Sample records for bit plane complexity

  1. Use of One Time Pad Algorithm for Bit Plane Security Improvement

    NASA Astrophysics Data System (ADS)

    Suhardi; Suwilo, Saib; Budhiarti Nababan, Erna

    2017-12-01

    BPCS (Bit-Plane Complexity Segmentation) which is one of the steganography techniques that utilizes the human vision characteristics that cannot see the change in binary patterns that occur in the image. This technique performs message insertion by making a switch to a high-complexity bit-plane or noise-like regions with bits of secret messages. Bit messages that were previously stored precisely result the message extraction process to be done easily by rearranging a set of previously stored characters in noise-like region in the image. Therefore the secret message becomes easily known by others. In this research, the process of replacing bit plane with message bits is modified by utilizing One Time Pad cryptography technique which aims to increase security in bit plane. In the tests performed, the combination of One Time Pad cryptographic algorithm to the steganography technique of BPCS works well in the insertion of messages into the vessel image, although in insertion into low-dimensional images is poor. The comparison of the original image with the stegoimage looks identical and produces a good quality image with a mean value of PSNR above 30db when using a largedimensional image as the cover messages.

  2. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  3. The best bits in an iris code.

    PubMed

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2009-06-01

    Iris biometric systems apply filters to iris images to extract information about iris texture. Daugman's approach maps the filter output to a binary iris code. The fractional Hamming distance between two iris codes is computed and decisions about the identity of a person are based on the computed distance. The fractional Hamming distance weights all bits in an iris code equally. However, not all the bits in an iris code are equally useful. Our research is the first to present experiments documenting that some bits are more consistent than others. Different regions of the iris are compared to evaluate their relative consistency, and contrary to some previous research, we find that the middle bands of the iris are more consistent than the inner bands. The inconsistent-bit phenomenon is evident across genders and different filter types. Possible causes of inconsistencies, such as segmentation, alignment issues, and different filters are investigated. The inconsistencies are largely due to the coarse quantization of the phase response. Masking iris code bits corresponding to complex filter responses near the axes of the complex plane improves the separation between the match and nonmatch Hamming distance distributions.

  4. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  5. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  6. A New Scrambling Evaluation Scheme Based on Spatial Distribution Entropy and Centroid Difference of Bit-Plane

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Adhikari, Avishek; Sakurai, Kouichi

    Watermarking is one of the most effective techniques for copyright protection and information hiding. It can be applied in many fields of our society. Nowadays, some image scrambling schemes are used as one part of the watermarking algorithm to enhance the security. Therefore, how to select an image scrambling scheme and what kind of the image scrambling scheme may be used for watermarking are the key problems. Evaluation method of the image scrambling schemes can be seen as a useful test tool for showing the property or flaw of the image scrambling method. In this paper, a new scrambling evaluation system based on spatial distribution entropy and centroid difference of bit-plane is presented to obtain the scrambling degree of image scrambling schemes. Our scheme is illustrated and justified through computer simulations. The experimental results show (in Figs. 6 and 7) that for the general gray-scale image, the evaluation degree of the corresponding cipher image for the first 4 significant bit-planes selection is nearly the same as that for the 8 bit-planes selection. That is why, instead of taking 8 bit-planes of a gray-scale image, it is sufficient to take only the first 4 significant bit-planes for the experiment to find the scrambling degree. This 50% reduction in the computational cost makes our scheme efficient.

  7. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  8. Effect of using different cover image quality to obtain robust selective embedding in steganography

    NASA Astrophysics Data System (ADS)

    Abdullah, Karwan Asaad; Al-Jawad, Naseer; Abdulla, Alan Anwer

    2014-05-01

    One of the common types of steganography is to conceal an image as a secret message in another image which normally called a cover image; the resulting image is called a stego image. The aim of this paper is to investigate the effect of using different cover image quality, and also analyse the use of different bit-plane in term of robustness against well-known active attacks such as gamma, statistical filters, and linear spatial filters. The secret messages are embedded in higher bit-plane, i.e. in other than Least Significant Bit (LSB), in order to resist active attacks. The embedding process is performed in three major steps: First, the embedding algorithm is selectively identifying useful areas (blocks) for embedding based on its lighting condition. Second, is to nominate the most useful blocks for embedding based on their entropy and average. Third, is to select the right bit-plane for embedding. This kind of block selection made the embedding process scatters the secret message(s) randomly around the cover image. Different tests have been performed for selecting a proper block size and this is related to the nature of the used cover image. Our proposed method suggests a suitable embedding bit-plane as well as the right blocks for the embedding. Experimental results demonstrate that different image quality used for the cover images will have an effect when the stego image is attacked by different active attacks. Although the secret messages are embedded in higher bit-plane, but they cannot be recognised visually within the stegos image.

  9. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin

    2012-04-01

    It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.

  10. Detection of LSB+/-1 steganography based on co-occurrence matrix and bit plane clipping

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Aghaeinia, Hassan; Faez, Karim; Mehrabi, Mohammad Ali

    2010-01-01

    Spatial LSB+/-1 steganography changes smooth characteristics between adjoining pixels of the raw image. We present a novel steganalysis method for LSB+/-1 steganography based on feature vectors derived from the co-occurrence matrix in the spatial domain. We investigate how LSB+/-1 steganography affects the bit planes of an image and show that it changes more least significant bit (LSB) planes of it. The co-occurrence matrix is derived from an image in which some of its most significant bit planes are clipped. By this preprocessing, in addition to reducing the dimensions of the feature vector, the effects of embedding were also preserved. We compute the co-occurrence matrix in different directions and with different dependency and use the elements of the resulting co-occurrence matrix as features. This method is sensitive to the data embedding process. We use a Fisher linear discrimination (FLD) classifier and test our algorithm on different databases and embedding rates. We compare our scheme with the current LSB+/-1 steganalysis methods. It is shown that the proposed scheme outperforms the state-of-the-art methods in detecting the LSB+/-1 steganographic method for grayscale images.

  11. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  12. Conceptual design of a 10 to the 8th power bit magnetic bubble domain mass storage unit and fabrication, test and delivery of a feasibility model

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The conceptual design of a highly reliable 10 to the 8th power-bit bubble domain memory for the space program is described. The memory has random access to blocks of closed-loop shift registers, and utilizes self-contained bubble domain chips with on-chip decoding. Trade-off studies show that the highest reliability and lowest power dissipation is obtained when the memory is organized on a bit-per-chip basis. The final design has 800 bits/register, 128 registers/chip, 16 chips/plane, and 112 planes, of which only seven are activated at a time. A word has 64 data bits +32 checkbits, used in a 16-adjacent code to provide correction of any combination of errors in one plane. 100 KHz maximum rotational frequency keeps power low (equal to or less than, 25 watts) and also allows asynchronous operation. Data rate is 6.4 megabits/sec, access time is 200 msec to an 800-word block and an additional 4 msec (average) to a word. The fabrication and operation are also described for a 64-bit bubble domain memory chip designed to test the concept of on-chip magnetic decoding. Access to one of the chip's four shift registers for the read, write, and clear functions is by means of bubble domain decoders utilizing the interaction between a conductor line and a bubble.

  13. Scene-aware joint global and local homographic video coding

    NASA Astrophysics Data System (ADS)

    Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.

    2016-09-01

    Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.

  14. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  15. Proceedings of the Antenna Applications Symposium (1982) Held at Illinois University at Urbana on 22-24 September 1982

    DTIC Science & Technology

    1983-01-01

    1980 (this conference) attests to method , that in admittedly a phased b array context, and to method being a bit complex. Polarization control...Computation of the phase shift was made by two methods . The first used equations in Marcuvitz 4 for an E-plane waveguide bend, with changes in e i...made by adjustment of the waveguide width. The second method (Bahar-) requi-edi solving the wave equation in cylindrical coordinates. 28 Because the

  16. Application of morphological bit planes in retinal blood vessel extraction.

    PubMed

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  17. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  18. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    NASA Astrophysics Data System (ADS)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  19. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    NASA Astrophysics Data System (ADS)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  20. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  1. A Novel Quantum Image Steganography Scheme Based on LSB

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Luo, Jia; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen

    2018-06-01

    Based on the NEQR representation of quantum images and least significant bit (LSB) scheme, a novel quantum image steganography scheme is proposed. The sizes of the cover image and the original information image are assumed to be 4 n × 4 n and n × n, respectively. Firstly, the bit-plane scrambling method is used to scramble the original information image. Then the scrambled information image is expanded to the same size of the cover image by using the key only known to the operator. The expanded image is scrambled to be a meaningless image with the Arnold scrambling. The embedding procedure and extracting procedure are carried out by K 1 and K 2 which are under control of the operator. For validation of the presented scheme, the peak-signal-to-noise ratio (PSNR), the capacity, the security of the images and the circuit complexity are analyzed.

  2. Realisation and robustness evaluation of a blind spatial domain watermarking technique

    NASA Astrophysics Data System (ADS)

    Parah, Shabir A.; Sheikh, Javaid A.; Assad, Umer I.; Bhat, Ghulam M.

    2017-04-01

    A blind digital image watermarking scheme based on spatial domain is presented and investigated in this paper. The watermark has been embedded in intermediate significant bit planes besides the least significant bit plane at the address locations determined by pseudorandom address vector (PAV). The watermark embedding using PAV makes it difficult for an adversary to locate the watermark and hence adds to security of the system. The scheme has been evaluated to ascertain the spatial locations that are robust to various image processing and geometric attacks JPEG compression, additive white Gaussian noise, salt and pepper noise, filtering and rotation. The experimental results obtained, reveal an interesting fact, that, for all the above mentioned attacks, other than rotation, higher the bit plane in which watermark is embedded more robust the system. Further, the perceptual quality of the watermarked images obtained in the proposed system has been compared with some state-of-art watermarking techniques. The proposed technique outperforms the techniques under comparison, even if compared with the worst case peak signal-to-noise ratio obtained in our scheme.

  3. Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers

    NASA Astrophysics Data System (ADS)

    Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.

    2003-05-01

    Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.

  4. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  5. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    NASA Technical Reports Server (NTRS)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  6. Bit-Serial Adder Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the quantum-mechanical sense) between neighboring dots within the cell. The Coulomb repulsion between the two electrons tends to make them occupy antipodal dots in the cell. For an isolated cell, there are two energetically equivalent arrangements (denoted polarization states) of the extra electrons. The cell polarization is used to encode binary information. Because the polarization of a nonisolated cell depends on Coulomb-repulsion interactions with neighboring cells, universal logic gates and binary wires could be constructed, in principle, by arraying QCA of suitable design in suitable patterns. Again, for reasons too complex to describe here, in order to ensure accuracy and timeliness of the output of a QCA array, it is necessary to resort to an adiabatic switching scheme in which the QCA array is divided into subarrays, each controlled by a different phase of a multiphase clock signal. In this scheme, each subarray is given time to perform its computation, then its state is frozen by raising its inter-dot potential barriers and its output is fed as the input to the successor subarray. The successor subarray is kept in an unpolarized state so it does not influence the calculation of preceding subarray. Such a clocking scheme is consistent with pipeline computation in the sense that each different subarray can perform a different part of an overall computation. In other words, QCA arrays are inherently suitable for pipeline and, moreover, systolic computations. This sequential or pipeline aspect of QCA would be utilized in the proposed bit-serial adders.

  7. An approach to localize the retinal blood vessels using bit planes and centerline detection.

    PubMed

    Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G

    2012-11-01

    The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Survey and Analysis of Environmental Requirements for Shipboard Electronic Equipment Applications. Appendix B. Volume 3.

    DTIC Science & Technology

    1991-07-31

    memory banks Up to 1.25MByte SRAM 5 planes of 2048 x 1024 pixels Programmable video parameters max 720 x 512 pixels Sixteen colors TTL RGBI standard...bit I/O extension bus (VLXbus) Up to 2048 KByte 0-wait state static RAM BTT (Built-In-Test) PAL selectable dual ported VMEbus address Two RS-232/422...16, 25, or 33 MHz) A16/24:D08/16 VMEbus interface 8/16-bit I/O Extension bus (VLXbus) Up to 2048 KByte 32-bit wide static RAM -- 0-wait state at 16

  9. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS

    NASA Astrophysics Data System (ADS)

    Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.

    2003-04-01

    Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.

  10. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  11. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  12. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  13. Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Cheng-Yen; Sepulveda, Abdon; Keller, Scott

    2016-03-21

    In this paper, a fully coupled analytical model between elastodynamics with micromagnetics is used to study the switching energies using voltage induced mechanical bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5 mm) with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces out of plane deformation with bending moments induced in the magnetoelastic bit modifying the magnetic anisotropy. To minimize the energy, two design stages are used. In the first stage, the geometry and bias field (H{submore » b}) of the bit are optimized to minimize the strain energy required to rotate between two stable states. In the second stage, the bit's geometry is fixed, and the electrode position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which is approximately two orders of magnitude lower than spin transfer torque approaches.« less

  14. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  15. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  16. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    NASA Astrophysics Data System (ADS)

    Riera-Palou, Felip; den Brinker, Albertus C.

    2007-12-01

    This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).

  17. A decomposition approach to the design of a multiferroic memory bit

    NASA Astrophysics Data System (ADS)

    Acevedo, Ruben; Liang, Cheng-Yen; Carman, Gregory P.; Sepulveda, Abdon E.

    2017-06-01

    The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

  18. Sleep stage classification with low complexity and low bit rate.

    PubMed

    Virkkala, Jussi; Värri, Alpo; Hasan, Joel; Himanen, Sari-Leena; Müller, Kiti

    2009-01-01

    Standard sleep stage classification is based on visual analysis of central (usually also frontal and occipital) EEG, two-channel EOG, and submental EMG signals. The process is complex, using multiple electrodes, and is usually based on relatively high (200-500 Hz) sampling rates. Also at least 12 bit analog to digital conversion is recommended (with 16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. This is not a problem for in-house laboratory sleep studies, but in the case of online wireless self-applicable ambulatory sleep studies, lower complexity and lower bit rates are preferred. In this study we further developed earlier single channel facial EMG/EOG/EEG-based automatic sleep stage classification. An algorithm with a simple decision tree separated 30 s epochs into wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta power and 0.5-6 Hz amplitude. Improvements included low complexity recursive digital filtering. We also evaluated the effects of a reduced sampling rate, reduced number of quantization steps and reduced dynamic range on the sleep data of 132 training and 131 testing subjects. With the studied algorithm, it was possible to reduce the sampling rate to 50 Hz (having a low pass filter at 90 Hz), and the dynamic range to 244 microV, with an 8 bit resolution resulting in a bit rate of 0.4 kbit/s. Facial electrodes and a low bit rate enables the use of smaller devices for sleep stage classification in home environments.

  19. Error analysis in some Gauss-Turan-Radau and Gauss-Turan-Lobatto quadratures for analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2004-03-01

    We consider the generalized Gauss-Turan quadrature formulae of Radau and Lobatto type for approximating . The aim of this paper is to analyze the remainder term in the case when f is an analytic function in some region of the complex plane containing the interval [-1,1] in its interior. The remainder term is presented in the form of a contour integral over confocal ellipses (cf. SIAM J. Numer. Anal. 80 (1983) 1170). Sufficient conditions on the convergence for some of such quadratures, associated with the generalized Chebyshev weight functions, are found. Using some ideas from Hunter (BIT 35 (1995) 64) we obtain new estimates of the remainder term, which are very exact. Some numerical results and illustrations are shown.

  20. Secure Oblivious Hiding, Authentication, Tamper Proofing, and Verification Techniques

    DTIC Science & Technology

    2002-08-01

    compressing the bit- planes. The algorithm always starts with inspecting the 5th LSB plane. For color images , all three color-channels are compressed...use classical encryption engines, such as IDEA or DES . These algorithms have a fixed encryption block size, and, depending on the image dimensions, we...information can be stored either in a separate file, in the image header, or embedded in the image itself utilizing the modern concepts of steganography

  1. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. B., E-mail: houbinghuang@gmail.com; Department of Physics, University of Science and Technology Beijing, Beijing 100083; Hu, J. M.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  2. Survey Of Lossless Image Coding Techniques

    NASA Astrophysics Data System (ADS)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  3. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    NASA Astrophysics Data System (ADS)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  4. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  5. Effects of media stray field on electromigration characteristics in current-perpendicular-to-plane giant magnetoresistance spin-valve read sensors

    NASA Astrophysics Data System (ADS)

    Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae

    2012-05-01

    Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.

  6. Micro-mechanical resonators for dynamically reconfigurable reduced voltage logic gates

    NASA Astrophysics Data System (ADS)

    Chappanda, K. N.; Ilyas, S.; Younis, M. I.

    2018-05-01

    Due to the limitations of transistor-based logic devices such as their poor performance at elevated temperature, alternative computing methods are being actively investigated. In this work, we present electromechanical logic gates using electrostatically coupled in-plane micro-cantilever resonators operated at modest vacuum conditions of 5 Torr. Operating in the first resonant mode, we demonstrate 2-bit XOR, 2- and 3-bit AND, 2- and 3-bit NOR, and 1-bit NOT gates; all condensed in the same device. Through the designed electrostatic coupling, the required voltage for the logic gates is reduced by 80%, along with the reduction in the number of electrical interconnects and devices per logic operation (contrary to transistors). The device is dynamically reconfigurable between any logic gates in real time without the need for any change in the electrical interconnects and the drive circuit. By operating in the first two resonant vibration modes, we demonstrate mechanical logic gates consisting of two 2-bit AND and two 2-bit XOR gates. The device is tested at elevated temperatures and is shown to be functional as a logic gate up to 150 °C. Also, the device has high reliability with demonstrated lifetime greater than 5  ×  1012 oscillations.

  7. Enhanced ferromagnetic resonance linewidth of the free layer in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.

    2017-05-01

    We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.

  8. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  9. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be; Tchitnga, Robert; Woafo, Paul

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bitmore » rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.« less

  11. Adaptive intercolor error prediction coder for lossless color (rgb) picutre compression

    NASA Astrophysics Data System (ADS)

    Mann, Y.; Peretz, Y.; Mitchell, Harvey B.

    2001-09-01

    Most of the current lossless compression algorithms, including the new international baseline JPEG-LS algorithm, do not exploit the interspectral correlations that exist between the color planes in an input color picture. To improve the compression performance (i.e., lower the bit rate) it is necessary to exploit these correlations. A major concern is to find efficient methods for exploiting the correlations that, at the same time, are compatible with and can be incorporated into the JPEG-LS algorithm. One such algorithm is the method of intercolor error prediction (IEP), which when used with the JPEG-LS algorithm, results on average in a reduction of 8% in the overall bit rate. We show how the IEP algorithm can be simply modified and that it nearly doubles the size of the reduction in bit rate to 15%.

  12. Progress of the Swedish-Australian research collaboration on uncooled smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer; Reinhold, Olaf

    1998-10-01

    Progress is reported on the development of uncooled microbolometer IR focal plane detector arrays (IRFPDA) under a research collaboration between the Swedish Defence Research Establishment (FOA), and the Defence Science and Technology Organization (DSTO), Australia. The paper describes current focal plane detector arrays designed by Electro-optic Sensor Design (EOSD) for readout circuits developed by FOA. The readouts are fabricated in 0.8 micrometer CMOS, and have a novel signal conditioning and 16 bit parallel ADC design. The arrays are post-processed at DSTO on wafers supplied by FOA. During the past year array processing has been carried out at a new microengineering facility at DSTO, Salisbury, South Australia. A number of small format 16 X 16 arrays have been delivered to FOA for evaluation, and imaging has been demonstrated with these arrays. A 320 X 240 readout with 320 parallel 16 bit ADCs has been developed and IRFPDAs for this readout have been fabricated and are currently being evaluated.

  13. Hybrid VLSI/QCA Architecture for Computing FFTs

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew

    2003-01-01

    A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.

  14. Short Note on Complexity of Multi-Value Byzantine Agreement

    DTIC Science & Technology

    2010-07-27

    which lead to nBl /D bits over the whole algorithm. Broadcasts in extended step: In the extended step, every node broadcasts D bits. Thus nDB bits...bits, as: (n− 1)l + n(n− 1)(k +D/k)l/D + nBl /D + nDBt(t+ 1) (4) = (n− 1)l +O(n2kl/D + n2l/k + nBl /D + n3BD). (5) Notice that broadcast algorithm of

  15. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  16. Efficient Bit-to-Symbol Likelihood Mappings

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  17. The Complexity of Bit Retrieval

    DOE PAGES

    Elser, Veit

    2018-09-20

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  18. The Complexity of Bit Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elser, Veit

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  19. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  20. Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi

    With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.

  1. Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.

    PubMed

    Hu, Sudeng; Wang, Hanli; Kwong, Sam

    2012-04-01

    In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.

  2. A Real-Time High Performance Data Compression Technique For Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.

  3. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  4. PDC bits break ground with advanced vibration mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    Advancements in PDC bit technology have resulted in the identification and characterization of different types of vibrational modes that historically have limited PDC bit performance. As a result, concepts have been developed that prevent the initiation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit performance. As a result, concepts have been developed that prevent the imitation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit,more » thereby improving its performance. This improved understanding of the complex forces affecting bit performance is driving bit customization for specific drilling programs.« less

  5. Bit-1 is an essential regulator of myogenic differentiation

    PubMed Central

    Griffiths, Genevieve S.; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W.; Burkin, Dean J.; Matter, Michelle L.

    2015-01-01

    Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. PMID:25770104

  6. Multi-Bit Quantum Private Query

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing

    2015-09-01

    Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.

  7. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  8. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  9. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  10. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  11. From "seahorse" to "molecular Recording"

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Jun

    2002-08-01

    We will first present unique dendritic "seahorse" patterns observed when we study structural features in functional C60-TCNQ complex thin films, and their formation mechanism. Then we report a new process for ultrahigh density, erasable data storage, based on the molecular electrical bistability of an organic charge transfer complex, 3-nitrobenzal malononitrile and 1,4-phenylenediamine (NBMN-pDA). Switched by a voltage pulse from a scanning tunneling microscope (STM), we demonstrate a data density exceeding 1013 bits/cm2. The experiment results and theoretical ab initio calculations show the writing and erasing mechanism to be a conductance transition of the organic compound due to a structural change from crystalline to noncrystalline. The ultimate bit density appears limited only by the size of the organic complex, less than 1 nm in our case, corresponding to 1014 bits/cm2.

  12. Colloidal domain lithography for regularly arranged artificial magnetic out-of-plane monodomains in Au/Co/Au layers.

    PubMed

    Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks

    2011-03-04

    Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.

  13. Region-of-interest determination and bit-rate conversion for H.264 video transcoding

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan

    2013-12-01

    This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.

  14. Construction of FuzzyFind Dictionary using Golay Coding Transformation for Searching Applications

    NASA Astrophysics Data System (ADS)

    Kowsari, Kamram

    2015-03-01

    searching through a large volume of data is very critical for companies, scientists, and searching engines applications due to time complexity and memory complexity. In this paper, a new technique of generating FuzzyFind Dictionary for text mining was introduced. We simply mapped the 23 bits of the English alphabet into a FuzzyFind Dictionary or more than 23 bits by using more FuzzyFind Dictionary, and reflecting the presence or absence of particular letters. This representation preserves closeness of word distortions in terms of closeness of the created binary vectors within Hamming distance of 2 deviations. This paper talks about the Golay Coding Transformation Hash Table and how it can be used on a FuzzyFind Dictionary as a new technology for using in searching through big data. This method is introduced by linear time complexity for generating the dictionary and constant time complexity to access the data and update by new data sets, also updating for new data sets is linear time depends on new data points. This technique is based on searching only for letters of English that each segment has 23 bits, and also we have more than 23-bit and also it could work with more segments as reference table.

  15. Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.

  16. Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits

    NASA Astrophysics Data System (ADS)

    Zakharova, E. S.; Markova, I. Yu; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    Modern drill bits have high abrasive wear in the area of contact with the rock and removed sludge. Currently, these bits have a protective layer on the bit body, which consists of a metal matrix with inclusions of carbide particles. The research matrix of this coating and the wear-resistant particles is a prerequisite in the design and production of drill bits. In this work, complex investigation was made for various carbide powders of the grades Relit (tungsten carbide produced by Ltd “ROSNAMIS”) which are used as wear-resistant particles in the coating of the drill bit body. The morphology and phase composition of the chosen powders as well as the influence of a particle shape on prospects of their application in wear-resistance coating presented in this work.

  17. Development of a 32-bit UNIX-based ELAS workstation

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.

    1987-01-01

    A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.

  18. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  19. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  20. Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems

    PubMed Central

    Rhee, Minsoung

    2010-01-01

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730

  1. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  2. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  3. The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs

    NASA Astrophysics Data System (ADS)

    Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.

    2009-12-01

    This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.

  4. An ablative pulsed plasma thruster with a segmented anode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.

    2018-01-01

    An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.

  5. Complex networks generated by the Penna bit-string model: Emergence of small-world and assortative mixing

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Maini, Philip K.

    2005-10-01

    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.

  6. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  7. Focal plane subsystem design and performance for atmospheric chemistry from geostationary orbit tropospheric emissions monitoring of pollution

    NASA Astrophysics Data System (ADS)

    Gilmore, A. S.; Philbrick, R. H.; Funderburg, J.

    2017-09-01

    Remote sensing of pollutants are enabled from a satellite in a geostationary orbit containing an imaging spectrometer encompassing the wavelength ranges of 290 - 490 nm and 540 - 740 nm. As the first of NASA's Earth Venture Instrument Program, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) program will utilize this instrument to measure hourly air quality over a large portion of North America. The focal plane subsystem (FPS) contains two custom designed and critically aligned full frame transfer charge coupled devices (active area: 1028 x 2048, 18 μm) within a focal plane array package designed for radiation tolerance and space charging rejection. In addition, the FPS contains custom distributed focal plane electronics that provide all necessary clocks and biases to the sensors, receives all analog data from the sensors and performs 14 bit analog to digital conversion for upstream processing. Finally, the FPS encompasses custom low noise cables connecting the focal plane array and associated electronics. This paper discusses the design and performance of this novel focal plane subsystem with particular emphasis on the optical performance achieved including alignment, quantum efficiency, and modulation transfer function.

  8. Man-Machine Impact of Technology on Coast Guard Missions and Systems

    DTIC Science & Technology

    1979-12-01

    t Cost of Rar~dom, Acce~ss eoy~mAlr 97 f-Al 1000 MOS RAM-(409 BITS/CHIP) . 100 _ I• z LLJ 10 (I) UI 1.04 I.-I- ’ YEAR ii A .. I. FiueA-.oecs pedo ...of these advances will iTOSt likely be accomplished through focal plane arrays of detectors, charge coupled device readout techniques for the video

  9. Performance of cellular frequency-hopped spread-spectrum radio networks

    NASA Astrophysics Data System (ADS)

    Gluck, Jeffrey W.; Geraniotis, Evaggelos

    1989-10-01

    Multiple access interference is characterized for cellular mobile networks, in which users are assumed to be Poisson-distributed in the plane and employ frequency-hopped spread-spectrum signaling with transmitter-oriented assignment of frequency-hopping patterns. Exact expressions for the bit error probabilities are derived for binary coherently demodulated systems without coding. Approximations for the packet error probability are derived for coherent and noncoherent systems and these approximations are applied when forward-error-control coding is employed. In all cases, the effects of varying interference power are accurately taken into account according to some propagation law. Numerical results are given in terms of bit error probability for the exact case and throughput for the approximate analyses. Comparisons are made with previously derived bounds and it is shown that these tend to be very pessimistic.

  10. Digital Image Display Control System, DIDCS. [for astronomical analysis

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Klinglesmith, D. A., III

    1979-01-01

    DIDCS is an interactive image display and manipulation system that is used for a variety of astronomical image reduction and analysis operations. The hardware system consists of a PDP 11/40 main frame with 32K of 16-bit core memory; 96K of 16-bit MOS memory; two 9 track 800 BPI tape drives; eight 2.5 million byte RKO5 type disk packs, three user terminals, and a COMTAL 8000-S display system which has sufficient memory to store and display three 512 x 512 x 8 bit images along with an overlay plane and function table for each image, a pseudo color table and the capability for displaying true color. The software system is based around the language FORTH, which will permit an open ended dictionary of user level words for image analyses and display. A description of the hardware and software systems will be presented along with examples of the types of astronomical research that are being performed. Also a short discussion of the commonality and exchange of this type of image analysis system will be given.

  11. Cascaded VLSI Chips Help Neural Network To Learn

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  12. Sample Acquisition and Caching architecture for the Mars Sample Return mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.

    This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.

  13. Universal Decoder for PPM of any Order

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.

    2010-01-01

    A recently developed algorithm for demodulation and decoding of a pulse-position- modulation (PPM) signal is suitable as a basis for designing a single hardware decoding apparatus to be capable of handling any PPM order. Hence, this algorithm offers advantages of greater flexibility and lower cost, in comparison with prior such algorithms, which necessitate the use of a distinct hardware implementation for each PPM order. In addition, in comparison with the prior algorithms, the present algorithm entails less complexity in decoding at large orders. An unavoidably lengthy presentation of background information, including definitions of terms, is prerequisite to a meaningful summary of this development. As an aid to understanding, the figure illustrates the relevant processes of coding, modulation, propagation, demodulation, and decoding. An M-ary PPM signal has M time slots per symbol period. A pulse (signifying 1) is transmitted during one of the time slots; no pulse (signifying 0) is transmitted during the other time slots. The information intended to be conveyed from the transmitting end to the receiving end of a radio or optical communication channel is a K-bit vector u. This vector is encoded by an (N,K) binary error-correcting code, producing an N-bit vector a. In turn, the vector a is subdivided into blocks of m = log2(M) bits and each such block is mapped to an M-ary PPM symbol. The resultant coding/modulation scheme can be regarded as equivalent to a nonlinear binary code. The binary vector of PPM symbols, x is transmitted over a Poisson channel, such that there is obtained, at the receiver, a Poisson-distributed photon count characterized by a mean background count nb during no-pulse time slots and a mean signal-plus-background count of ns+nb during a pulse time slot. In the receiver, demodulation of the signal is effected in an iterative soft decoding process that involves consideration of relationships among photon counts and conditional likelihoods of m-bit vectors of coded bits. Inasmuch as the likelihoods of all the m-bit vectors of coded bits mapping to the same PPM symbol are correlated, the best performance is obtained when the joint mbit conditional likelihoods are utilized. Unfortunately, the complexity of decoding, measured in the number of operations per bit, grows exponentially with m, and can thus become prohibitively expensive for large PPM orders. For a system required to handle multiple PPM orders, the cost is even higher because it is necessary to have separate decoding hardware for each order. This concludes the prerequisite background information. In the present algorithm, the decoding process as described above is modified by, among other things, introduction of an lbit marginalizer sub-algorithm. The term "l-bit marginalizer" signifies that instead of m-bit conditional likelihoods, the decoder computes l-bit conditional likelihoods, where l is fixed. Fixing l, regardless of the value of m, makes it possible to use a single hardware implementation for any PPM order. One could minimize the decoding complexity and obtain an especially simple design by fixing l at 1, but this would entail some loss of performance. An intermediate solution is to fix l at some value, greater than 1, that may be less than or greater than m. This solution makes it possible to obtain the desired flexibility to handle any PPM order while compromising between complexity and loss of performance.

  14. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  15. Side-information-dependent correlation channel estimation in hash-based distributed video coding.

    PubMed

    Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter

    2012-04-01

    In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.

  16. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    PubMed

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  17. Controlled initialization of superconducting π-phaseshifters and possible applications

    NASA Astrophysics Data System (ADS)

    Mielke, Olaf; Ortlepp, Thomas; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes

    2010-05-01

    The rapid single-flux quantum electronics (RSFQ) is a superconducting, naturally digital circuit family which is currently close to being commercially applied. RSFQ is outstanding because of its very low switching energy resulting in very low power consumption. This advantage causes, however, a significant influence of thermal noise. For industrial applications, a certain noise immunity is required which is still a challenge, especially for circuits of higher complexity. Integrating phase-shifting elements is a new concept for further improvements concerning stability against the influence of thermal noise. We have already shown that the implementation of phase-shifting elements significantly reduces the influence of thermal noise on circuit behavior by experimentally analyzing the bit-error rate (Mielke et al 2009 IEEE Trans. Appl. Supercond. 19 621-5). Concepts which are easily implementable in standard niobium technology are especially promising. The π-phaseshifter consists of a superconducting loop which is able to store a single flux quantum. The loop current related to the stored flux creates a well-defined phase shift. To achieve the correct functionality of complex circuits it is essential to store exactly one flux quantum in each π-phaseshifter during the cooling down of the chip. Thus, for studying the feasibility of this new approach, the initialization reliability of the π-phaseshifter needs to be verified. We present an experimental investigation of this reliability to obtain a general assessment for the application of the π-phaseshifter in niobium technology. Furthermore, we compare the configuration shielded by a solid ground plane with a configuration with a ground-plane hole below the π-phaseshifter. Justified by the experimental results we suggest programmable RSFQ circuits based on π-phaseshifters. The characteristics of these devices can be influenced by a controlled initialization of the π-phaseshifter. The fabrication was performed by FLUXONICS Foundry.

  18. Quantum watermarking scheme through Arnold scrambling and LSB steganography

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping

    2017-09-01

    Based on the NEQR of quantum images, a new quantum gray-scale image watermarking scheme is proposed through Arnold scrambling and least significant bit (LSB) steganography. The sizes of the carrier image and the watermark image are assumed to be 2n× 2n and n× n, respectively. Firstly, a classical n× n sized watermark image with 8-bit gray scale is expanded to a 2n× 2n sized image with 2-bit gray scale. Secondly, through the module of PA-MOD N, the expanded watermark image is scrambled to a meaningless image by the Arnold transform. Then, the expanded scrambled image is embedded into the carrier image by the steganography method of LSB. Finally, the time complexity analysis is given. The simulation experiment results show that our quantum circuit has lower time complexity, and the proposed watermarking scheme is superior to others.

  19. Trajectory of coronary motion and its significance in robotic motion cancellation.

    PubMed

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (<50 microm/s in the lateral plane) were observed during the P wave and the ST segment. The trajectories of the points of interest during consecutive cardiac cycles as well as during cardiac cycles minutes apart remained comparable (the differences were negligible), provided the hemodynamics remained stable. Inotrope-induced changes in cardiac contractility influenced not only the maximum excursion, but also the shape of the trajectory. Normal positive pressure ventilation displacing the heart in the thoracic cage was evident by the displacement of the reference point of the trajectory. The movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  20. Transrectal Near-Infrared Optical Tomography for Prostate Imaging

    DTIC Science & Technology

    2008-03-01

    superluminescent diode by use of spread-spectral-encoding configuration [1]. The 8 channels of detection fibers are also grouped to a 3-meter long fiber...imaging plane differentiate the detection channel [3, 4]. A 16bit CCD camera acquires the 2-D signals corresponding to all source and detector pairs... detection sensitivity profile It is known that the accuracy of the image reconstruction is dependent upon many factors, including the mesh size [6]. The

  1. New Focal Plane Array Controller for the Instruments of the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Komiyama, Yutaka; Miyazaki, Satoshi; Yamashita, Takuya; Yagi, Masafumi; Sekiguchi, Maki

    2006-03-01

    We have developed a next-generation data acquisition system, MESSIA5 (Modularized Extensible System for Image Acquisition), which comprises the digital part of a focal plane array controller. The new data acquisition system was constructed based on a 64 bit, 66 MHz PCI (peripheral component interconnect) bus architecture and runs on an x86 CPU computer with (non-real-time) Linux. The system, including the CPU board, is placed at the telescope focus, and standard gigabit Ethernet is adopted for the data transfer, as opposed to a dedicated fiber link. During the summer of 2002, we installed the new system for the first time on the Subaru prime-focus camera Suprime-Cam and successfully improved the observing performance.

  2. Feasibility study of current pulse induced 2-bit/4-state multilevel programming in phase-change memory

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin

    2017-08-01

    In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.

  3. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).

    PubMed

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  4. 45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.

    PubMed

    Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile

    2012-07-30

    In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.

  5. Towards High Density 3-D Memory in Diamond

    NASA Astrophysics Data System (ADS)

    Henshaw, Jacob; Dhomkar, Siddharth; Meriles, Carlos; Jayakumar, Harishankar

    The nitrogen-vacancy (NV) center in diamond is presently the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Of great utility is the ability to optically initialize the NV charge state, which has an immediate impact on the center's light emission properties. Here, we use two-color microscopy in NV-rich, type-1b diamond to demonstrate fluorescence-encoded long-term storage of classical information. As a proof of principle, we write, reset, and rewrite various patterns with 2-D binary bit density comparable to present DVD-ROM technology. The strong fluorescence signal originating from the diffraction-limited bit volume allows us to transition from binary to multi-valued encoding, which translates into a significant storage capacity boost. Finally, we show that our technique preserves information written on different planes of the diamond crystal and thus serves as a platform for three-dimensional storage. Substantial enhancement in the bit density could be achieved with the aid of super resolution microscopy techniques already employed to discriminate between NVs with sub-diffraction, nanometer accuracy, a regime where the storage capacity could exceed 1017 bytes/cm3 We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  6. Quantum image coding with a reference-frame-independent scheme

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Belin, Etienne

    2016-07-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  7. Hash Bit Selection for Nearest Neighbor Search.

    PubMed

    Xianglong Liu; Junfeng He; Shih-Fu Chang

    2017-11-01

    To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.

  8. Low complexity 1D IDCT for 16-bit parallel architectures

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2007-09-01

    This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.

  9. Frequent statistics of link-layer bit stream data based on AC-IM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Chenghong; Lei, Yingke; Xu, Yiming

    2017-08-01

    At present, there are many relevant researches on data processing using classical pattern matching and its improved algorithm, but few researches on statistical data of link-layer bit stream. This paper adopts a frequent statistical method of link-layer bit stream data based on AC-IM algorithm for classical multi-pattern matching algorithms such as AC algorithm has high computational complexity, low efficiency and it cannot be applied to binary bit stream data. The method's maximum jump distance of the mode tree is length of the shortest mode string plus 3 in case of no missing? In this paper, theoretical analysis is made on the principle of algorithm construction firstly, and then the experimental results show that the algorithm can adapt to the binary bit stream data environment and extract the frequent sequence more accurately, the effect is obvious. Meanwhile, comparing with the classical AC algorithm and other improved algorithms, AC-IM algorithm has a greater maximum jump distance and less time-consuming.

  10. Using game theory for perceptual tuned rate control algorithm in video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiancong; Ahmad, Ishfaq

    2005-03-01

    This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.

  11. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  12. Correlation estimation and performance optimization for distributed image compression

    NASA Astrophysics Data System (ADS)

    He, Zhihai; Cao, Lei; Cheng, Hui

    2006-01-01

    Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.

  13. A Comparative Study of Heavy Ion and Proton Induced Bit Error Sensitivity and Complex Burst Error Modes in Commercially Available High Speed SiGe BiCMOS

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Carts, Marty; Campbell, Art; Reed, Robert; Ladbury, Ray; Seidleck, Christina; Currie, Steve; Riggs, Pam; Fritz, Karl; Randall, Barb

    2004-01-01

    A viewgraph presentation that reviews recent SiGe bit error test data for different commercially available high speed SiGe BiCMOS chips that were subjected to various levels of heavy ion and proton radiation. Results for the tested chips at different operating speeds are displayed in line graphs.

  14. Cross-Layer Resilience Exploration

    DTIC Science & Technology

    2015-03-31

    complex 563 server-class systems) and any arbitrary fault model (permanent, transient, multi-bit, etc.) System Design Analysis Using flip- flop ...level fault injection, we rank the vulnerability of each flip- flop in the processor in terms of its likelihood to propagate faults [3]. This allows the...hardened flip- flops , which are flip- flops designed to uphold the bit representation of their output circuit even under particle strikes [1, 6, 10

  15. Heavy-Ion Testing of the Freescale Qorivva 32-bit Automotive-Grade MCU

    NASA Technical Reports Server (NTRS)

    Wilcox, Ted; Seidleck, Christina; Casey, Megan; LaBel, Ken

    2016-01-01

    We present single-event effects testing results from a commercially-available automotive microcontroller. We discuss the difficulties encountered testing with commercially-provided evaluation boards while attempting to classify the complex and varied failure modes of a modern 32-bit microcontroller. This work also describes some of the possible advantages to using off-the-shelf automotive-grade electronics for low-risk aerospace applications.

  16. High-Speed Systolic Array Testbed.

    DTIC Science & Technology

    1987-10-01

    applications since the concept was introduced by H.T. Kung In 1978. This highly parallel architecture of nearet neighbor data communciation and...must be addressed. For instance, should bit-serial or bit parallei computation be utilized. Does the dynamic range of the candidate applications or...numericai stability of the algorithms used require computations In fixed point and Integer format or the architecturally more complex and slower floating

  17. Research Activities of the Northwest Laboratory for Integrated Systems

    DTIC Science & Technology

    1987-04-06

    table, and composite table (to assist evaluation of objects) are each built. The parse tree is also checked to make sure there are no meaningless...Stan- ford) as well as the Apollo DN series. All of these implementations require eight bit planes for effective use of color. Also supported are AED...time of intersection had not yet passed the queuing of the segment was delayed until that time. This algorithm had the effect of preserving the slope of

  18. UH-USA Agreement - A Telemedicine Research Proposal

    DTIC Science & Technology

    2004-11-01

    hold and they were going to quarantine the entire airport. From his description, I explained that it probably was not smallpox but rather chicken pox ...but I still had to come over to examine the patient. I left my busy office, drove post haste to the airport, and confirmed that it was indeed chicken ... pox . No need for quarantine, and the planes resumed their schedules, although a bit late. I thought it would be so nice if the airport medical

  19. The Reliability and Factor Structure of the Job Activity Preference Questionnaire (JAPQ) and the Job Behavior Experience Questionnaire (JBEQ)

    DTIC Science & Technology

    1982-01-01

    different bits of information to fly his plane, etc.) 35. Analyzing information (interpreting financial reports, determining why an automobile engine...involvin- hand and arm movements, as might be used in repairing automobiles , packaging products, etc.) I48. liand-arm steadiness (steady hand and arm...devices (pianos, typewriters, adding Rating Scale machines, etc.) 0 None 100. Highway or rail vehicles ( automobiles , trucks, 1 Very limited buses, trains

  20. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  1. Modal Control of a Satellite in Orbit about L3.

    DTIC Science & Technology

    1980-12-01

    the right- half of the complex plane , are removed via the controller moving the unstable roots from the right- half to the left- half of the ...complex plane . Simultaneously, the other system roots remain in their original locations in the complex plane . Since the Poincare exponents of Hamiltonian... half - plane , the conjugate root in the left- half -

  2. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    ERIC Educational Resources Information Center

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  3. Secure Communication via a Recycling of Attenuated Classical Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, IV, Amos M.

    We describe a simple method of interleaving a classical and quantum signal in a secure communication system at a single wavelength. The system transmits data encrypted via a one-time pad on a classical signal and produces a single-photon reflection of the encrypted signal. This attenuated signal can be used to observe eavesdroppers and produce fresh secret bits. The system can be secured against eavesdroppers, detect simple tampering or classical bit errors, produces more secret bits than it consumes, and does not require any entanglement or complex wavelength division multiplexing, thus, making continuous secure two-way communication via one-time pads practical.

  4. Secure Communication via a Recycling of Attenuated Classical Signals

    DOE PAGES

    Smith, IV, Amos M.

    2017-01-12

    We describe a simple method of interleaving a classical and quantum signal in a secure communication system at a single wavelength. The system transmits data encrypted via a one-time pad on a classical signal and produces a single-photon reflection of the encrypted signal. This attenuated signal can be used to observe eavesdroppers and produce fresh secret bits. The system can be secured against eavesdroppers, detect simple tampering or classical bit errors, produces more secret bits than it consumes, and does not require any entanglement or complex wavelength division multiplexing, thus, making continuous secure two-way communication via one-time pads practical.

  5. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

    PubMed Central

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393

  6. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

  7. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  8. Clean Quantum and Classical Communication Protocols.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen

    2016-12-02

    By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.

  9. Data acquisition system for the socal plane detector of the mass separator MASHA

    NASA Astrophysics Data System (ADS)

    Novoselov, A. S.; Rodin, A. M.; Motycak, S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yukhimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    The results of the development and the general information about the data acquisition system which was recently created at the MASHA setup (Flerov laboratory of nuclear reactions at Joint institute for nuclear research) are presented. The main difference from the previous system is that we use a new modern platform, National Instruments PXI with XIA multichannel high-speed digitizers (250 MHz 12 bit 16 channels). At this moment system has 448 spectrometric channels. The software and its features for the data acquisition and analysis are also described. The new DAQ system expands precision measuring capabilities of alpha decays and spontaneous fission at the focal plane position-sensitive silicon strip detector which, in turn, increases the capabilities of the setup in such a field as low-yield registration of elements.

  10. The 2.5 bit/detected photon demonstration program: Phase 2 and 3 experimental results

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1982-01-01

    The experimental program for laboratory demonstration of and energy efficient optical communication channel operating at a rate of 2.5 bits/detected photon is described. Results of the uncoded PPM channel performance are presented. It is indicated that the throughput efficiency can be achieved not only with a Reed-Solomon code as originally predicted, but with a less complex code as well.

  11. A New Illuminator of Opportunity Bistatic Radar Research Project at DSTO

    DTIC Science & Technology

    2009-05-01

    digitally down convert each IF into 32-bit complex samples . That is, it generates 16-bit in-phase and quadrature -phase samples and saves them on a large non...cross- correlation process (see Equation 14), to produce each frame of the movies presented in Figures 30 - 36. The MATLAB code used to produce the...11 3.3.1 Terrestrial TV Configuration . . . . . . . . . . . . . . . . . . . . . 11 3.3.2 GPS Configuration

  12. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  13. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  14. A high-speed digital signal processor for atmospheric radar, part 7.3A

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  15. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  16. Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bunn, James S., Jr.

    1988-01-01

    The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).

  17. The Coast Artillery Journal. Volume 70, Number 1, January 1929

    DTIC Science & Technology

    1929-01-01

    sovereign war-rights and liens on their future freedom of action. And for full measure, since measure you will have, let’s come nearer home. Have you...at their full value. Wait a bit, until the world gets used to a new idea. And remember that the League’s resolution of Septem- ber, 1927--to say...guns, planes, and ships, to block any possible blows until our full strength is developed, we will be a pretty dis. couraging proposition. Uncle Sam

  18. Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bunn, James S., Jr.

    1987-01-01

    The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).

  19. Phase-shifting coronagraph

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2017-09-01

    With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extrasolar planets in the forthcoming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. fourquadrants and vortex phase masks.

  20. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-07-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  1. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-03-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  2. Percussive Force Magnitude in Permafrost

    NASA Technical Reports Server (NTRS)

    Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.

    2000-01-01

    An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.

  3. Plane Transformations in a Complex Setting I: Homotheties-Translations

    ERIC Educational Resources Information Center

    Dana-Picard, T.

    2006-01-01

    A previous note described how complex numbers can be used for elementary analytic geometry in the plane, describing lines, circles and their intersections using complex Cartesian equations. In the present note, a description of elementary plane transformations, namely homotheties and translations, their group structure and their operations on…

  4. Metamorphic belts of Anatolia

    NASA Astrophysics Data System (ADS)

    Oberhänsli, Roland; Prouteau, Amaury; Candan, Osman; Bousquet, Romain

    2015-04-01

    Investigating metamorphic rocks from high-pressure/low-temperature (HP/LT) belts that formed during the closure of several oceanic branches, building up the present Anatolia continental micro-plate gives insight to the palaeogeography of the Neotethys Ocean in Anatolia. Two coherent HP/LT metamorphic belts, the Tavşanlı Zone (distal Gondwana margin) and the Ören-Afyon-Bolkardağ Zone (proximal Gondwana margin), parallel their non-metamorphosed equivalent (the Tauride Carbonate Platform) from the Aegean coast in NW Anatolia to southern Central Anatolia. P-T conditions and timing of metamorphism in the Ören-Afyon-Bolkardağ Zone (>70?-65 Ma; 0.8-1.2 GPa/330-420°C) contrast those published for the overlying Tavşanlı Zone (88-78 Ma; 2.4 GPa/500 °C). These belts trace the southern Neotethys suture connecting the Vardar suture in the Hellenides to the Inner Tauride suture along the southern border of the Kirşehir Complex in Central Anatolia. Eastwards, these belts are capped by the Oligo-Miocene Sivas Basin. Another HP/LT metamorphic belt, in the Alanya and Bitlis regions, outlines the southern flank of the Tauride Carbonate Platform. In the Alanya Nappes, south of the Taurides, eclogites and blueschists yielded metamorphic ages around 82-80 Ma (zircon U-Pb and phengite Ar-Ar data). The Alanya-Bitlis HP belt testifies an additional suture not comparable to the northerly Tavşanlı and Ören-Afyon belts, thus implying an additional oceanic branch of the Neotethys. The most likely eastern lateral continuation of this HP belt is the Bitlis Massif, in SE Turkey. There, eclogites (1.9-2.4 GPa/480-540°C) occur within calc-arenitic meta-sediments and in gneisses of the metamorphic (Barrovian-type) basement. Zircon U-Pb ages revealed 84.4-82.4 Ma for peak metamorphism. Carpholite-bearing HP/LT metasediments representing the stratigraphic cover of the Bitlis Massif underwent 0.8-1.2 GPa/340-400°C at 79-74 Ma (Ar-Ar on white mica). These conditions compares to the Tavşanlı-Afyon realm. However the differences in time and P-T conditions (eclogite- vs. blueschist-facies units) in the Bitlis Massif indicate that the different metamorphic peak conditions were reached at different times in a single subduction zone. Exhumation from approx. 65 to 35 km depth occurred within <10 myr. The special relations between eclogite-blueschist are due to the fact that collision with the Arabian plate was and still is on going in the Bitlis area. The Bitlis HP rocks represent a subduction realm that separated the Bitlis-Pütürge(-Bistun?) continental block from the South-Armenian (Tauride?) block, further north. Post-Eocene blueschists south of the Bitlis Massif witness the separation of the Bitlis-Pütüre block from the Arabian plate, and the southward migration of the subduction zone from the Late Cretaceous to the Oligocene. Continuous convergence of Africa and Eurasia engendered the simultaneous consumption of several, separated branches of the Neotethys Ocean and amalgamation of different terranes. The rise of the Eastern Anatolia Plateau is related to this complex geodynamic setting. Reduced seismic velocities inferred from geophysical observations, which are interpreted as complete replacement of lithospheric- by asthenospheric mantle, can be explained by thermodynamic modelling as partial hydration of the lithospheric mantle wedge during protracted subduction. Hydrated lithospheric mantle is interpreted as result of the complex geodynamic setting in Anatolia with multiple simultaneous subduction zones.

  5. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  6. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  7. Microprocessor based implementation of attitude and shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  8. Plane Transformations in a Complex Setting II: Isometries

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2007-01-01

    This paper is the second part of a study of plane transformations using a complex setting. The first part was devoted to homotheties and translations, now attention is turned towards plane isometries. The group theoretic properties of plane isometries are easy to derive and images of classical geometrical objects by these transformations are…

  9. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  10. Can communication power of separable correlations exceed that of entanglement resource?

    PubMed

    Horodecki, Paweł; Tuziemski, Jan; Mazurek, Paweł; Horodecki, Ryszard

    2014-04-11

    The scenario of remote state preparation with a shared correlated quantum state and one bit of forward communication [B. Dakić et al., Nat. Phys. 8, 666 (2012)] is considered. Optimization of the transmission efficiency is extended to include general encoding and decoding strategies. The importance of the use of linear fidelity is recognized. It is shown that separable states cannot exceed the efficiency of entangled states by means of “local operations plus classical communication” actions limited to 1 bit of forward communication. It is proven however that such a surprising phenomena may naturally occur when the decoding agent has limited resources in the sense that either (i) has to use decoding which is insensitive to the change of the coordinate system in the plane in question (which is the natural choice if the receiver does not know the latter) or (ii) is forced to use bistochastic operations which may be imposed by physically inconvenient local thermodynamical conditions.

  11. Processing Infrared Images For Fire Management Applications

    NASA Astrophysics Data System (ADS)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  12. Non-volatile spin bistability based on ferromagnet-semiconductor quantum dot hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Enaya, Hani; Zavada, John; Kim, Ki Wook

    2008-03-01

    Electrical manipulation of a memory cell based on bistability effect in a nanostructure consisting of a semiconductor quantum dot (QD) adjoining on opposite sides with a dielectric ferromagnetic layer (DFL) and a reservoir of itinerant holes is investigated theoretically. The operating principle is based on the interplay between the exchange field of the holes Bh acting on the magnetization vector of the DFL M perpendicular to structure plane and the anisotropy field Ba which aligns M along the plane. At low hole population of the QD (Bh<Ba), the subsequent M rotation will decrease the hole energy in the QD; hence the high hole population state is sustained (second stable state ``1'') under a fixed electro-chemical potential set by the reservoir even after bias is removed. The analysis of bit retention time of the proposed memory demonstrates the feasibility of the device with lateral QD size at least 30 nm under room temperature operation. Another advantage is the extremely small dissipative energy for Write/Erase operations.

  13. Epistemic View of Quantum States and Communication Complexity of Quantum Channels

    NASA Astrophysics Data System (ADS)

    Montina, Alberto

    2012-09-01

    The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality. This special class has attracted strong interest very recently. The communication cost of each derived simulation is given by the mutual information between the quantum state and the classical state of the parent hidden variable theory. Finally, we find that the communication complexity for single qubits is smaller than 1.28 bits. The previous known upper bound was 1.85 bits.

  14. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    PubMed

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

  15. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  16. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  17. Consumer holographic read-only memory reader with mastering and replication technology.

    PubMed

    Chuang, Ernest; Curtis, Kevin; Yang, Yunping; Hill, Adrian

    2006-04-15

    What is believed to be a novel holographic design for read-only memory systems allows a compact low-cost consumer drive within a 10 mm drive height, using a lensless phase conjugate readout and a combination of polytopic and angle multiplexing. A two-step mastering method enables production of high-efficiency holographic masters, and fast replication is possible by using only a series of plane-wave illuminations. Mastering and replication techniques are verified experimentally with an array of 125 holograms with no measured bit errors.

  18. Test operation of a pneumatic vibrating-blade planer in phosphate and coal: a progress report on planer-mining research, 1958--1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.S.

    1962-01-01

    Third report in a series describes progress in research with the pneumatic vibrating-blade planer: Tests conducted in the Arickaree phosphate mine in Utah and in the Roslyn No. 9 coal mine in Washington. After the Arickaree mine tests, the bit design was improved, and tests were conducted in the Roslyn No. 9 mine to check the modifications. The redesigned cutting tool was an improvement, and the possibility of planing coal as well as phosphate was proved.

  19. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).

  20. A sub-microwatt asynchronous level-crossing ADC for biomedical applications.

    PubMed

    Li, Yongjia; Zhao, Duan; Serdijn, Wouter A

    2013-04-01

    A continuous-time level-crossing analog-to-digital converter (LC-ADC) for biomedical applications is presented. When compared to uniform-sampling (US) ADCs LC-ADCs generate fewer samples for various sparse biomedical signals. Lower power consumption and reduced design complexity with respect to conventional LC-ADCs are achieved due to: 1) replacing the n-bit digital-to-analog converter (DAC) with a 1-bit DAC; 2) splitting the level-crossing detections; and 3) fixing the comparison window. Designed and implemented in 0.18 μm CMOS technology, the proposed ADC uses a chip area of 220 × 203 μm(2). Operating from a supply voltage of 0.8 V, the ADC consumes 313-582 nW from 5 Hz to 5 kHz and achieves an ENOB up to 7.9 bits.

  1. A scalable SIMD digital signal processor for high-quality multifunctional printer systems

    NASA Astrophysics Data System (ADS)

    Kang, Hyeong-Ju; Choi, Yongwoo; Kim, Kimo; Park, In-Cheol; Kim, Jung-Wook; Lee, Eul-Hwan; Gahang, Goo-Soo

    2005-01-01

    This paper describes a high-performance scalable SIMD digital signal processor (DSP) developed for multifunctional printer systems. The DSP supports a variable number of datapaths to cover a wide range of performance and maintain a RISC-like pipeline structure. Many special instructions suitable for image processing algorithms are included in the DSP. Quad/dual instructions are introduced for 8-bit or 16-bit data, and bit-field extraction/insertion instructions are supported to process various data types. Conditional instructions are supported to deal with complex relative conditions efficiently. In addition, an intelligent DMA block is integrated to align data in the course of data reading. Experimental results show that the proposed DSP outperforms a high-end printer-system DSP by at least two times.

  2. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    PubMed

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  3. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  4. Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Gu, Chongjie; Ruan, Xiulin, E-mail: ruan@purdue.edu

    2015-02-16

    A low lattice thermal conductivity (κ) is desired for thermoelectrics, and a highly anisotropic κ is essential for applications such as magnetic layers for heat-assisted magnetic recording, where a high cross-plane (perpendicular to layer) κ is needed to ensure fast writing while a low in-plane κ is required to avoid interaction between adjacent bits of data. In this work, we conduct molecular dynamics simulations to investigate the κ of superlattice (SL), random multilayer (RML) and alloy, and reveal that RML can have 1–2 orders of magnitude higher anisotropy in κ than SL and alloy. We systematically explore how the κmore » of SL, RML, and alloy changes relative to each other for different bond strength, interface roughness, atomic mass, and structure size, which provides guidance for choosing materials and structural parameters to build RMLs with optimal performance for specific applications.« less

  5. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao

    2018-04-01

    A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.

  6. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  7. Characterization of the europium tetracycline complex as a biomarker for atherosclerosis

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; da Silva, Mônica N.; Sicchieri, Leticia B.

    2016-04-01

    Atherosclerosis is a narrowing of the arteries caused by an increase of atheromatous plaque: material formed by macrophage cells containing cholesterol and fatty acids, calcium and a variable amount of fibrous connective tissue. The elation between vulnerable plaques and cardiovascular events can be determined using plaque biomarkers. In this work, atherosclerotic plaques stained with different molar ratios of europium, in a potential plaque biomarker, europium tetracycline complex, were studied by fluorescence microscopy. The tetracycline antibiotic used was chlortetracycline. The growth of atherosclerotic plaque was followed during 60 days in New Zealand rabbits divided in two groups: an experimental group (EG), with nine animals and a control group (CG) with three animals. The animals in the EG received a diet with 1% of cholesterol and the animals of GC received a normal diet. The aortic arch of the animals with 60 days were cut in the vertical plane in 6 μm thick slices, which were mounted on glass slides and stained with hematoxylin an eosin and europium chlortetracycline complex (EuCTc). The fluorescence images were obtained exciting the EuCTc absorption band with a filter cube D (BP 355 - 425) and the emission was collected with a LP 470 suppression filter. Light intensity, detector gain and acquisition time were fixed for comparisons. The 20× magnified images were collected with 12 bit (or 4096 gray tones) resolution. The mean value of gray scale for each molar ratio of EuCTc was different, indicating that the complex interacts with the components of atherosclerotic plaque and the best molar ratio was 1.5 EuCTc. These results indicate the potential use of the EuCTc biomarker for atherosclerotic plaque characterization.

  8. Not so Complex: Iteration in the Complex Plane

    ERIC Educational Resources Information Center

    O'Dell, Robin S.

    2014-01-01

    The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…

  9. Simpler Alternative to an Optimum FQPSK-B Viterbi Receiver

    NASA Technical Reports Server (NTRS)

    Lee, Dennis; Simon, Marvin; Yan, Tsun-Yee

    2003-01-01

    A reduced-complexity alternative to an optimum FQPSK-B Viterbi receiver has been invented. As described, the reduction in complexity is achieved at the cost of only a small reduction in power performance [performance expressed in terms of a bit-energy-to-noise-energy ratio (Eb/N0) for a given bit-error rate (BER)]. The term "FQPSK-B" denotes a baseband-filtered version of Feher quadrature-phase-shift keying, which is a patented, bandwidth-efficient phase-modulation scheme named after its inventor. Heretofore, commercial FQPSK-B receivers have performed symbol-by-symbol detection, in each case using a detection filter (either the proprietary FQPSK-B filter for better BER performance, or a simple integrate-and-dump filter with degraded performance) and a sample-and-hold circuit.

  10. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    NASA Astrophysics Data System (ADS)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  11. Bias estimation for the Landsat 8 operational land imager

    USGS Publications Warehouse

    Morfitt, Ron; Vanderwerff, Kelly

    2011-01-01

    The Operational Land Imager (OLI) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM). This instrument is the latest in the line of Landsat imagers, and will continue to expand the archive of calibrated earth imagery. An important step in producing a calibrated image from instrument data is accurately accounting for the bias of the imaging detectors. Bias variability is one factor that contributes to error in bias estimation for OLI. Typically, the bias is simply estimated by averaging dark data on a per-detector basis. However, data acquired during OLI pre-launch testing exhibited bias variation that correlated well with the variation in concurrently collected data from a special set of detectors on the focal plane. These detectors are sensitive to certain electronic effects but not directly to incoming electromagnetic radiation. A method of using data from these special detectors to estimate the bias of the imaging detectors was developed, but found not to be beneficial at typical radiance levels as the detectors respond slightly when the focal plane is illuminated. In addition to bias variability, a systematic bias error is introduced by the truncation performed by the spacecraft of the 14-bit instrument data to 12-bit integers. This systematic error can be estimated and removed on average, but the per pixel quantization error remains. This paper describes the variability of the bias, the effectiveness of a new approach to estimate and compensate for it, as well as the errors due to truncation and how they are reduced.

  12. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-07-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  13. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-04-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  14. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  15. Complex capacitance in the representation of modulus of the lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Batra, A. K.; Bhattacharjee, Sudip; Aggarwal, M. D.

    2011-03-01

    The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35 ≤T≤150 °C as a function of measurement frequency (10 ≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59 ≤T≤73 °C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance ( C*) and in the modulus ( M*) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M*-plane is established as the lumped relaxation is identified in the C*-plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C*-plane is portrayed in the M*-plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.

  16. A Subsystem Test Bed for Chinese Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Zhao, An; Yan, Yihua; Wang, Wei

    2014-11-01

    The Chinese Spectral Radioheliograph is a solar dedicated radio interferometric array that will produce high spatial resolution, high temporal resolution, and high spectral resolution images of the Sun simultaneously in decimetre and centimetre wave range. Digital processing of intermediate frequency signal is an important part in a radio telescope. This paper describes a flexible and high-speed digital down conversion system for the CSRH by applying complex mixing, parallel filtering, and extracting algorithms to process IF signal at the time of being designed and incorporates canonic-signed digit coding and bit-plane method to improve program efficiency. The DDC system is intended to be a subsystem test bed for simulation and testing for CSRH. Software algorithms for simulation and hardware language algorithms based on FPGA are written which use less hardware resources and at the same time achieve high performances such as processing high-speed data flow (1 GHz) with 10 MHz spectral resolution. An experiment with the test bed is illustrated by using geostationary satellite data observed on March 20, 2014. Due to the easy alterability of the algorithms on FPGA, the data can be recomputed with different digital signal processing algorithms for selecting optimum algorithm.

  17. ASIC For Complex Fixed-Point Arithmetic

    NASA Technical Reports Server (NTRS)

    Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.

    1995-01-01

    Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.

  18. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  19. Differential Fault Analysis on CLEFIA

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Wu, Wenling; Feng, Dengguo

    CLEFIA is a new 128-bit block cipher proposed by SONY corporation recently. The fundamental structure of CLEFIA is a generalized Feistel structure consisting of 4 data lines. In this paper, the strength of CLEFIA against the differential fault attack is explored. Our attack adopts the byte-oriented model of random faults. Through inducing randomly one byte fault in one round, four bytes of faults can be simultaneously obtained in the next round, which can efficiently reduce the total induce times in the attack. After attacking the last several rounds' encryptions, the original secret key can be recovered based on some analysis of the key schedule. The data complexity analysis and experiments show that only about 18 faulty ciphertexts are needed to recover the entire 128-bit secret key and about 54 faulty ciphertexts for 192/256-bit keys.

  20. Plane Transformations in a Complex Setting III: Similarities

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  1. Implementing digital holograms to create and measure complex-plane optical fields

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Majola, Nombuso; Chetty, Naven; Forbes, Andrew

    2016-02-01

    The coherent superposition of a Gaussian beam with an optical vortex can be mathematically described to occupy the complex plane. We provide a simple analogy between the mathematics, in the form of the complex plane, and the visual representation of these two superimposed optical fields. We provide detailed instructions as to how one can experimentally produce, measure, and control these fields with the use of digital holograms encoded on a spatial light modulator.

  2. A Research Program on the Asymptotic Description of Electromagnetic Pulse Propagation in Spatially Inhomogeneous Temporally Dispersive, Attenuative Media

    DTIC Science & Technology

    2007-09-01

    the right- half of the complex wo- plane . The Sommerfeld precursor then describes the signal front which arrives at 0 = 1 with...resonance Lorentz model dielectric [18], the complex phase function qO(w, 0) is analytic in the w- plane formed by the two branch cuts in the lower half of... the w,- plane symmetrically located about the imaginary axis. In the right half plane , the branch

  3. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-06-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  4. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-03-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  5. Quantum Associative Neural Network with Nonlinear Search Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Rigui; Wang, Huian; Wu, Qian; Shi, Yang

    2012-03-01

    Based on analysis on properties of quantum linear superposition, to overcome the complexity of existing quantum associative memory which was proposed by Ventura, a new storage method for multiply patterns is proposed in this paper by constructing the quantum array with the binary decision diagrams. Also, the adoption of the nonlinear search algorithm increases the pattern recalling speed of this model which has multiply patterns to O( {log2}^{2^{n -t}} ) = O( n - t ) time complexity, where n is the number of quantum bit and t is the quantum information of the t quantum bit. Results of case analysis show that the associative neural network model proposed in this paper based on quantum learning is much better and optimized than other researchers' counterparts both in terms of avoiding the additional qubits or extraordinary initial operators, storing pattern and improving the recalling speed.

  6. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).

  7. Design of high-speed burst mode clock and data recovery IC for passive optical network

    NASA Astrophysics Data System (ADS)

    Yan, Minhui; Hong, Xiaobin; Huang, Wei-Ping; Hong, Jin

    2005-09-01

    Design of a high bit rate burst mode clock and data recovery (BMCDR) circuit for gigabit passive optical networks (GPON) is described. A top-down design flow is established and some of the key issues related to the behavioural level modeling are addressed in consideration for the complexity of the BMCDR integrated circuit (IC). Precise implementation of Simulink behavioural model accounting for the saturation of frequency control voltage is therefore developed for the BMCDR, and the parameters of the circuit blocks can be readily adjusted and optimized based on the behavioural model. The newly designed BMCDR utilizes the 0.18um standard CMOS technology and is shown to be capable of operating at bit rate of 2.5Gbps, as well as the recovery time of one bit period in our simulation. The developed behaviour model is verified by comparing with the detailed circuit simulation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D.A.; Grunwald, D.C.

    The spectrum of parallel processor designs can be divided into three sections according to the number and complexity of the processors. At one end there are simple, bit-serial processors. Any one of thee processors is of little value, but when it is coupled with many others, the aggregate computing power can be large. This approach to parallel processing can be likened to a colony of termites devouring a log. The most notable examples of this approach are the NASA/Goodyear Massively Parallel Processor, which has 16K one-bit processors, and the Thinking Machines Connection Machine, which has 64K one-bit processors. At themore » other end of the spectrum, a small number of processors, each built using the fastest available technology and the most sophisticated architecture, are combined. An example of this approach is the Cray X-MP. This type of parallel processing is akin to four woodmen attacking the log with chainsaws.« less

  9. A microprocessor based on a two-dimensional semiconductor.

    PubMed

    Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas

    2017-04-11

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  10. A microprocessor based on a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  11. FBCOT: a fast block coding option for JPEG 2000

    NASA Astrophysics Data System (ADS)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).

  12. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects and provides new means for the modern life sciences

    NASA Astrophysics Data System (ADS)

    Pampaloni, Francesco; Ansari, Nari; Girard, Philippe; Stelzer, Ernst H. K.

    2011-07-01

    Most optical technologies are applied to flat, basically two-dimensional cellular systems. However, physiological meaningful information relies on the morphology, the mechanical properties and the biochemistry of a cell's context. A cell requires the complex three-dimensional relationship to other cells. However, the observation of multi-cellular biological specimens remains a challenge. Specimens scatter and absorb light, thus, the delivery of the probing light and the collection of the signal light become inefficient; many endogenous biochemical compounds also absorb light and suffer degradation of some sort (photo-toxicity), which induces malfunction of a specimen. In conventional and confocal fluorescence microscopy, whenever a single plane, the entire specimen is illuminated. Recording stacks of images along the optical Z-axis thus illuminates the entire specimen once for each plane. Hence, cells are illuminated 10-20 and fish 100-300 times more often than they are observed. This can be avoided by changing the optical arrangement. The basic idea is to use light sheets, which are fed into the specimen from the side and overlap with the focal plane of a wide-field fluorescence microscope. In contrast to an epi-fluorescence arrangement, such an azimuthal fluorescence arrangement uses two independently operated lenses for illumination and detection. Optical sectioning and no photo-toxic damage or photo-bleaching outside a small volume close to the focal plane are intrinsic properties. Light sheet-based fluorescence microscopy (LSFM) takes advantage of modern camera technologies. LSFM can be operated with laser cutters and for fluorescence correlation spectroscopy. During the last few years, LSFM was used to record zebrafish development from the early 32-cell stage until late neurulation with sub-cellular resolution and short sampling periods (60-90 sec/stack). The recording speed was five 4-Megapixel large frames/sec with a dynamic range of 12-14 bit. We followed cell movements during gastrulation, revealed the development during cell migration processes and showed that an LSFM exposes an embryo to 200 times less energy than a conventional and 5,000 times less energy than a confocal fluorescence microscope. Most recently, we implemented incoherent structured illumination in our DSLM. The intensity modulated light sheets can be generated with dynamic frequencies and allow us to estimate the effect of the specimen on the image formation process at various depths in objects of different age.

  13. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling.

    PubMed

    Lent, Craig S; Liu, Mo; Lu, Yuhui

    2006-08-28

    We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least k(B)T per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.

  14. Performance Enhancement of MC-CDMA System through Novel Sensitive Bit Algorithm Aided Turbo Multi User Detection

    PubMed Central

    Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan

    2015-01-01

    Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917

  15. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling

    NASA Astrophysics Data System (ADS)

    Lent, Craig S.; Liu, Mo; Lu, Yuhui

    2006-08-01

    We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least kBT per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.

  16. Landsat 9: Status and Plans

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Jenstrom, Del; Masek, Jeffrey G.; Dabney, Phil; Pedelty, Jeffrey A.; Barsi, Julia A.; Montanaro, Matthew

    2016-01-01

    The Landsat 9 mission, currently under development and proceeding towards a targeted launch in late 2020, will be very similar to the Landsat 8 mission, launched in 2013. Like Landsat 8, Landsat 9 is a joint effort between NASA and USGS with two sensors, the Operational Land Imager 2 (OLI-2), essentially a copy of the OLI on Landsat 8 and the Thermal Infrared Sensor 2 (TIRS-2), very similar to the TIRS on Landsat 8. The OLI-2, like OLI, provides 14-bit image data, though for Landsat 9, all 14 bits will be retained and transmitted to the ground. The focal plane modules to be used for OLI-2 were flight spares for OLI and are currently being retested by Ball Aerospace. Results indicate radiometric performance comparable to OLI. The TIRS was a class C instrument, with a 3-year design lifetime, and therefore had limited redundancy. TIRS-2 will be a class B instrument, with a 5-year design lifetime, like OLI (and OLI-2), necessitating design changes to increase redundancy. The stray light and Scene Select Mechanism (SSM) encoder problems observed on orbit with TIRS have also instigated a few design changes to TIRS-2. Stray light analysis and testing have indicated that additional baffles in the TIRS-2 optical system will suppress the out-of-field response. The SSM encoder problems have not been definitively traced to a route cause, though conductive anodic filament growth in the circuit boards is suspected. Improved designs for the encoder are being considered for TIRS-2. The spare Focal Plane Array (FPA) from TIRS is planned for use in TIRS-2; FPA spectral and radiometric performance testing is scheduled for September of this year at NASA's Goddard Space Flight Center.

  17. The craniofacial complex in 47, XXX females.

    PubMed

    Krusinskiene, Viktorija; Krusinskie, Viktorija; Alvesalo, Lassi; Sidlauskas, Antanas

    2005-08-01

    A study of the craniofacial complex in four 47, XXX Finnish females, or females with an extra X chromosome, was carried out using cephalometric analysis comprising linear and angular measurements. The lengths of the anterior and posterior cranial bases, the calvarium, mandibular ramus and posterior and upper anterior face heights were found to be significantly shorter than in female controls, while the angles between the foraminal and clival planes, the mandibular plane and cranial base, the maxillary and occlusal planes, the maxillary and mandibular planes and the foraminal and mandibular planes, and also the gonial angle, were significantly enlarged. The present findings of reduced linear measurements, together with the results of studies on the craniofacial complex of 47, XXY and 47, XYY males, suggest dimensional variation between these groups from the promoting effect of an extra Y chromosome and the retarding effect of an extra X chromosome on craniofacial growth.

  18. Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer.

    PubMed

    Cong, W T; Tang, Z; Zhao, X G; Chu, J H

    2015-03-23

    Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers.

  19. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Van de Wiele, B.; Dupré, L.; Van Waeyenberge, B.

    2015-06-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation.

  20. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  1. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Domm, Lukas; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea

    2012-01-01

    The search for present or past life in the Universe is one of the most important objectives of NASA's exploration missions. Drills for subsurface sampling of rocks, ice and permafrost are an essential tool for astrobiology studies on other planets. Increasingly, it is recognized that drilling via a combination of rotation and hammering offers an efficient and effective rapid penetration mechanism. The rotation provides an intrinsic method for removal of cuttings from the borehole while the impact and shear forces aids in the fracturing of the penetrated medium. Conventional drills that use a single actuator are based on a complex mechanism with many parts and their use in future mission involves greater risk of failure and/or may require lubrication that can introduce contamination. In this paper, a compact drill is reported that uses a single piezoelectric actuator to produce hammering and rotation of the bit. A horn with asymmetric grooves was design to impart a longitudinal (hammering) and transverse force (rotation) to a keyed free mass. The drill requires low axial pre-load since the hammering-impacts fracture the rock under the bit kerf and rotate the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations 'fluidize' the powdered cuttings inside the flutes reducing the friction with the auger surface. This action reduces the consumed power and heating of the drilled medium helping to preserve the pristine content of the acquired samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This can reduce the development/fabrication cost and complexity. In this paper, the drill mechanism will be described and the test results will be reported and discussed.

  2. Fixed-point image orthorectification algorithms for reduced computational cost

    NASA Astrophysics Data System (ADS)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.

  3. An efficient method for the calculation of mean extinction. I - The analyticity of the complex extinction efficiency of homogeneous spheres

    NASA Astrophysics Data System (ADS)

    Xing, Zhang-Fan; Greenberg, J. M.

    1992-11-01

    Results of an investigation of the analyticity of the complex extinction efficiency Q-tilde(ext) in different parameter domains are presented. In the size parameter domain, x = omega(a/c), numerical Hilbert transforms are used to study the analyticity properties of Q-tilde(ext) for homogeneous spheres. Q-tilde(ext) is found to be analytic in the entire lower complex x-tilde-plane when the refractive index, m, is fixed as a real constant (pure scattering) or infinity (perfect conductor); poles, however, appear in the left side of the lower complex x-tilde-plane as m becomes complex. The computation of the mean extinction produced by an extended size distribution of particles may be conveniently and accurately approximated using only a few values of the complex extinction evaluated in the complex plane.

  4. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  5. Single Piezo-Actuator Rotary-Hammering Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to prevent it from being subjected to tensile stress that will cause it to fail. The backing is intended to transfer the generated mechanical vibrations towards the horn. In order to cause rotation, the horn is configured asymmetrically with helical segments and, upon impacting the bit, it introduces longitudinal along the axis of the actuator and tangential force causing twisting action that rotates the bit. The longitudinal component of the vibrations of the stack introduces percussion impulses between the bit and the rock to fracture it when the ultimate strain is exceeded under the bit.

  6. Obstacle detection by recognizing binary expansion patterns

    NASA Technical Reports Server (NTRS)

    Baram, Yoram; Barniv, Yair

    1993-01-01

    This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.

  7. POLYSITE - An interactive package for the selection and refinement of Landsat image training sites

    NASA Technical Reports Server (NTRS)

    Mack, Marilyn J. P.

    1986-01-01

    A versatile multifunction package, POLYSITE, developed for Goddard's Land Analysis System, is described which simplifies the process of interactively selecting and correcting the sites used to study Landsat TM and MSS images. Image switching between the zoomed and nonzoomed image, color and shape cursor change and location display, and bit plane erase or color change, are global functions which are active at all times. Local functions possibly include manipulation of intensive study areas, new site definition, mensuration, and new image copying. The program is illustrated with the example of a full TM maser scene of metropolitan Washington, DC.

  8. Links between quantum physics and thought.

    PubMed

    Robson, Barry

    2009-01-01

    Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.

  9. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  10. Fast computational scheme of image compression for 32-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Kasperovich, Leonid

    1994-01-01

    This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.

  11. Complex space monofilar approximation of diffraction currents on a conducting half plane

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

  12. All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro

    2006-09-01

    In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.

  13. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness.

    PubMed

    Elhadidy, Mohamed; Arguello, Hector; Álvarez-Ordóñez, Avelino; Miller, William G; Duarte, Alexandra; Martiny, Delphine; Hallin, Marie; Vandenberg, Olivier; Dierick, Katelijne; Botteldoorn, Nadine

    2018-06-20

    Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection. Copyright © 2018. Published by Elsevier B.V.

  14. A compact electron spectrometer for an LWFA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.; Crowell, R.; Li, Y.

    2007-01-01

    The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams.more » The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.« less

  15. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  16. A secure and robust information hiding technique for covert communication

    NASA Astrophysics Data System (ADS)

    Parah, S. A.; Sheikh, J. A.; Hafiz, A. M.; Bhat, G. M.

    2015-08-01

    The unprecedented advancement of multimedia and growth of the internet has made it possible to reproduce and distribute digital media easier and faster. This has given birth to information security issues, especially when the information pertains to national security, e-banking transactions, etc. The disguised form of encrypted data makes an adversary suspicious and increases the chance of attack. Information hiding overcomes this inherent problem of cryptographic systems and is emerging as an effective means of securing sensitive data being transmitted over insecure channels. In this paper, a secure and robust information hiding technique referred to as Intermediate Significant Bit Plane Embedding (ISBPE) is presented. The data to be embedded is scrambled and embedding is carried out using the concept of Pseudorandom Address Vector (PAV) and Complementary Address Vector (CAV) to enhance the security of the embedded data. The proposed ISBPE technique is fully immune to Least Significant Bit (LSB) removal/replacement attack. Experimental investigations reveal that the proposed technique is more robust to various image processing attacks like JPEG compression, Additive White Gaussian Noise (AWGN), low pass filtering, etc. compared to conventional LSB techniques. The various advantages offered by ISBPE technique make it a good candidate for covert communication.

  17. The complex dynamics of products and its asymptotic properties

    PubMed Central

    Cristelli, Matthieu; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyse global export data within the Economic Complexity framework. We couple the new economic dimension Complexity, which captures how sophisticated products are, with an index called logPRODY, a measure of the income of the respective exporters. Products’ aggregate motion is treated as a 2-dimensional dynamical system in the Complexity-logPRODY plane. We find that this motion can be explained by a quantitative model involving the competition on the markets, that can be mapped as a scalar field on the Complexity-logPRODY plane and acts in a way akin to a potential. This explains the movement of products towards areas of the plane in which the competition is higher. We analyse market composition in more detail, finding that for most products it tends, over time, to a characteristic configuration, which depends on the Complexity of the products. This market configuration, which we called asymptotic, is characterized by higher levels of competition. PMID:28520794

  18. Optical Neural Classification Of Binary Patterns

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.; Little, Gordon R.

    1988-05-01

    Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.

  19. Metamaterial bricks and quantization of meta-surfaces

    PubMed Central

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-01-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283

  20. Metamaterial bricks and quantization of meta-surfaces

    NASA Astrophysics Data System (ADS)

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-02-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  1. Metamaterial bricks and quantization of meta-surfaces.

    PubMed

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram

    2017-02-27

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  2. A microprocessor based on a two-dimensional semiconductor

    PubMed Central

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-01-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III–V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor—molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material. PMID:28398336

  3. Quantization and training of object detection networks with low-precision weights and activations

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Liu, Jian; Zhou, Li; Wang, Yun; Chen, Jie

    2018-01-01

    As convolutional neural networks have demonstrated state-of-the-art performance in object recognition and detection, there is a growing need for deploying these systems on resource-constrained mobile platforms. However, the computational burden and energy consumption of inference for these networks are significantly higher than what most low-power devices can afford. To address these limitations, this paper proposes a method to train object detection networks with low-precision weights and activations. The probability density functions of weights and activations of each layer are first directly estimated using piecewise Gaussian models. Then, the optimal quantization intervals and step sizes for each convolution layer are adaptively determined according to the distribution of weights and activations. As the most computationally expensive convolutions can be replaced by effective fixed point operations, the proposed method can drastically reduce computation complexity and memory footprint. Performing on the tiny you only look once (YOLO) and YOLO architectures, the proposed method achieves comparable accuracy to their 32-bit counterparts. As an illustration, the proposed 4-bit and 8-bit quantized versions of the YOLO model achieve a mean average precision of 62.6% and 63.9%, respectively, on the Pascal visual object classes 2012 test dataset. The mAP of the 32-bit full-precision baseline model is 64.0%.

  4. Supporting 64-bit global indices in Epetra and other Trilinos packages :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhurani, Chetan; Austin, Travis M.; Heroux, Michael Allen

    The Trilinos Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries within an object-oriented framework. It is intended for large-scale, complex multiphysics engineering and scientific applications [2, 4, 3]. Epetra is one of its basic packages. It provides serial and parallel linear algebra capabilities. Before Trilinos version 11.0, released in 2012, Epetra used the C++ int data-type for storing global and local indices for degrees of freedom (DOFs). Since int is typically 32-bit, this limited the largest problem size to be smaller than approximately two billion DOFs. This was true even ifmore » a distributed memory machine could handle larger problems. We have added optional support for C++ long long data-type, which is at least 64-bit wide, for global indices. To save memory, maintain the speed of memory-bound operations, and reduce further changes to the code, the local indices are still 32-bit. We document the changes required to achieve this feature and how the new functionality can be used. We also report on the lessons learned in modifying a mature and popular package from various perspectives design goals, backward compatibility, engineering decisions, C++ language features, effects on existing users and other packages, and build integration.« less

  5. Advancing Future Network Science through Content Understanding

    DTIC Science & Technology

    2014-05-01

    BitTorrent, PostgreSQL, MySQL , and GRSecurity) and emerging technologies (HadoopDFS, Tokutera, Sector/Sphere, HBase, and other BigTable-like...result. • Multi-Source Network Pulse Analyzer and Correlator provides course of action planning by enhancing the understanding of the complex dynamics

  6. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  7. Software Techniques for Non-Von Neumann Architectures

    DTIC Science & Technology

    1990-01-01

    Commtopo programmable Benes net.; hypercubic lattice for QCD Control CENTRALIZED Assign STATIC Memory :SHARED Synch UNIVERSAL Max-cpu 566 Proessor...boards (each = 4 floating point units, 2 multipliers) Cpu-size 32-bit floating point chips Perform 11.4 Gflops Market quantum chromodynamics ( QCD ...functions there should exist a capability to define hierarchies and lattices of complex objects. A complex object can be made up of a set of simple objects

  8. Applications of Probabilistic Combiners on Linear Feedback Shift Register Sequences

    DTIC Science & Technology

    2016-12-01

    on the resulting output strings show a drastic increase in complexity, while simultaneously passing the stringent randomness tests required by the...a three-variable function. Our tests on the resulting output strings show a drastic increase in complex- ity, while simultaneously passing the...10001101 01000010 11101001 Decryption of a message that has been encrypted using bitwise XOR is quite simple. Since each bit is its own additive inverse

  9. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  10. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    PubMed

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  11. Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity

    NASA Astrophysics Data System (ADS)

    Bosco, Gabriella; Pilori, Dario; Poggiolini, Pierluigi; Carena, Andrea; Guiomar, Fernando

    2017-01-01

    Bandwidth and capacity demand in metro, regional, and long-haul networks is increasing at several tens of percent per year, driven by video streaming, cloud computing, social media and mobile applications. To sustain this traffic growth, an upgrade of the widely deployed 100-Gbit/s long-haul optical systems, based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) modulation format associated with coherent detection and digital signal processing (DSP), is mandatory. In fact, optical transport techniques enabling a per-channel bit rate beyond 100 Gbit/s have recently been the object of intensive R and D activities, aimed at both improving the spectral efficiency and lowering the cost per bit in fiber transmission systems. In this invited contribution, we review the different available options to scale the per-channel bit-rate to 400 Gbit/s and beyond, i.e. symbol-rate increase, use of higher-order quadrature amplitude modulation (QAM) modulation formats and use of super-channels with DSP-enabled spectral shaping and advanced multiplexing technologies. In this analysis, trade-offs of system reach, spectral efficiency and transceiver complexity are addressed. Besides scalability, next generation optical networks will require a high degree of flexibility in the transponders, which should be able to dynamically adapt the transmission rate and bandwidth occupancy to the light path characteristics. In order to increase the flexibility of these transponders (often referred to as "flexponders"), several advanced modulation techniques have recently been proposed, among which sub-carrier multiplexing, hybrid formats (over time, frequency and polarization), and constellation shaping. We review these techniques, highlighting their limits and potential in terms of performance, complexity and flexibility.

  12. Reduced complexity of multi-track joint 2-D Viterbi detectors for bit-patterned media recording channel

    NASA Astrophysics Data System (ADS)

    Myint, L. M. M.; Warisarn, C.

    2017-05-01

    Two-dimensional (2-D) interference is one of the prominent challenges in ultra-high density recording system such as bit patterned media recording (BPMR). The multi-track joint 2-D detection technique with the help of the array-head reading can tackle this problem effectively by jointly processing the multiple readback signals from the adjacent tracks. Moreover, it can robustly alleviate the impairments due to track mis-registration (TMR) and media noise. However, the computational complexity of such detectors is normally too high and hard to implement in a reality, even for a few multiple tracks. Therefore, in this paper, we mainly focus on reducing the complexity of multi-track joint 2-D Viterbi detector without paying a large penalty in terms of the performance. We propose a simplified multi-track joint 2-D Viterbi detector with a manageable complexity level for the BPMR's multi-track multi-head (MTMH) system. In the proposed method, the complexity of detector's trellis is reduced with the help of the joint-track equalization method which employs 1-D equalizers and 2-D generalized partial response (GPR) target. Moreover, we also examine the performance of a full-fledged multi-track joint 2-D detector and the conventional 2-D detection. The results show that the simplified detector can perform close to the full-fledge detector, especially when the system faces high media noise, with the significant low complexity.

  13. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    PubMed Central

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  14. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype ICs with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3-and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient.

  15. Real-time minimal-bit-error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  16. Real-time minimal bit error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  17. Novel latch for adiabatic quantum-flux-parametron logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Naoki, E-mail: takeuchi-naoki-kx@ynu.jp; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2014-03-14

    We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)

  18. Performance of a radio link between a base station and a medical implant utilising the MICS standard.

    PubMed

    Johansson, Anders J

    2004-01-01

    Modern medical implants are of increasing complexity and with that, the need for fast and flexible communication with them grows. A wireless system is preferable and an inductive link is the most commonly used. But it has the drawback of a very short range, essentially limited to having the external transceiver touching the patient. The Medical Implant Communication System, MICS, is a standard aimed at improving the communication distance. It operates at a higher frequency band between 402 MHz and 405 MHz. We have by simulations and measurements investigated the channel properties of this band and calculated the link performance for a typical implant application. The result is a link speed between a base station and a bedridden patient of 600 kbit bits per second with a bit error rate of 2% in the downlink to the implant and 1 % in the uplink to the base station. Conclusions on the necessary complexity of the base station are also given.

  19. Codestream-Based Identification of JPEG 2000 Images with Different Coding Parameters

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu; Fukuhara, Takahiro; Kiya, Hitoshi

    A method of identifying JPEG 2000 images with different coding parameters, such as code-block sizes, quantization-step sizes, and resolution levels, is presented. It does not produce false-negative matches regardless of different coding parameters (compression rate, code-block size, and discrete wavelet transform (DWT) resolutions levels) or quantization step sizes. This feature is not provided by conventional methods. Moreover, the proposed approach is fast because it uses the number of zero-bit-planes that can be extracted from the JPEG 2000 codestream by only parsing the header information without embedded block coding with optimized truncation (EBCOT) decoding. The experimental results revealed the effectiveness of image identification based on the new method.

  20. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl Teller Ginocchio potential wave functions

    NASA Astrophysics Data System (ADS)

    Michel, N.; Stoitsov, M. V.

    2008-04-01

    The fast computation of the Gauss hypergeometric function F12 with all its parameters complex is a difficult task. Although the F12 function verifies numerous analytical properties involving power series expansions whose implementation is apparently immediate, their use is thwarted by instabilities induced by cancellations between very large terms. Furthermore, small areas of the complex plane, in the vicinity of z=e, are inaccessible using F12 power series linear transformations. In order to solve these problems, a generalization of R.C. Forrey's transformation theory has been developed. The latter has been successful in treating the F12 function with real parameters. As in real case transformation theory, the large canceling terms occurring in F12 analytical formulas are rigorously dealt with, but by way of a new method, directly applicable to the complex plane. Taylor series expansions are employed to enter complex areas outside the domain of validity of power series analytical formulas. The proposed algorithm, however, becomes unstable in general when |a|, |b|, |c| are moderate or large. As a physical application, the calculation of the wave functions of the analytical Pöschl-Teller-Ginocchio potential involving F12 evaluations is considered. Program summaryProgram title: hyp_2F1, PTG_wf Catalogue identifier: AEAE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6839 No. of bytes in distributed program, including test data, etc.: 63 334 Distribution format: tar.gz Programming language: C++, Fortran 90 Computer: Intel i686 Operating system: Linux, Windows Word size: 64 bits Classification: 4.7 Nature of problem: The Gauss hypergeometric function F12, with all its parameters complex, is uniquely calculated in the frame of transformation theory with power series summations, thus providing a very fast algorithm. The evaluation of the wave functions of the analytical Pöschl-Teller-Ginocchio potential is treated as a physical application. Solution method: The Gauss hypergeometric function F12 verifies linear transformation formulas allowing consideration of arguments of a small modulus which then can be handled by a power series. They, however, give rise to indeterminate or numerically unstable cases, when b-a and c-a-b are equal or close to integers. They are properly dealt with through analytical manipulations of the Lanczos expression providing the Gamma function. The remaining zones of the complex plane uncovered by transformation formulas are dealt with Taylor expansions of the F12 function around complex points where linear transformations can be employed. The Pöschl-Teller-Ginocchio potential wave functions are calculated directly with F12 evaluations. Restrictions: The algorithm provides full numerical precision in almost all cases for |a|, |b|, and |c| of the order of one or smaller, but starts to be less precise or unstable when they increase, especially through a, b, and c imaginary parts. While it is possible to run the code for moderate or large |a|, |b|, and |c| and obtain satisfactory results for some specified values, the code is very likely to be unstable in this regime. Unusual features: Two different codes, one for the hypergeometric function and one for the Pöschl-Teller-Ginocchio potential wave functions, are provided in C++ and Fortran 90 versions. Running time: 20,000 F12 function evaluations take an average of one second.

  1. Predicting chroma from luma with frequency domain intra prediction

    NASA Astrophysics Data System (ADS)

    Egge, Nathan E.; Valin, Jean-Marc

    2015-03-01

    This paper describes a technique for performing intra prediction of the chroma planes based on the reconstructed luma plane in the frequency domain. This prediction exploits the fact that while RGB to YUV color conversion has the property that it decorrelates the color planes globally across an image, there is still some correlation locally at the block level.1 Previous proposals compute a linear model of the spatial relationship between the luma plane (Y) and the two chroma planes (U and V).2 In codecs that use lapped transforms this is not possible since transform support extends across the block boundaries3 and thus neighboring blocks are unavailable during intra- prediction. We design a frequency domain intra predictor for chroma that exploits the same local correlation with lower complexity than the spatial predictor and which works with lapped transforms. We then describe a low- complexity algorithm that directly uses luma coefficients as a chroma predictor based on gain-shape quantization and band partitioning. An experiment is performed that compares these two techniques inside the experimental Daala video codec and shows the lower complexity algorithm to be a better chroma predictor.

  2. Fourier plane filters

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Aldrich, R. E.; Krol, F. T.

    1972-01-01

    An electrically addressed liquid crystal Fourier plane filter capable of real time optical image processing is described. The filter consists of two parts: a wedge filter having forty 9 deg segments and a ring filter having twenty concentric rings in a one inch diameter active area. Transmission of the filter in the off (transparent) state exceeds fifty percent. By using polarizing optics, contrast as high as 10,000:1 can be achieved at voltages compatible with FET switching technology. A phenomenological model for the dynamic scattering is presented for this special case. The filter is designed to be operated from a computer and is addressed by a seven bit binary word which includes an on or off command and selects any one of the twenty rings or twenty wedge pairs. The overall system uses addressable latches so that once an element is in a specified state, it will remain there until a change of state command is received. The drive for the liquid crystal filter is ? 30 V peak at 30 Hz to 70 Hz. These parameters give a rise time for the scattering of 20 msec and a decay time of 80 to 100 msec.

  3. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  4. Staging in polyacetylene-iodine conductors

    NASA Astrophysics Data System (ADS)

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.; Shacklette, L. W.

    1983-07-01

    Evidence is presented for the existence of highly conducting polyacetylene complexes with structures related to high-stage graphite, as well as structures related to first-stage graphite. X-ray diffraction measurements on polyacetylene-iodine complexes indicate equatorial lines at 7.7-8.0 and 13.8-14.3 Å. The shorter spacing arises in part from a structure in which iodine-rich planes alternate with planes of polyacetylene chains. The longer spacing, which disappears upon atmospheric exposure, is consistent with a structure analogous to third-stage graphite in which dopant-rich planes are separated by three close-packed planes of polyacetylene chains. The third-stage complex can be viewed as a perturbation of the structure of undoped polyacetylene, with the region between dopant layers consisting essentially of a one unit cell thickness of the parent polymer structure. Packing calculations for this model, in which a linear column of anions (I3- and/or I5-) displaces either every chain or every other chain in the dopant-rich layer, provide an interlayer spacing which is equal to that observed. Evidence consistent with third-stage structures (with both fractional occupation and complete occupation of the dopant plane) is also found by reexamination of published sorption data, which provides slope changes at close to the calculated limiting compositions for these structures [(CHI0.056)x and (CHI0.13)x]. However, a first-stage structure with alternating dopant arrays and polymer chains in the dopant plane [for which (CHI0.13)x is calculated] provides a better explanation for the second slope change, as well as for the composition obtained under dynamic vacuum, (CHI0.14)x. These results for iodine complexes are compared with those derived for the group VA halide complexes of polyacetylene.

  5. CTC Sentinel. Volume 7, Issue 10, October 2014

    DTIC Science & Technology

    2014-10-01

    currencies l ike e-gold, Bitcoin , Peercoin, and Dodgecoin provide complex yet eff icient mechanisms for the transfer of funds, as well as the...that terrorists are considering and, in l imited instances, using digital currencies such as Bitcoin to f inance activit ies. 1 While...to its novelty and partly due to its complexity, the evolving world of digital or crypto currencies like BitCoin and their impact on AML/CFT has

  6. High-resolution 3T Magnetic Resonance Imaging of the Triangular Fibrocartilage Complex in Chinese Wrists: Correlation with Cross-sectional Anatomy.

    PubMed

    Zhan, Hui-Li; Li, Wen-Ting; Bai, Rong-Jie; Wang, Nai-Li; Qian, Zhan-Hua; Ye, Wei; Yin, Yu-Ming

    2017-04-05

    The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese. Fourteen Chinese cadaveric wrists (from four men and three women; age range at death from 30 to 60 years; mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers, male/female: 10/10; age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study. All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T1-weighted and proton density-weighted imaging with fat suppression in three planes, respectively. MR arthrography (MRAr) was performed on one of the cadaveric wrists. Subsequently, all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane, four in sagittal plane, and four in axial plane). The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists. Triangular fibrocartilage, the ulnar collateral ligament, and the meniscal homolog could be best observed on images in coronal plane. The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane. The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane. The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr. High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese.

  7. High-resolution 3T Magnetic Resonance Imaging of the Triangular Fibrocartilage Complex in Chinese Wrists: Correlation with Cross-sectional Anatomy

    PubMed Central

    Zhan, Hui-Li; Li, Wen-Ting; Bai, Rong-Jie; Wang, Nai-Li; Qian, Zhan-Hua; Ye, Wei; Yin, Yu-Ming

    2017-01-01

    Background: The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese. Methods: Fourteen Chinese cadaveric wrists (from four men and three women; age range at death from 30 to 60 years; mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers, male/female: 10/10; age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study. All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T1-weighted and proton density-weighted imaging with fat suppression in three planes, respectively. MR arthrography (MRAr) was performed on one of the cadaveric wrists. Subsequently, all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane, four in sagittal plane, and four in axial plane). The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists. Results: Triangular fibrocartilage, the ulnar collateral ligament, and the meniscal homolog could be best observed on images in coronal plane. The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane. The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane. The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr. Conclusion: High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese. PMID:28345546

  8. A speed limit for evolution.

    PubMed

    Worden, R P

    1995-09-07

    An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change.

  9. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of the servo gains in the torque computations. The Palm pilot handpaddle displays the complete status of the telescope and allows full local control of the drives in an intuitive, touchscreen user interface which is especially useful during reconfigurations of the antenna array.

  10. A novel PON-based mobile distributed cluster of antennas approach to provide impartial and broadband services to end users

    NASA Astrophysics Data System (ADS)

    Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.

    2010-01-01

    In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.

  11. Preserving privacy of online digital physiological signals using blind and reversible steganography.

    PubMed

    Shiu, Hung-Jr; Lin, Bor-Sing; Huang, Chien-Hung; Chiang, Pei-Ying; Lei, Chin-Laung

    2017-11-01

    Physiological signals such as electrocardiograms (ECG) and electromyograms (EMG) are widely used to diagnose diseases. Presently, the Internet offers numerous cloud storage services which enable digital physiological signals to be uploaded for convenient access and use. Numerous online databases of medical signals have been built. The data in them must be processed in a manner that preserves patients' confidentiality. A reversible error-correcting-coding strategy will be adopted to transform digital physiological signals into a new bit-stream that uses a matrix in which is embedded the Hamming code to pass secret messages or private information. The shared keys are the matrix and the version of the Hamming code. An online open database, the MIT-BIH arrhythmia database, was used to test the proposed algorithms. The time-complexity, capacity and robustness are evaluated. Comparisons of several evaluations subject to related work are also proposed. This work proposes a reversible, low-payload steganographic scheme for preserving the privacy of physiological signals. An (n,  m)-hamming code is used to insert (n - m) secret bits into n bits of a cover signal. The number of embedded bits per modification is higher than in comparable methods, and the computational power is efficient and the scheme is secure. Unlike other Hamming-code based schemes, the proposed scheme is both reversible and blind. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  13. Eliminating ambiguity in digital signals

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1979-01-01

    Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.

  14. Polar Misunderstandings: Earth's Dynamic Dynamo

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  15. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults

    USGS Publications Warehouse

    Felzer, Karen R.

    2014-01-01

    An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.

  16. DFT algorithms for bit-serial GaAs array processor architectures

    NASA Technical Reports Server (NTRS)

    Mcmillan, Gary B.

    1988-01-01

    Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.

  17. A 32-bit Ultrafast Parallel Correlator using Resonant Tunneling Devices

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shriram; Mazumder, Pinaki; Haddad, George I.

    1995-01-01

    An ultrafast 32-bit pipeline correlator has been implemented using resonant tunneling diodes (RTD) and hetero-junction bipolar transistors (HBT). The negative differential resistance (NDR) characteristics of RTD's is the basis of logic gates with the self-latching property that eliminates pipeline area and delay overheads which limit throughput in conventional technologies. The circuit topology also allows threshold logic functions such as minority/majority to be implemented in a compact manner resulting in reduction of the overall complexity and delay of arbitrary logic circuits. The parallel correlator is an essential component in code division multi-access (CDMA) transceivers used for the continuous calculation of correlation between an incoming data stream and a PN sequence. Simulation results show that a nano-pipelined correlator can provide and effective throughput of one 32-bit correlation every 100 picoseconds, using minimal hardware, with a power dissipation of 1.5 watts. RTD plus HBT based logic gates have been fabricated and the RTD plus HBT based correlator is compared with state of the art complementary metal oxide semiconductor (CMOS) implementations.

  18. Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng

    2006-12-01

    This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).

  19. Direct-phase and amplitude digitalization based on free-space interferometry

    NASA Astrophysics Data System (ADS)

    Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev

    2017-12-01

    A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.

  20. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  1. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-12-01

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.

  2. Noncommutative reading of the complex plane through Delone sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. Twareque; Balkova, Lubka; Gazeau, J. P.

    2009-04-15

    The Berezin-Klauder-Toeplitz ('anti-Wick') quantization or 'noncommutative reading' of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or Gaussian) coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is, on the natural numbers. This work is an attempt for following the same path by considering sequences of non-negative numbers which are not 'too far' from the natural numbers. In particular, we examine the consequences of such perturbations onmore » the noncommutative reading of the complex plane in terms of its probabilistic, functional, and localization aspects.« less

  3. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  4. A ring transducer system for medical ultrasound research.

    PubMed

    Waag, Robert C; Fedewa, Russell J

    2006-10-01

    An ultrasonic ring transducer system has been developed for experimental studies of scattering and imaging. The transducer consists of 2048 rectangular elements with a 2.5-MHz center frequency, a 67% -6 dB bandwidth, and a 0.23-mm pitch arranged in a 150-mm-diameter ring with a 25-mm elevation. At the center frequency, the element size is 0.30lambda x 42lambda and the pitch is 0.38lambda. The system has 128 parallel transmit channels, 16 parallel receive channels, a 2048:128 transmit multiplexer, a 2048:16 receive multiplexer, independently programmable transmit waveforms with 8-bit resolution, and receive amplifiers with time variable gain independently programmable over a 40-dB range. Receive signals are sampled at 20 MHz with 12-bit resolution. Arbitrary transmit and receive apertures can be synthesized. Calibration software minimizes system nonidealities caused by noncircularity of the ring and element-to-element response differences. Application software enables the system to be used by specification of high-level parameters in control files from which low-level hardware-dependent parameters are derived by specialized code. Use of the system is illustrated by producing focused and steered beams, synthesizing a spatially limited plane wave, measuring angular scattering, and forming b-scan images.

  5. 32-Bit-Wide Memory Tolerates Failures

    NASA Technical Reports Server (NTRS)

    Buskirk, Glenn A.

    1990-01-01

    Electronic memory system of 32-bit words corrects bit errors caused by some common type of failures - even failure of entire 4-bit-wide random-access-memory (RAM) chip. Detects failure of two such chips, so user warned that ouput of memory may contain errors. Includes eight 4-bit-wide DRAM's configured so each bit of each DRAM assigned to different one of four parallel 8-bit words. Each DRAM contributes only 1 bit to each 8-bit word.

  6. Centre-based restricted nearest feature plane with angle classifier for face recognition

    NASA Astrophysics Data System (ADS)

    Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua

    2017-10-01

    An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.

  7. On complexity of trellis structure of linear block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1990-01-01

    The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm.

  8. Physically elastic analysis of a cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2018-03-01

    Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.

  9. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  10. Effect of PDC bit design and confining pressure on bit-balling tendencies while drilling shale using water base mud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-09-01

    A good majority of all oilwell drilling occurs in shale and other clay-bearing rocks. In the light of relatively fewer studies conducted, the problem of bit-balling in PDC bits while drilling shale has been addressed with the primary intention of attempting to quantify the degree of balling, as well as to investigate the influence of bit design and confining pressures. A series of full-scale laboratory drilling tests under simulated down hole conditions were conducted utilizing seven different PDC bits in Catoosa shale. Test results have indicated that the non-dimensional parameter R{sub d} [(bit torque).(weight-on-bit)/(bit diameter)] is a good indicator ofmore » the degree of bit-balling and that it correlated well with Specific-Energy. Furthermore, test results have shown bit-profile and bit-hydraulic design to be key parameters of bit design that dictate the tendency of balling in shales under a given set of operating conditions. A bladed bit was noticed to ball less compared to a ribbed or open-faced bit. Likewise, related to bit profile, test results have indicated that the parabolic profile has a lesser tendency to ball compared to round and flat profiles. The tendency of PDC bits to ball was noticed to increase with increasing confining pressures for the set of drilling conditions used.« less

  11. Coherent states on the m-sheeted complex plane as m-photon states

    NASA Technical Reports Server (NTRS)

    Vourdas, Apostolos

    1994-01-01

    Coherent states on the m-sheeted complex plane are introduced and properties like overcompleteness and resolution of the identity are studied. They are eigenstates of the operators a(sub m)(+), a(sub m) which create and annihilate clusters of m-particles. Applications of this formalism in the study of Hamiltonians that describe m-particle clustering are also considered.

  12. Sibling Curves and Complex Roots 2: Looking Ahead

    ERIC Educational Resources Information Center

    Harding, Ansie; Engelbrecht, Johann

    2007-01-01

    This paper, the second of a two part article, expands on an idea that appeared in literature in the 1950s to show that by restricting the domain to those complex numbers that map onto real numbers, representations of functions other than the ones in the real plane are obtained. In other words, the well-known curves in the real plane only depict…

  13. Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Gavito, D.; Azar, J.J.

    1994-09-01

    During the past 20 years, the drilling industry has looked to new technology to halt the exponentially increasing costs of drilling oil, gas, and geothermal wells. This technology includes bit design innovations to improve overall drilling performance and reduce drilling costs. These innovations include development of drag bits that use PDC cutters, also called PDC bits, to drill long, continuous intervals of soft to medium-hard formations more economically than conventional three-cone roller-cone bits. The cost advantage is the result of higher rates of penetration (ROP's) and longer bit life obtained with the PDC bits. An experimental study comparing the effectsmore » of polycrystalline-diamond-compact (PDC)-bit design features on the dynamic pressure distribution at the bit/rock interface was conducted on a full-scale drilling rig. Results showed that nozzle location, bit profile, and cutter arrangement are significant factors in PDC-bit performance.« less

  14. Wavelet-based audio embedding and audio/video compression

    NASA Astrophysics Data System (ADS)

    Mendenhall, Michael J.; Claypoole, Roger L., Jr.

    2001-12-01

    Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.

  15. Acquisition and Retaining Granular Samples via a Rotating Coring Bit

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2013-01-01

    This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the frictional force must be greater than the weight of the sample. The bit can be designed with an internal sleeve to serve as a container for granular samples. This tube-shaped component can be extracted upon completion of the sampling, and the bottom can be capped by placing the bit onto a corklike component. Then, upon removal of the internal tube, the top section can be sealed. The novel features of this device are: center dot A mechanism of acquiring and retaining granular samples using a coring bit without a closed door. center dot An acquisition bit that has internal structure such as a waffle pattern for compartmentalizing or helical internal flute to propel the sample inside the bit and help in acquiring and retaining granular samples. center dot A bit with an internal spiral into which the various particles wedge. center dot A design that provides a method of testing frictional properties of the granular samples and potentially segregating particles based on size and density. A controlled acceleration or deceleration may be used to drop the least-frictional particles or to eventually shear the unconsolidated material near the bit center.

  16. An Efficient Image Compressor for Charge Coupled Devices Camera

    PubMed Central

    Li, Jin; Xing, Fei; You, Zheng

    2014-01-01

    Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977

  17. Young Adult Literature: From Romance to Realism

    ERIC Educational Resources Information Center

    Cart, Michael

    2010-01-01

    Today's young adult (YA) literature is every bit as complex as the audience it's written for, unflinchingly addressing such topics as homosexuality, mental illness, AIDS and drug abuse. In this much expanded revision of his 1996 book, veteran author Michael Cart shows how the best of contemporary YA lit has evolved to tackle such daunting subjects…

  18. How Good Is Good Enough?

    ERIC Educational Resources Information Center

    Wiggins, Grant

    2014-01-01

    Education has a long-standing practice of turning worthwhile learning goals into lists of bits. One might even say that this practice is the original sin in curriculum design: take a complex whole, divide it into small pieces, string those together in a rigid sequence of instruction and testing, and call completion of this sequence…

  19. Problem Child or Quirky Kid? A Commonsense Guide.

    ERIC Educational Resources Information Center

    Sommers-Flanagan, Rita; Sommers-Flanagan, John

    Determining whether one's child is just "going through a phase," is just a bit quirky but developing normally, or is in need of professional help can be a complex and confusing process for parents. This book provides parents and caregivers with practical information to differentiate normal and problematic child development, offers tips…

  20. School Administration--A Complex Profession Requiring Rigorous Standards

    ERIC Educational Resources Information Center

    Reynolds, Bronte H.

    2006-01-01

    Over the decades, those in education have waged a noble struggle in an attempt to achieve the respect and dignity worthy of their profession. Their social value, their worthiness, and the critical nature of their success, it can be argued, are every bit as significant as that of practicing medicine. Research consistently demonstrates the positive…

  1. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  2. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    NASA Astrophysics Data System (ADS)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  3. A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2016-09-01

    Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.

  4. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  5. A Concurrent Smalltalk Compiler for the Message-Driven Processor

    DTIC Science & Technology

    1988-05-01

    apj with bits from low-bit (inclusive) to high-bit (exclusive) set. ;;;Low-bit defaults to zero. (defmacro brange (high-bit &optional low-bit) (list...n2) (null (cddr num))) (aetg bits (b+ bits (if (>- nl n2) ( brange (1+ nl) n2) ( brange (1+ n2) ni)))) (error "Bad bmap range: -S" flu.)))) (t (error...vlocs) flat ((vlive (b- finst-vllv* mast) *I.( brange firat-context-slot-nun))) (next (inst-next last))) (if (bempty vlive) (delete-module module inat

  6. Effects of plastic bits on the condition and behaviour of captive-reared pheasants.

    PubMed

    Butler, D A; Davis, C

    2010-03-27

    Between 2005 and 2007, data were collected from game farms across England and Wales to examine the effects of the use of bits on the physiological condition and behaviour of pheasants. On each site, two pheasant pens kept in the same conditions were randomly allocated to either use bits or not. The behaviour and physiological conditions of pheasants in each treatment pen were assessed on the day of bitting and weekly thereafter until release. Detailed records of feed usage, medications and mortality were also kept. Bits halved the number of acts of bird-on-bird pecking, but they doubled the incidence of headshaking and scratching. Bits caused nostril inflammation and bill deformities in some birds, particularly after seven weeks of age. In all weeks after bitting, feather condition was poorer in non-bitted pheasants than in those fitted with bits. Less than 3 per cent of bitted birds had damaged skin, but in the non-bitted pens this figure increased over time to 23 per cent four weeks later. Feed use and mortality did not differ between bitted and non-bitted birds.

  7. New PDC bit design reduces vibrational problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.; Alexander, W.L.

    1995-05-22

    A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization,more » vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.« less

  8. What can blueschists tell about the Deep? High Pressure in the Anatolide - Taurid Belt

    NASA Astrophysics Data System (ADS)

    Oberhaensli, R.

    2011-12-01

    High-pressure metamorphic terranes in the Anatolide - Taurid belt document the complex distribution of paleo-sutures in the Tethyan realm. Field based petrologic studies of metapelites in the Anatolide-Taurid realm allow to trace HP-LT metamorphism not only in the well known ophiolitic Tavsanli Zone (2.4 GPa/500 °C) but also in the Afyon Zone (0.9 GPa/350 °C), the Menderes Massif (1.2 Gpa/500 °C;) and in the Lycian Nappes (1.0 Gpa/400 °C) - all situated north of the so called Taurid Platform. While the HP metamorphism is dated to 90-80 Ma (Rb/Sr; Ar/Ar) in the Tavsanli Zone, it ranges from 60-70 Ma (Ar/Ar) in the Afyon Zone and its tectonic equivalent, the Lycian Nappes. The Afyon Zone s.l. is closely related to the glaucophane- lawsonite-bearing rocks of the Tavsanli Zone and its eastward extension. Blueschist-facies metamorphism is documented by Fe,Mg-carpholite in regionally distributed metapelites and glaucophane in sparse mafic rocks (Afyon, Menderes, Lycia). Since observations of HP are based on Fe,Mg-carpholite bearing metasediments and not on mafic blueschists new thermodynamic data and petrologic modelling was elaborated to match P-T data and field-based observations. Moreover, newly formed phengitic mica allows precise dating. Both, Tavsanli and Afyon Zones can be followed along strike over more than 600 km and around the southern edge of the Central Anatolian Crystalline Complex. The two zones are situated north of the Taurid Platform and correlate with the Amasia Zone in Armenia. To the extreme East the Bitlis Complex underwent a LT - HP metamorphic blueschist evolution (1,1 GPa/ 350 °C; glaucophane, Fe,Mg-carpholite) in its sedimentary cover while the basement is eclogitic. Depending on the structural position and mineral association of phengitic mica metamorphic ages of the Bitlis blueschists scatter around 70-80 Ma. Eclogites from the basement are slightly older. These LT-HP units cannot be correlated with the Tavsanli - Afyon blueschist belts since they occur south of the Taurid Platform. Thus the Bitlis Complex represents a terrane detached from the Arabian Platform that subsequently collided with the Taurus Platform during closure of the Neo-Tethys. In SW Anatolia, south of the Taurus Platform, the Alanya Zone documents a Late Cretaceous HP evolution with blueschists and eclogites. Together with the Bitlis Complex the two Late Cretaceous HP-LT regions represent a suture south of the Taurid Platform but still north of the Hatay - Güleyman - Zagros ophiolites separating the Arabian Platform from the Anatolide-Taurid realm. The dissection of the Anatolide-Taurid realm into several paleo-subduction zones of Late Cretaceous age impacts on the lithospheric structure and has consequences for the Tertiary plateau formation in Central and Eastern Anatolia. Geophysical data and observations from the East Anatolian Plateau can be explained with petrologic modelling when hydration of the lithospheric lids above subduction zones is considered.

  9. Land Ice Verification and Validation Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and testmore » data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  10. Comparisons of single event vulnerability of GaAs SRAMS

    NASA Astrophysics Data System (ADS)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  11. Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1980-01-01

    An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits.

  12. Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane

    PubMed Central

    Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A

    2010-01-01

    We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139

  13. Resonance behavior of atomic and molecular photoionization amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.

    The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complexmore » plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.« less

  14. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    PubMed

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  15. Capacity-optimized mp2 audio watermarking

    NASA Astrophysics Data System (ADS)

    Steinebach, Martin; Dittmann, Jana

    2003-06-01

    Today a number of audio watermarking algorithms have been proposed, some of them at a quality making them suitable for commercial applications. The focus of most of these algorithms is copyright protection. Therefore, transparency and robustness are the most discussed and optimised parameters. But other applications for audio watermarking can also be identified stressing other parameters like complexity or payload. In our paper, we introduce a new mp2 audio watermarking algorithm optimised for high payload. Our algorithm uses the scale factors of an mp2 file for watermark embedding. They are grouped and masked based on a pseudo-random pattern generated from a secret key. In each group, we embed one bit. Depending on the bit to embed, we change the scale factors by adding 1 where necessary until it includes either more even or uneven scale factors. An uneven group has a 1 embedded, an even group a 0. The same rule is later applied to detect the watermark. The group size can be increased or decreased for transparency/payload trade-off. We embed 160 bits or more in an mp2 file per second without reducing perceived quality. As an application example, we introduce a prototypic Karaoke system displaying song lyrics embedded as a watermark.

  16. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  17. Uranyl ion coordination

    USGS Publications Warehouse

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  18. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    PubMed

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  19. Which Measures Count for the Public Interest?

    ERIC Educational Resources Information Center

    Frankenstein, Marilyn

    2015-01-01

    The "measure" of this article is a bit different from most--there are almost as many words in the notes as in the body of the text. Notes are a significant part of my writing, both in terms of recognizing the connections and complexities among issues, trying to capture the richness of interdisciplinary teaching, and in terms of…

  20. Quantum Computing

    DTIC Science & Technology

    1998-04-01

    information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and

  1. BIT BY BIT: A Game Simulating Natural Language Processing in Computers

    ERIC Educational Resources Information Center

    Kato, Taichi; Arakawa, Chuichi

    2008-01-01

    BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…

  2. Bit selection using field drilling data and mathematical investigation

    NASA Astrophysics Data System (ADS)

    Momeni, M. S.; Ridha, S.; Hosseini, S. J.; Meyghani, B.; Emamian, S. S.

    2018-03-01

    A drilling process will not be complete without the usage of a drill bit. Therefore, bit selection is considered to be an important task in drilling optimization process. To select a bit is considered as an important issue in planning and designing a well. This is simply because the cost of drilling bit in total cost is quite high. Thus, to perform this task, aback propagation ANN Model is developed. This is done by training the model using several wells and it is done by the usage of drilling bit records from offset wells. In this project, two models are developed by the usage of the ANN. One is to find predicted IADC bit code and one is to find Predicted ROP. Stage 1 was to find the IADC bit code by using all the given filed data. The output is the Targeted IADC bit code. Stage 2 was to find the Predicted ROP values using the gained IADC bit code in Stage 1. Next is Stage 3 where the Predicted ROP value is used back again in the data set to gain Predicted IADC bit code value. The output is the Predicted IADC bit code. Thus, at the end, there are two models that give the Predicted ROP values and Predicted IADC bit code values.

  3. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  4. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    NASA Astrophysics Data System (ADS)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  5. Boring apparatus capable of boring straight holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, C.R.

    The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less

  6. High-frame-rate infrared and visible cameras for test range instrumentation

    NASA Astrophysics Data System (ADS)

    Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1995-09-01

    Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.

  7. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  8. A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen

    In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.

  9. Structure and function of cytochrome c2 in electron transfer complexes with the photosynthetic reaction center of Rhodobacter sphaeroides: optical linear dichroism and EPR.

    PubMed

    Drepper, F; Mathis, P

    1997-02-11

    The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between 0 degrees and 30 degrees allow the fast electron transfer. Zero-length cross-linking of cyt c2 may take place in one of these bound states. These orientations of cyt c2 are compared to different structural models of RC-cyt c2 complexes proposed previously. The relation of the two kinetic phases observed in cross-linked cyt c2 complexes to biphasic kinetics of the mobile reaction partners is discussed with respect to the dynamic electrostatic interactions during the formation of a docking complex and its dissociation. A mechanism is proposed in which a pre-orientation of cyt c2 relative to the membrane plane occurs by interaction of its strong electrostatic dipole with the negative surface charges of the RC. The optimal matching of the oppositely charged surfaces of the two proteins necessitates further rotation of the cyt around its dipole axis.

  10. Bit-Grooming: Shave Your Bits with Razor-sharp Precision

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Silver, J.

    2017-12-01

    Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.

  11. Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-04-01

    We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.

  12. A Compression Algorithm for Field Programmable Gate Arrays in the Space Environment

    DTIC Science & Technology

    2011-12-01

    Bit 1 ,Bit 0P  . (V.3) Equation (V.3) is implemented with a string of XOR gates and Bit Basher blocks, as shown in Figure 31. As discussed in...5], the string of Bit Basher blocks are used to separate each 35-bit value into 35 one-bit values, and the string of XOR gates is used to

  13. Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue

    PubMed Central

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk

    2009-01-01

    For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994

  14. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue.

    PubMed

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk

    2009-09-01

    For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.

  15. Drag bit construction

    DOEpatents

    Hood, M.

    1986-02-11

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

  16. Drag bit construction

    DOEpatents

    Hood, Michael

    1986-01-01

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.

  17. A feasibility study of the use of bounded beams resembling the shape of evanescent and inhomogeneous waves.

    PubMed

    Declercq, Nico F; Leroy, Oswald

    2011-08-01

    Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.

  18. Measuring the electric activity of chick embryos heart through 16 bit audio card monitored by the Goldwavetm software

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Cortez, Celia Martins

    2015-12-01

    In the present work we used a high-resolution, low-cost apparatus capable of detecting waves fit inside the sound bandwidth, and the software package GoldwaveTM for graphical display, processing and monitoring the signals, to study aspects of the electric heart activity of early avian embryos, specifically at the 18th Hamburger & Hamilton stage of the embryo development. The species used was the domestic chick (Gallus gallus), and we carried out 23 experiments in which cardiographic spectra of QRS complex waves representing the propagation of depolarization waves through ventricles was recorded using microprobes and reference electrodes directly on the embryos. The results show that technique using 16 bit audio card monitored by the GoldwaveTM software was efficient to study signal aspects of heart electric activity of early avian embryos.

  19. Optimization of a PCRAM Chip for high-speed read and highly reliable reset operations

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Chen, Houpeng; Li, Xi; Wang, Qian; Fan, Xi; Hu, Jiajun; Lei, Yu; Zhang, Qi; Tian, Zhen; Song, Zhitang

    2016-10-01

    The widely used traditional Flash memory suffers from its performance limits such as its serious crosstalk problems, and increasing complexity of floating gate scaling. Phase change random access memory (PCRAM) becomes one of the most potential nonvolatile memories among the new memory techniques. In this paper, a 1M-bit PCRAM chip is designed based on the SMIC 40nm CMOS technology. Focusing on the read and write performance, two new circuits with high-speed read operation and highly reliable reset operation are proposed. The high-speed read circuit effectively reduces the reading time from 74ns to 40ns. The double-mode reset circuit improves the chip yield. This 1M-bit PCRAM chip has been simulated on cadence. After layout design is completed, the chip will be taped out for post-test.

  20. A service for the application of data quality information to NASA earth science satellite records

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.

    2016-12-01

    A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.

  1. PDC-bit performance under simulated borehole conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.E.; Azar, J.J.

    1993-09-01

    Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less

  2. Smart built-in test

    NASA Technical Reports Server (NTRS)

    Richards, Dale W.

    1990-01-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  3. Smart built-in test

    NASA Astrophysics Data System (ADS)

    Richards, Dale W.

    1990-03-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  4. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  5. Hey! A Flea Bit Me!

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hey! A Flea Bit Me! KidsHealth / For Kids / Hey! A Flea Bit Me! Print en español ¡Ay! ¡ ... 30% DEET. More on this topic for: Kids Hey! A Gnat Bit Me! Hey! A Bedbug Bit ...

  6. Hey! A Louse Bit Me!

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hey! A Louse Bit Me! KidsHealth / For Kids / Hey! A Louse Bit Me! Print en español ¡Ay! ¡ ... topic for: Kids Lice Aren't So Nice Hey! A Gnat Bit Me! Hey! A Flea Bit ...

  7. Hybrid and concatenated coding applications.

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Odenwalder, J. P.

    1972-01-01

    Results of a study to evaluate the performance and implementation complexity of a concatenated and a hybrid coding system for moderate-speed deep-space applications. It is shown that with a total complexity of less than three times that of the basic Viterbi decoder, concatenated coding improves a constraint length 8 rate 1/3 Viterbi decoding system by 1.1 and 2.6 dB at bit error probabilities of 0.0001 and one hundred millionth, respectively. With a somewhat greater total complexity, the hybrid coding system is shown to obtain a 0.9-dB computational performance improvement over the basic rate 1/3 sequential decoding system. Although substantial, these complexities are much less than those required to achieve the same performances with more complex Viterbi or sequential decoder systems.

  8. Rotational Analysis of Phase Plane Curves: Complex and Pure Imaginary Eigenvalues

    ERIC Educational Resources Information Center

    Murray, Russell H.

    2005-01-01

    Although the phase plane can be plotted and analyzed using an appropriate software package, the author found it worthwhile to engage the students with the theorem and the two proofs. The theorem is a powerful tool that provides insight into the rotational behavior of the phase plane diagram in a simple way: just check the signs of c and [alpha].…

  9. Army Communicator. Volume 34, Number 2

    DTIC Science & Technology

    2009-01-01

    tunneled into the NIPRNet traffic. The encryption hides the contents of the SIPRNet data through a process that randomizes the bit patterns...and technologies such as desktop applications, Virtual Private Network, Blackberry support, and the training and troubleshoot- ing of complex computer...to your own Standing Operating Procedure and then contract for services off the backside to a local Strategic Entry Point or tunnel through

  10. Analyzing the health care environment: "You can't hit what you can't see".

    PubMed

    Ginter, P M; Duncan, W J; Richardson, W D; Swayne, L E

    1991-01-01

    The health care environment of the 1990s promises to be every bit as dynamic and complex as the environment of the 1980s. Health care managers must identify emerging issues and incorporate these issues into the strategic management process. This article discusses a five-step process for analyzing the changing environment facing health care organizations.

  11. A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.

    PubMed

    Guerrero, Federico N; Spinelli, Enrique M

    2017-10-01

    Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.

  12. Speech coding at low to medium bit rates

    NASA Astrophysics Data System (ADS)

    Leblanc, Wilfred Paul

    1992-09-01

    Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.

  13. PDC bits: What`s needed to meet tomorrow`s challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, T.M.; Sinor, L.A.

    1994-12-31

    When polycrystalline diamond compact (PDC) bits were introduced in the mid-1970s they showed tantalizingly high penetration rates in laboratory drilling tests. Single cutter tests indicated that they had the potential to drill very hard rocks. Unfortunately, 20 years later we`re still striving to reach the potential that these bits seem to have. Many problems have been overcome, and PDC bits have offered capabilities not possible with roller cone bits. PDC bits provide the most economical bit choice in many areas, but their limited durability has hampered their application in many other areas.

  14. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.

    PubMed

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.

  15. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot

    PubMed Central

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking. PMID:28951719

  16. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  17. State-plane analysis of parallel resonant converter

    NASA Technical Reports Server (NTRS)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  18. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  19. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  20. High bit depth infrared image compression via low bit depth codecs

    NASA Astrophysics Data System (ADS)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  1. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    PubMed

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  2. Study on a low complexity adaptive modulation algorithm in OFDM-ROF system with sub-carrier grouping technology

    NASA Astrophysics Data System (ADS)

    Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao

    2018-01-01

    During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.

  3. New architecture for dynamic frame-skipping transcoder.

    PubMed

    Fung, Kai-Tat; Chan, Yui-Lam; Siu, Wan-Chi

    2002-01-01

    Transcoding is a key technique for reducing the bit rate of a previously compressed video signal. A high transcoding ratio may result in an unacceptable picture quality when the full frame rate of the incoming video bitstream is used. Frame skipping is often used as an efficient scheme to allocate more bits to the representative frames, so that an acceptable quality for each frame can be maintained. However, the skipped frame must be decompressed completely, which might act as a reference frame to nonskipped frames for reconstruction. The newly quantized discrete cosine transform (DCT) coefficients of the prediction errors need to be re-computed for the nonskipped frame with reference to the previous nonskipped frame; this can create undesirable complexity as well as introduce re-encoding errors. In this paper, we propose new algorithms and a novel architecture for frame-rate reduction to improve picture quality and to reduce complexity. The proposed architecture is mainly performed on the DCT domain to achieve a transcoder with low complexity. With the direct addition of DCT coefficients and an error compensation feedback loop, re-encoding errors are reduced significantly. Furthermore, we propose a frame-rate control scheme which can dynamically adjust the number of skipped frames according to the incoming motion vectors and re-encoding errors due to transcoding such that the decoded sequence can have a smooth motion as well as better transcoded pictures. Experimental results show that, as compared to the conventional transcoder, the new architecture for frame-skipping transcoder is more robust, produces fewer requantization errors, and has reduced computational complexity.

  4. Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway*

    PubMed Central

    Griffiths, Genevieve S.; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S.; Sulzmaier, Florian J.; Caliva, Maisel J.; Ramos, Joe W.; Matter, Michelle L.

    2011-01-01

    Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions. PMID:21383007

  5. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.

  6. Causes of wear of PDC bits and ways of improving their wear resistance

    NASA Astrophysics Data System (ADS)

    Timonin, VV; Smolentsev, AS; Shakhtorin, I. O.; Polushin, NI; Laptev, AI; Kushkhabiev, AS

    2017-02-01

    The scope of the paper encompasses basic factors that influence PDC bit efficiency. Feasible ways of eliminating the negatives are illustrated. The wash fluid flow in a standard bit is modeled, the resultant pattern of the bit washing is analyzed, and the recommendations are made on modification of the PDC bit design.

  7. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  8. A four-dimensional virtual hand brain-machine interface using active dimension selection

    PubMed Central

    Rouse, Adam G.

    2018-01-01

    Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896

  9. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  10. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging

    PubMed Central

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907

  11. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging.

    PubMed

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-03-30

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

  12. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    PubMed Central

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  13. Low-bit rate feedback strategies for iterative IA-precoded MIMO-OFDM-based systems.

    PubMed

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge.

  14. Image processing on the image with pixel noise bits removed

    NASA Astrophysics Data System (ADS)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  15. Drilling and Caching Architecture for the Mars2020 Mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.

    2013-12-01

    We present a Sample Acquisition and Caching (SAC) architecture for the Mars2020 mission and detail how the architecture meets the sampling requirements described in the Mars2020 Science Definition Team (SDT) report. The architecture uses 'One Bit per Core' approach. Having dedicated bit for each rock core allows a reduction in the number of core transfer steps and actuators and this reduces overall mission risk. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). To enable replacing of core samples, the drill bits are based on the BigTooth bit design. The BigTooth bit cuts a core diameter slightly smaller than the imaginary hole inscribed by the inner surfaces of the bits. Hence the rock core could be much easier ejected along the gravity vector. The architecture also has three additional types of bits that allow analysis of rocks. Rock Abrasion and Brushing Bit (RABBit) allows brushing and grinding of rocks in the same was as Rock Abrasion Tool does on MER. PreView bit allows viewing and analysis of rock core surfaces. Powder and Regolith Acquisition Bit (PRABit) captures regolith and rock powder either for in situ analysis or sample return. PRABit also allows sieving capabilities. The architecture can be viewed here: http://www.youtube.com/watch?v=_-hOO4-zDtE

  16. 1980 Summer Study Program in Geophysical Fluid Dynamics - Coherent Features in Geophysical Flows.

    DTIC Science & Technology

    1980-11-01

    odei un a inplii.ude motions on the beta plane. He extended the analysis to more complex flows in the ocean and the atmosphere and in the process...Technology Maxworthy, Anthony University of Southern California McWilliams, James National Center for Atmospheric Reserch Nelkin, Mark Cornell University...Nortweg-de Vries equation via a model of finite amplitude motions on the beta plane. He extended the analysis to more complex flows in the ocean and the

  17. Techniques to measure complex-plane fields

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Majola, Nombuso; Chetty, Naven; Forbes, Andrew

    2014-10-01

    In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial light modulator. Once these fields have been generated we illustrate, with three separate techniques, how the constituent components of these fields can be extracted, namely by measuring the intensity of the field at two adjacent points; performing a modal decomposition and a new digital Stokes measurement.

  18. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    NASA Astrophysics Data System (ADS)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  19. Local Bifurcation Control,

    DTIC Science & Technology

    1987-01-01

    X, (0) in the open left half complex plane . (S) Eq. (1) has an equilibrium zo(p) when u = 0. Furthermore, the linearization of (1) near z0, p = 0...possesses a simple eigenvalue X(p) with XI(O) = 0, X; (0) 74 0, with the remaining eigenvalues X(0), . . . , X. (0) in the open left half complex plane ...Conference, Lausanne, June 1984. (11) "Chaos In dynamical systems by the Poincare -Melnikov-Arnold method" Proc. ARO Workshop, March 1984. %I 2.I JUAN C

  20. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    PubMed

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  1. Drill bit assembly for releasably retaining a drill bit cutter

    DOEpatents

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  2. The effect of structural design parameters on FPGA-based feed-forward space-time trellis coding-orthogonal frequency division multiplexing channel encoders

    NASA Astrophysics Data System (ADS)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-08-01

    Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.

  3. Maximum-likelihood soft-decision decoding of block codes using the A* algorithm

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.

    1994-01-01

    The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.

  4. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  5. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  6. Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space.

    DTIC Science & Technology

    1997-01-01

    create a dependency tree containing an optimum set of n-1 first-order dependencies. To do this, first, we select an arbitrary bit Xroot to place at the...the root to an arbitrary bit Xroot -For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot . -While not all bits have been

  7. Antiwhirl PDC bits increased penetration rates in Alberta drilling. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrosky, D.; Osmak, G.

    1993-07-05

    The antiwhirl PDC bits and an inhibitive mud system contributed to the quicker drilling of the time-sensitive shales. The hole washouts in the intermediate section were dramatically reduced, resulting in better intermediate casing cement jobs. Also, the use of antirotation PDC-drillable cementing plugs eliminated the need to drill out plugs and float equipment with a steel tooth bit and then trip for the PDC bit. By using an antiwhirl PDC bit, at least one trip was eliminated in the intermediate section. Offset data indicated that two to six conventional bits would have been required to drill the intermediate hole interval.more » The PDC bit was rebuildable and therefore rerunnable even after being used on five wells. In each instance, the cost of replacing chipped cutters was less than the cost of a new insert roller cone bit. The paper describes the antiwhirl bits; the development of the bits; and their application in a clastic sequence, a carbonate sequence, and the Shekilie oil field; the improvement in the rate of penetration; the selection of bottom hole assemblies; washout problems; and drill-out characteristics.« less

  8. Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust

    PubMed Central

    Beck, T.W.

    2015-01-01

    Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435

  9. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    PubMed

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  10. A source-channel coding approach to digital image protection and self-recovery.

    PubMed

    Sarreshtedari, Saeed; Akhaee, Mohammad Ali

    2015-07-01

    Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.

  11. Theoretical and subjective bit assignments in transform picture

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.

  12. Teaching Particle Physics in Secondary Schools: Why Do Physicists Want to Smash Matter to Bits?

    ERIC Educational Resources Information Center

    Young, Clive

    2017-01-01

    Matter can be described and explained in a number of ways, using models of increasing complexity depending on the intended audience. Under the current National Curriculum for England, the kinetic theory of matter is taught to 11- and 12-year-olds in secondary schools to explain the structure of solids, liquids and gases and their behaviour when…

  13. One-way transformation of information

    DOEpatents

    Cooper, James A.

    1989-01-01

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.

  14. Intrinsic evolution of controllable oscillators in FPTA-2

    NASA Technical Reports Server (NTRS)

    Sekanina, Lukas; Zebulum, Ricardo S.

    2005-01-01

    Simple one- and two-bit controllable oscillators were intrinsically evolved using only four cells of Field Programmable Transistor Array (FPTA-2). These oscillators can produce different oscillations for different setting of control signals. Therefore, they could be used, in principle, to compose complex networks of oscillators that could exhibit rich dynamical behavior in order to perform a computation or to model a desired system.

  15. Effect of bit wear on hammer drill handle vibration and productivity.

    PubMed

    Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David

    2017-08-01

    The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.

  16. BitTorious volunteer: server-side extensions for centrally-managed volunteer storage in BitTorrent swarms.

    PubMed

    Lee, Preston V; Dinu, Valentin

    2015-11-04

    Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by the general public, wherein a small portion of each user's local disk may be used for archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built. Automated test cases for the BitTorious Volunteer extensions have been added to the portal's v3.0.0 release, supporting validation of the "peer affinity" concept and announcement protocol introduced by this specification. Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians wishing to integrate into libtorrent-based projects. The BitTorrent "affinity" extensions as provided in the BitTorious portal reference implementation allow data publishers to crowdsource the extreme storage prerequisites for research in "big data" fields. With sufficient awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.

  17. PDC bit hydraulics design, profile are key to reducing balling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-12-09

    Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less

  18. Motion and Emotional Behavior Design for Pet Robot Dog

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang

    A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.

  19. News and Views: Teenage team traces terminal tracks; Outreach after IYA2009 - a school project; School seismometers; Clocking pulsars

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Digital cameras - inspired, of course, by astronomical research - are now ubiquitous. It seems that nothing happens anywhere in the world without it being recorded by a teenager and promptly uploaded to the net. This truism now extends to the edge of the atmosphere: a group of high-school students has recorded a video of the re-entry and disintegration of the Japanese spacecraft Hayabusa, from a plane over the Australian outback. International Year of Astronomy 2009 was a catalyst for astronomical societies and groups worldwide to do a bit more to engage the general public - but in many cases IYA2009 was only the start of a new enthusiasm for astronomy. This is the case for one state secondary school, whose outreach work is going from strength to strength.

  20. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  1. Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1996-03-01

    Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.

  2. Thin-filament pyrometry with a digital still camera.

    PubMed

    Maun, Jignesh D; Sunderland, Peter B; Urban, David L

    2007-02-01

    A novel thin-filament pyrometer is presented. It involves a consumer-grade color digital still camera with 6 megapixels and 12 bits per color plane. SiC fibers were used and scanning-electron microscopy found them to be uniform with diameters of 13.9 micro m. Measurements were performed in a methane-air coflowing laminar jet diffusion flame with a luminosity length of 72 mm. Calibration of the pyrometer was accomplished with B-type thermocouples. The pyrometry measurements yielded gas temperatures in the range of 1400-2200 K with an estimated uncertainty of +/-60 K, a relative temperature resolution of +/-0.215 K, a spatial resolution of 42 mum, and a temporal resolution of 0.66 ms. Fiber aging for 10 min had no effect on the results. Soot deposition was less problematic for the pyrometer than for the thermocouple.

  3. Fast and low-cost structured light pattern sequence projection.

    PubMed

    Wissmann, Patrick; Forster, Frank; Schmitt, Robert

    2011-11-21

    We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America

  4. Novel Approach on the Optimisation of Mid-Course Corrections Along Interplanetary Trajectories

    NASA Astrophysics Data System (ADS)

    Iorfida, Elisabetta; Palmer, Phil; Roberts, Mark

    The primer vector theory, firstly proposed by Lawden, defines a set of necessary conditions to characterise whether an impulsive thrust trajectory is optimal with respect to propellant usage, within a two-body problem context. If the conditions are not satisfied, one or more potential intermediate impulses are performed along the transfer arc, in order to lower the overall cost. The method is based on the propagation of the state transition matrix and on the solution of a boundary value problem, which leads to a mathematical and computational complexity.In this paper, a different approach is introduced. It is based on a polar coordinates transformation of the primer vector which allows the decoupling between its in-plane and out-of-plane components. The out-of-plane component is solved analytically while for the in-plane ones a Hamiltonian approximation is made.The novel procedure reduces the mathematical complexity and the computational cost of Lawden's problem and gives also a different perspective about the optimisation of a transfer trajectory.

  5. Comparing the basins of attraction for several methods in the circular Sitnikov problem with spheroid primaries

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2018-06-01

    The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.

  6. Triboluminescence and crystal structure of the complex [Eu(NО3 )3 (HMPA)3 ]: role of cleavage planes.

    PubMed

    Bukvetskii, B V; Mirochnik, A G; Zhikhareva, P A

    2017-05-01

    The atomic structure of crystals of the [Eu(NО 3 ) 3 (HMPA) 3 ] [hexamethylphosphotriamide (HMPA)] complex characterized by an intensive luminescence and triboluminescence was determined using X-ray structural analysis. Noncentrosymmetric crystals have a monoclinic syngony: a = 16.0686 (3), b = 11.0853 (2), c = 20.9655 Å (4), β = 93.232° (1), space group P2 1 , Z = 4, ρ calc  = 1.560 g/cm 3 . The crystal structure is represented by individual С 18 Н 54 EuN 12 O 12 P 3 complexes linked through van der Waals interactions with clearly expressed cleavage planes. The Eu(III) atom coordination polyhedron reflected the state of a distorted square antiprism. Structural aspects of the suggested model, including formation of triboluminescence properties, were considered and the role of the cleavage planes was discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Bistable mixed-valence molecular architectures for bit storage

    NASA Astrophysics Data System (ADS)

    Guihery, Nathalie; Durand, Gérard; Lepetit, Marie-Bernadette

    1994-05-01

    The work examines the possible realization of bit storage at the molecular scale using mixed valence compounds i.e. the existence of two stable and degenerate forms associated with the 0 and 1 positions of the bit. The proposed systems are constituted of two donors (D) and acceptor (A), or one donor and two acceptors, juxtaposed in DAD or ADA architectures. Our proposals take advantage of the possibility of donor—acceptor complexes to exhibit either complete or partial charge transfer. The first system we propose has an essentially neutral ground state. However, the potential energy surface (PES) presents two degenerated minima associated with a partial charge transfer between the donor and one of the two acceptor molecules (A δ-D δ+1 A and AD δ+ A δ-). Systems presenting a complete charge transfer give rise to two stable, weakly coupled, and degenerate ionic electronic states, A - A + A and AD + A - for an ADA architecture and D + A -D and DA -D + for a DAD In these cases, the two forms differ by both their intramolecular geometries and the relative positions of their constituents. It seems rather difficult to conceive such bistable molecular systems using closed-shell molecules, while a donor radical and a closed-shell acceptor or an acceptor radical and closed-shell donor can generate very stable ionic states. It is assumed that the relative positions of the donor and acceptor molecules can be fixed using chemical bridges constituted of rigid or flexible ligands. The writing and reading processes are discussed for each system as well as the information stability when a large number of bits are juxtaposed on a surface.

  8. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  9. Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos

    NASA Astrophysics Data System (ADS)

    Almehmadi, Fares S.; Chatterjee, Monish R.

    2014-12-01

    Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryption key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for secure transmission of analog and digital signals using parameter tolerance measures, as well as BER performance measures for digital signals. These results hold out the promise for considerably greater information transmission security for such a system.

  10. Design and performance of the halogen occultation experiment (HALOE) remote sensor

    NASA Technical Reports Server (NTRS)

    Baker, R. L.; Mauldin, L. E., III; Russell, J. M., III

    1986-01-01

    HALOE is an optical remote sensor that measures extinction of solar radiation caused by the earth's atmosphere in eight channels, ranging in wavelength from 2.5 to 10.1 microns. These measurements, which occur twice each satellite orbit during solar occultation, are inverted to yield vertical distributions of middle atmosphere ozone (O3), water vapor, nitrogen dioxide, nitric oxide, hydrogen fluoride, hydrogen chloride, and methane. A channel located in the 2.7 region is used to infer the tangent point pressure by measuring carbon dioxide absorption. The HALOE instrument consists of a two-axis gimbal system, telescope, spectral discrimination optics and a 12-bit data system. The gimbal system tracks the solar radiometric centroid in the azimuthal plane and tracks the solar limb in the elevation plane, placing the instrument's instantaneous field-of-view 4 arcmin down from the solar top edge. The instrument gathers data for tangent altitudes ranging from 150 km to the earth's horizon. Prior to an orbital sunset and after an orbital sunrise, HALOE automatically performs calibration sequences to enhance data interpretation. The instrument is presently being tested at the NASA Langley Research Center in preparation for launch on the Upper Atmosphere Research Satellite near the end of this decade. This paper describes the instrumenmt design, operation, and functional performance.

  11. DFT study of adsorption and dissociation of thiophene molecules on Ni(1 1 0)

    NASA Astrophysics Data System (ADS)

    Morin, C.; Eichler, A.; Hirschl, R.; Sautet, P.; Hafner, J.

    2003-08-01

    The different adsorption possibilities of thiophene (C 4H 4S) on the Ni(1 1 0) surface have been studied using first principle local-density-functional calculations, with the Vienna ab initio simulation package, which is based on a plane wave basis set and projector augmented wave potentials. For each configuration, a geometric optimisation has been performed. A detailed analysis of the structural and electronic properties of the molecule and the surface in the most stable conformations is presented, showing the combined roles of the molecular distortion and the interactions between the molecule and the surface. Three structures with comparatively large adsorption energies are identified, all with the molecule plane parallel to the surface. Starting from these stabilised structures, various scenarios for the desulfurisation process have been envisaged. While, for the most stable structure, the formation of an adsorbed thiol is an activated process, with an energetic barrier of 0.70 eV, the two structures which are just a bit less stable can dissociate to a C 4H 4 species and a sulfur atom with barriers as low as 0.07 eV. A description of the different transition states and a kinetic analysis of the desulfurisation reaction is also presented.

  12. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    1996-12-31

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less

  13. Coherent field propagation between tilted planes.

    PubMed

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  14. Optimal space communications techniques. [using digital and phase locked systems for signal processing

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.

  15. Field programmable gate array-assigned complex-valued computation and its limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

  16. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  17. Bit Grooming: Statistically accurate precision-preserving quantization with compression, evaluated in the netCDF operators (NCO, v4.4.8+)

    DOE PAGES

    Zender, Charles S.

    2016-09-19

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits ofmore » consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.« less

  18. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  19. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, James A.

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less

  20. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less

  1. A channel estimation scheme for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen

    2017-08-01

    In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.

  2. Graded bit patterned magnetic arrays fabricated via angled low-energy He ion irradiation.

    PubMed

    Chang, L V; Nasruallah, A; Ruchhoeft, P; Khizroev, S; Litvinov, D

    2012-07-11

    A bit patterned magnetic array based on Co/Pd magnetic multilayers with a binary perpendicular magnetic anisotropy distribution was fabricated. The binary anisotropy distribution was attained through angled helium ion irradiation of a bit edge using hydrogen silsesquioxane (HSQ) resist as an ion stopping layer to protect the rest of the bit. The viability of this technique was explored numerically and evaluated through magnetic measurements of the prepared bit patterned magnetic array. The resulting graded bit patterned magnetic array showed a 35% reduction in coercivity and a 9% narrowing of the standard deviation of the switching field.

  3. Towards Terabit Memories

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet little data on their energy/b. As a read-out memory with unparalleled retention and lifetime, the ROM with electron-beam direct-write-lithography (Chap. 8) should be considered for its projected 2D density of 250 Gb/cm², a very small read energy of 0.1 μW/Gb/s. The lithography write-speed 10 ms/Terabit makes this ROM a serious contentender for the optimum in non-volatile, tamper-proof storage.

  4. Outage probability of a relay strategy allowing intra-link errors utilizing Slepian-Wolf theorem

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Anwar, Khoirul; Matsumoto, Tad

    2013-12-01

    In conventional decode-and-forward (DF) one-way relay systems, a data block received at the relay node is discarded, if the information part is found to have errors after decoding. Such errors are referred to as intra-link errors in this article. However, in a setup where the relay forwards data blocks despite possible intra-link errors, the two data blocks, one from the source node and the other from the relay node, are highly correlated because they were transmitted from the same source. In this article, we focus on the outage probability analysis of such a relay transmission system, where source-destination and relay-destination links, Link 1 and Link 2, respectively, are assumed to suffer from the correlated fading variation due to block Rayleigh fading. The intra-link is assumed to be represented by a simple bit-flipping model, where some of the information bits recovered at the relay node are the flipped version of their corresponding original information bits at the source. The correlated bit streams are encoded separately by the source and relay nodes, and transmitted block-by-block to a common destination using different time slots, where the information sequence transmitted over Link 2 may be a noise-corrupted interleaved version of the original sequence. The joint decoding takes place at the destination by exploiting the correlation knowledge of the intra-link (source-relay link). It is shown that the outage probability of the proposed transmission technique can be expressed by a set of double integrals over the admissible rate range, given by the Slepian-Wolf theorem, with respect to the probability density function ( pdf) of the instantaneous signal-to-noise power ratios (SNR) of Link 1 and Link 2. It is found that, with the Slepian-Wolf relay technique, so far as the correlation ρ of the complex fading variation is | ρ|<1, the 2nd order diversity can be achieved only if the two bit streams are fully correlated. This indicates that the diversity order exhibited in the outage curve converges to 1 when the bit streams are not fully correlated. Moreover, the Slepian-Wolf outage probability is proved to be smaller than that of the 2nd order maximum ratio combining (MRC) diversity, if the average SNRs of the two independent links are the same. Exact as well as asymptotic expressions of the outage probability are theoretically derived in the article. In addition, the theoretical outage results are compared with the frame-error-rate (FER) curves, obtained by a series of simulations for the Slepian-Wolf relay system based on bit-interleaved coded modulation with iterative detection (BICM-ID). It is shown that the FER curves exhibit the same tendency as the theoretical results.

  5. Clipping polygon faces through a polyhedron of vision

    NASA Technical Reports Server (NTRS)

    Florence, Judit K. (Inventor); Rohner, Michel A. (Inventor)

    1980-01-01

    A flight simulator combines flight data and polygon face terrain data to provide a CRT display at each window of the simulated aircraft. The data base specifies the relative position of each vertex of each polygon face therein. Only those terrain faces currently appearing within the pyramid of vision defined by the pilots eye and the edges of the pilots window need be displayed at any given time. As the orientation of the pyramid of vision changes in response to flight data, the displayed faces are correspondingly displaced, eventually moving out of the pyramid of vision. Faces which are currently not visible (outside the pyramid of vision) are clipped from the data flow. In addition, faces which are only partially outside of pyramid of vision are reconstructed to eliminate the outside portion. Window coordinates are generated defining the distance between each vertex and each of the boundary planes forming the pyramid of vision. The sign bit of each window coordinate indicates whether the vertex is on the pyramid of vision side of the associated boundary panel (positive), or on the other side thereof (negative). The set of sign bits accompanying each vertex constitute the outcode of that vertex. The outcodes (O.C.) are systematically processed and examined to determine which faces are completely inside the pyramid of vision (Case A--all signs positive), which faces are completely outside (Case C--All signs negative) and which faces must be reconstructed (Case B--both positive and negative signs).

  6. Performance comparison between 8 and 14 bit-depth imaging in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragoda, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We compare true 8 and 14 bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) at 1.3μm wavelength by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of an equine tendon sample indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. We also compare the resulting image quality when the image data sampled with the 14-bit DAQ from human finger skin is artificially bit-reduced during post-processing. However, in agreement with the results reported previously, we also observe that in our system that real-world 8-bit image shows more artifacts than the image acquired by numerically truncating to 8-bits from the raw 14-bit image data, especially in low intensity image area. This is due to the higher noise floor and reduced dynamic range of the 8-bit DAQ. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artefacts due to strong Fresnel reflection.

  7. Computed tomography arthrography using a radial plane view for the detection of triangular fibrocartilage complex foveal tears.

    PubMed

    Moritomo, Hisao; Arimitsu, Sayuri; Kubo, Nobuyuki; Masatomi, Takashi; Yukioka, Masao

    2015-02-01

    To classify triangular fibrocartilage complex (TFCC) foveal lesions on the basis of computed tomography (CT) arthrography using a radial plane view and to correlate the CT arthrography results with surgical findings. We also tested the interobserver and intra-observer reliability of the radial plane view. A total of 33 patients with a suspected TFCC foveal tear who had undergone wrist CT arthrography and subsequent surgical exploration were enrolled. We classified the configurations of TFCC foveal lesions into 5 types on the basis of CT arthrography with the radial plane view in which the image slices rotate clockwise centered on the ulnar styloid process. Sensitivity, specificity, and positive predictive values were calculated for each type of foveal lesion in CT arthrography to detect foveal tears. We determined interobserver and intra-observer agreements using kappa statistics. We also compared accuracies with the radial plane views with those with the coronal plane views. Among the tear types on CT arthrography, type 3, a roundish defect at the fovea, and type 4, a large defect at the overall ulnar insertion, had high specificity and positive predictive value for the detection of foveal tears. Specificity and positive predictive values were 90% and 89% for type 3 and 100% and 100% for type 4, respectively, whereas sensitivity was 35% for type 3 and 22% for type 4. Interobserver and intra-observer agreement was substantial and almost perfect, respectively. The radial plane view identified foveal lesion of each palmar and dorsal radioulnar ligament separately, but accuracy results with the radial plane views were not statistically different from those with the coronal plane views. Computed tomography arthrography with a radial plane view exhibited enhanced specificity and positive predictive value when a type 3 or 4 lesion was identified in the detection of a TFCC foveal tear compared with historical controls. Diagnostic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. On the maximum-entropy/autoregressive modeling of time series

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1984-01-01

    The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.

  9. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    NASA Technical Reports Server (NTRS)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  10. Method for compression of binary data

    DOEpatents

    Berlin, Gary J.

    1996-01-01

    The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.

  11. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  12. Method to manufacture bit patterned magnetic recording media

    DOEpatents

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  13. Testability Design Rating System: Testability Handbook. Volume 1

    DTIC Science & Technology

    1992-02-01

    4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory

  14. The Behavioral Intervention Technology Model: An Integrated Conceptual and Technological Framework for eHealth and mHealth Interventions

    PubMed Central

    Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-01-01

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or “elements” (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user’s environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs. PMID:24905070

  15. The behavioral intervention technology model: an integrated conceptual and technological framework for eHealth and mHealth interventions.

    PubMed

    Mohr, David C; Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-06-05

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or "elements" (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user's environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs.

  16. Digital Ratiometer

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1985-01-01

    Small, low-cost comparator with 24-bit-precision yields ratio signal from pair of analog or digital input signals. Arithmetic logic chips (bit-slice) sample two 24-bit analog-to-digital converters approximately once every millisecond and accumulate them in two 24-bit registers. Approach readily modified to arbitrary precision.

  17. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  18. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental metastasis model. Taken together, our studies indicate Bit1 is an inhibitor of EMT and metastasis in lung cancer and hence can serve as a molecular target in curbing lung cancer aggressiveness. PMID:27655370

  19. Extending Landauer's bound from bit erasure to arbitrary computation

    NASA Astrophysics Data System (ADS)

    Wolpert, David

    The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No. TWCF0079/AB47 from the Templeton World Charity Foundation, Grant No. FQXi-RHl3-1349 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S. National Science Foundation.

  20. Large-N in Volcano Settings: Volcanosri

    NASA Astrophysics Data System (ADS)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months with the installed 16Gb SD card. Initial designs and test results will be presented and discussed.

  1. Effects of size on three-cone bit performance in laboratory drilled shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.G.; Sandstrom, J.L.

    1982-09-01

    The effects of size on the performance of 3-cone bits were measured during laboratory drilling tests in shale at simulated downhole conditions. Four Reed HP-SM 3-cone bits with diameters of 6 1/2, 7 7/8, 9 1/2 and 11 inches were used to drill Mancos shale with water-based mud. The tests were conducted at constant borehole pressure, two conditions of hydraulic horsepower per square inch of bit area, three conditions of rotary speed and four conditions of weight-on-bit per inch of bit diameter. The resulting penetration rates and torques were measured. Statistical techniques were used to analyze the data.

  2. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  3. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a mutual information of 0.2217 bits which is 75.8% of maximum achievable. The implication is that only by coding both MSB and LSB jointly can we hope to get close to this 75.8% limit. Hence, non-binary codes are essential to achieve acceptable performance.

  4. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  5. Modeling Security Bridge Certificate Authority Architecture

    NASA Astrophysics Data System (ADS)

    Ren, Yizhi; Li, Mingchu; Sakurai, Kouichi

    Current Public Key Infrastructures suffer from a scaling problem, and some may have security problems, even given the topological simplification of bridge certification authorities. This paper analyzes the security problems in Bridge Certificate Authorities (BCA) model by using the concept of “impersonation risk, ” and proposes a new modified BCA model, which enhances its security, but is a bit more complex incertification path building and implementation than the existing one.

  6. Exploring the Acoustic Nonlinearity for Monitoring Complex Aerospace Structures

    DTIC Science & Technology

    2008-02-27

    nonlinear elastic waves, embedded ultrasonics, nonlinear diagnostics, aerospace structures, structural joints. 16. SECURITY CLASSIFICATION OF: 17...sampling, 100 MHz bandwidth with noise and anti- aliasing filters, general-purpose alias-protected decimation for all sample rates and quad digital down...conversion ( DDC ) with up to 40 MHz IF bandwidth. Specified resolution of NI PXI 5142 is 14-bits with the noise floor approaching -85 dB. Such a

  7. Hey! A Tick Bit Me!

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hey! A Tick Bit Me! KidsHealth / For Kids / Hey! A Tick Bit Me! Print en español ¡Ay! ¡ ... tick collar. More on this topic for: Kids Hey! A Brown Recluse Spider Bit Me! Hey! A ...

  8. Core drill's bit is replaceable without withdrawal of drill stem - A concept

    NASA Technical Reports Server (NTRS)

    Rushing, F. C.; Simon, A. B.

    1970-01-01

    Drill bit is divided into several sectors. When collapsed, the outside diameter is forced down the drill stem, when it reaches bottom the sectors are forced outward and form a cutting bit. A dulled bit is retracted by reversal of this procedure.

  9. A Secure Information Framework with APRQ Properties

    NASA Astrophysics Data System (ADS)

    Rupa, Ch.

    2017-08-01

    Internet of the things is the most trending topics in the digital world. Security issues are rampant. In the corporate or institutional setting, security risks are apparent from the outset. Market leaders are unable to use the cryptographic techniques due to their complexities. Hence many bits of private information, including ID, are readily available for third parties to see and to utilize. There is a need to decrease the complexity and increase the robustness of the cryptographic approaches. In view of this, a new cryptographic technique as good encryption pact with adjacency, random prime number and quantum code properties has been proposed. Here, encryption can be done by using quantum photons with gray code. This approach uses the concepts of physics and mathematics with no external key exchange to improve the security of the data. It also reduces the key attacks by generation of a key at the party side instead of sharing. This method makes the security more robust than with the existing approach. Important properties of gray code and quantum are adjacency property and different photons to a single bit (0 or 1). These can reduce the avalanche effect. Cryptanalysis of the proposed method shows that it is resistant to various attacks and stronger than the existing approaches.

  10. Don’t make cache too complex: A simple probability-based cache management scheme for SSDs

    PubMed Central

    Cho, Sangyeun; Choi, Jongmoo

    2017-01-01

    Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme. PMID:28358897

  11. Don't make cache too complex: A simple probability-based cache management scheme for SSDs.

    PubMed

    Baek, Seungjae; Cho, Sangyeun; Choi, Jongmoo

    2017-01-01

    Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme.

  12. Lathe tool bit and holder for machining fiberglass materials

    NASA Technical Reports Server (NTRS)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  13. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  14. Method for compression of binary data

    DOEpatents

    Berlin, G.J.

    1996-03-26

    The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression. 5 figs.

  15. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  16. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, John R.

    1997-01-01

    A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.

  17. Modification of the sagittal split osteotomy of the mandibular ramus: mobilizing vertical osteotomy of the internal ramus segment.

    PubMed

    Ricard, Daniel; Ferri, Joël

    2009-08-01

    We describe a new surgical procedure to improve stability when counterclockwise rotation of the maxillomandibular complex and the occlusal plane is intended. This preliminary prospective study evaluated 10 patients (8 female patients and 2 male patients) who each underwent maxillomandibular surgical advancement with counterclockwise rotation of the occlusal plane. A mandibular counterclockwise rotation was done in all cases with bilateral ramus sagittal split osteotomy. After the split of the ramus had been completed, a vertical osteotomy was done distally to the second molar on the internal ramus segment. With the completion of this vertical osteotomy, the internal ramus segment became completely mobile. All osteotomies were stabilized with rigid internal fixation by use of plates with monocortical screws. Ten patients have been treated with the "mobilizing vertical osteotomy of the internal ramus segment." The mean reduction of the occlusal plane angle was 10.1 degrees , showing a substantial counterclockwise rotation of the maxillomandibular complex. All patients had significant improvement of their facial balance. After a 1-year follow-up period, all cases but 1 showed very good stability of their occlusion and occlusal plane angle. An 11.4% relapse of the forward movement of the mandible was noted. On the basis of this prospective study, we conclude that when performing a counterclockwise rotation of the maxillomandibular complex, the mobilizing vertical osteotomy of the internal ramus segment combined with the sagittal split osteotomy of the mandible potentially enhances the occlusal plane angle and occlusal stability after a 1-year period.

  18. Hey! A Mosquito Bit Me! (For Kids)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hey! A Mosquito Bit Me! KidsHealth / For Kids / Hey! A Mosquito Bit Me! Print en español ¡Ay! ¡ ... your skin. More on this topic for: Kids Hey! A Flea Bit Me! Hey! A Scorpion Stung ...

  19. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism.

    PubMed

    Ogura, Hiroshi; Evans, John P; Peng, Dungeng; Satterlee, James D; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2009-04-14

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.

  20. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    PubMed Central

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy and magnetic susceptibilities argues for a low-spin, (dxy)2(dyz,dxz)3, ground state in both azide and cyanide complexes. The switch from singly-occupied dyz for the cyanide to dxz for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide π-plane in the latter complex, which is ∼90° in-plane rotated from that of the imidazole π-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicate that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 → Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed. PMID:19243105

  1. A Study of a Standard BIT Circuit.

    DTIC Science & Technology

    1977-02-01

    IENDED BIT APPROACHES FOR QED MODULES AND APPLICATION OF THE ANALYTIC MEASURES 36 4.1 Built-In-Test for Memory Class Modules 37 4.1.1 Random Access...Implementation 68 4.1.5.5 Criti cal Parameters 68 4.1.5.6 QED Module Test Equipment Requirements 68 4.1.6 Application of Analytic Measures to the...Microprocessor BIT Techniques.. 121 4.2.9 Application of Analytic Measures to the Recommended BIT App roaches 125 4.2.10 Process Class BIT by Partial

  2. Spacecraft Orbit Design in the Circular Restricted Three-Body Problem Using Higher-Dimensional Poincare Maps

    DTIC Science & Technology

    2013-12-01

    the plane of the primary bodies. That is, motion is possible only in the x and y directions. For example, in the ...Earth-Moon planar CR3BP, the S/C path remains in the same plane as the Moon’s orbit about the Earth—more precisely, the orbit of both the Earth and...travels out of the plane of the massive primaries, in the z direction as well. Importantly, there is added complexity in the spatial

  3. 2008 Program of Study: Perspectives and Challenges in GFD (Geophysical Fluid Dynamics)

    DTIC Science & Technology

    2009-03-01

    half of the complex k- plane , and Φ− is similarly well defined in the lower half of 338 PSfrag replacements Im k Re k−i +i Figure 2: Branch cuts in...domains ⊕ and , which include, respectively, the upper and lower half k- planes . The full Fourier transform of φ (and of h, d, etc.) is then well defined in...contour at infinity in the lower half k- plane ; the solution will only contain waves arising from poles located in the

  4. Polarization Utilization in Radar Target Reconstruction: C-Wide (Multi-Frequency) Band Relationship of a Target’s Characteristic Operators with Its Unique Set of Natural Eigenfrequencies.

    DTIC Science & Technology

    1983-12-14

    the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and

  5. New PDC bit optimizes drilling performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besson, A.; Gudulec, P. le; Delwiche, R.

    1996-05-01

    The lithology in northwest Argentina contains a major section where polycrystalline diamond compact (PDC) bits have not succeeded in the past. The section consists of dense shales and cemented sandstone stringers with limestone laminations. Conventional PDC bits experienced premature failures in the section. A new generation PDC bit tripled rate of penetration (ROP) and increased by five times the potential footage per bit. Recent improvements in PDC bit technology that enabled the improved performance include: the ability to control the PDC cutter quality; use of an advanced cutter lay out defined by 3D software; using cutter face design code formore » optimized cleaning and cooling; and, mastering vibration reduction features, including spiraled blades.« less

  6. A comparison of orthogonal transformations for digital speech processing.

    NASA Technical Reports Server (NTRS)

    Campanella, S. J.; Robinson, G. S.

    1971-01-01

    Discrete forms of the Fourier, Hadamard, and Karhunen-Loeve transforms are examined for their capacity to reduce the bit rate necessary to transmit speech signals. To rate their effectiveness in accomplishing this goal the quantizing error (or noise) resulting for each transformation method at various bit rates is computed and compared with that for conventional companded PCM processing. Based on this comparison, it is found that Karhunen-Loeve provides a reduction in bit rate of 13.5 kbits/s, Fourier 10 kbits/s, and Hadamard 7.5 kbits/s as compared with the bit rate required for companded PCM. These bit-rate reductions are shown to be somewhat independent of the transmission bit rate.

  7. Neighborhood comparison operator

    NASA Technical Reports Server (NTRS)

    Gennery, Donald B. (Inventor)

    1987-01-01

    Digital values in a moving window are compared by an operator having nine comparators (18) connected to line buffers (16) for receiving a succession of central pixels together with eight neighborhood pixels. A single bit of program control determines whether the neighborhood pixels are to be compared with the central pixel or a threshold value. The central pixel is always compared with the threshold. The comparator output, plus 2 bits indicating odd-even pixel/line information about the central pixel, addresses a lookup table (20) to provide 14 bits of information, including 2 bits which control a selector (22) to pass either the central pixel value, the other 12 bits of table information, or the bit-wise logic OR of all neighboring pixels.

  8. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  9. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  10. Serial data correlator/code translator

    NASA Technical Reports Server (NTRS)

    Morgan, L. E. (Inventor)

    1982-01-01

    A system for analyzing asynchronous signals containing bits of information for ensuring the validity of said signals, by sampling each bit of information a plurality of times, and feeding the sampled pieces of bits of information into a sequence controlled is described. The sequence controller has a plurality of maps or programs through which the sampled pieces of bits are stepped so as to identify the particular bit of information and determine the validity and phase of the bit. The step in which the sequence controller is clocked is controlled by a storage register. A data decoder decodes the information fed out of the storage register and feeds such information to shift registers for storage.

  11. Social complexity as a proximate and ultimate factor in communicative complexity

    PubMed Central

    Freeberg, Todd M.; Dunbar, Robin I. M.; Ord, Terry J.

    2012-01-01

    The ‘social complexity hypothesis’ for communication posits that groups with complex social systems require more complex communicative systems to regulate interactions and relations among group members. Complex social systems, compared with simple social systems, are those in which individuals frequently interact in many different contexts with many different individuals, and often repeatedly interact with many of the same individuals in networks over time. Complex communicative systems, compared with simple communicative systems, are those that contain a large number of structurally and functionally distinct elements or possess a high amount of bits of information. Here, we describe some of the historical arguments that led to the social complexity hypothesis, and review evidence in support of the hypothesis. We discuss social complexity as a driver of communication and possible causal factor in human language origins. Finally, we discuss some of the key current limitations to the social complexity hypothesis—the lack of tests against alternative hypotheses for communicative complexity and evidence corroborating the hypothesis from modalities other than the vocal signalling channel. PMID:22641818

  12. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  13. Projecting non-diffracting waves with intermediate-plane holography.

    PubMed

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  14. Four channel Laser Firing Unit using laser diodes

    NASA Technical Reports Server (NTRS)

    Rosner, David, Sr.; Spomer, Edwin, Sr.

    1994-01-01

    This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.

  15. Note: optical receiver system for 152-channel magnetoencephalography.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  16. Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback.

    PubMed

    Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun

    2015-09-01

    A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.

  17. Purpose-built PDC bit successfully drills 7-in liner equipment and formation: An integrated solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puennel, J.G.A.; Huppertz, A.; Huizing, J.

    1996-12-31

    Historically, drilling out the 7-in, liner equipment has been a time consuming operation with a limited success ratio. The success of the operation is highly dependent on the type of drill bit employed. Tungsten carbide mills and mill tooth rock bits required from 7.5 to 11.5 hours respectively to drill the pack-off bushings, landing collar, shoe track and shoe. Rates of penetration dropped dramatically when drilling the float equipment. While conventional PDC bits have drilled the liner equipment successfully (averaging 9.7 hours), severe bit damage invariably prevented them from continuing to drill the formation at cost-effective penetration rates. This papermore » describes the integrated development and application of an IADC M433 Class PDC bit, which was designed specifically to drill out the 7-in. liner equipment and continue drilling the formation at satisfactory penetration rates. The development was the result of a joint investigation There the operator and bit/liner manufacturers shared their expertise in solving a drilling problem, The heavy-set bit was developed following drill-off tests conducted to investigate the drillability of the 7-in. liner equipment. Key features of the new bit and its application onshore The Netherlands will be presented and analyzed.« less

  18. Next generation PET data acquisition architectures

    NASA Astrophysics Data System (ADS)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  19. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  20. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  1. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  2. Complexity-entropy causality plane: A useful approach for distinguishing songs

    NASA Astrophysics Data System (ADS)

    Ribeiro, Haroldo V.; Zunino, Luciano; Mendes, Renio S.; Lenzi, Ervin K.

    2012-04-01

    Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.

  3. Method for Cleanly and Precisely Breaking Off a Rock Core Using a Radial Compressive Force

    NASA Technical Reports Server (NTRS)

    Richardson, Megan; Lin, Justin

    2011-01-01

    The Mars Sample Return mission has the goal to drill, break off, and retain rock core samples. After some results gained from rock core mechanics testing, the realization that scoring teeth would cleanly break off the core after only a few millimeters of penetration, and noting that rocks are weak in tension, the idea was developed to use symmetric wedging teeth in compression to weaken and then break the core at the contact plane. This concept was developed as a response to the break-off and retention requirements. The wedges wrap around the estimated average diameter of the core to get as many contact locations as possible, and are then pushed inward, radially, through the core towards one another. This starts a crack and begins to apply opposing forces inside the core to propagate the crack across the plane of contact. The advantage is in the simplicity. Only two teeth are needed to break five varieties of Mars-like rock cores with limited penetration and reasonable forces. Its major advantage is that it does not require any length of rock to be attached to the parent in order to break the core at the desired location. Test data shows that some rocks break off on their own into segments or break off into discs. This idea would grab and retain a disc, push some discs upward and others out, or grab a segment, break it at the contact plane, and retain the portion inside of the device. It also does this with few moving parts in a simple, space-efficient design. This discovery could be implemented into a coring drill bit to precisely break off and retain any size rock core.

  4. Combining Real-time Seismic and Geodetic Data to Improve Rapid Earthquake Information

    NASA Astrophysics Data System (ADS)

    Murray, M. H.; Neuhauser, D. S.; Gee, L. S.; Dreger, D. S.; Basset, A.; Romanowicz, B.

    2002-12-01

    The Berkeley Seismological Laboratory operates seismic and geodetic stations in the San Francisco Bay area and northern California for earthquake and deformation monitoring. The seismic systems, part of the Berkeley Digital Seismic Network (BDSN), include strong motion and broadband sensors, and 24-bit dataloggers. The data from 20 GPS stations, part of the Bay Area Regional Deformation (BARD) network of more than 70 stations in northern California, are acquired in real-time. We have developed methods to acquire GPS data at 12 stations that are collocated with the seismic systems using the seismic dataloggers, which have large on-site data buffer and storage capabilities, merge it with the seismic data stream in MiniSeed format, and continuously stream both data types using reliable frame relay and/or radio modem telemetry. Currently, the seismic data are incorporated into the Rapid Earthquake Data Integration (REDI) project to provide notification of earthquake magnitude, location, moment tensor, and strong motion information for hazard mitigation and emergency response activities. The geodetic measurements can provide complementary constraints on earthquake faulting, including the location and extent of the rupture plane, unambiguous resolution of the nodal plane, and distribution of slip on the fault plane, which can be used, for example, to refine strong motion shake maps. We are developing methods to rapidly process the geodetic data to monitor transient deformation, such as coseismic station displacements, and for combining this information with the seismic observations to improve finite-fault characterization of large earthquakes. The GPS data are currently processed at hourly intervals with 2-cm precision in horizontal position, and we are beginning a pilot project in the Bay Area in collaboration with the California Spatial Reference Center to do epoch-by-epoch processing with greater precision.

  5. A survey of general dental practitioners in the North West of England concerning the dental care of patients following head and neck radiotherapy.

    PubMed

    Husein, Adam B; Butterworth, Chris J; Ranka, Meena S; Kwasnicki, Andrew; Rogers, Simon N

    2011-04-01

    The aim of this survey was to investigate the views of general dental practitioners (GDPs) on their perceived roles and the barriers regarding dental care of patients following head and neck radio-therapy. From a total of 1163 GDPs on the Mersey Postgraduate Dental Deanery mailing list, 369 were selected at random. Questionnaires were sent out in February 2010 followed by reminders a month later. A study-specific questionnaire was piloted prior to the survey. One hundred and ninety-eight of the potential 336 respondents returned valid questionnaires, a response rate of 59%. They did not respond to all questions. Of those who responded, 99/188 (53%) were either 'not at all' or 'little' happy about managing these patients and 118/183 (64%) and 100/173 (58%), respectively, perceived that complex management and the new General Dental Services (nGDS) contract introduced in 2006 were 'quite a bit' or 'very much' barriers to treatment. The majority of the respondents felt that they were 'quite a bit' or 'very much' happy to carry out routine fillings (177/195; 90%), periodontal treatment (166/195; 85%), removable dentures (161/195; 83%), crown and bridge work (123/192; 64%), and root canal therapy (114/195; 58%) but only 53/191 (28%) to perform dental extractions. Over half of the respondents felt that they had 'quite a bit' or a 'main role' in managing radiotherapy caries, xerostomia, detecting recurrence and offering smoking-cessation advice. The majority of the GDPs who responded had been involved in the management of patients who had undergone radio-therapy to the head and neck. A substantial number perceived barriers to care, such as the complexity of the treatment and the nGDS contract. These findings need further investigation. Continuing professional development would be helpful to improve GDPs' confidence in dealing with this group of patients.

  6. Complex plane integration in the modelling of electromagnetic fields in layered media: part 1. Application to a very large loop

    NASA Astrophysics Data System (ADS)

    Silva, Valdelírio da Silva e.; Régis, Cícero; Howard, Allen Q., Jr.

    2014-02-01

    This paper analyses the details of a procedure for the numerical integration of Hankel transforms in the calculation of the electromagnetic fields generated by a large horizontal loop over a 1D earth. The method performs the integration by deforming the integration path into the complex plane and applying Cauchy's theorem on a modified version of the integrand. The modification is the replacement of the Bessel functions J0 and J1 by the Hankel functions H_0^{(1)} and H_1^{(1)} respectively. The integration in the complex plane takes advantage of the exponentially decaying behaviour of the Hankel functions, allowing calculation on very small segments, instead of the infinite line of the original improper integrals. A crucial point in this problem is the location of the poles. The companion paper shows two methods to estimate the pole locations. We have used this method to calculate the fields of very large loops. Our results show that this method allows the estimation of the integrals with fewer evaluations of the integrand functions than other methods.

  7. Channel correlation and BER performance analysis of coherent optical communication systems with receive diversity over moderate-to-strong non-Kolmogorov turbulence.

    PubMed

    Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan

    2018-04-10

    In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.

  8. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  9. Reviews

    NASA Astrophysics Data System (ADS)

    2006-03-01

    WE RECOMMEND It’s About Time: Understanding Einstein’s Relativity An excellent novel explanation of special relativity. The Plane Factory A great way to make projects more quantitative. Spacesaver Microvoltmeter This meter is robust, portable and covers a good range of voltages. Cassell’s Laws of Nature This book covers everything that governs our physical universe. J D Bernal: The Sage of Science Awell researched biography that is hard to put down. AS-Level Physics: The Revision Guide A very good, reasonably priced revision guide. WORTH A LOOK Symmetry and the Beautiful Universe This book on modern physics is fairly readable but a bit haphazard. HANDLE WITH CARE Hover Football An inferior and cheaper version of the Kick Dis. art & science Art students will get more out of this than physics students. WEB WATCH Practicalphysics.org is an excellent site, packed with useful tips and instructions for practical physics experiments. Louisa Jones describes her favourite websites about waves

  10. After the revolution: the physician executive of the future.

    PubMed

    Goldener, J

    1998-01-01

    There is a revolution in health care occurring in our midst. The roots of this revolution are explored. The physician executive of the future will need a new set of skills because the health care system will change. This new, evolving set of skills includes being: Savvy about business; simultaneously employer- and customer-focused; and technologically driven. This manager must be a team builder rather than a lone ranger. These skills are learnable, just like piloting a plane or doing a surgery. None of us was born with the skill to practice medicine any more than we were born with business skills. While many physicians are depressed by the present health care climate, feeling a loss of power and a loss in spirit, the vision of the physician manager must carry them and the organizations they build forward through uncharted waters to a future which is every bit as exciting as our past.

  11. Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RFID application

    NASA Astrophysics Data System (ADS)

    Jalil, M. E.; Rahim, M. K. A.; Samsuri, N. A.; Dewan, R.; Kamardin, K.

    2017-01-01

    A coplanar waveguide (CPW) ultra-wideband (UWB) antenna incorporated with metamaterial—split ring resonator structure—that operates from 3.0 to 12.0 GHz is proposed for chipless RFID tag. The 30 mm × 40 mm flexible chipless RFID tag is designed on the fleece substrate ( ɛ r = 1.35, thickness = 1 mm and tan δ = 0.025). A six-slotted modified complementary split ring resonator (MCSRR) is introduced into the ultra-wideband antenna to produce multiple band notches at 3.0, 4.0, 5.0, 6.0 and 7.0 GHz. The frequency shifting technique is introduced for designing a high-capacity chipless RFID tag with compact size. Each MCSRR is able to code in four different allocations (00, 01, 10 and 11). To achieve encoding of 10-bits data (10,234 number), six MCSRRs are proposed with three-slotted MCSRR in the radiator and three-slotted MCSRR in the ground plane.

  12. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships

    PubMed Central

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-01-01

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715

  13. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  14. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  15. Design of a dual-band radiation system for a complex magnetically insulated line oscillator

    NASA Astrophysics Data System (ADS)

    Yu, Yuanqiang; Wang, Xiaoyu; Fan, Yuwei; Li, Ankun; Li, Sirui

    2018-05-01

    In this paper, a dual-band radiation system for a complex magnetically insulated line oscillator (MILO) is designed and investigated numerically. The radiation system comprises a coaxial plate-inserted mode converter, a power combiner and a conical horn antenna. The mode converter converts the coaxial TEM mode microwaves (1.775 GHz and 3.175 GHz) which are generated by the complex MILO into the coaxial TE11 mode microwaves, and then the coaxial TE11 mode microwaves are combined by the power combiner in a circular waveguide. Lastly, the microwaves are radiated by a conical horn antenna into the air. The gains of the dual-band radiation system are calculated to be 17.8 dB at 1.775 GHz and 18.9 dB at 3.175 GHz. The 3 dB beam widths are 20.5° in E-plane, 26.4° in H-plane at 1.775 GHz and 20.8° in E-plane, 15.1° in H-plane at 3.175 GHz. The power transmission efficiencies of the dual-band radiation system are 98.5% at 1.775 GHz and 95.7% at 3.175 GHz respectively. The power handling capacities of the dual-band radiation system are 4.2 GW at 1.775 GHz and 4.7 GW at 3.175 GHz, respectively.

  16. Improving multispectral satellite image compression using onboard subpixel registration

    NASA Astrophysics Data System (ADS)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, Larry K.; Thornton, Katsuyo, E-mail: kthorn@umich.edu; Coltrin, Michael E.

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materialsmore » synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  19. Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming

    NASA Astrophysics Data System (ADS)

    Sikora, Jamie; Selby, John

    2018-04-01

    Bit commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit commitment is impossible within quantum theory. In this work, we show that it is also impossible in generalized probabilistic theories (under a small set of assumptions) by presenting a quantitative trade-off between Alice's and Bob's cheating probabilities. Our proof relies crucially on a formulation of cheating strategies as cone programs, a natural generalization of semidefinite programs. In fact, using the generality of this technique, we prove that this result holds for the more general task of integer commitment.

  20. Neighborhood comparison operator

    NASA Technical Reports Server (NTRS)

    Gennery, D. B. (Inventor)

    1985-01-01

    Digital values in a moving window are compared by an operator having nine comparators connected to line buffers for receiving a succession of central pixels together with eight neighborhood pixels. A single bit of program control determines whether the neighborhood pixels are to be compared with the central pixel or a threshold value. The central pixel is always compared with the threshold. The omparator output plus 2 bits indicating odd-even pixel/line information about the central pixel addresses a lookup table to provide 14 bits of information, including 2 bits which control a selector to pass either the central pixel value, the other 12 bits of table information, or the bit-wise logical OR of all nine pixels through circuit that implements a very wide OR gate.

  1. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Kassab, Steve (Inventor); Bao, Xiaoqi (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  2. Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition

    DTIC Science & Technology

    1987-04-01

    cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on

  3. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  4. A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior.

    PubMed

    Liu, Jun-Liang; Yuan, Kang; Leng, Ji-Dong; Ungur, Liviu; Wernsdorfer, Wolfgang; Guo, Fu-Sheng; Chibotaru, Liviu F; Tong, Ming-Liang

    2012-08-06

    The field-induced blockage of magnetization behavior was first observed in an Yb(III)-based molecule with a trigonally distorted octahedral coordination environment. Ab initio calculations and micro-SQUID measurements were performed to demonstrate the exhibition of easy-plane anisotropy, suggesting the investigated complex is the first pure lanthanide field-induced single-ion magnet (field-induced SIM) of this type. Furthermore, we found the relaxation time obeys a power law instead of an exponential law, indicating that the relaxation process should be involved a direct process rather than an Orbach process.

  5. Two bladders and two vaginas in two planes: one urogenital sinus.

    PubMed

    Shaw, Matthew B K; Cain, Mark P; Rink, Richard C

    2003-07-01

    We report 2 cases of persistent urogenital sinus (UGS) with duplication of the bladder and vagina in different planes. Cystoscopy and vaginoscopy were used to diagnose persistent UGS with bladder and vaginal duplication in 2 infants with recurrent urinary tract infection. Surgical repair was done by way of a midline abdominal and perineal approach using tubularized UGS to reconstruct the urethra. Persistent UGS represents a major anomaly; these patients had the added complexity of duplication of the bladder and vagina. In these complex patients, the true anatomy may only become apparent during the surgical reconstruction, necessitating a flexible, individual approach.

  6. Padé approximations for Painlevé I and II transcendents

    NASA Astrophysics Data System (ADS)

    Novokshenov, V. Yu.

    2009-06-01

    We use a version of the Fair-Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz-Segur and Hastings-McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.

  7. Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis

    NASA Astrophysics Data System (ADS)

    Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco

    2018-05-01

    Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.

  8. METHOD AND MEANS FOR RECOGNIZING COMPLEX PATTERNS

    DOEpatents

    Hough, P.V.C.

    1962-12-18

    This patent relates to a method and means for recognizing a complex pattern in a picture. The picture is divided into framelets, each framelet being sized so that any segment of the complex pattern therewithin is essentially a straight line. Each framelet is scanned to produce an electrical pulse for each point scanned on the segment therewithin. Each of the electrical pulses of each segment is then transformed into a separate strnight line to form a plane transform in a pictorial display. Each line in the plane transform of a segment is positioned laterally so that a point on the line midway between the top and the bottom of the pictorial display occurs at a distance from the left edge of the pictorial display equal to the distance of the generating point in the segment from the left edge of the framelet. Each line in the plane transform of a segment is inclined in the pictorial display at an angle to the vertical whose tangent is proportional to the vertical displacement of the generating point in the segment from the center of the framelet. The coordinate position of the point of intersection of the lines in the pictorial display for each segment is determined and recorded. The sum total of said recorded coordinate positions being representative of the complex pattern. (AEC)

  9. Fault-tolerant corrector/detector chip for high-speed data processing

    DOEpatents

    Andaleon, David D.; Napolitano, Jr., Leonard M.; Redinbo, G. Robert; Shreeve, William O.

    1994-01-01

    An internally fault-tolerant data error detection and correction integrated circuit device (10) and a method of operating same. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum is provided with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented.

  10. Fault-tolerant corrector/detector chip for high-speed data processing

    DOEpatents

    Andaleon, D.D.; Napolitano, L.M. Jr.; Redinbo, G.R.; Shreeve, W.O.

    1994-03-01

    An internally fault-tolerant data error detection and correction integrated circuit device and a method of operating same is described. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented. 8 figures.

  11. Least Reliable Bits Coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Wagner, Paul; Budinger, James

    1992-01-01

    An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  12. Seismic Data Preparation Procedures

    DTIC Science & Technology

    1977-10-20

    H. Swindell, and D. Sun. I’ I,,. - - _ _ _ _ - - I I j TABLE OF CONTENTS I SECTION TITLE PAGE ABSTRACT iii ACKNOWLEDGMENTS iv F I. INTRODUCTION I...followed by 4 bits of zero padding Bit 0 = 1 if i n s t rument 1 is bad Bit 1 = 1 if i n s t rumen t 2 is bad Bit ?. 1 if i n s t rument 3 is

  13. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.

    PubMed

    Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai

    2017-02-20

    Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.

  14. A data-driven modeling approach to stochastic computation for low-energy biomedical devices.

    PubMed

    Lee, Kyong Ho; Jang, Kuk Jin; Shoeb, Ali; Verma, Naveen

    2011-01-01

    Low-power devices that can detect clinically relevant correlations in physiologically-complex patient signals can enable systems capable of closed-loop response (e.g., controlled actuation of therapeutic stimulators, continuous recording of disease states, etc.). In ultra-low-power platforms, however, hardware error sources are becoming increasingly limiting. In this paper, we present how data-driven methods, which allow us to accurately model physiological signals, also allow us to effectively model and overcome prominent hardware error sources with nearly no additional overhead. Two applications, EEG-based seizure detection and ECG-based arrhythmia-beat classification, are synthesized to a logic-gate implementation, and two prominent error sources are introduced: (1) SRAM bit-cell errors and (2) logic-gate switching errors ('stuck-at' faults). Using patient data from the CHB-MIT and MIT-BIH databases, performance similar to error-free hardware is achieved even for very high fault rates (up to 0.5 for SRAMs and 7 × 10(-2) for logic) that cause computational bit error rates as high as 50%.

  15. Comparison of three coding strategies for a low cost structure light scanner

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    Coded structure light is widely used for 3D scanning, and different coding strategies are adopted to suit for different goals. In this paper, three coding strategies are compared, and one of them is selected to implement a low cost structure light scanner under the cost of €100. To reach this goal, the projector and the video camera must be the cheapest, which will lead to some problems related to light coding. For a cheapest projector, complex intensity pattern can't be generated; even if it can be generated, it can't be captured by a cheapest camera. Based on Gray code, three different strategies are implemented and compared, called phase-shift, line-shift, and bit-shift, respectively. The bit-shift Gray code is the contribution of this paper, in which a simple, stable light pattern is used to generate dense(mean points distance<0.4mm) and accurate(mean error<0.1mm) results. The whole algorithm details and some example are presented in the papers.

  16. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  17. Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging.

    PubMed

    Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H

    2009-09-15

    We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.

  18. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    PubMed

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  19. Theoretical analysis of the performance of code division multiple access communications over multimode optical fiber channels. Part 1: Transmission and detection

    NASA Astrophysics Data System (ADS)

    Walker, Ernest L.

    1994-05-01

    This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.

  20. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

Top