Rational design of inhibitors: The cis-amide backbone at position 7 in the serine protease inhibitor marinostatin was replaced with an E or Z olefin. The E olefin analogue was not active, but the Z analogue was. The cis conformation might play a critical role in organizing a canonical structure for binding to proteases.

  16. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  17. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis

    PubMed Central

    Nelson, Kathryn M.; Viswanathan, Kishore; Dawadi, Surendra; Duckworth, Benjamin P.; Boshoff, Helena I.; Barry, Clifton E.; Aldrich, Courtney C.

    2015-01-01

    MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5′-O-[N-(salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from sub-optimal drug disposition properties resulting in a short half-life (t1/2), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pKa of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t1/2 and AUC. Increasing the pKa of the acyl-sulfonyl linker yielded incremental enhancements while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters. PMID:26110337

  18. X-ray structures of human furin in complex with competitive inhibitors.

    PubMed

    Dahms, Sven O; Hardes, Kornelia; Becker, Gero L; Steinmetzer, Torsten; Brandstetter, Hans; Than, Manuel E

    2014-05-16

    Furin inhibitors are promising therapeutics for the treatment of cancer and numerous infections caused by bacteria and viruses, including the highly lethal Bacillus anthracis or the pandemic influenza virus. Development and improvement of inhibitors for pharmacological use require a detailed knowledge of the protease's substrate and inhibitor binding properties. Here we present a novel preparation of human furin and the first crystal structures of this enzyme in complex with noncovalent inhibitors. We show the inhibitor exchange by soaking, allowing the investigation of additional inhibitors and substrate analogues. Thus, our work provides a basis for the rational design of furin inhibitors.

  19. Synthesis and biological activity of a profluorescent analogue of coenzyme B12.

    PubMed Central

    Rosendahl, M S; Omann, G M; Leonard, N J

    1982-01-01

    We describe here the synthesis and chemical properties of linear(lin)-benzoadenosylcobalamin, a coenzyme B12 analogue that has a laterally extended nucleoside in the upper axial position. It is an effective competitive inhibitor of ribonucleotide reductase from Lactobacillus leichmannii. lin-Benzoadenosylcobalamin is nonfluorescent in solution but, on homolytic (light) or heterolytic (acid, cyanide) cleavage of the carbon-cobalt bond, forms fluorescent products. In addition, fluorescence is detectable on binding of the coenzyme analogue to ribonucleotide reductase, and the observed fluorescence polarization of the lin-benzoadenosyl moiety indicates that it is bound loosely to the enzyme when the coenzyme is partially dissociated. PMID:7048307

  20. L-nucleoside analogues as potential antimalarials that selectively target Plasmodium falciparum adenosine deaminase.

    PubMed

    Brown, D M; Netting, A G; Chun, B K; Choi, Y; Chu, C K; Gero, A M

    1999-01-01

    The L-stereoisomer analogues of D-coformycin selectively inhibited P. falciparum adenosine deaminase (ADA) in the picomolar range (L-isocoformycin, Ki 7 pM; L-coformycin, Ki 250 pM). While the L-nucleoside analogues, L-adenosine, 2,6-diamino-9-(L-ribofuranosyl)purine and 4-amino-1-(L-ribofuranosyl)pyrazolo[3,4-d]-pyrimidine were selectively deaminated by P. falciparum ADA, L-thioinosine and L-thioguanosine were not. This is the first example of 'non-physiological' L-nucleosides that serve as either substrates or inhibitors of malarial ADA and are not utilised by mammalian ADA.

  1. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  2. The Canadian Analogue Research Network (CARN): Opportunities for Terrestrial Analogue Studies in Canada and Abroad

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Osinski, G. R.; Berinstain, A.; Léveillé, R.

    2007-03-01

    We will present an overview of the Canadian Analogue Research Network (CARN), including a description of the various analogue sites in CARN, potential new sites, and a discussion regarding how CARN is applicable to the global exploration strategy.

  3. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  4. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  5. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  6. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V

    2010-01-01

    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  7. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.

    PubMed

    Tam, Roger Y; Rowley, Christopher N; Petrov, Ivan; Zhang, Tianyi; Afagh, Nicholas A; Woo, Tom K; Ben, Robert N

    2009-11-01

    Antifreeze glycoproteins (AFGPs) are a unique class of proteins that are found in many organisms inhabiting subzero environments and ensure their survival by preventing ice growth in vivo. During the last several years, our laboratory has synthesized functional C-linked AFGP analogues (3 and 5) that possess custom-tailored antifreeze activity suitable for medical, commercial, and industrial applications. These compounds are potent inhibitors of ice recrystallization and do not exhibit thermal hysteresis. The current study explores how changes in the length of the amide-containing side chain between the carbohydrate moiety and the polypeptide backbone in 5 influences ice recrystallization inhibition (IRI) activity. Analogue 5 (n = 3, where n is the number of carbons in the side chain) was a potent inhibitor of ice recrystallization, while 4, 6, and 7 (n = 4, 2, and 1, respectively) exhibited no IRI activity. The solution conformation of the polypeptide backbone in C-linked AFGP analogues 4-7 was examined using circular dichroism (CD) spectroscopy. The results suggested that all of the analogues exhibit a random coil conformation in solution and that the dramatic increase in IRI activity observed with 5 is not due to a change in long-range solution conformation. Variable-temperature (1)H NMR studies on truncated analogues 26-28 failed to elucidate the presence of persistent intramolecular bonds between the amide in the side chain and the peptide backbone. Molecular dynamics simulations performed on these analogues also failed to show persistent intramolecular hydrogen bonds. However, the simulations did indicate that the side chain of IRI-active analogue 26 (n = 3) adopts a unique short-range solution conformation in which it is folded back onto the peptide backbone, orienting the more hydrophilic face of the carbohydrate moiety away from the bulk solvent. In contrast, the solution conformation of IRI-inactive analogues 25, 27, and 28 had fully extended side chains

  8. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  9. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  10. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  11. Diversity-oriented synthesis of analogues of the novel macrocyclic peptide FR-225497 through late stage functionalization

    PubMed Central

    Mukherjee, Jyotiprasad; Sil, Suman

    2015-01-01

    Summary A concise synthetic approach to a class of biologically interesting cyclic tetrapeptides is reported which involves a late-stage functionalization of a macrocyclic scaffold through cross metathesis in an attempt to create diversity. The utility of this protocol is demonstrated through the preparation of three structural analogues of the important naturally occurring histone deacetylase inhibitor FR-225497. PMID:26734096

  12. Synthesis and Evaluation of Novel Triterpene Analogues of Ursolic Acid as Potential Antidiabetic Agent.

    PubMed

    Wu, Panpan; Zheng, Jie; Huang, Tianming; Li, Dianmeng; Hu, Qingqing; Cheng, Anming; Jiang, Zhengyun; Jiao, Luoying; Zhao, Suqing; Zhang, Kun

    2015-01-01

    Ursolic acid (UA) is a naturally bioactive compound that possesses potential anti-diabetic activity. The relatively safe and effective molecule intrigued us to further explore and to improve its anti-diabetic activity. In the present study, a series of novel UA analogues was synthesized and their structures were characterized. Their bioactivities against the α-glucosidase from baker's yeast were determined in vitro. The results suggested that most of the analogues exhibited significant inhibitory activity, especially analogues 8b and 9b with the IC50 values of 1.27 ± 0.27 μM (8b) and 1.28 ± 0.27 μM (9b), which were lower than the other analogues and the positive control. The molecular docking and 2D-QSAR studies were carried out to prove that the C-3 hydroxyl could interact with the hydrophobic region of the active pocket and form hydrogen bonds to increase the binding affinity of ligand and the homology modelling protein. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from UA analogues. PMID:26406581

  13. Synthesis and Structure–Activity Relationship Study of 5a-Carbasugar Analogues of SL0101

    PubMed Central

    2014-01-01

    The Ser/Thr protein kinase, RSK, is associated with oncogenesis, and therefore, there are ongoing efforts to develop RSK inhibitors that are suitable for use in vivo. SL0101 is a natural product that demonstrates selectivity for RSK inhibition. However, SL0101 has a short biological half-life in vivo. To address this issue we designed a set of eight cyclitol analogues, which should be resistant to acid catalyzed anomeric bond hydrolysis. The analogues were synthesized and evaluated for their ability to selectively inhibit RSK in vitro and in cell-based assays. All the analogues were prepared using a stereodivergent palladium-catalyzed glycosylation/cyclitolization for installing the aglycon. The l-cyclitol analogues were found to inhibit RSK2 in in vitro kinase activity with a similar efficacy to that of SL0101, however, the analogues were not specific for RSK in cell-based assays. In contrast, the d-isomers showed no RSK inhibitory activity in in vitro kinase assay. PMID:25589938

  14. Synthesis and Evaluation of Novel Triterpene Analogues of Ursolic Acid as Potential Antidiabetic Agent

    PubMed Central

    Wu, Panpan; Zheng, Jie; Huang, Tianming; Li, Dianmeng; Hu, Qingqing; Cheng, Anming; Jiang, Zhengyun; Jiao, Luoying; Zhao, Suqing; Zhang, Kun

    2015-01-01

    Ursolic acid (UA) is a naturally bioactive compound that possesses potential anti-diabetic activity. The relatively safe and effective molecule intrigued us to further explore and to improve its anti-diabetic activity. In the present study, a series of novel UA analogues was synthesized and their structures were characterized. Their bioactivities against the α-glucosidase from baker's yeast were determined in vitro. The results suggested that most of the analogues exhibited significant inhibitory activity, especially analogues 8b and 9b with the IC50 values of 1.27 ± 0.27 μM (8b) and 1.28 ± 0.27 μM (9b), which were lower than the other analogues and the positive control. The molecular docking and 2D-QSAR studies were carried out to prove that the C-3 hydroxyl could interact with the hydrophobic region of the active pocket and form hydrogen bonds to increase the binding affinity of ligand and the homology modelling protein. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from UA analogues. PMID:26406581

  15. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    PubMed Central

    2015-01-01

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin’s structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers. PMID:26394152

  16. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  17. Synthesis and biological evaluation of febrifugine analogues.

    PubMed

    Mai, Huong Doan Thi; Thanh, Giang Vo; Tran, Van Hieu; Vu, Van Nam; Vu, Van Loi; Le, Cong Vinh; Nguyen, Thuy Linh; Phi, Thi Dao; Truong, Bich Ngan; Chau, Van Minh; Pham, Van Cuong

    2014-12-01

    A series of febrifugine analogues were designed and synthesized. Antimalarial activity evaluation of the synthetic compounds indicated that these derivatives had a strong inhibition against both chloroquine-sensitive and -resistant Plasmodium falciparum parasites. Many of them were found to be more active than febrifugine hydrochloride. The tested analogues had also a significant cytotoxicity against four cancer cell lines (KB, MCF7, LU1 and HepG2). Among the synthetic analogues, two compounds 17b and 17h displayed a moderate cytotoxicity while they exhibited a remarkable antimalarial activity. PMID:25632466

  18. Cyclic cholecystokinin analogues with high selectivity for central receptors

    SciTech Connect

    Charpentier, B.; Pelaprat, D.; Durieux, C.; Dor, A.; Roques, B.P. ); Reibaud, M.; Blanchard, J.C. )

    1988-03-01

    Taking as a model the N-terminal folding of the cholecystokinin tyrosine-sulfated octapeptide deduced from conformational studies, two cyclic cholecystokinin (CCK) analogues were synthesized by conventional peptide synthesis. The binding characteristics of these peptides were investigated on brain cortex membranes and pancreatic acini of guinea pig. Compounds I and II were competitive inhibitors of ({sup 3}H)Boc(Ahx{sup 28,31})CCK-(27-33) binding to central CCK receptors and showed a high degree of selectivity for these binding sites. This high selectivity was associated with a high affinity for central CCK receptors. Similar affinities and selectivities were found when {sup 125}I Bolton-Hunter-labeled CCK-8 was used as a ligand. Moreover, these compounds were only weakly active in the stimulation of amylase release from guinea pig pancreatic acini and were unable to induce contractions in the guinea pig ileum. The two cyclic CCK analogues, therefore, appear to be synthetic ligands exhibiting both high affinity and high selectivity for central CCK binding sites. These compounds could help clarify the respective role of central and peripheral receptors for various CCK-8-induced pharmacological effects.

  19. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  20. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  1. Space analogue studies in Antarctica.

    PubMed

    Lugg, D; Shepanek, M

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  2. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  3. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  4. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  5. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  6. Relative activities on and uptake by human blood platelets of 5-hydroxytryptamine and several analogues

    PubMed Central

    Born, G. V. R.; Juengjaroen, Kanchana; Michal, F.

    1972-01-01

    1. The specificity of platelet receptor sites for 5-HT uptake and for the rapid morphological change and aggregation was investigated with 5-hydroxy-tryptamine (5-HT) and seventeen analogues as well as with some antagonists of 5-HT. 2. The analogues, with the exception of 5-hydroxy-N'N'-dibutyltryptamine, caused the rapid morphological change in platelets. In concentrations below those needed to produce the agonistic action (viz. 0.05-2.0 μM), these analogues themselves inhibited competitively the shape change caused by 5-HT. 3. The velocity of change in shape caused by 5-HT was reduced in low Na media. 4. Ten analogues produced platelet aggregation; three of these, viz. 5-methoxy-α-methyltryptamine, 5-hydroxy-α-methyltryptamine and 5-hydroxy-N'N'-diisopropyltryptamine), were approximately equipotent with 5-HT. Six analogues did not induce platelet aggregation. 5. All the analogues which prevented the initial change in shape of platelets caused by 5-HT also inhibited its aggregating effect, apparently competitively with low Ki values (0.02-1.6 μM). 6. As with the inhibition of shape change, the inhibition of aggregation shows relatively low structural specificity of the receptor site. 7. Methysergide was a potent inhibitor of shape change and aggregation (Ki∼0.03 μM); imipramine was much less inhibitory (Ki∼5-10 μM). 8. Only one analogue (5-hydroxy-α-methyltryptamine) was taken up like 5-HT by platelets. All the other analogues inhibited the uptake of 5-HT by platelets (Ki=0.2-2.7 μM). 9. Methysergide was a weak inhibitor of 5-HT uptake (Ki∼125 μM) whereas imipramine was very effective (Ki∼0.3 μM). 10. Our results show that the initial change in shape of platelets is required for and precedes aggregation. The structural specificity of the platelet receptor concerned with shape change and aggregation caused by 5-HT appears low whereas the uptake mechanism is a highly specific one. The uptake probably proceeds through more than one step, the

  7. Small Molecule Inhibitor of AICAR Transformylase Homodimerization

    PubMed Central

    Spurr, Ian B.; Birts, Charles N.; Cuda, Francesco; Benkovic, Stephen J; Blaydes, Jeremy P.; Tavassoli, Ali

    2012-01-01

    Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyses the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å2, is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC. The compound is derived from a previously reported cyclic hexa-peptide inhibitor of AICAR transformylase (with a Ki of 17 μM), identified by high-throughput screening. The active motif of the cyclic peptide is identified as an arginine-tyrosine dipeptide, a capped analogue of which inhibits AICAR transformylase with a Ki of 84 μM. A library of non-natural analogues of this dipeptide was designed, synthesized, and assayed. The most potent compound inhibits AICAR transformylase with a Ki of 685 nM, a 25-fold improvement in activity from the parent cyclic peptide. The potential for this AICAR transformylase inhibitor in cancer therapy is assessed by studying its effect on the proliferation of a model breast cancer cell line. Using a non-radioactive proliferation assay and live cell imaging, a dose-dependent reduction in cell numbers and cell division rates was observed in cells treated with our ATIC dimerization inhibitor. PMID:22764122

  8. Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline.

    PubMed

    Jacob, P; Shulgin, A T

    1981-11-01

    Two monothio analogues of mescaline and three monothio analogues of 2,3,4-trimethoxyphenethylamine (isomescaline) have been synthesized and characterized. Only the two mescaline analogues (3-and 4-thiomescaline) were found to be psychotomimetics in man, being 6 and 12 times more potent than mescaline, respectively. All five compounds can serve as substrates for bovine plasma monoamine oxidase in vitro, but no positive correlation is apparent between the extent of enzymatic degradation and human psychotomimetic potency.

  9. The structure activity relationship of discodermolide analogues.

    PubMed

    Shaw, Simon J

    2008-03-01

    The marine polyketide discodermolide is a member of a class of natural products that stabilize microtubules. Many analogues have been synthesized suggesting that few changes can be made to the internal carbon backbone. Both ends of the molecule, however, can be modified. The majority of analogues have been generated via modification of the lactone region. This suggests that significant simplifications can be made in this region provided that the lactone moiety is maintained.

  10. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  11. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  12. Bioisosteric Exchange of Csp3 -Chloro and Methyl Substituents: Synthesis and Initial Biological Studies of Atpenin A5 Analogues.

    PubMed

    Krautwald, Simon; Nilewski, Christian; Mori, Mihoko; Shiomi, Kazuro; Ōmura, Satoshi; Carreira, Erick M

    2016-03-14

    Asymmetric synthesis and initial biological studies of two analogues of a naturally occurring chlorinated antifungal agent, atpenin A5, are described. These analogues were selected on the basis of Cl→CH3 or H3 C→Cl exchanges in the side-chain of atpenin A5. The interchange of chloro and methyl substituents led to complex II inhibitors with equal IC50 values. This suggests that Cl↔Me bioisosteric exchange can be realized in aliphatic settings. PMID:26891236

  13. S-Ribosylhomocysteine analogues with the carbon-5 and sulfur atoms replaced by a vinyl or (fluoro)vinyl unit

    PubMed Central

    Wnuk, Stanislaw F.; Lalama, Jennifer; Garmendia, Craig A.; Robert, Jenay; Zhu, Jinge; Pei, Dehua

    2008-01-01

    Treatment of the protected ribose or xylose 5-aldehyde with sulfonyl-stabilized fluorophosphonate gave (fluoro)vinyl sulfones. Stannyldesulfonylation followed by iododestannylation afforded 5,6-dideoxy-6-fluoro-6-iodo-d-ribo or xylo-hex-5-enofuranoses. Coupling of the hexenofuranoses with alkylzinc bromides gave ten-carbon ribosyl- and xylosylhomocysteine analogues incorporating a fluoroalkene. The fluoroalkenyl and alkenyl analogues were evaluated for inhibition of Bacillus subtilis S-ribosylhomocysteinase (LuxS). One of the compounds, 3,5,6-trideoxy-6-fluoro-d-erythro-hex-5-enofuranose, acted as a competitive inhibitor of moderate potency (KI = 96 µM). PMID:18375129

  14. The bisphosphonomethyl analogue of 2,3-bisphosphoglycerate inhibits yeast but not wheat-germ phosphoglycerate mutase.

    PubMed Central

    McAleese, S M; Jutagir, V; Blackburn, G M; Fothergill-Gilmore, L A

    1987-01-01

    The bisphosphonomethyl analogue of 2,3-bisphosphoglycerate [4-phosphono-2-(phosphonomethyl) butanoate] was a potent competitive inhibitor of cofactor-dependent phosphoglycerate mutase from yeast, with a Ki of 0.8 mM. In contrast, the analogue did not affect the activity of cofactor-independent phosphoglycerate mutase from wheat germ. It is considered that this compound should be particularly useful for n.m.r. spectroscopic studies on the mechanism of action of cofactor-dependent phosphoglycerate mutases. PMID:3038084

  15. Antibacterial Optimization of 4-Aminothiazolyl Analogues of the Natural Product GE2270 A: Identification of the Cycloalkylcarboxylic Acids

    SciTech Connect

    LaMarche, Matthew J.; Leeds, Jennifer A.; Amaral, Kerri; Brewer, Jason T.; Bushell, Simon M.; Dewhurst, Janetta M.; Dzink-Fox, JoAnne; Gangl, Eric; Goldovitz, Julie; Jain, Akash; Mullin, Steve; Neckermann, Georg; Osborne, Colin; Palestrant, Deborah; Patane, Michael A.; Rann, Elin M.; Sachdeva, Meena; Shao, Jian; Tiamfook, Stacey; Whitehead, Lewis; Yu, Donghui

    2012-11-09

    4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for their activity against Gram positive bacterial infections. Optimization efforts focused on improving the physicochemical properties (e.g., aqueous solubility and chemical stability) of the 4-aminothiazolyl natural product template while improving the in vitro and in vivo antibacterial activity. Structure-activity relationships were defined, and the solubility and efficacy profiles were improved over those of previous analogues and 1. These studies identified novel, potent, soluble, and efficacious elongation factor-Tu inhibitors, which bear cycloalkylcarboxylic acid side chains, and culminated in the selection of development candidates amide 48 and urethane 58.

  16. Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues

    PubMed Central

    Bacchi, Cyrus J.; Rattendi, Donna; Faciane, Evangeline; Yarlett, Nigel; Weiss, Louis M.; Frydman, Benjamin; Woster, Patrick; Wei, Benjamin; Marton, Laurence J.; Wittner, Murray

    2011-01-01

    The uptake, biosynthesis and catabolism of polyamines in the microsporidian parasite Encephalitozoon cuniculi are detailed with reference to the effects of oligoamine and arylamine analogues of polyamines. Enc. cuniculi, an intracellular parasite of mammalian cells, has both biosynthetic and catabolic enzymes of polyamine metabolism, as demonstrated in cell-free extracts of mature spores. The uptake of polyamines was measured in immature, pre-emergent spores isolated from host cells by Percoll gradient. Spermine was rapidly taken up and metabolized to spermidine and an unknown, possibly acetamidopropanal, by spermidine/spermine N1-acetyltransferase (SSAT) and polyamine oxidase (PAO). Most of the spermidine and the unknown product were found in the cell incubation medium, indicating they were released from the cell. bis(Ethyl) oligoamine analogues of polyamines, such as SL-11144 and SL-11158, as well as arylamine analogues [BW-1, a bis(phenylbenzyl) 3-7-3 analogue] blocked uptake and interconversion of spermine at micromolar levels and, in the case of BW-1, acted as substrate for PAO. The Enc. cuniculi PAO activity differed from that found in mammalian cells with respect to pH optimum, substrate specificity and sensitivity to known PAO inhibitors. SL-11158 inhibited SSAT activity with a mixed type of inhibition in which the analogue had a 70-fold higher affinity for the enzyme than the natural substrate, spermine. The interest in Enc. cuniculi polyamine metabolism and the biochemical effects of these polyamine analogues is warranted since they cure model infections of Enc. cuniculi in mice and are potential candidates for human clinical trials. PMID:15133083

  17. Presence of cobalamin analogues in animal tissues

    PubMed Central

    Kondo, Haruki; Kolhouse, Fred; Allen, Robert H.

    1980-01-01

    Cobalamin (Cbl, vitamin B-12) has been extracted and isolated from a number of animal tissues by using (i) reverse-affinity chromatography on R protein-Sepharose followed by adsorption to and elution from charcoal-coated agarose and (ii) paper chromatography. Radioisotope dilution assays showed that only 75-97% of the Cbl chromatographed in the position of crystalline Cbl. The remaining 3-25% was present in a number of slower and faster moving fractions. This suggested that Cbl analogues are present in animal tissues because appropriate controls ruled out the possibility that this material was artifactually derived from Cbl during the extraction and purification procedures. With a large-scale isolation from rabbit kidney, the material in five such fractions contained cobalt and had absorption spectra that were similar to but different from the spectrum of Cbl, indicating that they were Cbl analogues. Compared to Cbl, these Cbl analogues had decreased but definite affinities for Cbl-binding proteins with the following order of strength of binding: R protein > transcobalamin II > intrinsic factor. Compared to Cbl, they also had decreased but definite growth-promoting activity for two microorganisms, Euglena gracilis and Lactobacillus leichmannii, which require Cbl for growth. These Cbl analogues differed from each other and from 18 synthetic Cbl analogues, including the most common Cbl analogues synthesized by microorganisms, in at least one of the above features. These studies indicate that animal tissues contain a number of Cbl analogues whose origins, structures, and biologic activities remain to be determined. PMID:6928681

  18. Molecular mechanisms underlying a cellular analogue of operant reward learning

    PubMed Central

    Lorenzetti, Fred D.; Baxter, Douglas A.; Byrne, John H.

    2008-01-01

    SUMMARY Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analogue of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor and by expressing a dominant negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning, but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior. PMID:18786364

  19. The Canadian Analogue Research Network (CARN): Opportunities for Mars Analogue Studies in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Berinstain, A.; Lebeuf, M.; Léveillé, R.

    2006-10-01

    The Canadian Analogue Research Network has been established by the Canadian Space Agency. This network of analogue sites, many of which are in the Arctic, provides a unique opportunity to further our understanding of the polar regions of Earth and Mars.

  20. [Synthesis, conformation, and spectroscopy of nucleoside analogues concerning their antiviral activity].

    PubMed

    Kuśmierek, Jarosław T; Stolarski, Ryszard

    2015-01-01

    Chemically modified analogues of nucleosides and nucleotides, have been thoroughly investigated since the discovery of DNA double helix by Watson and Crick in 1953 (Nature 171: 737). Chemical structures, first of all tautomerism, of the nucleic acid bases, as well as the conformations of the nucleic acids constituents, determine the secondary and tertiary structures of DNA and RNA polymers. Similarly, structural and dynamic parameters of nucleoside derivatives determine their biological activity in mutagenesis, neoplastic transformation, as well as antiviral or anticancer properties. In this review, a multidisciplinary approach of Prof. David Shugar's group is presented in the studies on nucleosides and nucleotides. It consists in chemical syntheses of suitable analogues, measurements of physicochemical and spectral parameters, conformational analysis by means of nuclear magnetic resonance (NMR) and X-ray diffraction, as well as characteristics of the nucleoside analogues as inhibitors of some selected, target enzymes, crucial in respect to antiviral activity of the analogues. These long-lasting studies follows upon the line of the main paradigm of molecular biophysics, i. e. structure-activity relationship. PMID:26677575

  1. New Atglistatin closely related analogues: Synthesis and structure-activity relationship towards adipose triglyceride lipase inhibition.

    PubMed

    Roy, Pierre-Philippe; D'Souza, Kenneth; Cuperlovic-Culf, Miroslava; Kienesberger, Petra C; Touaibia, Mohamed

    2016-08-01

    Adipose Triglyceride Lipase (ATGL) performs the first and rate-limiting step in lipolysis by hydrolyzing triacylglycerols stored in lipid droplets to diacylglycerols. By mediating lipolysis in adipose and non-adipose tissues, ATGL is a major regulator of overall energy metabolism and plasma lipid levels. Since chronically high levels of plasma lipids are linked to metabolic disorders including insulin resistance and type 2 diabetes, ATGL is an interesting therapeutic target. In the present study, fourteen closely related analogues of Atglistatin (1), a newly discovered ATGL inhibitor, were synthesized, and their ATGL inhibitory activity was evaluated. The effect of these analogues on lipolysis in 3T3-L1 adipocytes clearly shows that inhibition of the enzyme by Atglistatin (1) is due to the presence of the carbamate and N,N-dimethyl moieties on the biaryl central core at meta and para position, respectively. Mono carbamate-substituted analogue C2, in which the carbamate group was in the meta position as in Atglistatin (1), showed slight inhibition. Low dipole moment of Atglistatin (1) compared to the synthesized analogues possibly explains the lower inhibitory activities.

  2. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  3. Dolastatin 11 conformations, analogues and pharmacophore.

    PubMed

    Ali, Md Ahad; Bates, Robert B; Crane, Zackary D; Dicus, Christopher W; Gramme, Michelle R; Hamel, Ernest; Marcischak, Jacob; Martinez, David S; McClure, Kelly J; Nakkiew, Pichaya; Pettit, George R; Stessman, Chad C; Sufi, Bilal A; Yarick, Gayle V

    2005-07-01

    Twenty analogues of the natural antitumor agent dolastatin 11, including majusculamide C, were synthesized and tested for cytotoxicity against human cancer cells and stimulation of actin polymerization. Only analogues containing the 30-membered ring were active. Molecular modeling and NMR evidence showed the low-energy conformations. The amide bonds are all trans except for the one between the Tyr and Val units, which is cis. Since an analogue restricted to negative 2-3-4-5 angles stimulated actin polymerization but was inactive in cells, the binding conformation (most likely the lowest-energy conformation in water) has a negative 2-3-4-5 angle, whereas a conformation with a positive 2-3-4-5 angle (most likely the lowest energy conformation in chloroform) goes through cell walls. The highly active R alcohol from borohydride reduction of dolastatin 11 is a candidate for conversion to prodrugs.

  4. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  5. Synthesis of C11-Desmethoxy Soraphen A1α: A Natural Product Analogue That Inhibits Acetyl-CoA Carboxylase

    PubMed Central

    2013-01-01

    A synthesis of C11-desmethoxy soraphen A1α is described that proceeds in just 14 steps from readily available starting materials. This natural product analogue was identified as a target of interest in a program aimed at identifying novel natural product-inspired inhibitors of acetyl-CoA carboxylase (ACC) as potential anticancer therapeutics. While describing the most efficient synthesis of a soraphen A1α analogue (total syntheses of the natural product have been reported that proceed in 25 to ≥40 linear steps), we also present data supporting the conclusion that C11-heteroatom functionality is a beneficial but unnecessary structural characteristic of soraphen A1α analogues for inhibiting ACC. PMID:24639892

  6. Synthetic analogues of the natural compound cryphonectric acid interfere with photosynthetic machinery through two different mechanisms.

    PubMed

    Teixeira, Róbson Ricardo; Pereira, Wagner Luiz; Tomaz, Deborah Campos; de Oliveira, Fabrício Marques; Giberti, Samuele; Forlani, Giuseppe

    2013-06-12

    A series of isobenzofuran-1(3H)-ones (phthalides), analogues of the naturally occurring phytotoxin cryphonectric acid, were designed, synthesized, and fully characterized by NMR, IR, and MS analyses. Their synthesis was achieved via condensation, aromatization, and acetylation reactions. The measurement of the electron transport chain in spinach chloroplasts showed that several derivatives are capable of interfering with the photosynthetic apparatus. Few of them were found to inhibit the basal rate, but a significant inhibition was brought about only at concentrations exceeding 50 μM. Some other analogues acted as uncouplers or energy transfer inhibitors, with a remarkably higher effectiveness. Isobenzofuranone addition to the culture medium inhibited the growth of the cyanobacterium Synechococcus elongatus , with patterns consistent with the effects measured in vitro upon isolated chloroplasts. The most active derivatives, being able to completely suppress algal growth at 20 μM, may represent structures to be exploited for the design of new active ingredients for weed control.

  7. Vitamin D analogues targeting CYP24 in chronic kidney disease.

    PubMed

    Posner, Gary H; Helvig, Christian; Cuerrier, Dominic; Collop, Drew; Kharebov, Aza; Ryder, Kara; Epps, Tina; Petkovich, Martin

    2010-07-01

    The cytochrome P450 enzyme 24-hydroxylase (CYP24) plays a critical role in regulating levels of vitamin D hormone. Aberrant expression of CYP24 has been implicated in vitamin D insufficiency and resistance to vitamin D therapy. We have demonstrated amplified CYP24 expression in uremic rats, suggesting that CYP24 has an etiological role in vitamin D insufficiency commonly associated with chronic kidney disease (CKD). We have designed two new analogues of 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), namely CTA091 and CTA018/MT2832, which are potent inhibitors of CYP24. In vitro studies with CTA091 show that it enhances the potency of 1alpha,25(OH)2D3. In vivo studies demonstrate that CTA091 decreases serum intact parathyroid hormone (iPTH) levels and increases circulating 1alpha,25(OH)2D3. CTA091 increases both Cmax and AUC of co-administered 1alpha,25(OH)2D3. These studies indicate that CYP24 inhibition can increase cellular responsiveness to vitamin D hormone and potentiate vitamin D therapy. CTA018/MT2832 differs from CTA091 in that it also has the ability to activate vitamin D receptor-mediated transcription. CTA018/MT2832 effectively suppresses elevated iPTH secretion at doses which do not affect serum calcium or phosphorus levels in a rodent model of CKD. Studies with both new analogues underscore the potential utility of CYP24 inhibition in the treatment of secondary hyperparathyroidism in CKD. PMID:20347976

  8. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells.

    PubMed

    Jalewa, Jaishree; Sharma, Mohit Kumar; Hölscher, Christian

    2016-10-01

    Currently, there is no viable treatment available for Parkinson's disease (PD) that stops or reverses disease progression. Interestingly, studies testing the glucagon-like-peptide-1 (GLP-1) mimetic Exendin-4 have shown neuroprotective/neurorestorative properties in pre-clinical tests and in a pilot clinical study of PD. Incretin analogues were originally developed to treat type 2 diabetes and several are currently on the market. In this study, we tested novel incretin analogues on the dopaminergic SH-SY5Y neuroblastoma cells against a toxic mitochondrial complex I inhibitor, Rotenone. Here, we investigate for the first time the effects of six different incretin receptor agonists - Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP Dual receptor agonist, dAla(2)-GIP-GluPal, Val(8)GLP-1-GluPal and exendin-4. Post-treatment with doses of 1, 10 or 100 nM of incretin analogues for 12 h increased the survival of SH-SY5Y cells treated with 1 μM Rotenone for 12 h. Furthermore, we studied the post-treatment effect of 100 nM incretin analogues against 1 μM Rotenone stress on apoptosis, mitochondrial stress and autophagy markers. We found significant protective effects of the analogues against Rotenone stress on cell survival and on mitochondrial and autophagy-associated markers. The novel GLP-1/GIP Dual receptor agonist was superior and effective at a tenfold lower concentration compared to the other analogues. Using the Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, we further show that the neuroprotective effects are partially PI3K-independent. Our data suggest that the neuroprotective properties exhibited by incretin analogues against Rotenone stress involve enhanced autophagy, increased Akt-mediated cell survival and amelioration of mitochondrial dysfunction. These mechanisms can explain the neuroprotective effects of incretin analogues reported in clinical trials. GLP-1, GIP and dual incretin receptor agonists showed protective effects in SH-SY5Y cells

  9. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  10. Stilbenophane analogues of deoxycombretastatin A-4.

    PubMed

    Mateo, Carmen; Pérez-Melero, Concepción; Peláez, Rafael; Medarde, Manuel

    2005-08-01

    A new family of polyoxygenated stilbenophanes has been synthesized as conformationally restricted analogues of antimitotic combretastatins. By means of the McMurry olefination process, compounds derived from diethyleneglycol and 1,6-hexanediol were obtained, whereas Grubbs' catalyst failed in producing the ring-closing metathesis to this kind of macrocyclic products.

  11. Analogue Representations of Spatial Objects and Tranformations.

    ERIC Educational Resources Information Center

    Cooper, Lynn A.

    Considerable discussion and debate have been devoted to the extent and nature of structural or functional correspondence between internal representations and their external visual counterparts. An analogue representation or process is one in which the relational structure of external events is preserved in the corresponding internal…

  12. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  13. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  14. Structure-activity studies of 5-substituted pyridopyrimidines as adenosine kinase inhibitors.

    PubMed

    Cowart, M; Lee, C H; Gfesser, G A; Bayburt, E K; Bhagwat, S S; Stewart, A O; Yu, H; Kohlhaas, K L; McGaraughty, S; Wismer, C T; Mikusa, J; Zhu, C; Alexander, K M; Jarvis, M F; Kowaluk, E A

    2001-01-01

    The synthesis and SAR of a novel series of non-nucleoside pyridopyrimidine inhibitors of the enzyme adenosine kinase (AK) are described. It was found that pyridopyrimidines with a broad range of medium and large non-polar substituents at the 5-position potently inhibited AK activity. A narrower range of analogues was capable of potently inhibiting adenosine phosphorylation in intact cells indicating an enhanced ability of these analogues to penetrate cell membranes. Potent AK inhibitors were found to effectively reduce nociception in animal models of thermal hyperalgesia and persistent pain.

  15. Elucidation of Structural Elements for Selectivity across Monoamine Transporters: Novel 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues

    PubMed Central

    2015-01-01

    2-[(Diphenylmethyl)sulfinyl]acetamide (modafinil, (±)-1) is a unique dopamine uptake inhibitor that binds the dopamine transporter (DAT) differently than cocaine and may have potential for the treatment of psychostimulant abuse. To further investigate structural requirements for this divergent binding mode, novel thio- and sulfinylacetamide and ethanamine analogues of (±)-1 were synthesized wherein (1) the diphenyl rings were substituted with methyl, trifluoromethyl, and halogen substituents and (2) substituents were added to the terminal amide/amine nitrogen. Halogen substitution of the diphenyl rings of (±)-1 gave several amide analogues with improved binding affinity for DAT and robust selectivity over the serotonin transporter (SERT), whereas affinity improved at SERT over DAT for the p-halo-substituted amine analogues. Molecular docking studies, using a subset of analogues with DAT and SERT homology models, and functional data obtained with DAT (A480T) and SERT (T497A) mutants defined a role for TM10 in the substrate/inhibitor S1 binding sites of DAT and SERT. PMID:24494745

  16. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogues for boron neutron capture therapy of cancer

    PubMed Central

    Agarwal, Hitesh K.; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J.; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F.; Tjarks, Werner

    2015-01-01

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogues, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogues (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3–4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analogue. Both 2 and 3 appeared to be 5′-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogues and will profoundly impact future design strategies for these agents. PMID:26087030

  17. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.

  18. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    PubMed

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment. PMID:27301366

  19. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    PubMed

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  20. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization.

    PubMed

    Herdman, Christine A; Devkota, Laxman; Lin, Chen-Ming; Niu, Haichan; Strecker, Tracy E; Lopez, Ramona; Liu, Li; George, Clinton S; Tanpure, Rajendra P; Hamel, Ernest; Chaplin, David J; Mason, Ralph P; Trawick, Mary Lynn; Pinney, Kevin G

    2015-12-15

    The discovery of 3-methoxy-9-(30,40,50-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (in vitro) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active (IC50 < 5 lM) as inhibitors of tubulin polymerization while four analogues were comparable (IC50 approximately 1 lM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary in vivo studies to assess their potential efficacy as VDAs.

  1. Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages.

    PubMed Central

    Marcus-Sekura, C J; Woerner, A M; Shinozuka, K; Zon, G; Quinnan, G V

    1987-01-01

    Several classes of oligonucleotide antisense compounds of sequence complementary to the start of the mRNA coding sequence for chloramphenicol acetyl transferase (CAT), including methylphosphonate, alkyltriester, and phosphorothioate analogues of DNA, have been compared to "normal" phosphodiester oligonucleotides for their ability to inhibit expression of plasmid-directed CAT gene activity in CV-1 cells. CAT gene expression was inhibited when transfection with plasmid DNA containing the gene for CAT coupled to simian virus 40 regulatory sequences (pSV2CAT) or the human immunodeficiency virus enhancer (pHIVCAT) was carried out in the presence of 30 microM concentrations of analogue. For the oligo-methylphosphonate analogue, inhibition was dependent on both oligomer concentration and chain length. Analogues with phosphodiester linkages that alternated with either methylphosphonate, ethyl phosphotriester, or isopropyl phosphotriester linkages were less effective inhibitors, in that order. The phosphorothioate analogue was about two-times more potent than the oligo-methylphosphonate, which was in turn approximately twice as potent as the normal oligonucleotide. Images PMID:3475677

  2. HDAC Inhibitors.

    PubMed

    Olzscha, Heidi; Bekheet, Mina E; Sheikh, Semira; La Thangue, Nicholas B

    2016-01-01

    Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment. PMID:27246222

  3. Identification of an Adamantyl Azaquinolone JNK Selective Inhibitor

    PubMed Central

    2012-01-01

    3-[4-((1S,2S,3R,5S,7S)-5-Hydroxyadamantan-2-ylcarbamoyl)benzyl]-4-oxo-1-phenyl-1,4-dihydro-[1,8]naphthyridine-2-carboxylic acid methyl ester (4) was identified as a novel, druglike and selective quinolone pan JNK inhibitor. In this communication, some of the structure–activity relationship of the azaquinolone analogues leading to 4 is discussed. The focus is on how changes at the amide functionality affected the biochemical potency, cellular potency, metabolic properties, and solubility of this class of JNK inhibitors. Optimization of these properties led to the identification of the adamantyl analogue, 4. 4 achieved proof of mechanism in both rat and mouse TNF-α challenge models. PMID:24900545

  4. Optimization of Cyclic Plasmin Inhibitors: From Benzamidines to Benzylamines.

    PubMed

    Hinkes, Stefan; Wuttke, André; Saupe, Sebastian M; Ivanova, Teodora; Wagner, Sebastian; Knörlein, Anna; Heine, Andreas; Klebe, Gerhard; Steinmetzer, Torsten

    2016-07-14

    New macrocyclic plasmin inhibitors based on our previously optimized P2-P3 core segment have been developed. In the first series, the P4 residue was modified, whereas the 4-amidinobenzylamide in P1 position was maintained. The originally used P4 benzylsulfonyl residue could be replaced by various sulfonyl- or urethane-like protecting groups. In the second series, the P1 benzamidine was modified and a strong potency and excellent selectivity was retained by incorporation of p-xylenediamine. Several analogues inhibit plasmin in the subnanomolar range, and their potency against related trypsin-like serine proteases including trypsin itself could be further reduced. Selected derivatives have been tested in a plasma fibrinolysis assay and are more effective than the reference inhibitor aprotinin. The crystal structure of one inhibitor was determined in complex with trypsin. The binding mode reveals a sterical clash of the inhibitor's linker segment with the 99-hairpin loop of trypsin, which is absent in plasmin.

  5. Synthesis and biological evaluation of hydrazidomycin analogues.

    PubMed

    Meyer, Florian; Ueberschaar, Nico; Dahse, Hans-Martin; Hertweck, Christian

    2013-11-15

    Hydrazidomycin A is an unusual secondary metabolite of Streptomyces atratus that features a rare enehydrazide core. To learn more about structure-activity relationships of the reported cytotoxic and antiproliferative agent several synthetic routes were explored to synthesize a variety of hydrazidomycin derivatives. Specifically, the size of the side chains, the nature of the double bond and the polar head group were altered. Overall, fourteen analogues were tested for their cytotoxic and antiproliferative effects. Re-examination of synthetic hydrazidomycin A suggests that the antiproliferative activity is attributed to a yet unknown compound that results from degradation or rearrangement. Several of the less complex analogues, however, show antiproliferative activities against individual cancer cell lines and turned out to be more potent than hydrazidomycin A.

  6. Synthesis and metabolism of pheromones and pheromone analogues

    SciTech Connect

    Ding, Y.S.

    1987-01-01

    (9, 10-/sup 3/H/sub 2/)Z9-14:Ac was synthesized at high specific activity (/sup 3/H, 58 Ci/mmole) by partial tritiation of the corresponding alkyne and was converted to the labeled Z9-14:OH and Z9-14:Al to study tissue specificity of acetate esterase (E), alcohol oxidase (OX), and aldehyde dehydrogenase (ALDH) in male and female Heliothis virescens. Soluble and membrane-associated enzyme activities were determined by radio-TLC assays. Compounds of the tritium-labeled Z11-16 series were synthesized and their in vitro fates examined as well. In order to achieve an alternative approach in which (1) pheromone receptor proteins would be stoichiometrically and irreversibly modified, or (2) pheromone-catabolizing enzymes are inactivated by tight-binding or irreversible inhibitors, we have designed analogues of pheromones of lepidopterous insect pests and assayed their biological activity in vitro and in vivo. Various fluorinated molecules such as acyl fluorides, fluoroolefins, 2-fluoro aldehydes, 2,2-difluoro aldehydes and trifluoromethyl ketones were synthesized. The synthesis of some other functional groups such as cyclopropanones, cyclopropanols, cyclopropyl carbinols, cyclopropyl aldehydes and Michael acceptors will also be discussed.

  7. Synthesis of constrained analogues of tryptophan

    PubMed Central

    Negrato, Marco; Abbiati, Giorgio; Dell’Acqua, Monica

    2015-01-01

    Summary A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues. PMID:26664620

  8. Platinum analogues in preclinical and clinical development.

    PubMed

    Hamilton, T C; O'Dwyer, P J; Ozols, R F

    1993-11-01

    The impact of cisplatin on chemotherapy for solid tumors has led to the synthesis of many molecules with platinum as their central building block. These so-called platinum analogues have been developed with the obvious goals of improving the antitumor activity of cisplatin and hopefully, at the same time, altering the dose-limiting side effects of the prototype drug. At least 10 such molecules are in clinical development, whereas several others are at various stages of preclinical testing. PMID:8305533

  9. The Brookhaven electron analogue, 1953--1957

    SciTech Connect

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  10. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss. PMID:27626017

  11. Blood Loss Estimation Using Gauze Visual Analogue

    PubMed Central

    Ali Algadiem, Emran; Aleisa, Abdulmohsen Ali; Alsubaie, Huda Ibrahim; Buhlaiqah, Noora Radhi; Algadeeb, Jihad Bagir; Alsneini, Hussain Ali

    2016-01-01

    Background Estimating intraoperative blood loss can be a difficult task, especially when blood is mostly absorbed by gauze. In this study, we have provided an improved method for estimating blood absorbed by gauze. Objectives To develop a guide to estimate blood absorbed by surgical gauze. Materials and Methods A clinical experiment was conducted using aspirated blood and common surgical gauze to create a realistic amount of absorbed blood in the gauze. Different percentages of staining were photographed to create an analogue for the amount of blood absorbed by the gauze. Results A visual analogue scale was created to aid the estimation of blood absorbed by the gauze. The absorptive capacity of different gauze sizes was determined when the gauze was dripping with blood. The amount of reduction in absorption was also determined when the gauze was wetted with normal saline before use. Conclusions The use of a visual analogue may increase the accuracy of blood loss estimation and decrease the consequences related to over or underestimation of blood loss.

  12. Modification of marine natural product ningalin B and SAR study lead to potent P-glycoprotein inhibitors.

    PubMed

    Yang, Chao; Wong, Iris L K; Jin, Wen Bin; Jiang, Tao; Chow, Larry M C; Wan, Sheng Biao

    2014-10-01

    In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

  13. Inhibition of the intrinsic NAD+ glycohydrolase activity of CD38 by carbocyclic NAD analogues.

    PubMed Central

    Wall, K A; Klis, M; Kornet, J; Coyle, D; Amé, J C; Jacobson, M K; Slama, J T

    1998-01-01

    Carba-NAD and pseudocarba-NAD are carbocyclic analogues of NAD+ in which a 2,3-dihydroxycyclopentane methanol replaces the beta-d-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ [Slama and Simmons (1988) Biochemistry 27, 183-193]. These carbocyclic NAD+ analogues, related to each other as diastereomers, have been tested as inhibitors of the intrinsic NAD+ glycohydrolase activity of human CD38, dog spleen NAD+ glycohydrolase, mouse CD38 and Aplysia californica cADP-ribose synthetase. Pseudocarba-NAD, the carbocyclic dinucleotide in which l-2,3-dihydroxycyclopentane methanol replaces the d-ribose of the nicotinamide riboside moiety of NAD+, was found to be the more potent inhibitor. Pseudocarba-NAD was shown to inhibit the intrinsic NAD+ glycohydrolase activity of human CD38 competitively, with Ki=148 microM determined for the recombinant extracellular protein domain and Ki=180 microM determined for the native protein expressed as a cell-surface enzyme on cultured Jurkat cells. Pseudocarba-NAD was shown to be a non-competitive inhibitor of the purified dog spleen NAD+ glycohydrolase, with Kis=47 miroM and Kii=198 microM. Neither pseudocarba-NAD nor carba-NAD inhibited mouse CD38 or Aplysia californica cADP-ribose synthetase significantly at concentrations up to 1 mM. The results underscore significant species differences in the sensitivity of these enzymes to inhibition, and indicate that pseudocarba-NAD will be useful as an inhibitor of the enzymic activity of human but not mouse CD38 in studies using cultured cells. PMID:9794804

  14. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins

    SciTech Connect

    Ho, Meng-Chiao; Sturm, Matthew B.; Almo, Steven C.; Schramm, Vern L.

    2010-01-12

    Ricin A-chain (RTA) and saporin-L1 (SAP) catalyze adenosine depurination of 28S rRNA to inhibit protein synthesis and cause cell death. We present the crystal structures of RTA and SAP in complex with transition state analogue inhibitors. These tight-binding inhibitors mimic the sarcin-ricin recognition loop of 28S rRNA and the dissociative ribocation transition state established for RTA catalysis. RTA and SAP share unique purine-binding geometry with quadruple {pi}-stacking interactions between adjacent adenine and guanine bases and 2 conserved tyrosines. An arginine at one end of the {pi}-stack provides cationic polarization and enhanced leaving group ability to the susceptible adenine. Common features of these ribosome-inactivating proteins include adenine leaving group activation, a remarkable lack of ribocation stabilization, and conserved glutamates as general bases for activation of the H{sub 2}O nucleophile. Catalytic forces originate primarily from leaving group activation evident in both RTA and SAP in complex with transition state analogues.

  15. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer.

    PubMed

    Busnena, Belnaser A; Foudah, Ahmed I; Melancon, Tina; El Sayed, Khalid A

    2013-04-01

    (-)-Oleocanthal (1) and ligstroside aglycone (2) are common bioactive olive oil secoiridoids. Secoiridoid 1 has been previously reported as a c-MET inhibitor. Chemically, (-)-oleocanthal is the elenolic acid ester of the common olive phenolic alcohol tyrosol. Therefore, several analogues (4-13) were synthesized by esterification and carbamoylation of tyrosol using diverse phenolic naturally occurring in olive and heterocyclic acids as elenolic acid bioisosteres to assess the effect of replacing the acid moiety of (-)-oleocanthal. Their c-MET inhibitory activity as well as their antiproliferative, antimigratory, and anti-invasive activities against the highly metastatic human breast cancer cell line MDA-MB231 has been assessed. Ligstroside aglycone (2) showed the best antimigratory activity. Generally, tyrosol esters showed better activities versus carbamate analogues. Tyrosol sinapate (5) showed the best c-MET phosphorylation inhibitory activity in Z'-LYTE kinase assay. Both 1 and 5 competitively inhibited the ATP binding into its pocket in the c-MET catalytic domain. Compound 5 showed selective activities against tumor cells without toxicity to the non-tumorigenic human breast MCF10A epithelial cell line. Tyrosol esters with a phenolic acid containing hydrogen bond donor and/or acceptor groups at the para-position have better anticancer and c-MET inhibitory activities. Olive oil secoiridoids are excellent scaffolds for the design of novel c-MET inhibitors. PMID:23403296

  16. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation

    PubMed Central

    ZHOU, DAI-YING; ZHAO, SU-QING; DU, ZHI-YUN; ZHENG, XI; ZHANG, KUN

    2016-01-01

    The concentrations required for curcumin to exert its anticancer activity (IC50, 20 µM) are difficult to achieve in the blood plasma of patients, due to the low bioavailability of the compound. Therefore, much effort has been devoted to the development of curcumin analogues that exhibit stronger anticancer activity and a lower IC50 than curcumin. The present study investigated twelve pyridine analogues of curcumin, labeled as groups AN, BN, EN and FN, to determine their effects in CWR-22Rv1 human prostate cancer cells. The inhibitory effects of these compounds on testosterone (TT)-induced androgen receptor (AR) activity was determined by performing an AR-linked luciferase assay and by TT-induced expression of prostate-specific antigen. The results of the current study suggested that the FN group of analogues had the strongest inhibitory effect of growth on CWR-22Rv1 cultured cells, and were the most potent inhibitor of AR activity compared with curcumin, and the AN, BN and EN analogues. Thus, the results of the present study indicate the inhibition of the AR pathways as a potential mechanism for the anticancer effect of curcumin analogues in human prostate cancer cells. Furthermore, curcumin analogues with pyridine as a distal ring and tetrahydrothiopyran-4-one as a linker may be good candidates for the development of novel drugs for the treatment of prostate cancer, by targeting the AR signaling pathway. PMID:27313760

  17. An efficient synthesis of an exo-enone analogue of LL-Z1640-2 and evaluation of its protein kinase inhibitory activities.

    PubMed

    Wang, Stephanie Q; Goh, Shermin S; Chai, Christina L L; Chen, Anqi

    2016-01-14

    An efficient synthesis of an exo-enone analogue (5) of resorcylic acid lactone (RAL), natural product LL-Z1640-2 (1), has been achieved using a Ni-catalysed regioselective reductive coupling macrocyclisation of an alkyne-aldehyde as a key step. The synthetic route is significantly shorter than those for the natural product and avoids the isomerisation problem of the cis-double bond in the molecule. The preliminary biological evaluation showed that the exo-enone analogue is a potent inhibitor of several important kinases relevant to cancer drug development.

  18. [Efficacy of somatostatin and its analogues in the treatment of acute pancreatitis: clinical retrospective study].

    PubMed

    Citone, G; Perri, S; Nardi, M; Maira, E; Lotti, R; Gabbrielli, F; Antonellis, M; Orsini, S

    2001-04-01

    Acute pancreatitis is an acute inflammatory disease of the pancreas, with variable involvement of other regional tissues or remote organ systems. Acute pancreatitis is mild in 80% of cases; virtually all patients with this form of disease will survive, because it's associated with minimal organ dysfunction and uneventful recovery; the severe pancreatitis develops in 20% of cases and is associated with higher morbidity and mortality. It's most important to identify the severity of disease at the moment of hospital admission; many scoring systems have been developed to serve as early prognostic signs: Ranson's criteria, Imrie's criteria, Apache II score, Balthazar's TC score. Recently, new drugs have been proposed in the treatment of acute pancreatitis, as, for example, calcitonine, glucagon, systemic antioxidants, antagonists of the receptors of interleukines, antiproteases (aprotinin and gabexate-mesilate) and the inhibitors of pancreatic secretions (somatostatin and its analogues). However, many controversies still exist concerning the real efficacy of these drugs in the treatment of acute pancreatitis, particularly regarding the inhibitors of pancreatic secretions: recently, some studies showed that somatostatin is able to actually reduce the local complication of the disease and the development of severe forms of acute pancreatitis; on the other hand, other studies failed to show real advantages of somatostatin reducing morbidity and mortality for pancreatitis. The aim of present study is a retrospective analysis of patients affected by acute pancreatitis in order to evaluate efficacy of somatostatin and its analogues. All patients subdivided in two groups: group A, patients treated with conventional therapy plus somatostatin and/or octreotide (SS/LS), and group B, patients treated only with conventional therapy. Results seem to show that somatostatin does not positively affect morbidity and mortality in patients with acute pancreatitis. The Authors conclude

  19. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  20. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed Central

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-01-01

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed. PMID:3297044

  1. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  2. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  3. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  4. Analogue models of pull-apart basins

    NASA Astrophysics Data System (ADS)

    McClay, Ken; Dooley, Tim

    1995-08-01

    Sandbox analogue models of pull-apart basins that developed in sedimentary strata above releasing steps in underlying basement faults are characterized by rhombic basins that are flat-bottomed box grabens with a subhorizontal synkinematic basin infill. Steep to nearly vertical, sigmoidal oblique-slip and segmented oblique-extensional faults are the dominant bounding structures of the pull-apart basins. Cross-basin, short-cut faults link the offset principal displacement zones that are characterized by flower structure development. The structural architectures of the physical models compare directly in form and dimensions to natural examples of strike-slip pull-apart basins.

  5. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  6. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  7. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue

    PubMed Central

    Chène, Patrick; Rudloff, Joëlle; Schoepfer, Joseph; Furet, Pascal; Meier, Peter; Qian, Zhiyan; Schlaeppi, Jean-Marc; Schmitz, Rita; Radimerski, Thomas

    2009-01-01

    Background Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Results Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. Conclusion The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations. PMID:19128485

  8. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  9. Probing the leucyl/phenylalanyl tRNA protein transferase active site with tRNA substrate analogues.

    PubMed

    Fung, Angela Wai Shan; Ebhardt, H Alexander; Krishnakumar, Kollappillil S; Moore, Jack; Xu, Zhizhong; Strazewski, Peter; Fahlman, Richard P

    2014-07-01

    Aminoacyl-tRNA protein transferases post-translationally conjugate an amino acid from an aminoacyl-tRNA onto the N-terminus of a target polypeptide. The eubacterial aminoacyl-tRNA protein transferase, L/F transferase, utilizes both leucyl-tRNA(Leu) and phenylalanyl-tRNA(Phe) as substrates. X-ray crystal structures with substrate analogues, the minimal substrate phenylalanyl adenosine (rA-Phe) and inhibitor puromycin, have been used to characterize tRNA recognition by L/F transferase. However analyses of these two X-ray crystal structures reveal significant differences in binding. Through structural analyses, mutagenesis, and enzymatic activity assays, we rationalize and demonstrate that the substrate analogues bind to L/F transferase with similar binding affinities using a series of different interactions by the various chemical groups of the analogues. Our data also demonstrates that enlarging the hydrophobic pocket of L/F transferase selectively enhances puromycin inhibition and may aid in the development of improved inhibitors for this class of enzymes.

  10. Antitumor Agents 284. New Desmosdumotin B Analogues with Bicyclic B-ring as Cytotoxic and Antitubulin Agents

    PubMed Central

    Nakagawa-Goto, Kyoko; Wu, Pei-Chi; Lai, Chin-Yu; Hamel, Ernest; Zhu, Hao; Zhang, Liying; Kozaka, Takashi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2011-01-01

    We previously reported that the biological activity of analogues of desmosdumotin B (1) was dramatically changed depending on the B-ring system. A naphthalene B-ring analogue 3 exerted potent in vitro activity against a diverse panel of human tumor cell lines with GI50 values of 0.8–2.1 μM. In contrast, 1-analogues with a phenyl B-ring showed unique selective activity against P-glycoprotein (P-gp) overexpressing multidrug resistance cell line. We have now prepared and evaluated 1-analogues with bicyclic or tricyclic aromatic B-ring systems as in vitro inhibitors of human cancer cell line proliferation. Among all synthesized derivatives, 21 with a benzo[b]thiophenyl B-ring was highly active, with GI50 values of 0.06–0.16 μM, and this activity was not influenced by overexpression of P-gp. Furthermore, 21 inhibited tubulin assembly in vitro with an IC 50 value of 2.0 μM and colchicine binding by 78% as well as cellular microtubule polymerization and spindle formation. PMID:21284385

  11. Nonpolyglutamatable antifolates as inhibitors of thymidylate synthase (TS) and potential antitumour agents.

    PubMed

    Bavetsias, V; Jackman, A L

    1998-08-01

    Thymidylate synthase (TS), an enzyme that catalyses the conversion of dUMP to dTMP, has been the focus of interest as a target in cancer chemotherapy for more than two decades. Over the last 10 years much research has been devoted to the design and development of nonpolyglutamatable inhibitors of TS as antitumour agents, mainly to over-come resistance due to unfavourable expression of folylpolyglutamate synthetase (FPGS). Lipophilic inhibitors of the enzyme were expected not to depend on the reduced folate carrier transporter (RFC) for cellular uptake, thus avoiding resistance due to an impaired RFC. Compounds of this type can be classified in three groups: A: nonclassical lipophilic inhibitors of TS, mainly folate-based analogues lacking the glutamate side chain; B: folate-based analogues in which the glutamate side chain has been modified in such a way that polyglutamation is precluded; and C: nonpolyglutamatable glutamate-containing inhibitors of TS. Compounds of group A included 5- or 6-substituted quinazolin-4-ones, benzo[flquinazolines, imidazotetrahydroquinoline- and benz[cd]indole-based inhibitors. The second group is mainly related to a series of g-linked dipeptide derivatives of ICIl98583, or analogues of this inhibitor where the glutamate residue was replaced with a range of a-amino acids. The third group is concerned with some 7-substituted derivatives of ICI198583 and the pyrrolo[3, 2-d]pyrimidine-based inhibitor 175. A large number of structurally diverse nonpolyglutamatable inhibitors of TS were synthesised some of which were potent inhibitors of the enzyme (human or E. coli) and in vitro cell growth. Three compounds, i.e. 49 (AG 337), 83 (AG 331), 123 (ZD9331) have reached the stage of clinical evaluation.

  12. Self-Powered Analogue Smart Skin.

    PubMed

    Shi, Mayue; Zhang, Jinxin; Chen, Haotian; Han, Mengdi; Shankaregowda, Smitha A; Su, Zongming; Meng, Bo; Cheng, Xiaoliang; Zhang, Haixia

    2016-04-26

    The progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction. Using an analogue localizing method, the resolution of this two-dimensional smart skin can be achieved at 1.9 mm with only four terminals, which notably decreases the terminal number of smart skins. The sensitivity of this smart skin is remarkable, which can even perceive the perturbation of a honey bee. Meanwhile, benefiting from the triboelectric mechanism, extra power supply is unnecessary for this smart skin. Therefore, it solves the problems of batteries and connecting wires for smart skins. With microstructured poly(dimethylsiloxane) films and silver nanowire electrodes, it can be covered on the skin with transparency, flexibility, and high sensitivity. PMID:27010713

  13. Long-term predictions using natural analogues

    SciTech Connect

    Ewing, R.C.

    1995-09-01

    One of the unique and scientifically most challenging aspects of nuclear waste isolation is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3}-10{sup 5} years) required by regulatory agencies for performance assessment. The direct validation of these extrapolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the lay public that there is a demonstrable and reasonable basis for accepting the long-term extrapolations. Natural systems (e.g., {open_quotes}natural analogues{close_quotes}) provide perhaps the only means of partial {open_quotes}validation,{close_quotes} as well as data that may be used directly in the models that are used in the extrapolation. Natural systems provide data on very large spatial (nm to km) and temporal (10{sup 3}-10{sup 8} years) scales and in highly complex terranes in which unknown synergisms may affect radionuclide migration. This paper reviews the application (and most importantly, the limitations) of data from natural analogue systems to the {open_quotes}validation{close_quotes} of performance assessments.

  14. Magnetohydrodynamical Analogue of a Black Hole

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Asenjo, Felipe

    2014-03-01

    We study the conditions that a plasma fluid and its container should meet to generate a magneto-acoustic horizon. This effect becomes an alternative to the analogue black hole found in a transonic fluid flow setting. In this context we use the magnetohydrodynamic formalism (MHD) to analyze the evolution of an irrotational plasma fluid interacting with an external constant magnetic field. Under certain plausible approximations, the dynamic of the field perturbations is described by a scalar field potential that follows a second order differential equation. As we prove here, this equation corresponds to the wave equation associated to a scalar field in a curved space-time. This horizon emerges when the local speed of the medium grows larger than the sound velocity. The magnetic field generates an effective pressure which contributes to the magneto-acoustic speed. We compare these results with the known physics of analogue black holes. We will also refer to our ongoing experiment that, in its first stage, attempts to reproduce the wave horizons found in an open channel with an obstacle: PRL 106, 021302 (2011).

  15. Carbonic anhydrase inhibitors: benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII.

    PubMed

    Alafeefy, Ahmed M; Isik, Semra; Abdel-Aziz, Hatem A; Ashour, Abdelkader E; Vullo, Daniela; Al-Jaber, Nabila A; Supuran, Claudiu T

    2013-03-15

    A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogues) have been obtained by reaction of sulfanilamide with ethylcyanoacetate followed by condensation with aromatic/heterocyclic aldehydes, isothiocyanates or diazonium salts. The new compounds have been investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4. 2.1.1), and more specifically against the cytosolic human (h) isoforms hCA I and II, as well as the transmembrane, tumor-associated ones CA IX and XII, which are validated antitumor targets. Most of the new benzenesulfonamides were low nanomolar or subnanomolar CA IX/XII inhibitors whereas they were less effective as inhibitors of CA I and II. The structure-activity relationship for this class of effective CA inhibitors is also discussed. Generally, electron donating groups in the starting aldehyde reagent favored CA IX and XII inhibition, whereas halogeno, methoxy and dimethylamino moieties led to very potent CA XII inhibitors. PMID:23290254

  16. Introduction of {alpha}-hydroxymethyamino acid residues in substrate specificity P1 position of trypsin inhibitor SFTI-1 from sunflower seeds retains its activity

    SciTech Connect

    Zablotna, Ewa; Kret, Agnieszka; Jaskiewicz, Anna; Olma, Aleksandra; Leplawy, Miroslaw T.; Rolka, Krzysztof . E-mail: krzys@chem.univ.gda.pl

    2006-02-17

    In many complexes formed by serine proteinases and their inhibitors, the hydroxyl group provided by water molecule or by the inhibitor Ser residue is located close to the inhibitor P{sub 1}-P{sub 1}{sup '} reactive site. In order to investigate the role of this group, we synthesized analogues of trypsin inhibitor SFTI-1 isolated from the seeds of sunflower modified in P{sub 1} by {alpha}-hydroxymethylserine (HmSer) and both enantiomers of {alpha}-hydroxymethylvaline (HmVal). All the synthesized analogues inhibited bovine {beta}-trypsin and human leukocyte elastase. SFTI-1 analogues with HmVal and HmSer appear to be potent inhibitors of bovine {beta}-trypsin, whereas [Val{sup 5}]SFTI-1 is practically inactive. Also trypsin inhibitory activity of [Ser{sup 5}]SFTI-1 is significantly lower. Since the electrostatic interaction between protonated {epsilon}-NH{sub 2} group of the inhibitor P{sub 1} position and {beta}-carboxylate of trypsin Asp{sup 189} is the main driving force for interaction of both molecules, the results obtained are very interesting. We believe that these SFTI-1 analogues belong to a novel class of serine proteinase inhibitors.

  17. Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.

    PubMed

    Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R

    2001-09-17

    Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.

  18. N-Acetyl glycals are tight-binding and environmentally insensitive inhibitors of hexosaminidases.

    PubMed

    Santana, A G; Vadlamani, G; Mark, B L; Withers, S G

    2016-06-28

    Mono-, di- and trisaccharide derivatives of 1,2-unsaturated N-acetyl-d-glucal have been synthesized and shown to function as tight-binding inhibitors/slow substrates of representative hexosaminidases. Turnover is slow and not observed in the thioamide analogue, allowing determination of the 3-dimensional structure of the complex. Inhibition is insensitive to pH and to mutation of key catalytic residues, consistent with the uncharged character of the inhibitor. These properties could render this inhibitor class less prone to development of resistance. PMID:27253678

  19. Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.

    PubMed

    Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R

    2001-09-17

    Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development. PMID:11549469

  20. Enantioselective Inhibition of Squalene Synthase by Aziridine Analogues of Presqualene Diphosphate

    PubMed Central

    Koohang, Ali; Bailey, Jessica L.; Erickson, Hans K.; Owen, David; Poulter, C. Dale

    2013-01-01

    Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation–reduction sequence of (±)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldi-methylsilyl ethers. SN2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(α-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC50 1.17 ± 0.08 μM in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(α-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase. PMID:20545375

  1. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  2. Marine-Derived Angiogenesis Inhibitors for Cancer Therapy

    PubMed Central

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-01-01

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs. PMID:23502698

  3. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  4. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    SciTech Connect

    Yu, Wenyu; Chory, Emma J.; Wernimont, Amy K.; Tempel, Wolfram; Scopton, Alex; Federation, Alexander; Marineau, Jason J.; Qi, Jun; Barsyte-Lovejoy, Dalia; Yi, Joanna; Marcellus, Richard; Iacob, Roxana E.; Engen, John R.; Griffin, Carly; Aman, Ahmed; Wienholds, Erno; Li, Fengling; Pineda, Javier; Estiu, Guillermina; Shatseva, Tatiana; Hajian, Taraneh; Al-awar, Rima; Dick, John E.; Vedadi, Masoud; Brown, Peter J.; Arrowsmith, Cheryl H.; Bradner, James E.; Schapira, Matthieu

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  5. Inhibitory effects of ethacrynic acid analogues lacking the α,β-unsaturated carbonyl unit and para-acylated phenols on human cancer cells.

    PubMed

    Bryant, Zack E; Janser, Romy F J; Jabarkhail, Medina; Candelaria-Lyons, Melissa S; Romero, Brittni B; Van slambrouck, Severine; Steelant, Wim F A; Janser, Ingo

    2011-02-01

    A series of ethacrynic acid analogues, lacking the α,β-unsaturated carbonyl unit, was synthesized and subsequently evaluated for their ability to inhibit the migration of human breast cancer cells, Hs578Ts(i)8 as well as of human prostate cancer cells, C4-2B. These cell lines provide a good model system to study migration and invasion, since they represent metastatic cancer. Our studies show that ethacrynic acid analogues with methyl substituents at the aromatic ring demonstrate no inhibitory effect on the migration of both cancer cell lines, whereas a precursor in the synthesis of these ethacrynic acid analogues (II-1, a para-acylated m-cresol) is an excellent inhibitor of the migration of both cancer cell lines. PMID:21227691

  6. Binding of adenosine and receptor-specific analogues to lymphocytes from control subjects and patients with common variable immunodeficiency.

    PubMed Central

    Shah, T; Simpson, R J; Webster, A D; Peters, T J

    1987-01-01

    Studies were performed on the binding of tritiated adenosine and its analogues, 5'-N-ethylcarboxamide adenosine (NECA) and N6-phenylisopropyladenosine (PIA), to human peripheral blood lymphocytes. These revealed binding only of adenosine (Kd, 1-10 microM, 14,000 binding sites/cell), which was abolished by dipyridamole, a specific adenosine transport inhibitor, suggesting that the binding is to the nucleoside transporter. The absence of high affinity (Kd less than or equal to 1 microM) binding of adenosine or of the two analogues. NECA and PIA suggests that the previously reported effects of adenosine on cAMP formation are not mediated by cell surface specific nucleoside receptors. Binding of adenosine to the carrier in lymphocytes from patients with common variable immunodeficiency was similar to those from control subjects. PMID:2958197

  7. Space Analogue Environments: Are the Populations Comparable?

    NASA Astrophysics Data System (ADS)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  8. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases.

    PubMed

    Satoh, T; Miyoshi, H; Sakamoto, K; Iwamura, H

    1996-01-11

    Capsaicin is a new naturally occurring inhibitor of proton-pumping NADH-ubiquinone oxidoreductase (NDH-1), that competitively acts against ubiquinone. A series of capsaicin analogues was synthesized to examine the structural factors required for the inhibitory action and to probe the structural property of the ubiquinone catalytic site of various NADH-ubiquinone reductases, including non-proton-pumping enzyme (NDH-2), from bovine heart mitochondria, potato tuber (Solanum tuberosum, L) mitochondria and Escherichia coli (GR 19N) plasma membranes. Some synthetic capsaicins were fairly potent inhibitors of each of the three NDH-1 compared with the potent rotenone and piericidin A. Synthetic capsaicin analogues inhibited all three NDH-1 activities in a competitive manner against an exogenous quinone. The modification both of the substitution pattern and of the number of methoxy groups on the benzene ring, which may be superimposable on the quinone ring of ubiquinone, did not drastically affect the inhibitory potency. In addition, alteration of the position of dipolar amide bond unit in the molecule and chemical modifications of this unit did not change the inhibitory potency, particularly with bovine heart and potato tuber NDH-1. These results might be explained assuming that the ubiquinone catalytic site of NDH-1 is spacious enough to accommodate a variety of structurally different capsaicin analogues in a dissimilar manner. Regarding the moiety corresponding to the alkyl side chain, a rigid diphenyl ether structure was more inhibitory than a flexible alkyl chain. Structure-activity studies and molecular orbital calculations suggested that a bent form is the active conformation of capsaicin analogues. On the other hand, poor correlations between the inhibitory potencies determined with the three NDH-1 suggested that the structural similarity of the ubiquinone catalytic sites of these enzymes is rather poor. The sensitivity to the inhibition by synthetic capsaicins

  9. Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.

    PubMed

    Österholm, Anna M; Ponder, James F; Kerszulis, Justin A; Reynolds, John R

    2016-06-01

    We have designed fully soluble ProDOTx-EDOTy copolymers that are electrochemically equivalent to electropolymerized PEDOT without using any surfactants or dispersants. We show that these copolymers can be incorporated as active layers in solution processed thin film supercapacitors to demonstrate capacitance, stability, and voltage similar to the values of those that use electrodeposited PEDOT as the active material with the added advantage of the possibility for large scale, high-throughput processing. These Type I supercapacitors provide exceptional cell voltages (up to 1.6 V), highly symmetrical charge/discharge behavior, promising long-term stability exceeding 50 000 charge/discharge cycles, as well as energy (4-18 Wh/kg) and power densities (0.8-3.3 kW/kg) that are comparable to those of electrochemically synthesized analogues. PMID:27195798

  10. Jupiter analogues and planets of active stars

    NASA Astrophysics Data System (ADS)

    Kürster, M.; Zechmeister, M.; Endl, M.; Lo Curto, G.; Hartman, H.; Nilsson, H.; Henning, T.; Hatzes, A. P.; Cochran, W. D.

    2013-04-01

    Combined results are now available from a 15 year long search for Jupiter analogues around solar-type stars using the ESO CAT + CES, ESO 3.6 m + CES, and ESO 3.6 m + HARPS instruments. They comprise planet (co-)discoveries (ι Hor and HR 506) and confirmations (three planets in HR 3259) as well as non-confirmations of planets (HR 4523 and ɛ Eri) announced elsewhere. A long-term trend in ɛ Ind found by our survey is probably attributable to a Jovian planet with a period >30 yr, but we cannot fully exclude stellar activity effects as the cause. A 3.8 year periodic variation in HR 8323 can be attributed to stellar activity.

  11. Synthesis of novel fluorocarbocyclic nucleosides and nucleotides as potential inhibitors of human immunodeficiency virus

    SciTech Connect

    Hilpert, H.

    1989-01-01

    3[prime]-Azido-3[prime]-deoxythymidine (AZT) and 2[prime], 3[prime]-dideoxycytidine (DDC) are potent in vivo inhibitors of human immunodeficiency virus. Due to their short half-life in the body and undesired side-effects compounds with improved bioavailability were designed. A feature of these analogues was the replacement of the heterocyclic oxygen atom by an isosteric CHF-group thus stabilizing the labile glycosidic bond against metabolic breakdown. A versatile and short synthesis, starting from ketone, serves to construct the highly functionalized and protected key intermediates. These ([alpha]- and [beta]-fluoro epimeric) intermediates were elaborated to eight fluorocarbocyclic nucleoside analogues linked with a thymine base, an adenine base, and a guanine base. An attempt was made to prepare analogues of the potent HIV inhibitor carbovir c. The unexpected oxidation of the double bond of compound d, instead of the desired Baeyer-Villiger ring-expansion, meant that the synthetic scheme was redundant. A second total synthesis involves the preparation of the three fluorocarbocyclic phosphonates. These analogues possess additionally a P-C linkage which should markedly enhance the stability of the side chain. To perform enzyme inhibition tests, three analogues were chemically activated to the biologically active triphosphates. Inhibition tests on HIV associated reverse transcriptase confirmed the high activity of one of the AZT triphosphates. The fluorocarbocyclic counterpart was two orders of magnitude less active. A fluorocarbocyclic phosphonate was twice as active as the AZT triphosphate. Neither the eight nucleoside analogues nor the three phosphonates displayed significant activity against HIV infected cells. Crystallographic data of two fluorocarbocyclic nucleosides, two potent HIV inhibitors, and some 20 examples of 2[prime]-deoxyribonucleosides have been compared.

  12. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.

  13. Current european regulatory perspectives on insulin analogues.

    PubMed

    Enzmann, Harald G; Weise, Martina

    2011-01-01

    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions. PMID:21736748

  14. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  15. Terrestrial Analogues for Lunar Impact Melt Flows

    NASA Technical Reports Server (NTRS)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2016-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pahoehoe and ?a ?a lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pahoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pahoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  16. Automated docking of monosaccharide substrates and analogues and methyl alpha-acarviosinide in the glucoamylase active site.

    PubMed

    Coutinho, P M; Dowd, M K; Reilly, P J

    1997-02-01

    Glucoamylase is an important industrial glucohydrolase with a large specificity range. To investigate its interaction with the monosaccharides D-glucose, D-mannose, and D-galactose and with the substrate analogues 1-deoxynojirimycin, D-glucono-1,5-lactone, and methyl alpha-acarviosinide, MM3(92)-optimized structures were docked into its active site using AutoDock 2.1. The results were compared to structures of glucoamylase complexes obtained by protein crystallography. Charged forms of some substrate analogues were also docked to assess the degree of protonation possessed by glucoamylase inhibitors. Many forms of methyl alpha-acarviosinide were conformationally mapped by using MM3(92), characterizing the conformational pH dependence found for the acarbose family of glucosidase inhibitors. Their significant conformers, representing the most common states of the inhibitor, were used as initial structures for docking. This constitutes a new approach for the exploration of binding modes of carbohydrate chains. Docking results differ slightly from x-ray crystallographic data, the difference being of the order of the crystallographic error. The estimated energetic interactions, even though agreeing in some cases with experimental binding kinetics, are only qualitative due to the large approximations made by AutoDock force field.

  17. Mushroom tyrosinase inhibitors from Aloe barbadensis Miller.

    PubMed

    Wu, Xiaofang; Yin, Sheng; Zhong, Jiasheng; Ding, Wenjing; Wan, Jinzhi; Xie, Zhiyong

    2012-12-01

    Two new chromones, 5-((S)-2'-oxo-4'-hydroxypentyl)-2-(β-glucopyranosyl-oxy-methyl)chromone (1) and 5-((S)-2'-oxo-4'-hydroxypentyl)-2-methoxychromone (2), together with four known analogues, 8-C-glucosyl-7-O-methyl-(S)-aloesol (3), isoaloeresin D (4), 8-C-glucosyl-(R)-aloesol (5), and aloesin (6) were isolated from the aqueous extract of Aloe barbadensis Miller. Their structures were determined on the basis of spectroscopic evidences (1-D and 2-D NMR, HRMS, UV, and IR data), chemical methods and the literature data. The Mosher's method was applied to establish the absolute configuration of compounds 1 and 2. The inhibitory effects of these chromones on the activity of mushroom tyrosinase were examined, and compound 6 was identified as a noncompetitive tyrosinase inhibitor with an IC(50) value of 108.62μg·mL(-1).

  18. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  19. Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): synthesis and photophysical properties.

    PubMed

    Segal, Meirav; Fischer, Bilha

    2012-02-28

    Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.

  20. Comparative structure-activity relationships of benztropine analogues at the dopamine transporter and histamine H(1) receptors.

    PubMed

    Kulkarni, Santosh S; Kopajtic, Theresa A; Katz, Jonathan L; Newman, Amy Hauck

    2006-06-01

    Benztropine (BZT) and its analogues inhibit dopamine uptake and bind with moderate to high affinity to the dopamine transporter (DAT). However, many of these compounds, in contrast to other monoamine uptake inhibitors, lack cocaine-like behavioral effects and fail to potentiate the effects of cocaine. The BZT analogues also exhibit varied binding affinities for muscarinic M(1) and histamine H(1) receptors. In this study, a comparative analysis was conducted of pharmacophoric features with respect to the activities of BZT analogues at the DAT and at the histamine H(1) receptor. The BZT analogues showed a wide range of histamine H(1) receptor (K(i)=16-37,600 nM) and DAT (K(i)=8.5-6370 nM) binding affinities. A stereoselective histamine H(1)-antagonist pharmacophore, using a five-point superimposition of classical antagonists on the template, cyproheptadine, was developed. A series of superimpositions and comparisons were performed with various analogues of BZT. In general, smaller substituents were well tolerated on the aromatic rings of the diphenyl methoxy group for both the DAT and H(1) receptor, however, for the H(1) receptor, substitution at only one of the aromatic rings was preferred. The substituents at the 2- and N-positions of the tropane ring were preferred for DAT, however, these groups seem to overlap receptor essential regions in the histamine H(1) receptor. Molecular models at the DAT and the histamine H(1) receptor provide further insight into the structural requirements for binding affinity and selectivity that can be implemented in future drug design.

  1. Rapid determination of sildenafil and its analogues in dietary supplements using gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Mokhtar, S U; Chin, S-T; Kee, C-L; Low, M-Y; Drummer, O H; Marriott, P J

    2016-03-20

    Application of gas chromatography-triple quadrupole mass spectrometry for identification, confirmation and quantification of 6 phosphodiesterase-5 (PDE-5) inhibitors (sildenafil, dimethylsildenafil, homosildenafil, thiosildenafil, thiodimethylsildenafil and thiohomosildenafil) in dietary supplements was investigated. The MS was operated in multiple reaction monitoring mode, for better sensitivity and selectivity. In this manner, the method is adequate to reduce background noise with less interference from co-eluting compounds in the samples. Two different ionisation techniques, electron ionisation (EI) and chemical ionisation (CI), were studied and compared. The chromatographic separation was performed on a short 10 m non-polar capillary column without any derivatisation step. This permitted fast analysis for all analogues with retention time less than 11 min, for both techniques. Use of backflushing can aid method retention time reduction and improves column maintenance. Evaluation of method validation included limit of detection (LOD), lower limit of quantitation (LLOQ), linearity, precision and recovery were performed for both EI and CI techniques. The LOD obtained varied from 0.03 to 1.50 μg/g and the LLOQ ranged from 0.10 to 5.00 μg/g. Good calibration linearity was obtained for all analogues for both techniques, with correlation coefficients (r(2)) higher than 0.99. Mean recoveries of all analogues using CI show higher values (83.4-108.8%) than that of EI (61.9-91.1%). The intra- and inter-assay precisions were evaluated for all analogues at spiked concentration of 10 μg/g and the relative standard deviation was less than 15% for both methods. These methods were then successfully applied to dietary supplement samples without prior derivatisation, confirming that the samples were adulterated with sildenafil and/or its analogues.

  2. Rapid determination of sildenafil and its analogues in dietary supplements using gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Mokhtar, S U; Chin, S-T; Kee, C-L; Low, M-Y; Drummer, O H; Marriott, P J

    2016-03-20

    Application of gas chromatography-triple quadrupole mass spectrometry for identification, confirmation and quantification of 6 phosphodiesterase-5 (PDE-5) inhibitors (sildenafil, dimethylsildenafil, homosildenafil, thiosildenafil, thiodimethylsildenafil and thiohomosildenafil) in dietary supplements was investigated. The MS was operated in multiple reaction monitoring mode, for better sensitivity and selectivity. In this manner, the method is adequate to reduce background noise with less interference from co-eluting compounds in the samples. Two different ionisation techniques, electron ionisation (EI) and chemical ionisation (CI), were studied and compared. The chromatographic separation was performed on a short 10 m non-polar capillary column without any derivatisation step. This permitted fast analysis for all analogues with retention time less than 11 min, for both techniques. Use of backflushing can aid method retention time reduction and improves column maintenance. Evaluation of method validation included limit of detection (LOD), lower limit of quantitation (LLOQ), linearity, precision and recovery were performed for both EI and CI techniques. The LOD obtained varied from 0.03 to 1.50 μg/g and the LLOQ ranged from 0.10 to 5.00 μg/g. Good calibration linearity was obtained for all analogues for both techniques, with correlation coefficients (r(2)) higher than 0.99. Mean recoveries of all analogues using CI show higher values (83.4-108.8%) than that of EI (61.9-91.1%). The intra- and inter-assay precisions were evaluated for all analogues at spiked concentration of 10 μg/g and the relative standard deviation was less than 15% for both methods. These methods were then successfully applied to dietary supplement samples without prior derivatisation, confirming that the samples were adulterated with sildenafil and/or its analogues. PMID:26808068

  3. 5,6,7-trisubstituted 4-aminopyrido[2,3-d]pyrimidines as novel inhibitors of adenosine kinase.

    PubMed

    Perner, Richard J; Gu, Yu-Gui; Lee, Chih-Hung; Bayburt, Erol K; McKie, Jeffery; Alexander, Karen M; Kohlhaas, Kathy L; Wismer, Carol T; Mikusa, Joe; Jarvis, Michael F; Kowaluk, Elizabeth A; Bhagwat, Shripad S

    2003-11-20

    The synthesis and structure-activity relationship of a series of 5,6,7-trisubstituted 4-aminopyrido[2,3-d]pyrimidines as novel nonnucleoside adenosine kinase inhibitors is described. A variety of alkyl, aryl, and heteroaryl substituents were found to be tolerated at the C5, C6, and C7 positions of the pyridopyrimidine core. These studies have led to the identification of analogues that are potent inhibitors of adenosine kinase with in vivo analgesic activity.

  4. ATP-Competitive Inhibitors of the Mammalian Target of Rapamycin: Design and Synthesis of Highly Potent and Selective Pyrazolopyrimidines

    SciTech Connect

    Zask, Arie; Verheijen, Jeroen C.; Curran, Kevin; Kaplan, Joshua; Richard, David J.; Nowak, Pawel; Malwitz, David J.; Brooijmans, Natasja; Bard, Joel; Svenson, Kristine; Lucas, Judy; Toral-Barza, Lourdes; Zhang, Wei-Guo; Hollander, Irwin; Gibbons, James J.; Abraham, Robert T.; Ayral-Kaloustian, Semiramis; Mansour, Tarek S.; Yu, Ker

    2009-09-18

    The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.

  5. Identification of new synthetic PDE-5 inhibitors analogues found as minor components in a dietary supplement.

    PubMed

    Schramek, Nicholas; Wollein, Uwe; Eisenreich, Wolfgang

    2014-08-01

    A dietary supplement sold in erotic shops was analysed. It contains dithiodesmethylcarbodenafil as the major component, which was already reported as an adulterant in dietary supplements. Additionally three more compounds were found and their structures were elucidated after isolation using NMR and mass spectroscopy. They were designated as isonitrosoprodenafil, dithiodesethylcarbodenafil and norcarbodenafil. PMID:24726888

  6. Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers.

    PubMed

    Praseetha, Sugathan; Bandaru, Srinivas; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2016-01-01

    Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy. PMID:27039807

  7. Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: synthesis and biological evaluation

    PubMed Central

    Nguyen Van, Tai; Hospital, Audrey; Lionne, Corinne; Jordheim, Lars P; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent

    2016-01-01

    Summary A series of seventeen β-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5’-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM. PMID:27559400

  8. New Frontiers in Selective Human MAO-B Inhibitors.

    PubMed

    Carradori, Simone; Silvestri, Romano

    2015-09-10

    Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.

  9. New Frontiers in Selective Human MAO-B Inhibitors.

    PubMed

    Carradori, Simone; Silvestri, Romano

    2015-09-10

    Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest. PMID:25915162

  10. Syntheses of (-)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (-)-deacetoxy-oleuropein aglycone, and related analogues.

    PubMed

    Smith, Amos B; Sperry, Jeffrey B; Han, Qiang

    2007-08-31

    Phenolic compounds extracted from extra virgin olive oil have attracted considerable recent attention. One of the components, (-)-oleocanthal (1), an inhibitor of the COX-1 and COX-2 enzymes, possesses similar potency as the NSAID ibuprofen. In this, a full account, we disclose the first- and now second-generation syntheses of both enantiomers of the oleocanthals, as well as the first synthesis of the closely related (-)-deacetoxy-oleuropein aglycone and a series of related analogues for structure activity studies. To demonstrate the utility of the second-generation synthesis, multigram quantities of (-)-oleocanthal were prepared in 10 steps (14% overall yield) from commercially available D-lyxose. PMID:17685574

  11. The influence of fluorinated molecules (semiochemicals and enzyme substrate analogues) on the insect communication system.

    PubMed

    Pesenti, Cristina; Viani, Fiorenza

    2004-05-01

    Can the introduction of fluorine atoms affect the bioactivity of natural semiochemicals? Can fluorine contribute in the creation of specific enzyme inhibitors to interrupt or disrupt the insect communication system? The first step for the bioactivity of a molecule is interaction with the biological sensor. Hydrogen and fluorine are almost bioisosteric and the receptor site of the enzyme can still recognize and accept the fluoro analogue of its natural substrate. However, the peculiar electronegativity of the fluorine atom can affect the binding, absorption, and transport of the molecule. The differences in the molecule's electronic properties can lead to differences in the chemical interactions between the receptor and the fluorinated substrate. Fluorine introduction can modify the metabolic stability and pathway of the semiochemicals in many different ways. Fluorinated analogues can show synergism, inhibition, or hyperagonism effects on insect behaviors, that is, the activity of the nonfluorinated parent compounds can be mimicked, lost, or increased. In any case, the fluorinated molecules can interact with the bioreceptors in a new and disrupting way. The semiochemicals are olfactory substances: fluorine can affect their volatility or smell. Production of semiochemicals from exogenous substances, perception at antennal receptors, and processing of biological responses are the main steps of communication among insects. In the production step, the fluorinated molecules can interact with enzymes that catalyze the biosynthesis of the natural pheromones. In the perception step, fluorinated semiochemicals can interact with the olfactory receptor cells; this often leads to totally unpredictable behaviors. Fluorinated molecules have been developed as probes to elucidate the complex chemorecognition processes of insects. Many of these molecules have been tested to find highly effective behavior-modifying chemicals. New analogues have been synthesized to investigate the

  12. Effects of analogues of ethanolamine and choline on phospholipid metabolism in rat hepatocytes

    PubMed Central

    Åkesson, Björn

    1977-01-01

    1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [14C]ethanolamine incorporation into phospholipids, whereas the incorporation of [3H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [3H]glycerol and hepatocytes, the appearance of 3H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [3H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of 3H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-14C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [14C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes. PMID:606244

  13. Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening

    PubMed Central

    Elban, Mark A.; Courter, Joel R.; Sugawara, Akihiro; Soeta, Takahiro; Madani, Navid; Princiotto, Amy M.; Kwon, Young Do; Kwong, Peter D.; Schön, Arne; Freire, Ernesto; Sodroski, Joseph; Smith, Amos B.

    2011-01-01

    The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, GOLD docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogues that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogues of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogues provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity. PMID:21169023

  14. Synthesis, antiarrhythmic activity, and toxicological evaluation of mexiletine analogues.

    PubMed

    Roselli, Mariagrazia; Carocci, Alessia; Budriesi, Roberta; Micucci, Matteo; Toma, Maddalena; Di Cesare Mannelli, Lorenzo; Lovece, Angelo; Catalano, Alessia; Cavalluzzi, Maria Maddalena; Bruno, Claudio; De Palma, Annalisa; Contino, Marialessandra; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Chiarini, Alberto; Franchini, Carlo; Ghelardini, Carla; Habtemariam, Solomon; Lentini, Giovanni

    2016-10-01

    Four mexiletine analogues have been tested for their antiarrhythmic, inotropic, and chronotropic effects on isolated guinea pig heart tissues and to assess calcium antagonist activity, in comparison with the parent compound mexiletine. All analogues showed from moderate to high antiarrhythmic activity. In particular, three of them (1b,c,e) were more active and potent than the reference drug, while exhibiting only modest or no negative inotropic and chronotropic effects and vasorelaxant activity, thus showing high selectivity of action. All compounds showed no cytotoxicity and 1b,c,d did not impair motor coordination. All in, these new analogues exhibit an interesting cardiovascular profile and deserve further investigation. PMID:27267000

  15. Synthesis, antiarrhythmic activity, and toxicological evaluation of mexiletine analogues.

    PubMed

    Roselli, Mariagrazia; Carocci, Alessia; Budriesi, Roberta; Micucci, Matteo; Toma, Maddalena; Di Cesare Mannelli, Lorenzo; Lovece, Angelo; Catalano, Alessia; Cavalluzzi, Maria Maddalena; Bruno, Claudio; De Palma, Annalisa; Contino, Marialessandra; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Chiarini, Alberto; Franchini, Carlo; Ghelardini, Carla; Habtemariam, Solomon; Lentini, Giovanni

    2016-10-01

    Four mexiletine analogues have been tested for their antiarrhythmic, inotropic, and chronotropic effects on isolated guinea pig heart tissues and to assess calcium antagonist activity, in comparison with the parent compound mexiletine. All analogues showed from moderate to high antiarrhythmic activity. In particular, three of them (1b,c,e) were more active and potent than the reference drug, while exhibiting only modest or no negative inotropic and chronotropic effects and vasorelaxant activity, thus showing high selectivity of action. All compounds showed no cytotoxicity and 1b,c,d did not impair motor coordination. All in, these new analogues exhibit an interesting cardiovascular profile and deserve further investigation.

  16. Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase.

    PubMed

    Xiao, Yi; Li, Sumei; Niu, Siwen; Ma, Liang; Zhang, Guangtao; Zhang, Haibo; Zhang, Gaiyun; Ju, Jianhua; Zhang, Changsheng

    2011-02-01

    The RNA polymerase inhibitor tiacumicin B is currently undergoing phase III clinical trial for treatment of Clostridium difficile associated diarrhea with great promise. To understand the biosynthetic logic and to lay a foundation for generating structural analogues via pathway engineering, the tiacumicin B biosynthetic gene cluster was identified and characterized from the producer Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085. Sequence analysis of a 110,633 bp DNA region revealed the presence of 50 open reading frames (orfs). Functional investigations of 11 orfs by in vivo inactivation experiments, preliminarily outlined the boundaries of the tia-gene cluster and suggested that 31 orfs were putatively involved in tiacumicin B biosynthesis. Functions of a halogenase (TiaM), two glycosyltransferases (TiaG1 and TiaG2), a sugar C-methyltransferase (TiaS2), an acyltransferase (TiaS6), and two cytochrome P450s (TiaP1 and TiaP2) were elucidated by isolation and structural characterization of the metabolites from the corresponding gene-inactivation mutants. Accumulation of 18 tiacumicin B analogues from 7 mutants not only provided experimental evidence to confirm the proposed functions of individual biosynthetic enzymes, but also set an example of accessing microbial natural product diversity via genetic approach. More importantly, biochemical characterization of the FAD-dependent halogenase TiaM reveals a sequentially acting dihalogenation step tailoring tiacumicin B biosynthesis.

  17. Herbimycins D-F, ansamycin analogues from Streptomyces sp. RM-7-15.

    PubMed

    Shaaban, Khaled A; Wang, Xiachang; Elshahawi, Sherif I; Ponomareva, Larissa V; Sunkara, Manjula; Copley, Gregory C; Hower, James C; Morris, Andrew J; Kharel, Madan K; Thorson, Jon S

    2013-09-27

    Bacterial strains belonging to the class actinomycetes were isolated from the soil near a thermal vent of the Ruth Mullins coal fire (Appalachian Mountains of eastern Kentucky). High-resolution electrospray ionization mass spectrometry and ultraviolet absorption profiles of metabolites from one of the isolates (Streptomyces sp. RM-7-15) revealed the presence of a unique set of metabolites ultimately determined to be herbimycins D-F (1-3). In addition, herbimycin A (4), dihydroherbimycin A (TAN 420E) (7), and the structurally distinct antibiotic bicycylomycin were isolated from the crude extract of Streptomyces sp. RM-7-15. Herbimycins A and D-F (1-3) displayed comparable binding affinities to the Hsp90α. While the new analogues were found to be inactive in cancer cell cytotoxicity and antimicrobial assays, they may offer new insights in the context of nontoxic ansamycin-based Hsp90 inhibitors for the treatment of neurodegenerative disease. PMID:23947794

  18. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  19. Phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) influence mushroom tyrosinase activity.

    PubMed

    Lejczak, B; Kafarski, P; Makowiecka, E

    1987-02-15

    A series of phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) were synthesized in order to study their interaction with mushroom tyrosinase. 1-Amino-2-(3,4-dihydroxyphenyl)ethylphosphonic acid and 1-amino-2-(3,4-dimethoxyphenyl)ethylphosphonic acid turned out to be substrates for mushroom tyrosinase with Km values of 3.3 mM and 9.3 mM respectively. Shortening of the alkyl chain by one methylene group gave amino-(3,4-dihydroxyphenyl)methylphosphonic acid, one of the most powerful known inhibitors of this enzyme. This compound, racemic as well as in its optically active forms, exerts a mixed type of inhibition with an affinity for the enzyme one order of magnitude greater than that of the natural substrate. PMID:3109385

  20. Phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) influence mushroom tyrosinase activity.

    PubMed Central

    Lejczak, B; Kafarski, P; Makowiecka, E

    1987-01-01

    A series of phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) were synthesized in order to study their interaction with mushroom tyrosinase. 1-Amino-2-(3,4-dihydroxyphenyl)ethylphosphonic acid and 1-amino-2-(3,4-dimethoxyphenyl)ethylphosphonic acid turned out to be substrates for mushroom tyrosinase with Km values of 3.3 mM and 9.3 mM respectively. Shortening of the alkyl chain by one methylene group gave amino-(3,4-dihydroxyphenyl)methylphosphonic acid, one of the most powerful known inhibitors of this enzyme. This compound, racemic as well as in its optically active forms, exerts a mixed type of inhibition with an affinity for the enzyme one order of magnitude greater than that of the natural substrate. PMID:3109385

  1. Curcumin and its analogues: a potential natural compound against HIV infection and AIDS.

    PubMed

    Prasad, Sahdeo; Tyagi, Amit K

    2015-11-01

    No safe and effective cure currently exists for human immunodeficiency virus (HIV). However, antiretroviral therapy can prolong the lives of HIV patients and lowers the secondary infections. Natural compounds, which are considered to be pleiotropic molecules, could be useful against HIV. Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), can be used for the treatment of several diseases including HIV-AIDS because of its antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial nature. In this review we have summarized that how curcumin and its analogues inhibit the infection and replication of viral genes and prevent multiplicity of HIV. They are inhibitors of HIV protease and integrase. Curcumin also inhibits Tat transactivation of the HIV1-LTR genome, inflammatory molecules (interleukins, TNF-α, NF-κB, COX-2) and HIV associated various kinases including tyrosine kinase, PAK1, MAPK, PKC, cdk and others. In addition, curcumin enhances the effect of conventional therapeutic drugs and minimizes their side effects.

  2. Synthesis of iminoalditol analogues of galactofuranosides and their activities against glycosidases.

    PubMed

    Sandbhor, Mahendra; Bhasin, Milan; Williams, Dean T; Hsieh, Margaret; Wu, Shih-Hsiung; Zou, Wei

    2008-11-24

    Iminoalditol analogues of galactofuranosides were synthesized from 1-C-(2'-oxo-propyl)-1,4-dideoxy-1,4-imino-d-galactosides and different amines by reductive amination, followed by removal of protecting groups. The activity of these compounds against galactosidases and other glycosidases was investigated. The best inhibitor against beta-galactosidase (bovine liver) is a diastereomeric mixture of an iminoalditol (10h), which contains a hydrophobic hexadecyl aglycon (R=C(16)H(33)), whereas no significant inhibitory activity was observed with compounds having a hydrophilic aglycon. Surprisingly, activation of alpha-galactosidase (coffee bean) by 10h was also observed. Because these results were obtained from a mixture of iminoalditols, the inhibition and activation of glycosidases could result from different diastereomers.

  3. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  4. Development of matrix metalloproteinase inhibitors in cancer therapy.

    PubMed

    Hidalgo, M; Eckhardt, S G

    2001-02-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the degradation of the extracellular matrix. The MMPs have been implicated in the processes of tumor growth, invasion, and metastasis; are frequently overexpressed in malignant tumors; and have been associated with an aggressive malignant phenotype and adverse prognosis in patients with cancer. A number of MMP inhibitors are being developed for the treatment of cancer. The most extensively studied class of MMP inhibitors includes collagen peptidomimetics and nonpeptidomimetic inhibitors of the MMP active site, tetracycline derivatives, and bisphosphonates. The hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat, which bind covalently to the zinc atom at the MMP-active site, were the first MMP inhibitors to be studied in detail. Marimastat is currently being studied in randomized clinical trials. The nonpeptidic MMP inhibitors were synthesized in an attempt to improve the oral bioavailability and pharmaceutical properties of the peptidic inhibitors. Several members of this class of compounds are undergoing evaluation in phase III clinical trials. The tetracyclines and, particularly, the nonantibiotic chemically modified tetracyclines, interfere with several aspects of MMP expression and activation and inhibit tumor growth and metastases in preclinical models. A representative agent of this class, Col-3, is currently undergoing phase I clinical trials. The development of the MMP inhibitors, like that of other targeted and predominantly antiproliferative compounds, poses a challenge because the paradigms that have governed the design of clinical oncology trials may not be relevant to this new class of agents. The anticipated need for long-term administration of these drugs, together with their cytostatic mechanism of action, will require novel clinical trial design strategies.

  5. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    PubMed Central

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  6. The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues.

    PubMed

    Van der Walt, Mietha M; Terre'Blanche, Gisella; Petzer, Anél; Petzer, Jacobus P

    2015-04-01

    Based on a report that sulfanylphthalimides are highly potent monoamine oxidase (MAO) B selective inhibitors, the present study examines the adenosine receptor affinities and MAO-B inhibitory properties of a series of 4- and 5-sulfanylphthalimide analogues. Since adenosine antagonists (A1 and A2A subtypes) and MAO-B inhibitors are considered agents for the therapy of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease, dual-target-directed drugs that antagonize adenosine receptors and inhibit MAO-B may have enhanced therapeutic value. The results document that the sulfanylphthalimide analogues are selective for the adenosine A1 receptor over the A2A receptor subtype, with a number of compounds also possessing MAO-B inhibitory properties. Among the compounds evaluated, 5-[(4-methoxybenzyl)sulfanyl]phthalimide was found to possess the highest binding affinity to adenosine A1 receptors with a Ki value of 0.369 μM. This compound is reported to also inhibit MAO-B with an IC50 value of 0.020 μM. Such dual-target-directed compounds may act synergistic in the treatment of Parkinson's disease: antagonism of the A1 receptor may facilitate dopamine release, while MAO-B inhibition may reduce dopamine metabolism. Additionally, dual-target-directed compounds may find therapeutic value in Alzheimer's disease: antagonism of the A1 receptor may be beneficial in the treatment of cognitive dysfunction, while MAO-B inhibition may exhibit neuroprotective properties. In neurological diseases, such as Parkinson's disease and Alzheimer's disease, dual-target-directed drugs are expected to be advantageous over single-target treatments.

  7. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues

    PubMed Central

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P.; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å2 are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  8. Phenyl Substituted 4-Hydroxypyridazin-3(2H)-ones and 5-Hydroxypyrimidin-4(3H)-ones: Inhibitors of Influenza A Endonuclease

    PubMed Central

    2015-01-01

    Seasonal and pandemic influenza outbreaks remain a major human health problem. Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is attractive for the development of new agents for the treatment of influenza infection. Our earlier studies identified a series of 5- and 6-phenyl substituted 3-hydroxypyridin-2(1H)-ones that were effective inhibitors of influenza endonuclease. These agents identified as bimetal chelating ligands binding to the active site of the enzyme. In the present study, several aza analogues of these phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity. In contrast to the 4-aza analogue of 6-(4-fluorophenyl)-3-hydroxypyridin-2(1H)-one, the 5-aza analogue (5-hydroxy-2-(4-fluorophenyl)pyrimidin-4(3H)-one) did exhibit significant activity as an endonuclease inhibitor. The 6-aza analogue of 5-(4-fluorophenyl)-3-hydroxypyridin-2(1H)-one (6-(4-fluorophenyl)-4-hydroxypyridazin-3(2H)-one) also retained modest activity as an inhibitor. Several varied 6-phenyl-4-hydroxypyridazin-3(2H)-ones and 2-phenyl-5-hydroxypyrimidin-4(3H)-ones were synthesized and evaluated as endonuclease inhibitors. The SAR observed for these aza analogues are consistent with those previously observed with various phenyl substituted 3-hydroxypyridin-2(1H)-ones. PMID:25225968

  9. Application of high-performance liquid chromatography with charged aerosol detection for universal quantitation of undeclared phosphodiesterase-5 inhibitors in herbal dietary supplements.

    PubMed

    Poplawska, Magdalena; Blazewicz, Agata; Bukowinska, Kinga; Fijalek, Zbigniew

    2013-10-01

    Incidents of detecting novel analogues of phosphodiesterase 5 (PDE-5) inhibitors in illicit dietary supplements for erectile dysfunction are constantly reported. However, little is known about their content in a single dose, mainly due to the poor availability or inaccessibility of pure reference standards. This study presents a new strategy of quantitative analysis of unknown and recently identified compounds. Charged aerosol detector (CAD), described as "universal detector", combined with high-performance liquid chromatography (HPLC) system proved to be a useful tool for fast and simple quantitation of PDE-5 inhibitors' analogues in a complex herbal matrix without individual reference standards available. Universal calibration was employed for calculations. Two easily obtainable reference materials - sildenafil and tadalafil - were selected as universal standards and the content of analogues was estimated with respect to their response. The error of proposed indirect determination was found to be ± 3%, which is less than enough to obtain a reliable result of the content. The elaborated method was applied for quantitative analyses of PDE-5 inhibitors and 10 analogues detected in 22 illicit dietary supplements and two bulk powdered herbal materials. All target analogues were identified using time-of-flight mass spectrometry with electrospray ionization. Obtained results indicate that the quantity of PDE-5 inhibitors in all tested samples is considered to be pharmacologically relevant. PMID:23850939

  10. Insulin, insulin analogues and diabetic retinopathy.

    PubMed

    Chantelau, Ernst; Kimmerle, Renate; Meyer-Schwickerath, Rolf

    2008-02-01

    Insulin is absolutely vital for living beings. It is not only involved in metabolism, but also in the regulation of growth factors, e.g. IGF-1. In this review we address the role insulin has in the natural evolution of diabetic retinopathy. On the one hand, chronic deficiency of insulin and IGF-1 at the retina is thought to cause capillary degeneration, with subsequent ischaemia. On the other hand, acute abundance of (exogenously administered) insulin and IGF-1 enhances ischaemia-induced VEGF expression. A critical ratio of tissue VEGF-susceptibility: VEGF-availability triggers vascular proliferation (i.e. of micro-aneurysms and/or abnormal vessels). The patent-protected insulin analogues Lispro, Glulisine, Aspart, Glargine and Detemir are artificial insulin derivatives with altered biological responses compared to natural insulin (e.g. divergent insulin and /or IGF-1 receptor-binding characteristics, signalling patterns, and mitogenicity). Their safety profiles concerning diabetic retinopathy remain to be established by randomised controlled trials. Anecdotal reports and circumstantial evidence suggest that Lispro and Glargine might worsen diabetic retinopathy.

  11. Actions of Thyroid Hormone Analogues on Chemokines.

    PubMed

    Davis, Paul J; Glinsky, Gennadi V; Lin, Hung-Yun; Mousa, Shaker A

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3'-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  12. Fluorescent polyene ceramide analogues as membrane probes.

    PubMed

    Nieves, Ingrid; Artetxe, Ibai; Abad, José Luis; Alonso, Alicia; Busto, Jon V; Fajarí, Lluís; Montes, L Ruth; Sot, Jesús; Delgado, Antonio; Goñi, Félix M

    2015-03-01

    Three ceramide analogues have been synthesized, with sphingosine-like chains containing five conjugated double bonds. Pentaene I has an N-palmitoyl acyl chain, while the other two pentaenes contain also a doxyl radical, respectively, at C5 (Penta5dox) and at C16 (Penta16dox) positions of the N-acyl chain. Pentaene I maximum excitation and emission wavelengths in a phospholipid bilayer are 353 and 478 nm, respectively. Pentaene I does not segregate from the other lipids in the way natural ceramide does, but rather mixes with them in a selective way according to the lipid phases involved. Fluorescence confocal microscopy studies show that when lipid domains in different physical states coexist, Pentaene I emission is higher in gel than in fluid domains, and in liquid-ordered than in liquid-disordered areas. Electron paramagnetic resonance of the pentaene doxyl probes confirms that these molecules are sensitive to the physical state of the bilayer. Calorimetric and fluorescence quenching experiments suggest that the lipids under study orient themselves in lipid bilayers with their polar moieties located at the lipid-water interface. The doxyl radical in the N-acyl chain quenches the fluorescence of the pentaene group when in close proximity. Because of this property, Penta16dox can detect gel-fluid transitions in phospholipids. The availability of probes for lipids in the gel phase is important in view of novel evidence for the existence of gel microdomains in cell membranes.

  13. Inhibition of firefly luciferase by alkane analogues.

    PubMed

    Takehara, Kô; Kamaya, Hiroshi; Ueda, Issaku

    2005-01-18

    We reported that anesthetics increased the partial molal volume of firefly luciferase (FFL), while long-chain fatty acids (LCFA) decreased it. The present study measured the actions of dodecanol (neutral), dodecanoic acid (negatively charged), and dodecylamine (positively charged) hydrophobic molecules on FFL. The interaction modes are measured by (1) ATP-induced bioluminescence of FFL and (2) fluorescence of 2-(p-toluidino)naphthalene-6-sulfonate (TNS). TNS fluoresces brightly in hydrophobic media. It competes with the substrate luciferin on the FFL binding. From the Scatchard plot of TNS titration, the maximum binding number of TNS was 0.83, and its binding constant was 8.27 x 10(5) M(-1). Job's plot also showed that the binding number is 0.89. From the TNS titration of FFL, the binding constant was estimated to be 8.8 x 10(5) M(-1). Dodecanoic acid quenched the TNS fluorescence entirely. Dodecanol quenched about 25% of the fluorescence, whereas dodecylamine increased it. By comparing the fluorescence of TNS and bioluminescence of FFL, the binding modes and the inhibition mechanisms of these dodecane analogues are classified in three different modes: competitive (dodecanoic acid), noncompetitive (dodecylamine), and mixed (dodecanol).

  14. Radiolabeled Somatostatin Analogue Therapy Of Gastroenteropancreatic Cancer.

    PubMed

    Bodei, Lisa; Kwekkeboom, Dik J; Kidd, Mark; Modlin, Irvin M; Krenning, Eric P

    2016-05-01

    Peptide receptor radionuclide therapy (PRRT) has been utilized for more than two decades and has been accepted as an effective therapeutic modality in the treatment of inoperable or metastatic gastroenteropancreatic neuroendocrine neoplasms (NENs) or neuroendocrine tumors (NETs). The two most commonly used radiopeptides for PRRT, (90)Y-octreotide and (177)Lu-octreotate, produce disease-control rates of 68%-94%, with progression-free survival rates that compare favorably with chemotherapy, somatostatin analogues, and newer targeted therapies. In addition, biochemical and symptomatic responses are commonly observed. In general, PRRT is well tolerated with only low to moderate toxicity in most individuals. In line with the need to place PRRT in the therapeutic sequence of gastroenteropancreatic NENs, a recently sponsored phase III randomized trial in small intestine NENs treated with (177)Lu-octreotate vs high-dose octreotide long-acting release demonstrated that (177)Lu-octreotate significantly improved progression-free survival. Other strategies that are presently being developed include combinations with targeted therapies or chemotherapy, intra-arterial PRRT, and salvage treatments. Sophisticated molecular tools need to be incorporated into the management strategy to more effectively define therapeutic efficacy and for an early identification of adverse events. The strategy of randomized controlled trials is a key issue to standardize the treatment and establish the position of PRRT in the therapeutic algorithm of NENs. PMID:27067503

  15. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  16. Mammary analogue secretory carcinoma mimicking salivary adenoma.

    PubMed

    Williams, Lindsay; Chiosea, Simion I

    2013-12-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor characterized by ETV6 translocation. It appears that prior studies have identified MASC by reviewing salivary gland carcinomas, such as acinic cell carcinoma and adenocarcinoma, not otherwise specified. To address the possibility of MASC mimicking benign salivary neoplasms we reviewed 12 salivary gland (cyst)adenomas diagnosed prior to the discovery of MASC. One encapsulated (cyst)adenoma of the parotid gland demonstrated features of MASC. The diagnosis was confirmed by fluorescence in situ hybridization with an ETV6 break-apart probe. An unusual complex pattern of ETV6 rearrangement with duplication of the telomeric/distal ETV6 probe was identified. This case illustrates that MASC may mimic salivary (cyst)adenomas. To more accurately assess true clinical and morphologic spectrum of MASC, future studies may have to include review of salivary (cyst)adenomas. The differential diagnosis of MASC may have to be expanded to include cases resembling salivary (cyst)adenomas.

  17. Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

    PubMed Central

    2014-01-01

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

  18. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  19. From BPA to its analogues: Is it a safe journey?

    PubMed

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful?

  20. Cell-Cycle Analyses Using Thymidine Analogues in Fission Yeast

    PubMed Central

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry. PMID:24551125

  1. From BPA to its analogues: Is it a safe journey?

    PubMed

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful? PMID:27262103

  2. Effects of Prostaglandin Analogues on Aqueous Humor Outflow Pathways

    PubMed Central

    Winkler, Nelson S.

    2014-01-01

    Abstract Elevated intraocular pressure (IOP) is the most prevalent risk factor for glaucoma. All treatments, whether surgical or pharmaceutical, are aimed at lowering IOP. Prostaglandin analogues are a first line therapy for glaucoma due to their ability to reduce IOP, once-daily dosing, efficacy, and minimal side-effect profile. Whereas prostaglandin analogues have been known to alter aqueous humor outflow through the unconventional (uveoscleral) pathway, more recent evidence suggests their action also occurs through the conventional (trabecular) pathway. Understanding how prostaglandin analogues successfully lower IOP is important, as this information may lead to the discovery of new molecular targets for future therapeutic intervention. This review explores the current understanding of prostaglandin analogue biology as it pertains to IOP reduction and improved aqueous humor outflow facility. PMID:24359106

  3. Analogues for Wild2: Carbonaceous Chondrites Shot into Aerogel

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; MacArthur, J. L.; Wickham-Eade, J. E.; Price, M. C.; Burchell, M. J.; Butterworth, A. L.; Baker, S. H.

    2016-08-01

    Comet Wild2 particles show similarities to carbonaceous chondrites. We compare Wild2 grains to analogue shots of CV3 and CR2 powders in aerogel tracks, using the same techniques, to make accurate comparisons.

  4. Mars Methane Analogue Mission (M3): Analytical Techniques and Operations

    NASA Astrophysics Data System (ADS)

    Cloutis, E.; Vrionis, H.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Samson, C.; Stromberg, J.; Strong, K.; Tremblay, A.; Whyte, L.; Wing, B.

    2011-03-01

    The Mars Methane Analogue Mission (M3) project is designed to simulate a rover-based search for, and analysis of, methane sources on Mars at a serpentinite open pit mine in Quebec, using a variety of instruments.

  5. Sulphur Spring: Busy Intersection and Possible Martian Analogue

    NASA Technical Reports Server (NTRS)

    Nankivell, A.; Andre, N.; Thomas-Keprta, K.; Allen, C.; McKay, D.

    2000-01-01

    Life in extreme environments exhibiting conditions similar to early Earth and Mars, such as Sulphur Spring, may harbor microbiota serving as both relics from the past as well as present day Martian analogues.

  6. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core

    NASA Astrophysics Data System (ADS)

    da Fonseca, Paula C. A.; Morris, Edward P.

    2015-07-01

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  7. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core.

    PubMed

    da Fonseca, Paula C A; Morris, Edward P

    2015-07-02

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  8. Synthesis and biological evaluation of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as adenosine kinase inhibitors.

    PubMed

    Perner, Richard J; Lee, Chih-Hung; Jiang, Meiqun; Gu, Yu-Gui; Didomenico, Stanley; Bayburt, Erol K; Alexander, Karen M; Kohlhaas, Kathy L; Jarvis, Michael F; Kowaluk, Elizabeth L; Bhagwat, Shripad S

    2005-06-01

    The synthesis and structure-activity relationship of a series of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as novel non-nucleoside adenosine kinase inhibitors is described. A variety of substituents, primarily aryl, at the C6 and C7 positions of the pyridopyrimidine core were found to yield analogues that are potent inhibitors of adenosine kinase. In contrast to the 5,7-disubstituted and 5,6,7-trisubstituted pyridopyrimidine series, these analogues exhibited only modest potency to inhibit AK in intact cells.

  9. Photochemical synthesis of nucleoside analogues from cyclobutanones: bicyclic and isonucleosides.

    PubMed

    Jaffer, Mileina; Ebead, Abdelaziz; Lee-Ruff, Edward

    2010-05-26

    The preparation of two nucleoside analogues are reported. Both syntheses involve a key photochemical ring-expansion of cyclobutanones to an oxacarbene and its subsequent scavenging by 6-chloropurine. The synthesis of a bicyclic (locked) purine starts from a oxabicycloheptanone with a hydroxymethyl pendant. The preparation of an isonucleoside uses a cyclobutanone with an alpha-substituted 6-chloropurine. Irradiation of the latter produces an isonucleoside and acyclic nucleoside analogues.

  10. Analogue and digital linear modulation techniques for mobile satellite

    NASA Technical Reports Server (NTRS)

    Whitmarsh, W. J.; Bateman, A.; Mcgeehan, J. P.

    1990-01-01

    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described.

  11. Phosphate-modified analogues of m(7)GTP and m(7)Gppppm(7)G-Synthesis and biochemical properties.

    PubMed

    Ziemniak, Marcin; Kowalska, Joanna; Lukaszewicz, Maciej; Zuberek, Joanna; Wnek, Katarzyna; Darzynkiewicz, Edward; Jemielity, Jacek

    2015-09-01

    The synthesis and biochemical properties of 17 new mRNA cap analogues are reported. Six of these nucleotides are m(7)GTP derivatives, whereas 11 are 'two headed' tetraphosphate dinucleotides based on a m(7)Gppppm(7)G structure. The compounds contain either a boranophosphate or phosphorothioate moiety in the nucleoside neighbouring position(s) and some of them possess an additional methylene group between β and γ phosphorus atoms. The compounds were prepared by divalent metal chloride-mediated coupling of an appropriate m(7)GMP analogue with a given P(1),P(2)-di(1-imidazolyl) derivative. The analogues were evaluated as tools for studying cap-dependent processes in a number of biochemical assays, including determination of affinity to eukaryotic initiation factor eIF4E, susceptibility to enzymatic hydrolysis, and translational efficiency in vitro. The results indicate that modification in the phosphate chain can increase binding to cap-interacting proteins and provides higher resistance to degradation. Furthermore, modified derivatives of m(7)GTP were found to be potent inhibitors of cap-dependent translation in cell free systems.

  12. Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides

    PubMed Central

    Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2016-01-01

    Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315

  13. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  14. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents.

    PubMed

    Tanpure, Rajendra P; George, Clinton S; Strecker, Tracy E; Devkota, Laxman; Tidmore, Justin K; Lin, Chen-Ming; Herdman, Christine A; Macdonough, Matthew T; Sriram, Madhavi; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2013-12-15

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 μM) and strongly cytotoxic against selected human cancer cell lines (for example, GI50=5.47 nM against NCI-H460 cells with fluoro-benzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18

  15. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  16. Chemotactic peptide analogues. Synthesis and chemotactic activity of N-formyl-Met-Leu-Phe analogues containing (S)-phenylalaninol derivatives.

    PubMed

    Zecchini, G P; Paradisi, M P; Torrini, I; Spisani, S

    1995-09-01

    The synthesis and the biological activity towards human neutrophils of some N-formyl-Met-Leu-Phe-OMe analogues containing (S)-phenylalaninol (Pheol) or its derivatives in place of the native phenylalanine are reported. While the analogue containing Pheol (4) was found to be devoid of significant biological activity, its esters 3 and 5, although inactive as chemoattractants, are able to strongly stimulate superoxide production and are active with a lower efficacy in the lysozyme release. PMID:7487425

  17. Pathway modulators and inhibitors.

    PubMed

    Smith, John A

    2009-07-01

    Inhibitors of specific cellular pathways are useful for investigating the roles of proteins of unknown function, and for selectively inhibiting a protein in complex pathways to uncover its relationships to other proteins in this and other interacting pathways. This appendix provides links to Web sites that describe cellular processes and pathways along with the various classes of inhibitors, numerous references, downloadable diagrams, and technical tips.

  18. Update on TNF Inhibitors.

    PubMed

    Kerdel, Francisco A

    2016-06-01

    The introduction of tumor necrosis factor (TNF)-α inhibitors dramatically improved the management of psoriasis. Some newer or investigational biologics with different mechanisms of action have demonstrated noninferiority or superiority to etanercept, the first self-injectable anti-TNF-α agent to become available in the United States. Nonetheless, TNF-α inhibitors are likely to remain a mainstay of therapy for many years.

  19. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  20. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site

    SciTech Connect

    Wu, J.C.; Warren, T.C.; Adams, J.; Proudfoot, J.; Skiles, J.; Raghavan, P.; Perry, C.; Potocki, I.; Farina, P.R.; Grob, P.M. )

    1991-02-26

    A novel dipyridodiazepinone, 6,11-dihydro-11-cyclopropyl-4-methyldipyrido(2,3-b:2{prime},3{prime}-e)-(1,4)diazepin-6-one (BI-RG-587), is a selective noncompetitive inhibitor of HIV-1 reverse transcriptase (RT-1). An azido photoaffinity analogue of BI-RG-587 was synthesized and found to irreversibly inhibit the enzyme upon UV irradiation. BI-RG-587 and close structural analogues competitively protected RT-1 from inactivation by the photoaffinity label. A thiobenzimidazolone (TIBO) derivative, a nonnucleoside inhibitor of RT-1, also protected the enzyme from photoinactivation, which suggests a common binding site for these compounds. Substrates dGTP, template-primer, and tRNA afforded no protection from enzyme inactivation. A tritiated photoaffinity probe was found to stoichiometrically and selectively label p66 such that 1 mol of probe inactivates 1 mol of RT-1.

  1. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines.

    PubMed Central

    Kawa, S.; Nikaido, T.; Aoki, Y.; Zhai, Y.; Kumagai, T.; Furihata, K.; Fujii, S.; Kiyosawa, K.

    1997-01-01

    To obtain information regarding the growth-inhibitory effect of 1,25-dihydroxyvitamin D3 and its non-calcaemic analogue 22-oxa-1,25-dihydroxyvitamin D3 on pancreatic cancer cell lines, differences in the effects of G1-phase cell cycle-regulating factors were studied in vitamin D-responsive and non-responsive cell lines. Levels of expression of cyclins (D1, E and A), cyclin-dependent kinases (2 and 4) and cyclin-dependent kinase inhibitors (p21 and p27) were analysed by Western blotting after treatment with these compounds. In the responsive cells (BxPC-3, Hs 700T and SUP-1), our observations were: (1) marked up-regulation of p21 and p27 after 24 h treatment with 10(-7) mol l(-1) 1,25-dihydroxyvitamin D3 and 22-oxa-1,25-dihydroxyvitamin D3; and (2) marked down-regulation of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors after 7 days' treatment. In non-responsive cells (Hs 766T and Capan-1), no such changes were observed. In conclusion, vitamin D analogues up-regulate p21 and p27 as an early event, which in turn could block the G1/S transition and induce growth inhibition in responsive cells. Images Figure 3 Figure 5 Figure 6 PMID:9328147

  2. Nanomolar Inhibitors of AmpC [beta]-Lactamase

    SciTech Connect

    Morandi, Federica; Caselli, Emilia; Morandi, Stefania; Focia, Pamela J.; Blazquez, Jesus; Shoichet, Brian K.; Prati, Fabio

    2010-03-08

    {beta}-lactamases are the most widespread resistance mechanism to {beta}-lactam antibiotics, such as the penicillins and the cephalosporins. In an effort to combat these enzymes, a combination of stereoselective organic synthesis, enzymology, microbiology, and X-ray crystallography was used to design and evaluate new carboxyphenyl-glycylboronic acid transition-state analogue inhibitors of the class C {beta}-lactamase AmpC. The new compounds improve inhibition by over 2 orders of magnitude compared to analogous glycylboronic acids, with K{sub i} values as low as 1 nM. On the basis of the differential binding of different analogues, the introduced carboxylate alone contributes about 2.1 kcal/mol in affinity. This carboxylate corresponds to the ubiquitous C3(4)' carboxylate of {beta}-lactams, and this energy represents the first thermodynamic measurement of the importance of this group in molecular recognition by class C {beta}-lactamases. The structures of AmpC in complex with two of these inhibitors were determined by X-ray crystallography at 1.72 and 1.83 {angstrom} resolution. These structures suggest a structural basis for the high affinity of the new compounds and provide templates for further design. The highest affinity inhibitor was 5 orders of magnitude more selective for AmpC than for characteristic serine proteases, such as chymotrypsin. This inhibitor reversed the resistance of clinical pathogens to the third generation cephalosporin ceftazidime; it may serve as a lead compound for drug discovery to combat bacterial resistance to {beta}-lactam antibiotics.

  3. Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase

    PubMed Central

    Sweeney, Noreena L.; Hanson, Alicia M.; Mukherjee, Sourav; Ndjomou, Jean; Geiss, Brian J.; Steel, J. Jordan; Frankowski, Kevin J.; Li, Kelin; Schoenen, Frank J.; Frick, David N.

    2015-01-01

    The flavivirus nonstructural protein 3 (NS3) is a protease and helicase, and on the basis of its similarity to its homologue encoded by the hepatitis C virus (HCV), the flavivirus NS3 might be a promising drug target. Few flavivirus helicase inhibitors have been reported, in part, because few specific inhibitors have been identified when nucleic acid unwinding assays have been used to screen for helicase inhibitors. To explore the possibility that compounds inhibiting NS3-catalyzed ATP hydrolysis might function as antivirals even if they do not inhibit RNA unwinding in vitro, we designed a robust dengue virus (DENV) NS3 ATPase assay suitable for high-throughput screening. Members of two classes of inhibitory compounds were further tested in DENV helicase-catalyzed RNA unwinding assays, assays monitoring HCV helicase action, subgenomic DENV replicon assays, and cell viability assays and for their ability to inhibit West Nile virus (Kunjin subtype) replication in cells. The first class contained analogues of NIH molecular probe ML283, a benzothiazole oligomer derived from the dye primuline, and they also inhibited HCV helicase and DENV NS3-catalyzed RNA unwinding. The most intriguing ML283 analogue inhibited DENV NS3 with an IC50 value of 500 nM and was active against the DENV replicon. The second class contained specific DENV ATPase inhibitors that did not inhibit DENV RNA unwinding or reactions catalyzed by HCV helicase. Members of this class contained a 4-hydroxy-3-(5-methylfuran-2-carbonyl)-2H-pyrrol-5-one scaffold, and about 20 μM of the most potent pyrrolone inhibited both DENV replicons and West Nile virus replication in cells by 50%. PMID:26029739

  4. Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels.

    PubMed

    Jiang, Hongni; Zeng, Bo; Chen, Gui-Lan; Bot, David; Eastmond, Sarah; Elsenussi, Sandra E; Atkin, Stephen L; Boa, Andrew N; Xu, Shang-Zhong

    2012-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used anti-inflammatory therapeutic agents, among which the fenamate analogues play important roles in regulating intracellular Ca²⁺ transient and ion channels. However, the effect of NSAIDs on TRPC4 and TRPC5 is still unknown. To understand the structure-activity of fenamate analogues on TRPC channels, we have synthesized a series of fenamate analogues and investigated their effects on TRPC4 and TRPC5 channels. Human TRPC4 and TRPC5 cDNAs in tetracycline-regulated vectors were transfected into HEK293 T-REx cells. The whole cell current and Ca²⁺ movement were recorded by patch clamp and calcium imaging, respectively. Flufenamic acid (FFA), mefenamic acid (MFA), niflumic acid (NFA) and diclofenac sodium (DFS) showed inhibition on TRPC4 and TRPC5 channels in a concentration-dependent manner. The potency was FFA>MFA>NFA>DFS. Modification of 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with F, CH₃, OCH₃, OCH₂CH₃, COOH, and NO₂ led to the changes in their channel blocking activity. However, 2-(2'-methoxy-5'-methylphenyl)aminobenzoic acid stimulated TRPC4 and TRPC5 channels. Selective COX1-3 inhibitors (aspirin, celecoxib, acetaminophen, and indomethacin) had no effect on the channels. Longer perfusion (> 5 min) with FFA (100 μM) and MFA (100 μM) caused a potentiation of TRPC4 and TRPC5 currents after their initial blocking effects that appeared to be partially mediated by the mitochondrial Ca²⁺ release. Our results suggest that fenamate analogues are direct modulators of TRPC4 and TRPC5 channels. The substitution pattern and conformation of the 2-phenylamino ring could alter their blocking activity, which is important for understanding fenamate pharmacology and new drug development targeting the TRPC channels.

  5. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle.

    PubMed

    Althagafy, Hanan S; Graf, Tyler N; Sy-Cordero, Arlene A; Gufford, Brandon T; Paine, Mary F; Wagoner, Jessica; Polyak, Stephen J; Croatt, Mitchell P; Oberlies, Nicholas H

    2013-07-01

    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.

  6. Incorporation of tryptophan analogues into the lantibiotic nisin.

    PubMed

    Zhou, Liang; Shao, Jinfeng; Li, Qian; van Heel, Auke J; de Vries, Marcel P; Broos, Jaap; Kuipers, Oscar P

    2016-05-01

    Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin.

  7. Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii.

    PubMed

    Ma, Christopher I; Diraviyam, Karthikeyan; Maier, Martin E; Sept, David; Sibley, L David

    2013-09-27

    Apicomplexan parasites such as Toxoplasma gondii rely on actin-based motility to cross biological barriers and invade host cells. Key structural and biochemical differences in host and parasite actins make this an attractive target for small-molecule inhibitors. Here we took advantage of recent advances in the synthesis of cyclic depsipeptide compounds that stabilize filamentous actin to test the ability of chondramides to disrupt growth of T. gondii in vitro. Structural modeling of chondramide A (2) binding to an actin filament model revealed variations in the binding site between host and parasite actins. A series of 10 previously synthesized analogues (2b-k) with substitutions in the β-tyrosine moiety blocked parasite growth on host cell monolayers with EC₅₀ values that ranged from 0.3 to 1.3 μM. In vitro polymerization assays using highly purified recombinant actin from T. gondii verified that synthetic and natural product chondramides target the actin cytoskeleton. Consistent with this, chondramide treatment blocked parasite invasion into host cells and was more rapidly effective than pyrimethamine, a standard therapeutic agent. Although the current compounds lack specificity for parasite vs host actin, these studies provide a platform for the future design and synthesis of synthetic cyclic peptide inhibitors that selectively disrupt actin dynamics in parasites. PMID:24020843

  8. Synthetic Chondramide A Analogues Stabilize Filamentous Actin and Block Invasion by Toxoplasma gondii

    PubMed Central

    2013-01-01

    Apicomplexan parasites such as Toxoplasma gondii rely on actin-based motility to cross biological barriers and invade host cells. Key structural and biochemical differences in host and parasite actins make this an attractive target for small-molecule inhibitors. Here we took advantage of recent advances in the synthesis of cyclic depsipeptide compounds that stabilize filamentous actin to test the ability of chondramides to disrupt growth of T. gondii in vitro. Structural modeling of chondramide A (2) binding to an actin filament model revealed variations in the binding site between host and parasite actins. A series of 10 previously synthesized analogues (2b–k) with substitutions in the β-tyrosine moiety blocked parasite growth on host cell monolayers with EC50 values that ranged from 0.3 to 1.3 μM. In vitro polymerization assays using highly purified recombinant actin from T. gondii verified that synthetic and natural product chondramides target the actin cytoskeleton. Consistent with this, chondramide treatment blocked parasite invasion into host cells and was more rapidly effective than pyrimethamine, a standard therapeutic agent. Although the current compounds lack specificity for parasite vs host actin, these studies provide a platform for the future design and synthesis of synthetic cyclic peptide inhibitors that selectively disrupt actin dynamics in parasites. PMID:24020843

  9. Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity.

    PubMed

    Shoshan, Michal S; Lehman, Yonat; Goch, Wojciech; Bal, Wojciech; Tshuva, Edit Y; Metanis, Norman

    2016-08-01

    Seleno-substituted model peptides of copper metallochaperone proteins were analyzed for the metal affinity and in vitro anti-oxidative reactivity. An acyclic MTCXXC (X is any amino acid) reference peptide previously analyzed as a potent inhibitor of ROS production underwent substitution of the cysteine residues with selenocysteine to give two singly substituted derivatives C3U and C6U and the doubly substituted analogue C3U/C6U. Presumably due to the softer nature of Se vs. S, all selenocysteine containing peptides demonstrated high affinity to Cu(i), higher than that of the reference peptide, and in the same order of magnitude as that measured for the native protein, Atox1. A stronger impact of residue 3 confirmed previous findings on its more dominant role in metal coordination. In vitro studies on the HT-29 human colon cancer cell line, MEF mice embryonic fibroblasts, and MEF with the knocked-out Atox1 gene (Atox1-/-) consistently identified C3U/C6U as the most potent inhibitor of ROS cellular production based on the 2',7'-dichlorodihydrofluorescin diacetate (H2DCF-DA) assay, also in comparison with known drugs employed in the clinic for Wilson's disease. The selenocysteine containing peptides are thus promising drug candidates for chelation therapy of Wilson's disease and related conditions relevant to excessive copper levels. PMID:27349676

  10. Nonpeptidic HIV protease inhibitors possessing excellent antiviral activities and therapeutic indices. PD 178390: a lead HIV protease inhibitor.

    PubMed

    Prasad, J V; Boyer, F E; Domagala, J M; Ellsworth, E L; Gajda, C; Hamilton, H W; Hagen, S E; Markoski, L J; Steinbaugh, B A; Tait, B D; Humblet, C; Lunney, E A; Pavlovsky, A; Rubin, J R; Ferguson, D; Graham, N; Holler, T; Hupe, D; Nouhan, C; Tummino, P J; Urumov, A; Zeikus, E; Zeikus, G; Gracheck, S J; Erickson, J W

    1999-12-01

    With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety. The polar substitution is also advantageous for decreasing toxicity, providing inhibitors with higher therapeutic indices. The best inhibitor among this series, (S)-6-[2-(4-aminophenyl)-ethyl]-(3-(2-tert-butyl-5-methyl-phenylsulfa nyl)-4-hydroxy-6-isopropyl-5,6-dihydro-pyran-2-one (34S), exhibited an EC50 of 200 nM with a therapeutic index of > 1000. More importantly, these non-peptidic inhibitors, 16S and 34S, appear to offer little cross-resistance to the currently marketed peptidomimetic PR inhibitors. The selected inhibitors tested in vitro against mutant HIV PR showed a very small increase in binding affinities relative to wild-type HIV PR. Cmax and absolute bioavailability of 34S were higher and half-life and time above EC95 were longer compared to 16S. Thus 34S, also known as PD 178390, which displays good antiviral efficacy, promising pharmacokinetic characteristics and favorable activity against mutant enzymes and CYP3A4, has been chosen for further preclinical evaluation.

  11. Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives.

    PubMed

    Monte, A P; Waldman, S R; Marona-Lewicka, D; Wainscott, D B; Nelson, D L; Sanders-Bush, E; Nichols, D E

    1997-09-12

    hallucinogens, that such compounds must be full agonists at the 5-HT2A receptor subtype. In contrast to the 2,5-dimethoxy-substituted phenethylamines, where rigidification of the methoxy groups had no deleterious effect on activity, the loss of activity in the 3,4,5-trioxygenated mescaline analogues may suggest that the 3 and 5 methoxy groups must remain conformationally mobile to enable receptor activation.

  12. Terrestrial research in Mars analogue environments

    NASA Astrophysics Data System (ADS)

    Osipov, G.

    Fatty acids (FA) content was measured by GC-MS SIM technique in Sulfide ores of present day (Mid-Atlantic Ridge and others) and ancient (Ural Paleocene, Russia) black smokers; Early Proterozoic kerites of Volyn; Siberian, Canadian and Antarctic permafrosts and also in rocks of East-European platform Achaean crystalline basement. Analysis was shown presence those and only those fatty acids which are specific to microorganisms. FA with 12 up 19 of carbon atoms are thought to be a bacterial biomass sign. 3-Hydroxy fatty acids also found in samples and are strong specific markers of gram-negative bacteria. Cultivation yield living bacteria in some cases. The East-European platform Achaean crystalline basement rocks opened by Vorotilov Deep Well (VDW) drilled through Puchezh-Katunski impact structure were studied within depths 2575 - 2805 m. 34 microbial lipid markers were detected by GC-MS and 22 species were identified. Bacteria of g. Bacillus reached 6,8 % in subsurface communities. However, members of gg. Clostridium (37,1 - 33,2 %) and Rhodococcus (27,6 - 33,7 %) were absolute dominants within studied depth interval. Some lipid patterns of kerite samples could be assessed to definite genera or, in special cases, to species of contemporary microorganisms. For instance, 2-hydroxylauric acid is specific to Pseudomonas putida group or Acinetobacter spp., and hydroxymyristic together with hydroxypalmitic are specific to P.cepacea and cyanobacteria. 3-hydroxystearic acid was known as component of Acetobacter diazothrophycus and Gloebacter violaceous cyanobacterium. 10-hydroxystearic acid associated with Nocardia spp., which oxidizes oleic acid in organic substrates. 10-methylhexadecanoic (10Me16) acid together with 10Me14, 10Me15 and 10Me17 analogues are markers of actinomycetes. Significant part of Black Smokers organic matter is probably biogenic. Fatty acid features strongly assigns it to bacterial, microeucariotic and planta cells. Par example 3-hydroxy acids are

  13. Spectral analysis of lunar analogue samples

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard

    2016-04-01

    Analyses of samples derived from terrestrial analogue sites are used to study lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during field campaigns (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. Equipment used in the laboratory consists of a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer, a Raman laser spectrometer, as well as UV-VIS and NIR reflectance spectrometers. The Raman, UV-VIS and NIR are also used in combination with the EXoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011). Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Calibration of the devices by creating a new dark and reference spectra has to take place after every sample measurement. In this way we take into account changes that occur in the signal due to the eating of the devices during the measurements. Moreover, the integration time is adjusted to obtain a clear signal without leading to oversaturation in the reflectance spectrum. The typical integration times for the UV-VIS reflectance spectrometer vary between 1 - 18 s, depending on the amount of daylight during experiments. For the NIR reflectance spectrometer the integration time resulting in the best signals is approximately 150 ms in combination with a broad spectrum light

  14. Iron isotopes in an Archean ocean analogue

    NASA Astrophysics Data System (ADS)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  15. Synthesis of non-competitive inhibitors of sphingomyelinases with significant activity.

    PubMed

    Yokomatsu, Tsutomu; Murano, Tetsuo; Akiyama, Takeshi; Koizumi, Junichi; Shibuya, Shiroshi; Tsuji, Yoshiaki; Soeda, Shinji; Shimeno, Hiroshi

    2003-01-20

    A series of short-chain analogues of N-palmitoylsphingosine-1-phosphate, modified by replacement of the phosphate and the long alkenyl side chain with hydrolytically stable difluoromethylene phosphonate and phenyl, respectively, were prepared to study the structure-activity relationship for inhibition of sphingomyelinase. The study revealed that inhibition is highly dependent upon the stereochemistry of the asymmetric centers of the acylamino moiety, and resulted in identification of a non-competitive inhibitor with the same level of inhibitory activity of schyphostatin, the most potent of the few known small molecular inhibitors of sphingomyelinase.

  16. Imidazolium-based warheads strongly influence activity of water-soluble peptidic transglutaminase inhibitors.

    PubMed

    Badarau, Eduard; Mongeot, Alexandre; Collighan, Russell; Rathbone, Dan; Griffin, Martin

    2013-08-01

    New peptidic water-soluble inhibitors are reported. In addition to the carboxylate moiety, a new polar warhead was explored. Depending on the size of its substituents, the newly appended imidazolium scaffold designed to enhance the hydrophilic character of the inhibitors could induce a good inhibition for tissue transglutaminase (TG2) and blood coagulation factor XIIIa (FXIIIa). Correlated with the narrow tunnel that hosts the target catalytic cysteine residue, the various modulations suggest a bent conformation of the ligands as the binding pattern mode. Analogues in the dialkylsulfonium series were also tested and showed specificity for TG2 over FXIIIa.

  17. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    PubMed Central

    Ammazzalorso, Alessandra; De Filippis, Barbara; Campestre, Cristina; Laghezza, Antonio; Marrone, Alessandro; Amoroso, Rosa; Tortorella, Paolo; Agamennone, Mariangela

    2016-01-01

    Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data. PMID:27782083

  18. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  19. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  20. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  1. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  2. Central effects of angiotensin II, its fragment and analogues.

    PubMed

    Georgiev, V P; Klousha, V E; Petkov, V D; Markovska, V L; Svirskis, S V; Mountsinietse, R K; Anouans, Z E

    1984-01-01

    The effects of the octapeptide angiotensin II (AT II), its fragment Ile8 AT3-8 and the analogues Sar1 Ala8 AT II, Ala8 AT II and Ile8 AT II were studied with respect to: the level of biogenic amines (DA, 5-HT and their metabolites HVA and 5-HIAA) in the forebrain; the behaviour of the animals--haloperidol catalepsy, apomorphine stereotypy, unconditioned jumping reaction (UJR), convulsive threshold. Good correlation was found between the biochemical and behavioural effects. The fragment of AT II where phenylalanine is substituted at the C-terminal by Ile reduces the haloperidol-increased content of HVA, potentiates apomorphine stereotypy and reduces catalepsy, whereas the AT II analogues (where the C-terminal phenylalanine is substituted by Ala, and the N-terminal--by Sar) potentiate the effect of haloperidol increasing the HVA content, reduce apomorphine stereotypy and potentiate catalepsy; saralasine independently applied induces brief catalepsy; AT II, its fragment and analogues inhibit UJR, in combination with amphetamine and PTZ this effect becomes deeper; the duration of hexobarbital sleep is increased. The peptides investigated increase the convulsive threshold. The results show that the hexapeptide fragment has preserved the effects of AT II, whereas in the analogues (with changed C- and N-terminals) they are changed. The results obtained may be explained with the modulating influence of AT II-receptors on the DA-ergic receptors in the brain structures with which AT II and its fragment and analogues enter in contact.

  3. Review of Insulin and its Analogues in Diabetes Mellitus

    PubMed Central

    Mane, Krishnappa; Chaluvaraju, KC; Niranjan, MS; Zaranappa, TR; Manjuthej, TR

    2012-01-01

    Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin’s, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested. PMID:24826038

  4. Natural inhibitors of thrombin.

    PubMed

    Huntington, James A

    2014-04-01

    The serine protease thrombin is the effector enzyme of blood coagulation. It has many activities critical for the formation of stable clots, including cleavage of fibrinogen to fibrin, activation of platelets and conversion of procofactors to active cofactors. Thrombin carries-out its multiple functions by utilising three special features: a deep active site cleft and two anion binding exosites (exosite I and II). Similarly, thrombin inhibitors have evolved to exploit the unique features of thrombin to achieve rapid and specific inactivation of thrombin. Exogenous thrombin inhibitors come from several different protein families and are generally found in the saliva of haematophagous animals (blood suckers) as part of an anticoagulant cocktail that allows them to feed. Crystal structures of several of these inhibitors reveal how peptides and proteins can be targeted to thrombin in different and interesting ways. Thrombin activity must also be regulated by endogenous inhibitors so that thrombi do not occlude blood flow and cause thrombosis. A single protein family, the serpins, provides all four of the endogenous thrombin inhibitors found in man. The crystal structures of these serpins bound to thrombin have been solved, revealing a similar exosite-dependence on complex formation. In addition to forming the recognition complex, serpins destroy the structure of thrombin, allowing them to be released from cofactors and substrates for clearance. This review examines how the special features of thrombin have been exploited by evolution to achieve inhibition of the ultimate coagulation protease.

  5. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. PMID:26362302

  6. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis

    PubMed Central

    Aoi, Yuki; Kawashima, Shigehiro A.; Simanis, Viesturs; Yamamoto, Masayuki; Sato, Masamitsu

    2014-01-01

    Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast. PMID:24990387

  7. Development of a comprehensive spectral library of sildenafil and related active analogues using LC-QTOF-MS and its application for screening counterfeit pharmaceuticals.

    PubMed

    Lee, Sooyeun; Ji, Dajeong; Park, Meejung; Chung, Kyu Hyuck

    2015-12-01

    The abuse or misuse of forged erectile-dysfunction drugs, containing phosphodiesterase type 5 inhibitors (e.g. sildenafil), is a serious issue globally. Therefore, the detection of sildenafil and related active analogues in counterfeit pharmaceuticals or the differentiation between counterfeit and authentic drugs has been performed with a variety of analytical techniques. Recently, a liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS)-based in-house library, consisting of accurate mass ion fragmentation information and retention times, was effectively applied to screen a large number of compounds in field of forensic toxicology. However, a comprehensive LC-QTOF-MS spectral library of sildenafil and related active analogues has not yet been reported. In the present study, a spectral library of 40 compounds of sildenafil and related analogues was developed with accurate mass spectra and retention times using LC-QTOF-MS, and applied to screen nine marketed counterfeit products. The in-house library successfully identified sildenafil, dimethylsildenafil, hydroxyhomosildenafil, demethylhongdenafil, pseudovardenafil and vardenafil in the samples. Our LC-QTOF-MS-based spectral library search is considered a powerful approach for identifying sildenafil and related active analogues in counterfeit pharmaceuticals.

  8. Structure-based design of a benzodiazepine scaffold yields a potent allosteric inhibitor of hepatitis C NS5B RNA polymerase.

    PubMed

    Vandyck, Koen; Cummings, Maxwell D; Nyanguile, Origène; Boutton, Carlo W; Vendeville, Sandrine; McGowan, David; Devogelaere, Benoit; Amssoms, Katie; Last, Stefaan; Rombauts, Klara; Tahri, Abdellah; Lory, Pedro; Hu, Lili; Beauchamp, Derek A; Simmen, Kenny; Raboisson, Pierre

    2009-07-23

    HCV NS5B polymerase, an essential and virus-specific enzyme, is an important target for drug discovery. Using structure-based design, we optimized a 1,5-benzodiazepine NS5B polymerase inhibitor chemotype into a new sulfone-containing scaffold. The design yielded potent inhibitor (S)-4c (K(D) = 0.79 nM), which has approximately 20-fold greater affinity for NS5B than its carbonyl analogue (R)-2c.

  9. 2-Benzylidene-1-indanone derivatives as inhibitors of monoamine oxidase.

    PubMed

    Nel, Magdalena S; Petzer, Anél; Petzer, Jacobus P; Legoabe, Lesetja J

    2016-10-01

    In the present study, a series of twenty-two 2-benzylidene-1-indanone derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The 2-benzylidene-1-indanone derivatives are structurally related to a series of benzylideneindanone derivatives which has previously been found to be MAO-B inhibitors. This study finds that the 2-benzylidene-1-indanones are MAO-B specific inhibitors with IC50 values <2.74μM. Among the compounds evaluated, twelve compounds exhibited IC50<0.1μM and may be considered as high potency inhibitors. The 2-benzylidene-1-indanone derivatives also inhibited MAO-A with the most potent inhibition exhibited by 5g (IC50=0.131μM). An analysis of the structure-activity relationships for MAO-B inhibition show that substitution on the A-ring with a 5-hydroxy group and on the B-ring with halogens and the methyl group yield high potency inhibition. It may therefore be concluded that 2-benzylidene-1-indanone analogues are promising leads for design of therapies for disorders such as Parkinson's disease. PMID:27578245

  10. Structure-Based Design of Novel Tetrahydro-Beta-Carboline Derivatives with a Hydrophilic Side Chain as Potential Phosphodiesterase Inhibitors

    PubMed Central

    Elhady, Ahmed K.; Sigler, Sara C.; Noureldin, Nazih; Canzoneri, Joshua C.; Ahmed, Nermin S.; Piazza, Gary A.; Abadi, Ashraf H.

    2015-01-01

    Tadalafil is a clinically approved phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. It contains two chiral carbons, and the marketed isomer is the 6R, 12aR isomer with a methyl substituent on the terminal nitrogen of the piperazinedione ring. In this report, tadalafil analogues with an extended hydrophilic side chain on the piperazine nitrogen were designed to interact with particular hydrophilic residues in the binding pocket. This leads to analogues with moderate inhibitory activity on phosphodiesterase-5, even for isomers in which chiral carbons are of the S configuration.

  11. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  12. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  13. Phosphodiesterase-5 inhibitors.

    PubMed

    Cockrill, Barbara A; Waxman, Aaron B

    2013-01-01

    Nitric oxide (NO) signaling plays a key role in modulating vascular tone and remodeling in the pulmonary circulation. The guanylate cyclase/cyclic guanylate monophosphate-signaling pathway primarily mediates nitric oxide signaling. This pathway is critical in normal regulation of the pulmonary vasculature, and is an important target for therapy in patients with pulmonary hypertension. In the pulmonary vasculature, degradation of cGMP is primarily regulated by PDE-5, and inhibition of this enzyme has important effects on pulmonary vasculature smooth muscle tone. Large randomized placebo-controlled trials of PDE-5 inhibitors demonstrated improved exercise capacity, hemodynamics and quality of life in adult patients with PAH. This chapter will discuss the mechanisms of NO signaling in the vasculature, characteristics of the PDE5-inhibitors approved for treatment of PH, and review available data on the use of phosphodiesterase inhibitors in PH. PMID:24092343

  14. Analogue modelling of syntectonic leucosomes in migmatitic schists

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Carreras, Jordi

    2006-10-01

    Migmatites from the Cap de Creus tectonometamorphic belt display a wide variety of structures, from those formed when the leucosomes were melt-bearing, to those developed during solid-state deformation. The observed field structures have been modelled by means of analogue experiments. The materials used in the models are layered plasticine as a schist analogue, and chocolate as analogue of the crystallizing leucosome. A model for the development of syntectonic migmatites is proposed in which initial melt-bearing patches, preferentially formed within fertile pelitic layers, progressively evolve towards lens-shaped veins. Furthermore, heterogeneous deformation of anisotropic metasediments facilitates formation of extensional sites for further melt accumulation and transport. Melt crystallization implies a rapid increase in effective viscosity of leucosomes producing a reversal in competence contrast with respect to the enclosing schists. During the whole process, deformation localizes around crystallizing veins, giving rise to different and contrasting structures for melt-bearing and for solid-state stages.

  15. Synthesis and Biological Evaluation of Carbocyclic Analogues of Pachastrissamine

    PubMed Central

    Kwon, Yongseok; Song, Jayoung; Bae, Hoon; Kim, Woo-Jung; Lee, Joo-Youn; Han, Geun-Hee; Lee, Sang Kook; Kim, Sanghee

    2015-01-01

    A series of carbocyclic analogues of naturally-occurring marine sphingolipid pachastrissamine were prepared and biologically evaluated. The analogues were efficiently synthesized via a tandem enyne/diene-ene metathesis reaction as a key step. We found that the analogue 4b exhibited comparable cytotoxicity and more potent inhibitory activity against sphingosine kinases, compared to pachastrissamine. Molecular modeling studies were conducted to provide more detailed insight into the binding mode of 4b in sphingosine kinase. In our docking model, pachastrissamine and 4b were able to effectively bind to the binding pocket of sphingosine kinase 1 as co-crystalized sphingosine. However, 4b showed a hydrophobic interaction with Phe192, which suggests that it contributes to its increased inhibitory activity against sphingosine kinase 1. PMID:25654428

  16. Synthesis and cytotoxic activities of semisynthetic zearalenone analogues.

    PubMed

    Tadpetch, Kwanruthai; Kaewmee, Benyapa; Chantakaew, Kittisak; Kantee, Kawalee; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak

    2016-08-01

    Zearalenone is a β-resorcylic acid macrolide with various biological activities. Herein we report the synthesis and cytotoxic activities of 34 zearalenone analogues against human oral epidermoid carcinoma (KB) and human breast adenocarcinoma (MCF-7) cells as well as noncancerous Vero cells. Some zearalenone analogues showed moderately enhanced cytotoxic activities against the two cancer cell lines. We have discovered the potential lead compounds with diminished or no cytotoxicity to Vero cells. Preliminary structure-activity relationship studies revealed that the double bond at the 1' and 2' positions of zearalenone core was crucial for cytotoxic activities on both cell lines. In addition, for zearalenol analogues, the unprotected hydroxyl group at C-2 and an alkoxy substituent at C-4 played key roles on cytotoxic effects of both cell lines.

  17. Conception, synthesis, and biological evaluation of original discodermolide analogues.

    PubMed

    de Lemos, Elsa; Agouridas, Evangelos; Sorin, Geoffroy; Guerreiro, Antonio; Commerçon, Alain; Pancrazi, Ange; Betzer, Jean-François; Lannou, Marie-Isabelle; Ardisson, Janick

    2011-08-29

    Due to its intriguing biological activity profile and potential chemotherapeutic application discodermolide (DDM) proved to be an attractive target. Therefore, notable efforts have been carried out directed toward its total synthesis and toward the production and evaluation of synthetic analogues. Recently, we achieved the total synthesis of DDM. At the present, guided by the knowledge gained during our DDM total synthesis and by the requirement of keeping the bioactive "U" shape conformation, we report the convergent preparation of five original analogues. Three types of changes were realized through modification of the terminal (Z)-diene moiety, of the methyl group at the C14-position, and the lactone region. All analogues were active in the nanomolar range and two of them turned out to be equipotent to DDM.

  18. Synthesis and Biological Evaluation of New (-)-Englerin Analogues.

    PubMed

    López-Suárez, Laura; Riesgo, Lorena; Bravo, Fernando; Ransom, Tanya T; Beutler, John A; Echavarren, Antonio M

    2016-05-01

    We report the synthesis and biological evaluation of a series of (-)-englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier-to-synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties. The high selectivity and growth-inhibitory activity shown by these new derivatives in renal cancer cell lines opens new ways toward the final goal of finding effective drugs for the treatment of renal cell carcinoma (RCC).

  19. The Object-analogue approach for probabilistic forecasting

    NASA Astrophysics Data System (ADS)

    Frediani, M. E.; Hopson, T. M.; Anagnostou, E. N.; Hacker, J.

    2015-12-01

    The object-analogue is a new method to estimate forecast uncertainty and to derive probabilistic predictions of gridded forecast fields over larger regions rather than point locations. The method has been developed for improving the forecast of 10-meter wind speed over the northeast US, and it can be extended to other forecast variables, vertical levels, and other regions. The object-analogue approach combines the analog post-processing technique (Hopson 2005; Hamill 2006; Delle Monache 2011) with the Method for Object-based Diagnostic Evaluation (MODE) for forecast verification (Davis et al 2006a, b). Originally, MODE is used to verify mainly precipitation forecasts using features of a forecast region represented by an object. The analog technique is used to reduce the NWP systematic and random errors of a gridded forecast field. In this study we use MODE-derived objects to characterize the wind fields forecasts into attributes such as object area, centroid location, and intensity percentiles, and apply the analogue concept to these objects. The object-analogue method uses a database of objects derived from reforecasts and their respective reanalysis. Given a real-time forecast field, it searches the database and selects the top-ranked objects with the most similar set of attributes using the MODE fuzzy logic algorithm for object matching. The attribute probabilities obtained with the set of selected object-analogues are used to derive a multi-layer probabilistic prediction. The attribute probabilities are combined into three uncertainty layers that address the main concerns of most applications: location, area, and magnitude. The multi-layer uncertainty can be weighted and combined or used independently in such that it provides a more accurate prediction, adjusted according to the application interest. In this study we present preliminary results of the object-analogue method. Using a database with one hundred storms we perform a leave-one-out cross-validation to

  20. Synthetic inhibitors of endopeptidase EC 3.4.24.15: potency and stability in vitro and in vivo.

    PubMed Central

    Lew, R. A.; Tomoda, F.; Evans, R. G.; Lakat, L.; Boublik, J. H.; Pipolo, L. A.; Smith, A. I.

    1996-01-01

    1. The role of the metalloendopeptidase EC 3.4.24.15 (EP 24.15) in peptide metabolism in vivo is unknown, in part reflecting the lack of a stable enzyme inhibitor. The most commonly used inhibitor, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP-AAY-pAB, Ki = 16 nM), although selective in vitro, is rapidly degraded in the circulation to cFP-Ala-Ala, an angiotensin converting enzyme (ACE) inhibitor. This metabolite is thought to be generated by neutral endopeptidase (NEP; EC 3.4.24.11), as the Ala-Tyr bond of cFP-AAY-pAB is cleaved by NEP in vitro. In the present study, we have examined the role of NEP in the metabolism of cFP-AAY-pAB in vivo, and have tested a series of inhibitor analogues, substituted at the second alanine, for both potency and stability relative to the parent compound. 2. Analogues were screened for inhibition of fluorescent substrate cleavage by recombinant rat testes EP 24.15. D-Ala or Asp substitution abolished inhibitory activity, while Val-, Ser- and Leu-substituted analogues retained activity, albeit at a reduced potency. A relative potency order of Ala (1) > Val (0.3) > Ser (0.16) > Leu (0.06) was observed. Resistance to cleavage by NEP was assessed by incubation of the analogues with rabbit kidney membranes. The parent compound was readily degraded, but the analogues were twice (Ser) and greater than 10 fold (Leu and Val) more resistant to cleavage. 3. Metabolism of cFP-AAY-pAB and the Val-substituted analogue was also examined in conscious rabbits. A bolus injection of cFP-AAY-pAB (5 mg kg-1, i.v.) significantly reduced the blood pressure response to angiotensin I, indicating ACE inhibition. Pretreatment with NEP inhibitors, SCH 39370 or phosphoramidon, slowed the loss of cFP-AAY-pAB from the plasma, but did not prevent inhibition of ACE. Injection of 1 mg kg-1 inhibitor resulted in plasma concentrations at 10 s of 23.5 microM (cFP-AAY-pAB) and 18.0 microM (cFP-AVY-pAB), which fell 100 fold over 5 min. Co-injection of

  1. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    PubMed Central

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-01-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  2. Five new discodermolide analogues from the marine sponge Discodermia species.

    PubMed

    Gunasekera, Sarath P; Paul, Gopal K; Longley, Ross E; Isbrucker, Richard A; Pomponi, Shirley A

    2002-11-01

    Discodermolide (1) and five new discodermolide analogues trivially named 2-epi-discodermolide (2), 2-des-methyldiscodermolide (3), 5-hydroxymethyldiscodermolate (4), 19-des-aminocarbonyldiscodermolide (5), and 9(13)-cyclodiscodermolide (6) have been isolated from marine sponges belonging to the genus Discodermia collected from the Caribbean Sea. The isolation, structure elucidation, and biological activities of 2-6 are described. The natural analogues, which were isolated in trace amounts, exhibited significant variation of cytotoxicity against the cultured murine P-388 leukemia and A-549 human adenocarcinoma cells and suggested the importance of the C(7) through C(17) moiety for potency against cultured tumor cell lines.

  3. Synthesis and Cytotoxicity of Semisynthetic Withalongolide A Analogues

    PubMed Central

    2013-01-01

    The natural product withaferin A exhibits potent antitumor activity and other diverse pharmacological activities. The recently discovered withalongolide A, a C-19 hydroxylated congener of withaferin A, was recently reported to possess cytotoxic activity against head and neck squamous cell carcinomas. Semisynthetic acetylated analogues of withalongolide A were shown to be considerably more cytotoxic than the parent compound. To further explore the structure–activity relationships, 20 new semisynthetic analogues of withalongolide A were synthesized and evaluated for cytotoxic activity against four different cancer cell lines. A number of derivatives were found to be more potent than the parent compound and withaferin A. PMID:24273633

  4. Tumor imaging and therapy using radiolabeled somatostatin analogues.

    PubMed

    de Jong, Marion; Breeman, Wout A P; Kwekkeboom, Dik J; Valkema, Roelf; Krenning, Eric P

    2009-07-21

    Molecular imaging plays an essential role in balancing the clinical benefits and risks of radionuclide-based cancer therapy. To effectively treat individual patients, careful assessment of biodistribution, dosimetry, and toxicity is essential. In this Account, we describe advances that combine features of molecular imaging and radionuclide therapy to provide new avenues toward individualized cancer treatment. Selective receptor-targeting radiopeptides have emerged as an important class of radiopharmaceuticals for molecular imaging and therapy of tumors that overexpress peptide receptors on the cell membrane. After such peptides labeled with gamma-emitting radionuclides bind to their receptors, they allow clinicians to visualize receptor-expressing tumors non-invasively. Peptides labeled with beta-particle emitters could also eradicate receptor-expressing tumors. The somatostatin receptors, which are overexpressed in a majority of neuroendocrine tumors, represent the first and best example of targets for radiopeptide-based imaging and radionuclide therapy. The somatostatin analogue (111)In-octreotide permits the localization and staging of neuroendocrine tumors that express the appropriate somatostatin receptors. Newer modified somatostatin analogues, including Tyr(3)-octreotide and Tyr(3)-octreotate, are successfully being used for tumor imaging and radionuclide therapy. Because there are few effective therapies for patients with inoperable or metastasized neuroendocrine tumors, this therapy is a promising novel treatment option for these patients. Peptide receptor imaging and radionuclide therapy can be combined in a single probe, called a "theranostic". To select patients who are likely to benefit from this type of intervention, we first use a peptide analogue labeled with a diagnostic radionuclide to obtain a scan. Selected patients will be treated using the same or a similar peptide analogue labeled with a therapeutic radionuclide. The development of such

  5. On slow light as a black hole analogue

    NASA Astrophysics Data System (ADS)

    Unruh, W. G.; Schützhold, R.

    2003-07-01

    Although slow light (electromagnetically induced transparency) would seem an ideal medium in which to institute a “dumb hole” (black hole analogue), it suffers from a number of problems. We show that the high phase velocity in the slow light regime ensures that the system cannot be used as an analogue displaying Hawking radiation. Even though an appropriately designed slow-light setup may simulate classical features of black holes—such as horizon, mode mixing, “Bogoliubov” coefficients, etc.—it does not reproduce the related quantum effects.

  6. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  7. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Nakatsu, T; Hiratake, J; Thirumoorthy, R; Stewart, J D; Richards, N G; Schuster, S M

    2001-09-18

    Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B. PMID:11551215

  8. 5-Iodo-2-aminoindan, a nonneurotoxic analogue of p-iodoamphetamine

    SciTech Connect

    Nichols, D.E.; Johnson, M.P.; Oberlender, R. )

    1991-01-01

    A rigid analogue, 5-iodo-2-aminoindan (5-IAI), of the serotonin neurotoxic halogenated amphetamine p-iodoamphetamine (PIA) was pharmacologically evaluated for production of serotonin neurotoxicity. A comparison was also made between 5-IAI and PIA in the two-lever drug discrimination paradigm in rats trained to discriminate saline from 3,4-methylenedioxymethamphetamine (MDMA) or saline from the alpha-ethyl homologue of MDMA, MBDB. PIA and 5-IAI were both behaviorally active, and fully substituted in both groups of animals, but were considerably less potent than p-chloroamphetamine (PCA). PIA had about twice the potency of PCA as an inhibitor of {sup 3}H-5-HT uptake in rat brain cortical synaptosomes, while 5-IAI was only about 75% as potent as PCA in this assay. A single 40 mg/kg dose of PIA resulted in a 40% reduction of 5-HT and 5-HIAA levels and in the number of 5-HT uptake sites in rat cortex at one week sacrifice. The same dose of 5-IAI with one week sacrifice led to about a 15% decrease in 5-HIAA levels and number of 5-HT uptake sites, but only the latter was statistically significant. In rat hippocampus, PIA gave significant decreases in all serotonin markers examined, while 5-IAI slightly but significantly decreased only 5-HT levels. Neither compound produced any change in catecholamine or catecholamine metabolite levels. The results confirm earlier reports of the selective serotonin neurotoxicity of PIA, which is less severe than that of PCA, and also demonstrate that its rigid analogue 5-IAI does not appear to cause significant serotonin deficits in the rat.

  9. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: Addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety.

    PubMed

    Nakayama, Kiyoshi; Kuru, Noriko; Ohtsuka, Masami; Yokomizo, Yoshihiro; Sakamoto, Atsunobu; Kawato, Haruko; Yoshida, Ken-ichi; Ohta, Toshiharu; Hoshino, Kazuki; Akimoto, Katsuya; Itoh, Junko; Ishida, Hiroko; Cho, Aesop; Palme, Monica H; Zhang, Jason Z; Lee, Ving J; Watkins, William J

    2004-05-17

    Exchange of the ethylene tether in a series of pyridopyrimidine-based MexAB-OprM specific efflux pump inhibitors to an amide bond stabilized the olefin of the acrylic acid moiety, preventing facile photoisomerization to the Z-isomer. Furthermore, the activity was drastically improved in the amide tether variants, providing extremely potent acrylic acid and vinyl tetrazole analogues.

  10. Mechanism of membrane redistribution of protein kinase C by its ATP-competitive inhibitors.

    PubMed

    Takahashi, Hideyuki; Namiki, Hideo

    2007-07-15

    ATP-competitive inhibitors of PKC (protein kinase C) such as the bisindolylmaleimide GF 109203X, which interact with the ATP-binding site in the PKC molecule, have also been shown to affect several redistribution events of PKC. However, the reason why these inhibitors affect the redistribution is still controversial. In the present study, using immunoblot analysis and GFP (green fluorescent protein)-tagged PKC, we showed that, at commonly used concentrations, these ATP-competitive inhibitors alone induced redistribution of DAG (diacylglycerol)-sensitive PKCalpha, PKCbetaII, PKCdelta and PKCepsilon, but not atypical PKCzeta, to the endomembrane or the plasma membrane. Studies with deletion and point mutants showed that the DAG-sensitive C1 domain of PKC was required for membrane redistribution by these inhibitors. Furthermore, membrane redistribution was prevented by the aminosteroid PLC (phospholipase C) inhibitor U-73122, although an ATP-competitive inhibitor had no significant effect on acute DAG generation. Immunoblot analysis showed that an ATP-competitive inhibitor enhanced cell-permeable DAG analogue- or phorbol-ester-induced translocation of endogenous PKC. Furthermore, these inhibitors also enhanced [3H]phorbol 12,13-dibutyrate binding to the cytosolic fractions from PKCalpha-GFP-overexpressing cells. These results clearly demonstrate that ATP-competitive inhibitors cause redistribution of DAG-sensitive PKCs to membranes containing endogenous DAG by altering the DAG sensitivity of PKC and support the idea that the inhibitors destabilize the closed conformation of PKC and make the C1 domain accessible to DAG. Most importantly, our findings provide novel insights for the interpretation of studies using ATP-competitive inhibitors, and, especially, suggest caution about the interpretation of the relationship between the redistribution and kinase activity of PKC.

  11. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors.

    PubMed

    Li, Yizhu; Saini, Priyanka; Sriraman, Anusha; Dobbelstein, Matthias

    2015-10-20

    Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors. PMID:26431163

  12. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors

    PubMed Central

    Dobbelstein, Matthias

    2015-01-01

    Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors. PMID:26431163

  13. Pectin methylesterase inhibitor.

    PubMed

    Giovane, A; Servillo, L; Balestrieri, C; Raiola, A; D'Avino, R; Tamburrini, M; Ciardiello, M A; Camardella, L

    2004-02-12

    Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.

  14. Anti-AIDS agents. 60. Substituted 3'R,4'R-di-O-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP) analogues as potent anti-HIV agents.

    PubMed

    Yu, Donglei; Chen, Chin-Ho; Brossi, Arnold; Lee, Kuo-Hsiung

    2004-07-29

    Synthesis of positional isomers is a commonly used technique in drug design. Accordingly, based on prior SAR studies of 3'R,4'R-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK, 1) analogues, a series of mono- and disubstituted chromone derivatives of 3'R,4'R-di-O-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP, 4) were designed and synthesized. Together with 1 and 4-methyl DCK (2), all newly synthesized DCP analogues (4-21) were screened for anti-HIV-1 activity against a non-drug-resistant strain in H9 lymphocytes and a multiple reverse transcriptase (RT) inhibitor-resistant strain in the MT4 cell line. Several DCP analogues (4, 5, 7, 8, 13, and 17) exhibited extremely high anti-HIV activity in the non-drug-resistant strain assay, with EC(50) values ranging from 0.00032 to 0.0057 microM and remarkable therapeutic indexes (TI) ranging from 5.6 x 10(3) to 1.16 x 10(5), which were similar to those of 2 (EC(50) 0.0059 microM, TI > 6.6 x 10(3)) and better than those of 1 (EC(50) 0.049 microM, TI > 328). Even more promisingly, some DCP analogues also showed activity against a multi-RT inhibitor-resistant strain, HIV-1 RTMDR1, whereas most DCK analogues did not. The most significant compound was 8, with an EC(50) value of 0.06 microM and TI of 718 against the multi-RT inhibitor-resistant HIV-1 strain. Compounds 9 and 10 also showed good activity with an EC(50) value of 0.14 microM, and TIs of 272 and >111, respectively. 2-Ethyl DCP (8) exhibited the best anti-HIV activity in both assays. Further development of 8-related compounds as clinical trial candidates is warranted.

  15. Specific binding of (/sup 3/H)LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    SciTech Connect

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-05-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for (/sup 3/H)LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound (/sup 3/H)LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that (/sup 3/H)LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs.

  16. Facile Synthesis of Natural Alkoxynaphthalene Analogues from Plant Alkoxybenzenes.

    PubMed

    Tsyganov, Dmitry V; Krayushkin, Mikhail M; Konyushkin, Leonid D; Strelenko, Yuri A; Semenova, Marina N; Semenov, Victor V

    2016-04-22

    Analogues of the bioactive natural alkoxynaphthalene pycnanthulignene D were synthesized by an efficient method. The starting plant allylalkoxybenzenes (1) are easily available from the plant essential oils of sassafras, dill, and parsley. The target 1-arylalkoxynaphthalenes (5) exhibited antiproliferative activity in a phenotypic sea urchin embryo assay. PMID:26910798

  17. Facile Synthesis of Natural Alkoxynaphthalene Analogues from Plant Alkoxybenzenes.

    PubMed

    Tsyganov, Dmitry V; Krayushkin, Mikhail M; Konyushkin, Leonid D; Strelenko, Yuri A; Semenova, Marina N; Semenov, Victor V

    2016-04-22

    Analogues of the bioactive natural alkoxynaphthalene pycnanthulignene D were synthesized by an efficient method. The starting plant allylalkoxybenzenes (1) are easily available from the plant essential oils of sassafras, dill, and parsley. The target 1-arylalkoxynaphthalenes (5) exhibited antiproliferative activity in a phenotypic sea urchin embryo assay.

  18. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues.

    PubMed

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W; Shears, Stephen B; Veiga, Nicolás; Fiedler, Dorothea

    2016-08-22

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418

  19. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

    PubMed Central

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  20. Synthesis of chlorins, bacteriochlorins and their tetraaza analogues

    NASA Astrophysics Data System (ADS)

    Dudkin, S. V.; Makarova, E. A.; Lukyanets, E. A.

    2016-07-01

    The currently known methods for the synthesis of hydrogenated derivatives of synthetic porphyrins — chlorins, bacteriochlorins, isobacteriochlorins and their tetraaza analogues — are considered. Reactions involving quasi-isolated double bonds including reduction, oxidative addition and cycloaddition are presented. Examples of direct synthesis of these macroheterocycles are given. The bibliography includes 168 references.

  1. A Macroscopic Analogue of the Nuclear Pairing Potential

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  2. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  3. Synthesis of 4” manipulated Lewis X trisaccharide analogues

    PubMed Central

    Moore, Christopher J

    2012-01-01

    Summary Three analogues of the Lex trisaccharide antigen (β-D-Galp(1→4)[α-L-Fucp(1→3)]-D-GlcNAcp) in which the galactosyl residue is modified at O-4 as a methyloxy, deoxychloro or deoxyfluoro, were synthesized. We first report the preparation of the modified 4-OMe, 4-Cl and 4-F trichloroacetimidate galactosyl donors and then report their use in the glycosylation of an N-acetylglucosamine glycosyl acceptor. Thus, we observed that the reactivity of these donors towards the BF3·OEt2-promoted glycosylation at O-4 of the N-acetylglucosamine glycosyl acceptors followed the ranking 4-F > 4-OAc ≈ 4-OMe > 4-Cl. The resulting disaccharides were deprotected at O-3 of the glucosamine residue and fucosylated, giving access to the desired protected Lex analogues. One-step global deprotection (Na/NH3) of the protected 4”-methoxy analogue, and two-step deprotections (removal of a p-methoxybenzyl with DDQ, then Zemplén deacylation) of the 4”-deoxychloro and 4”-deoxyfluoro protected Lex analogues gave the desired compounds in good yields. PMID:23019441

  4. An Analysis of an Autoclitic Analogue in Pigeons

    ERIC Educational Resources Information Center

    Kuroda, Toshikazu; Lattal, Kennon A.; García-Penagos, Andrés

    2014-01-01

    Using a conditional discrimination procedure, pigeons were exposed to a nonverbal analogue of qualifying autoclitics such as "definitely" and "maybe." It has been suggested that these autoclitics are similar to tacts except that they are under the control of private discriminative stimuli. Instead of the conventional assumption…

  5. A Laboratory Analogue for the Study of Peer Sexual Harassment

    ERIC Educational Resources Information Center

    Mitchell, Damon; Hirschman, Richard; Angelone, D. J.; Lilly, Roy S.

    2004-01-01

    The purpose of this study was to develop a laboratory analogue for the study of peer sexual harassment, and to examine person and situational factors associated with male on female peer sexual harassment. One hundred twenty-two male participants were given the opportunity to tell jokes to a female confederate from a joke list that included…

  6. New phosphorus analogues of nitrogen classics--no carbon copies.

    PubMed

    Gudat, Dietrich

    2014-05-01

    Getting heavy: The recently prepared phosphorus analogues of two old acquaintances, urea and dinitrogen tetroxide, bear some structural resemblance to their archetypes but are no carbon copies. Their syntheses and chemical properties reveal rather certain peculiarities, which back the doctrine that the electronic properties of the heavier elements in a group differ from those of the lightest congener. PMID:24718995

  7. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  8. Natural analogue studies: present status and performance assessment implications

    NASA Astrophysics Data System (ADS)

    Smellie, John A. T.; Karlsson, Fred; Alexander, W. Russell

    1997-04-01

    Studies of natural geological and archaeological systems as analogues to long-term processes, which are predicted to occur within a radioactive waste repository environment, have become increasingly popular over the last 10 years or so, to the extent that such studies form an integral part of many national programmes for radioactive waste disposal. There is now a common consensus that the natural analogue approach is a very useful scientific methodology to: (a) identify and understand processes and mechanisms analogous to those which could occur in the vicinity of a repository over realistic timescales, (b) derive input data which have been successfully used to test some of the laboratory-based models which form the basis of long-term repository performance assessment, and (c) to produce data which can be input directly to performance assessment models. Increasingly, analogues are playing an important role in public awareness, enabling the layman to understand better the concept of radioactive disposal and demonstrating the reliability of the disposal system over long periods of geological time. The complexity of geological systems means that it is very often difficult and sometimes impossible to quantify precisely the physico-chemical boundary conditions necessary to model a particular geochemical process or mechanism. Consequently, the availability of quantitative analogue data is limited when repository performance assessments are considered. However, this in no way detracts from their value in building confidence by demonstrating that important processes do exist and by showing qualitatively that they behave in a way predicted by models based on laboratory-derived data. The transfer of natural analogue data from the complexity of field studies to simplistic models which, by necessity, are used in performance assessments, is an area of activity which is presently being addressed. Field analogue studies are now being planned to interface with laboratory

  9. Structure—Activity Study of New Inhibitors of Human Betaine-Homocysteine S-Methyltransferase

    PubMed Central

    Vaněk, Václav; Buděšínský, Miloš; Kabeleová, Petra; Šanda, Miloslav; Kožíšek, Milan; Hančlová, Ivona; Mládková, Jana; Brynda, Jiří; Rosenberg, Ivan; Koutmos, Markos; Garrow, Timothy A.; Jiráček, Jiří

    2009-01-01

    Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to l-homocysteine, yielding dimethylglycine and l-methionine. In this study, we prepared a new series of BHMT inhibitors. The inhibitors were designed to mimic the hypothetical transition state of BHMT substrates and consisted of analogues with NH, N(CH3), or N(CH3)2 groups separated from the homocysteine sulfur atom by a methylene, ethylene, or a propylene spacer. Only the inhibitor with the N(CH3) moiety and ethylene spacer gave moderate inhibition. This result led us to prepare two inhibitors lacking a nitrogen atom in the S-linked alkyl chain: (RS,RS)-5-(3-amino-3-carboxypropylthio)-3-methylpentanoic acid and (RS)-5-(3-amino-3-carboxypropylthio)-3,3-dimethylpentanoic acid. Both of these compounds were highly potent inhibitors of BHMT. The finding that BHMT does not tolerate a true betaine mimic within these inhibitors, especially the nitrogen atom, is surprising and evokes questions about putative conformational changes of BHMT upon the binding of the substrates/products and inhibitors. PMID:19534555

  10. Synthesis and in vitro biological activity of new deaza analogues of folic acid, aminopterin, and methotrexate with an L-ornithine side chain.

    PubMed

    Rosowsky, A; Forsch, R A; Bader, H; Freisheim, J H

    1991-04-01

    The 5-deaza and 5,8-dideaza analogues of N alpha-pteroyl-L-ornithine (Pter-Orn), the 5-deaza, 8-deaza, and 5,8-dideaza analogues of N alpha-(4-amino-4-deoxypteroyl)-L-ornithine (APA-Orn), and the N delta-carboxymethyl derivative of N alpha-(4-amino-4-deoxy-N10-methylpteroyl)-L-ornithine (mAPA-Orn) were synthesized and tested as inhibitors of dihydrofolate reductase (DHFR) and as inhibitors of tumor cell growth in culture. Reductive amination of 2-acetamido-6-formylpyrido[2,3-d]pyrimidine-4(3H)-one with methyl N alpha-(4-aminobenzoyl)-N delta-(benzyloxycarbonyl)-L-ornithinate followed by removal of the blocking groups afforded the 5-deaza analogue of Pter-Orn, whereas N-alkylation of methyl N alpha-(4-aminobenzoyl)-N delta-(benzyloxycarbonyl)-L-ornithinate with 2-amino-6-(bromomethyl)quinazolin-4(3H)-one and deprotection gave the corresponding 5,8-dideaza analogue. Reductive coupling of 2,4-diaminopyrido[2,3-d]pyrimidine-6-carbonitrile and 4-aminobenzoic acid followed by reaction with 95-97% formic acid yielded 4-amino-4-deoxy-5-deaza-N10-formylpteroic acid, which on condensation with methyl N delta-(benzyloxycarbonyl)-L-ornithinate and deprotection gave the 5-deaza analogue of APA-Orn. A similar sequence starting from 2,4-diamino-quinazoline-6-carbonitrile led to the corresponding 5,8-dideaza compound, whereas treatment of 2,4-diamino-pyrido[3,2-d]pyrimidine-6-methanol with phosphorus tribromide followed by condensation with methyl N alpha-(4-aminobenzoyl)-N delta-(benzyloxycarbonyl)-L-ornithinate and deprotection afforded the 8-deaza analogue. For the preparation of the N delta-carboxymethyl derivative of mAPA-Orn, N alpha-(benzyloxycarbonyl)-L-ornithine was subjected to N delta-monoalkylation with glyoxylic acid and sodium cyanoborohydride, followed by N delta-acylation with ethyl trifluoroacetate, N alpha-deprotection by hydrogenolysis, condensation with 4-amino-4-deoxy-N10-methylpteroic acid, and N delta-deprotection by gentle treatment with ammonia. The 2

  11. N-arylazido-. beta. -alanyl-NAD sup + , a new NAD sup + photoaffinity analogue. Synthesis and labeling of mitochondrial NADH dehydrogenase

    SciTech Connect

    Deng, P.S.K.; Chen, S. ); Hatefi, Y. )

    1990-01-30

    N-Arylaziod-{beta}-alanyl-NAD{sup +}(N3{prime}-0-(3-(N-(4-azido-2-nitrophenyl)amino)propionyl)NAD{sup +}) has been prepared by alkaline phosphatase treatment of arylaziod-{beta}-alanyl-NADP{sup +} (N3{prime}-O-(3-(N-(4-azido-2-nitrophenyl)amino)propionyl)NADP{sup +}). This NAD{sup +} analogue was found to be a potent competitive inhibitor with respect to NADH for the purified bovine heart mitochondrial NADH dehydrogenase. The enzyme was irreversibly inhibited as well as covalently labeled by this analogue upon photoirradiation. A stoichiometry of 1.15 mol of N-arylazido-{beta}-alanyl-NAD{sup +} bound/mol of enzyme, at 100% inactivation, was determined from incorporation studies using tritium-labeled analogue. Among the three subunits, 0.85 mol of the analogue was bound to the M{sub r} = 51,000 subunit, and each of the two smaller subunits contained 0.15 mol of the analogue when the dehydrogenase was completely inhibited upon photolysis. Both the irreversible inactivation and the covalent incorporation could be prevented by the presence of NADH during photolysis. These results indicate that N-arylaziod-{beta}-alanyl-NAD{sup +} is an active-site-directed photoaffinity label for the mitochondrial NADH dehydrogenase, and are further evidence that the M{sub r} = 51,000 subunit contain the NADH binding site. Results are also presented to show that N-arylazido-{beta}-alanyl-NAD{sup +} binds the dehydrogenase in a more effective manner than A-arylazido-{beta}-alanyl-NAD{sup +}.

  12. B-Ring-Aryl Substituted Luotonin A Analogues with a New Binding Mode to the Topoisomerase 1-DNA Complex Show Enhanced Cytotoxic Activity

    PubMed Central

    González-Ruiz, Víctor; Pascua, Irene; Fernández-Marcelo, Tamara; Ribelles, Pascual; Bianchini, Giulia; Sridharan, Vellaisamy; Iniesta, Pilar; Ramos, M. Teresa; Olives, Ana I.; Martín, M. Antonia; Menéndez, J. Carlos

    2014-01-01

    Topoisomerase 1 inhibition is an important strategy in targeted cancer chemotherapy. The drugs currently in use acting on this enzyme belong to the family of the camptothecins, and suffer severe limitations because of their low stability, which is associated with the hydrolysis of the δ-lactone moiety in their E ring. Luotonin A is a natural camptothecin analogue that lacks this functional group and therefore shows a much-improved stability, but at the cost of a lower activity. Therefore, the development of luotonin A analogues with an increased potency is important for progress in this area. In the present paper, a small library of luotonin A analogues modified at their A and B rings was generated by cerium(IV) ammonium nitrate-catalyzed Friedländer reactions. All analogues showed an activity similar or higher than the natural luotonin A in terms of topoisomerase 1 inhibition and some compounds had an activity comparable to that of camptothecin. Furthermore, most compounds showed a better activity than luotonin A in cell cytotoxicity assays. In order to rationalize these results, the first docking studies of luotonin-topoisomerase 1-DNA ternary complexes were undertaken. Most compounds bound in a manner similar to luotonin A and to standard topoisomerase poisons such as topotecan but, interestingly, the two most promising analogues, bearing a 3,5-dimethylphenyl substituent at ring B, docked in a different orientation. This binding mode allows the hydrophobic moiety to be shielded from the aqueous environment by being buried between the deoxyribose belonging to the G(+1) guanine and Arg364 in the scissile strand and the surface of the protein and a hydrogen bond between the D-ring carbonyl and the basic amino acid. The discovery of this new binding mode and its associated higher inhibitory potency is a significant advance in the design of new topoisomerase 1 inhibitors. PMID:24830682

  13. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  14. Cysteine analogues potentiate glucose-induced insulin release in vitro

    SciTech Connect

    Ammon, H.P.; Hehl, K.H.; Enz, G.; Setiadi-Ranti, A.; Verspohl, E.J.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhance insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.

  15. Metric optimisation for analogue forecasting by simulated annealing

    NASA Astrophysics Data System (ADS)

    Bliefernicht, J.; Bárdossy, A.

    2009-04-01

    It is well known that weather patterns tend to recur from time to time. This property of the atmosphere is used by analogue forecasting techniques. They have a long history in weather forecasting and there are many applications predicting hydrological variables at the local scale for different lead times. The basic idea of the technique is to identify past weather situations which are similar (analogue) to the predicted one and to take the local conditions of the analogues as forecast. But the forecast performance of the analogue method depends on user-defined criteria like the choice of the distance function and the size of the predictor domain. In this study we propose a new methodology of optimising both criteria by minimising the forecast error with simulated annealing. The performance of the methodology is demonstrated for the probability forecast of daily areal precipitation. It is compared with a traditional analogue forecasting algorithm, which is used operational as an element of a hydrological forecasting system. The study is performed for several meso-scale catchments located in the Rhine basin in Germany. The methodology is validated by a jack-knife method in a perfect prognosis framework for a period of 48 years (1958-2005). The predictor variables are derived from the NCEP/NCAR reanalysis data set. The Brier skill score and the economic value are determined to evaluate the forecast skill and value of the technique. In this presentation we will present the concept of the optimisation algorithm and the outcome of the comparison. It will be also demonstrated how a decision maker should apply a probability forecast to maximise the economic benefit from it.

  16. Analogue Sites for Mars Missions - A report from two workshops

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Voytek, M. A.; Glamoclija, M.

    2014-12-01

    Fieldwork, at terrestrial sites that are analogous in some way to Mars, has a key role in defining questions addressed by Mars missions. For MSL, the question is whether its landing site was habitable, and for Mars 2020, the question is how do we search for and what are signs of life in ancient habitable environments. Implementing these investigations by means of a rover mission on a distant planetary surface has challenges due to a limited set of tools and period of operations. Using this context of planetary missions is important in shaping how analog research can be used to advance planetary science. Following a successful 2010 AGU fall meeting session entitled "Analogue Sites for Mars Missions", two community workshops were held at The Woodlands, TX March 2011 and the Carnegie Institute of Washington in July 2013. These activities represent an ongoing dialogue with the analogue and mission communities. The AGU session solicited presentations of current analogue research relevant to MSL, at which time the landing site selection process was still considering four final sites. The 2011 Woodlands workshop solicited details on representative science questions and analogue sites by means of an abstract template. The output from The Woodlands workshop was an initial metric to assess the utility of analogue sites against specific science questions, as well as recommendations for future activities. The 2013 Carnegie workshop, followed up on some of the recommendations from 2011. Both on-line interactive dialogue and in person discussions targeted broad topics, including 'the advantages and problems of using a great terrestrial analog for field testing', and 'knowing what we currently do about Mars, what would be the best place on the planet to collect the first suite of samples to be returned to Earth? What would be appropriate analog sites on Earth?'. The results and recommendations from both workshops are summarized to publicize and stimulate this ongoing discussion.

  17. Modification and Biological Evaluation of Thiazole Derivatives as Novel Inhibitors of Metastatic Cancer Cell Migration and Invasion

    PubMed Central

    2015-01-01

    Fascin has recently emerged as a potential therapeutic target, as its expression in cancer cells is closely associated with tumor progression and metastasis. Following the initial discovery of a series of thiazole derivatives that demonstrated potent antimigration and antiinvasion activities via possible inhibition of fascin function, we report here the design and synthesis of 63 new thiazole derivatives by further structural modifications in search of more potent fascin inhibitors. The 5 series of analogues with longer alkyl chain substitutions on the thiazole nitrogen exhibited greater antimigration activities than those with other structural motifs. The most potent analogue, 5p, inhibited 50% of cell migration at 24 nM. Moreover, the thiazole analogues showed strong antiangiogenesis activity, blocking new blood vessel formation in a chicken embryo membrane assay. Finally, a functional study was conducted to investigate the mechanism of action via interaction with the F-actin bundling protein fascin. PMID:25007006

  18. [JAK2 inhibitors].

    PubMed

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  19. Coagulation inhibitors in inflammation.

    PubMed

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  20. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396

    PubMed Central

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K.

    2016-01-01

    ABSTRACT HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation

  1. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  2. Inhibition of soybean and potato lipoxygenases by bhilawanols from bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues.

    PubMed

    Nagabhushana, Kyatanahalli S; Umamaheshwari, S; Tocoli, Felismino E; Prabhu, Sandeep K; Green, Ivan R; Ramadoss, Candadai S

    2002-08-01

    Bhilawanol diene (3) isolated from bhilawan nut shell liquid was found to be a potent inhibitor of both soybean and potato lipoxygenases with IC50 values of 0.85 microM and 1.1 microM, respectively. However, the monoene (2) and saturated (1) bhilawanols exhibited relatively lower inhibitory activity. In addition, inhibition studies with synthetic analogues of salicylic acid (4-8) suggested that the unsaturated lipophilic side chain may be an absolute requirement for inhibitory activity. PMID:12530478

  3. Application of Orbitrap-mass spectrometry to differentiate isomeric sildenafil- and thiosildenafil-like analogues used for the adulteration of dietary supplements.

    PubMed

    Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong

    2015-01-01

    Two groups of isomeric phosphodiestrase-type 5 inhibitors (PDE-5), consisting of four sildenafil- and three thiosildenafil-like analogues, have been successfully differentiated using high-resolution MS/MS. The optimised MS/MS data obtained from each compound were used to build a database with the aid of mass processing software. Isomeric compounds with very close chromatographic separation like dimethylsildenafil and homosildenafil could be distinguished by their unique fingerprint fragment ions in the MS/MS database. All fragment ions were within the mass tolerance of 5 ppm. One case study using an adulterated dietary supplement is included to provide more insights into this application. PMID:26179419

  4. Sugar derivatives as new 6-phosphogluconate dehydrogenase inhibitors selective for the parasite Trypanosoma brucei.

    PubMed

    Pasti, Claudia; Rinaldi, Eliana; Cervellati, Carlo; Dallocchio, Franco; Hardré, Renaud; Salmon, Laurent; Hanau, Stefania

    2003-04-01

    Sugar derivatives mimicking compounds which take part in the catalysed reaction have been assayed as alternative substrates and/or competitive inhibitors of 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Phosphonate analogues have been synthesised and the new compound 5-deoxy-5-phosphono-D-arabinonate shows good selectivity towards the parasite enzyme. A number of 4-carbon and 5-carbon aldonates are strong inhibitors of the parasite enzyme with K(i) values below the substrate K(m) and some acyl derivatives are also potent inhibitors. At least five of the compounds showing a significant selectivity for the parasite enzyme represent leads for trypanocidal drugs against this recently validated target.

  5. Synthesis and evaluation of new omega-borono-alpha-amino acids as rat liver arginase inhibitors.

    PubMed

    Busnel, Olivier; Carreaux, François; Carboni, Bertrand; Pethe, Stephanie; Goff, Sandrine Vadon-Le; Mansuy, Daniel; Boucher, Jean-Luc

    2005-04-01

    Recent studies have demonstrated that arginase plays important roles in pathologies such as asthma or erectile dysfunctions. We have synthesized new omega-borono-alpha-amino acids that are analogues of the previously known arginase inhibitors S-(2-boronoethyl)-l-cysteine (BEC) and 2-amino-6-boronohexanoic acid (ABH) and evaluated them as inhibitors of purified rat liver arginase (RLA). In addition to the distance between the B(OH)(2) and the alpha-amino acid functions, the position of the sulfur atom in the side chain also appears as a key determinant for the interaction with the active site of RLA. Furthermore, substitution of the alkyl side chain of BEC by methyl groups and conformational restriction of ABH by incorporation of its side chain in a phenyl ring led to inactive compounds. These results suggest that subtle interactions govern the affinity of inhibitors for the active site of RLA.

  6. Dopamine Transport Inhibitors Based on GBR12909 and Benztropine as Potential Medications to Treat Cocaine Addiction

    PubMed Central

    Rothman, Richard B.; Baumann, Michael; Prisinzano, Thomas E.; Newman, Amy Hauck

    2008-01-01

    The discovery and development of medications to treat addiction and notably, cocaine addiction, have been frustrated by both the complexity of the disorder and the lack of target validation in human subjects. The dopamine transporter has historically been a primary target for cocaine abuse medication development, but addictive liability and other confounds of such inhibitors of dopamine uptake have limited clinical evaluation and validation. Herein we describe efforts to develop analogues of the dopamine uptake inhibitors GBR 12909 and benztropine that show promising profiles in animal models of cocaine abuse that contrast to that of cocaine. Their unique pharmacological profiles have provided important insights into the reinforcing actions of cocaine and we propose that clinical investigation of novel dopamine uptake inhibitors will facilitate the discovery of cocaine-abuse medications. PMID:17897630

  7. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors

    PubMed Central

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-01-01

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea. PMID:26633377

  8. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors.

    PubMed

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-01-01

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea. PMID:26633377

  9. mTOR kinase inhibitors as potential cancer therapeutic drugs

    PubMed Central

    Sun, Shi-Yong

    2013-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in the positive regulation of cell growth and survival primarily through direct interaction with raptor (forming mTORC complex 1; mTORC1) or rictor (forming mTOR complex 2; mTORC2). The mTOR axis is often activated in many types of cancer and thus has become an attractive cancer therapeutic target. The modest clinical anticancer activity of conventional mTOR allosteric inhibitors, rapamycin and its analogues (rapalogs), which preferentially inhibit mTORC1, in most types of cancer, has encouraged great efforts to develop mTOR kinase inhibitors (TORKinibs) that inhibit both mTORC1 and mTORC2, in the hope of developing a novel generation of mTOR inhibitors with better therapeutic efficacy than rapalogs. Several TORKinibs have been developed and actively studied preclinically and clinically. This review will highlight recent advances in the development and research of TORKinibs and discuss some potential issues or challenges in this area. PMID:23792225

  10. An analogue conceptual rainfall-runoff model for educational purposes

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Riedl, Michael; Schulz, Karsten

    2016-04-01

    Conceptual rainfall-runoff models, in which runoff processes are modelled with a series of connected linear and non-linear reservoirs, remain widely applied tools in science and practice. Additionally, the concept is appreciated in teaching due to its somewhat simplicity in explaining and exploring hydrological processes of catchments. However, when a series of reservoirs are used, the model system becomes highly parametrized and complex and the traceability of the model results becomes more difficult to explain to an audience not accustomed to numerical modelling. Since normally the simulations are performed with a not visible digital code, the results are also not easily comprehensible. This contribution therefore presents a liquid analogue model, in which a conceptual rainfall-runoff model is reproduced by a physical model. This consists of different acrylic glass containers representing different storage components within a catchment, e.g. soil water or groundwater storage. The containers are equipped and connected with pipes, in which water movement represents different flow processes, e.g. surface runoff, percolation or base flow. Water from a storage container is pumped to the upper part of the model and represents effective rainfall input. The water then flows by gravity through the different pipes and storages. Valves are used for controlling the flows within the analogue model, comparable to the parameterization procedure in numerical models. Additionally, an inexpensive microcontroller-based board and sensors are used to measure storage water levels, with online visualization of the states as time series data, building a bridge between the analogue and digital world. The ability to physically witness the different flows and water levels in the storages makes the analogue model attractive to the audience. Hands-on experiments can be performed with students, in which different scenarios or catchment types can be simulated, not only with the analogue but

  11. Bradykinin antagonists with dehydrophenylalanine analogues at position 5.

    PubMed

    Greiner, G; Dornberger, U; Paegelow, I; Schölkens, B A; Liebmann, C; Reissmann, S

    1998-04-01

    Continuing the studies on structural requirements of bradykinin antagonists, it has been found that analogues with dehydrophenylalanine (deltaPhe) or its ring-substituted analogues (deltaPhe(X)) at position 5 act as antagonists on guinea pig pulmonary artery, and on guinea pig ileum. Because both organs are considered to be bradykinin B2 receptor tissues, the analogues with deltaPhe or deltaPhe(X) at position 5, but without any replacement at position 7, seem to represent a new structural type of B2 receptor antagonist. All the analogues investigated act as partial antagonists; they inhibit the bradykinin-induced contraction at low concentrations and act as agonists at higher concentrations. Ring substitutions by methyl groups or iodine reduce both the agonistic and antagonistic activity. Only substitution by fluorine gives a high potency. Incorporation of deltaPhe into different representative antagonists with key modifications at position 7 does not enhance the antagonist activity of the basic structures, with one exception. Only the combination of deltaPhe at position 5 with DPhe at position 7 increases the antagonistic potency on guinea pig ileum by about one order of magnitude. Radioligand binding studies indicate the importance of position 5 for the discrimination of B2 receptor subtypes. The binding affinity to the low-affinity binding site (KL) was not significantly changed by replacement of Phe by deltaPhe. In contrast, ring-methylation of deltaPhe results in clearly reduced binding to KL. The affinity to the high-affinity binding site (KH) was almost unchanged by the replacement of Phe in position 5 by deltaPhe, whereas the analogue with 2-methyl-dehydrophenylalanine completely failed to detect the KH-site. The peptides were synthesized on the Wang-resin according to the Fmoc/Bu(t) strategy using Mtr protection for the side chain of Arg. The dehydrophenylalanine analogues were prepared by a strategy involving PyBop couplings of the dipeptide unit Fmoc

  12. Virtual Screening and Optimization Yield Low-Nanomolar Inhibitors of the Tautomerase Activity of Plasmodium falciparum Macrophage Migration Inhibitory Factor

    PubMed Central

    Dahlgren, Markus K.; Garcia, Alvaro Baeza; Hare, Alissa A.; Tirado-Rives, Julian; Leng, Lin; Bucala, Richard; Jorgensen, William L.

    2012-01-01

    The Plasmodium falciparum ortholog of the human cytokine, macrophage migratory inhibitory factor (PfMIF), is produced by the parasite during malaria infection and modulates the host’s immune response. As for other MIF orthologs, PfMIF has tautomerase activity, whose inhibition may influence the cytokine activity. To identify small-molecule inhibitors of the tautomerase activity of PfMIF, virtual screening has been performed by docking 2.1 million compounds into the enzymatic site. Assaying of 17 compounds identified four as active. Substructure search for the most potent of these compounds, a 4-phenoxypyridine analogue, identified four additional compounds that were purchased and also shown to be active. Thirty-one additional analogues were then designed, synthesized, and assayed. Three were found to be potent PfMIF tautomerase inhibitors with Ki values of ca. 40 nM; they are also highly selective with Ki values of >100 μM for human MIF. PMID:23067344

  13. Small Molecule Inhibitors of Ca(2+)-S100B Reveal Two Protein Conformations.

    PubMed

    Cavalier, Michael C; Ansari, Mohd Imran; Pierce, Adam D; Wilder, Paul T; McKnight, Laura E; Raman, E Prabhu; Neau, David B; Bezawada, Padmavani; Alasady, Milad J; Charpentier, Thomas H; Varney, Kristen M; Toth, Eric A; MacKerell, Alexander D; Coop, Andrew; Weber, David J

    2016-01-28

    The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design. PMID:26727270

  14. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease.

    PubMed

    Snyder, David S; Tradtrantip, Lukmanee; Yao, Chenjuan; Kurth, Mark J; Verkman, A S

    2011-08-11

    We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.

  15. Small Molecule Inhibitors of Ca2+-S100B Reveal Two Protein Conformations

    PubMed Central

    Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; Wilder, Paul T.; McKnight, Laura E.; Raman, E. Prabhu; Neau, David B.; Bezawada, Padmavani; Alasady, Milad J.; Charpentier, Thomas H.; Varney, Kristen M.; Toth, Eric A.; MacKerell, Alexander D.; Coop, Andrew; Weber, David J.

    2016-01-01

    The drug pentamidine inhibits calcium-dependent complex formation with p53 (CaS100B•p53) in malignant melanoma (MM), and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of CaS100B•inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe-87 and Phe-88 being the distinguishing feature and termed the “FF-Gate”. For symmetric pentamidine analogues (CaS100B•5a, CaS100B•6b) a channel between Sites 1 and 2 on S100B was occluded by residue Phe-88, but for an asymmetric pentamidine analogue (CaS100B•17), this same channel was open. The CaS100B•17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B•p53 inhibitor design. PMID:26727270

  16. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors

    SciTech Connect

    Huang, Hui; Hutta, Daniel A.; Rinker, James M.; Hu, Huaping; Parsons, William H.; Schubert, Carsten; DesJarlais, Renee L.; Crysler, Carl S.; Chaikin, Margery A.; Donatelli, Robert R.; Chen, Yanmin; Cheng, Deping; Zhou, Zhao; Yurkow, Edward; Manthey, Carl L.; Player, Mark R.

    2010-10-01

    A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In this model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.

  17. Pyrido[2,3-d]pyrimidin-5-ones: a novel class of antiinflammatory macrophage colony-stimulating factor-1 receptor inhibitors.

    PubMed

    Huang, Hui; Hutta, Daniel A; Rinker, James M; Hu, Huaping; Parsons, William H; Schubert, Carsten; DesJarlais, Renee L; Crysler, Carl S; Chaikin, Margery A; Donatelli, Robert R; Chen, Yanmin; Cheng, Deping; Zhou, Zhao; Yurkow, Edward; Manthey, Carl L; Player, Mark R

    2009-02-26

    A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In this model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.

  18. Potent and selective inhibition of varicella-zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base.

    PubMed

    McGuigan, C; Yarnold, C J; Jones, G; Velázquez, S; Barucki, H; Brancale, A; Andrei, G; Snoeck, R; De Clercq, E; Balzarini, J

    1999-11-01

    We herein report the discovery of an entirely new category of potent antiviral agents based on novel deoxynucleoside analogues with unusual bicyclic base moieties. Target structures, previously known as byproducts in Pd-catalyzed coupling of terminal alkynes with 5-iodo-nucleosides, are recognized herein for the first time to be potent and selective inhibitors of varicella-zoster virus (VZV) in vitro. As an unusual structure-activity relationship we noted the absolute requirement of a long alkyl side chain, with an optimum length of C(8)-C(10), for antiviral activity. We thus report the synthesis and characterization of a series of chain-modified analogues and their extensive in vitro evaluation. The lead compounds have a ca. 300-fold enhancement in anti-VZV activity over the reference compound acyclovir, with no detectable in vitro cytotoxicity. The novel structure of these compounds, coupled with their ease of synthesis, excellent antiviral profile, and promising physical properties, makes them of great interest for possible antiviral drug development.

  19. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    SciTech Connect

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.

  20. New neplanocin analogues. 1. Synthesis of 6'-modified neplanocin A derivatives as broad-spectrum antiviral agents.

    PubMed

    Shuto, S; Obara, T; Toriya, M; Hosoya, M; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1992-01-24

    Novel neplanocin A analogues modified at the 6'-position, i.e., 6'-deoxy analogues (2, 3, 6, 9, 20), 6'-O-methylneplanocin A (15), and 6'-C-methylneplanocin A's (22a and 22b) have been synthesized and evaluated for their antiviral activity in a wide variety of DNA and RNA virus systems. These compounds showed an activity spectrum that conforms to that of S-adenosylhomocysteine hydrolase inhibitors. They were particularly active against pox- (vaccinia), paramyxo-(parainfluenza, measles, respiratory syncytial), arena- (Junin, Tacaribe), rhabdo- (vesicular stomatitis), reo-, and cytomegalovirus. In order of (increasing) antiviral activity, the compounds ranked as follows: 3 less than 15 approximately 20 less than 6 less than 9 approximately 2 less than 22a. Of the two diastereomeric forms of 22, only 22a was active; 22a surpassed neplanocin A both in antiviral potency and selectivity. Compound 22a appears to be a promising candidate drug for the treatment of pox-, paramyxo-, arena-, rhabdo-, reo-, and cytomegalovirus infections. PMID:1732550

  1. The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine*

    PubMed Central

    Hemsworth, Glyn R.; Moroz, Olga V.; Fogg, Mark J.; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S.

    2011-01-01

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds. PMID:21454646

  2. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  3. Synthesis and biological evaluation with plant cells of new fosmidomycin analogues containing a benzoxazolone or oxazolopyridinone ring.

    PubMed

    Courtois, Martine; Mincheva, Zoia; Andreu, Françoise; Rideau, Marc; Viaud-Massuard, Marie-Claude

    2004-12-01

    Fosmidomycin, 3-(N-formyl-N-hydroxyamido) propylphosphonic acid sodium salt, is an efficient inhibitor of 1-deoxy-D-xylulose-5-phosphate (DOXP) reductoisomerase, the second enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway notably present in Plasmodium species. We have synthesized a new series of analogues of fosmidomycin, containing a benzoxazolone, benzoxazolethione or oxazolopyridinone ring. As the MEP pathway is involved in the biosynthesis of all isoprenoids, accumulation of ajmalicine in Catharanthus roseus cells was chosen as a marker of monoterpenoid indole alkaloid (MIA) production. None of the twelve studied phosphonic esters 3 and phosphonic acids 4 affected periwinkle cell growth, but some of them (3c, 3e, 3g and 3h) showed a significant inhibition of ajmalicine accumulation: 45-85% at 125 microM. Surprisingly, this effect disappeared by conversion of 3c and 3g into the corresponding acids 4c and 4g, respectively.

  4. Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study.

    PubMed

    Luić, M; Tomić, S; Lescić, I; Ljubović, E; Sepac, D; Sunjić, V; Vitale, L; Saenger, W; Kojic-Prodić, B

    2001-07-01

    In a series of four racemic phenoxyalkyl-alkyl carbinols, 1-phenoxy-2-hydroxybutane (1) is enantioselectively acetylated by Burkholderia cepacia (formerly Pseudomonas cepacia) lipase with an E value > or = 200, whereas for the other three racemates E was found to be < or = 4. To explain the high preference of B. cepacia lipase for (R)-(+)-1, a precursor of its transition state analogue with a tetrahedral P-atom, (R(P),S(P))-O-(2R)-(1-phenoxybut-2-yl)methylphosphonic acid chloride was prepared and crystallized in complex with B. cepacia lipase. The X-ray structure of the complex was determined, allowing to compare the conformation of the inhibitor with results of molecular modelling.

  5. Hydroxamate-based iron chelators: combinatorial syntheses of desferrioxamine B analogues and evaluation of binding affinities.

    PubMed

    Poreddy, Amruta R; Schall, Otto F; Osiek, Todd A; Wheatley, James R; Beusen, Denise D; Marshall, Garland R; Slomczynska, Urszula

    2004-01-01

    This article describes the solid-phase combinatorial methods developed for the synthesis of polyhydroxamate-based siderophores. This strategy was applied to generate several libraries of structural DFO (1a) analogues that include DFO variants, non-amide analogues, C-terminal modified analogues, reverse-amide analogues, and hybrid analogues. To assess the relative iron-binding affinities of these compounds, a high-throughput spectrophotometric screening method based on competition with 8-hydroxyquinoline-5-sulfonic acid was developed. Some of the promising candidates containing various terminal functional groups were identified and prepared on large scale to enable future studies in animal models for iron-overload diseases.

  6. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.

    PubMed

    Páli, Tibor; Whyteside, Graham; Dixon, Neil; Kee, Terence P; Ball, Stephen; Harrison, Michael A; Findlay, John B C; Finbow, Malcolm E; Marsh, Derek

    2004-09-28

    The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also

  7. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-01

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development. PMID:21877690

  8. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements

    SciTech Connect

    Agniswamy, Johnson; Shen, Chen-Hsiang; Aniana, Annie; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2012-06-28

    The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.

  9. Synthesis of Rigidified eIF4E/eIF4G Inhibitor-1 (4EGI-1) Mimetic and Their in Vitro Characterization as Inhibitors of Protein–Protein Interaction

    PubMed Central

    2015-01-01

    The 4EGI-1 is the prototypic inhibitor of eIF4E/eIF4G interaction, a potent inhibitor of translation initiation in vitro and in vivo and an efficacious anticancer agent in animal models of human cancers. We report on the design, synthesis, and in vitro characterization of a series of rigidified mimetic of this prototypic inhibitor in which the phenyl in the 2-(4-(3,4-dichlorophenyl)thiazol-2-yl) moiety was bridged into a tricyclic system. The bridge consisted one of the following: ethylene, methylene oxide, methylenesulfide, methylenesulfoxide, and methylenesulfone. Numerous analogues in this series were found to be markedly more potent than the parent prototypic inhibitor in the inhibition of eIF4E/eIF4G interaction, thus preventing the eIF4F complex formation, a rate limiting step in the translation initiation cascade in eukaryotes, and in inhibition of human cancer cell proliferation. PMID:24827861

  10. Highly Potent and Selective Ectonucleotide Pyrophosphatase/Phosphodiesterase I Inhibitors Based on an Adenosine 5′-(α or γ)- Thio-(α,β- or β,γ)-methylenetriphosphate Scaffold

    PubMed Central

    Nadel, Yael; Lecka, Joanna; Gilad, Yocheved; Ben-David, Gal; Förster, Daniel; Reiser, Georg; Kenigsberg, Sarah; Camden, Jean; Weisman, Gary A.; Senderowitz, Hanoch; Sévigny, Jean; Fischer, Bilha

    2015-01-01

    Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure–activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ- CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1–3 at 100 μM inhibited thymidine 5′-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23–43%, respectively, and only slightly affected (0–40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1–3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1–3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors. PMID:24846781

  11. Design and synthesis of analogues of natural products.

    PubMed

    Maier, Martin E

    2015-05-21

    In this article strategies for the design and synthesis of natural product analogues are summarized and illustrated with some selected examples. Proven strategies include diverted total synthesis (DTS), function-oriented synthesis (FOS), biology-oriented synthesis (BIOS), complexity to diversity (CtD), hybrid molecules, and biosynthesis inspired synthesis. The latter includes mutasynthesis, the synthesis of natural products encoded by silent genes, and propionate scanning. Most of the examples from our group fall in the quite general concept of DTS. Thus, in case an efficient strategy to a natural product is at hand, modifications are possible at almost any stage of a synthesis. However, even for compounds of moderate complexity, organic synthesis remains a bottle neck. Unless some method for predicting the biological activity of a designed molecule becomes available, the design and synthesis of natural product analogues will remain what it is now, namely it will largely rely on trial and error. PMID:25829247

  12. All-dielectric metasurface analogue of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2014-12-01

    Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale.

  13. Analogue Transformations in Physics and their Application to Acoustics

    PubMed Central

    García-Meca, C.; Carloni, S.; Barceló, C.; Jannes, G.; Sánchez-Dehesa, J.; Martínez, A.

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an “analogue transformation acoustics” formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  14. Analogue transformations in physics and their application to acoustics.

    PubMed

    García-Meca, C; Carloni, S; Barceló, C; Jannes, G; Sánchez-Dehesa, J; Martínez, A

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an "analogue transformation acoustics" formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft.

  15. Neurological Effects of Bisphenol A and its Analogues

    PubMed Central

    Inadera, Hidekuni

    2015-01-01

    The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective. PMID:26664253

  16. Novel Azetidine-Containing TZT-1027 Analogues as Antitumor Agents

    PubMed Central

    Yan, Qi; Wang, Yujie; Zhang, Wei; Li, Yingxia

    2016-01-01

    A conformational restriction strategy was used to design and synthesize nine TZT-1027 analogues. 3-Aryl-azetidine moiety was used to replace phenylethyl group of TZT-1027 at the C-terminus. These analogues exhibited moderate to excellent antiproliferative activities, and the most potent compound 1a showed IC50 values of 2.2 nM against A549 and 2.1 nM against HCT116 cell lines, respectively. However, 1a could not achieve effective inhibition at all the dose levels in the A549 xenograft model (up to 5 mg/kg, injection, once a day), which is only 16%–35% inhibition at the end of the experiment. PMID:27136567

  17. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Jameson, Bradford A.; McDonnell, James M.; Marini, Joseph C.; Korngold, Robert

    1994-04-01

    EXPERIMENTAL allergic encephalomyelitis (EAE) is an acute inflammatory autoimmune disease of the central nervous system that can be elicited in rodents and is the major animal model for the study of multiple sclerosis (MS)1,2. The pathogenesis of both EAE and MS directly involves the CD4+ helper T-cell subset3-5. Anti-CD4 monoclonal antibodies inhibit the development of EAE in rodents6-9, and are currently being used in human clinical trials for MS. We report here that similar therapeutic effects can be achieved in mice using a small (rationally designed) synthetic analogue of the CD4 protein surface. It greatly inhibits both clinical incidence and severity of EAE with a single injection, but does so without depletion of the CD4+ subset and without the inherent immunogenicity of an antibody. Furthermore, this analogue is capable of exerting its effects on disease even after the onset of symptoms.

  18. Neurological Effects of Bisphenol A and its Analogues.

    PubMed

    Inadera, Hidekuni

    2015-01-01

    The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective. PMID:26664253

  19. Acoustic clouds: Standing sound waves around a black hole analogue

    NASA Astrophysics Data System (ADS)

    Benone, Carolina L.; Crispino, Luís C. B.; Herdeiro, Carlos; Radu, Eugen

    2015-05-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  20. Noncommutative analogue Aharonov-Bohm effect and superresonance

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2013-06-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.