Sample records for bitter compound denatonium

  1. Covariation in individuals' sensitivities to bitter compounds: evidence supporting multiple receptor/transduction mechanisms.

    PubMed

    Delwiche, J F; Buletic, Z; Breslin, P A

    2001-07-01

    People vary widely in their sensitivities to bitter compounds, but the intercorrelation of these sensitivities is unknown. Our goal was to investigate correlations as a function of individual sensitivities to several bitter compounds representative of different chemical classes and, from these correlations, infer the number and variety of potential bitterness transduction systems for these compounds. Twenty-six subjects rated and ranked quinine HCl, caffeine, (-)-epicatechin, tetralone, L-phenylalanine, L-tryptophan, magnesium sulfate, urea, sucrose octaacetate (SOA), denatonium benzoate, and n-propylthiouracil (PROP) for bitterness. By examining individual differences, ratings and rankings could be grouped into two general clusters--urea/phenylalanine/tryptophan/epicatechin, and quinine/caffeine/SOA/denatonium benzoate/tetralone/magnesium sulfate-none of which contained PROP. When subjects were grouped into the extremes of sensitivity to PROP, a significant difference was found in the bitterness ratings, but not in the rankings. Therefore, there are also subjects who possess diminished absolute sensitivity to bitter stimuli but do not differ from other subjects in their relative sensitivities to these compounds.

  2. Evaluation of the Bitterness-Masking Effect of Powdered Roasted Soybeans

    PubMed Central

    Makita, Yoshimasa; Ishida, Tomoko; Kobayashi, Noriko; Fujio, Mai; Fujimoto, Kyoko; Moritomo, Rina; Fujita, Jun-ichi; Fujiwara, Shin-ichi

    2016-01-01

    The masking of bitterness is considered important because many pharmaceutical compounds have a bitter taste. The bitterness-masking effect of powdered roasted soybeans (PRS) was investigated using a bitter taste sensor. PRS was revealed to significantly suppress the bitterness of quinine hydrochloride and denatonium benzoate. Furthermore, the bitterness-masking mechanism of PRS extracts was evaluated using dynamic light scattering. These results showed that the extracted suspension consisted of particles that were several hundreds of nanometers in size. Analysis of the PRS extracts by nuclear magnetic resonance spectroscopy indicated that denatonium benzoate was entrapped in the PRS extracts. Thus, PRS may be useful as a bitterness-masking agent in orally administered pharmaceuticals. PMID:28231139

  3. Bittering agents in the prevention of accidental poisoning: children's reactions to denatonium benzoate (Bitrex).

    PubMed Central

    Sibert, J R; Frude, N

    1991-01-01

    The responses of young children to Denatonium Benzoate (Bitrex) were observed, in order to assess the potential of this bittering agent in the prevention of accidental poisoning. Thirty-three children aged 17-36 months were offered orange juice containing Bitrex (in a concentration of 10 parts per million). Of the 30 children who took some of this juice, only seven were willing to take more than 10 gm. A variety of negative verbal and non-verbal responses were noted. It is suggested that the highly unpalatable nature of Bitrex makes this compound a useful additive that could well prevent accidental poisoning from household products of mild to moderate toxicity. PMID:1854387

  4. Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain

    PubMed Central

    Wilson, David M.; Boughter, John D.; Lemon, Christian H.

    2012-01-01

    A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505

  5. 6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39

    PubMed Central

    Roland, Wibke S. U.; Gouka, Robin J.; Gruppen, Harry; Driesse, Marianne; van Buren, Leo; Smit, Gerrit; Vincken, Jean-Paul

    2014-01-01

    Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4′-fluoro-6-methoxyflavanone, 6,3′-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency). The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG), though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4′-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate. PMID:24722342

  6. Investigating the effect of emetic compounds on chemotaxis in Dictyostelium identifies a non-sentient model for bitter and hot tastant research.

    PubMed

    Robery, Steven; Mukanowa, Janina; Percie du Sert, Nathalie; Andrews, Paul L R; Williams, Robin S B

    2011-01-01

    Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds--denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers--capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC(50) = 11.9 ± 4.0 µM) > quinine hydrochloride (IC(50) = 44.3 ± 6.8 µM) > denatonium benzoate (IC(50) = 129 ± 4 µM) > phenylthiourea (IC(50) = 366 ± 5 µM) > copper sulphate (IC(50) = 1433 ± 3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic agents in general.

  7. Investigating the Effect of Emetic Compounds on Chemotaxis in Dictyostelium Identifies a Non-Sentient Model for Bitter and Hot Tastant Research

    PubMed Central

    Robery, Steven; Mukanowa, Janina; Percie du Sert, Nathalie; Andrews, Paul L. R.; Williams, Robin S. B.

    2011-01-01

    Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds - denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers - capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC50 = 11.9±4.0 µM) > quinine hydrochloride (IC50 = 44.3±6.8 µM) > denatonium benzoate (IC50 = 129±4 µM) > phenylthiourea (IC50 = 366±5 µM) > copper sulphate (IC50 = 1433±3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic agents in general. PMID:21931717

  8. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface.

    PubMed

    Qin, Zhen; Zhang, Bin; Hu, Liang; Zhuang, Liujing; Hu, Ning; Wang, Ping

    2016-04-15

    Animals' gustatory system has been widely acknowledged as one of the most sensitive chemosensing systems, especially for its ability to detect bitterness. Since bitterness usually symbolizes inedibility, the potential to use rodent's gustatory system is investigated to detect bitter compounds. In this work, the extracellular potentials of a group of neurons are recorded by chronically coupling microelectrode array to rat's gustatory cortex with brain-machine interface (BMI) technology. Local field potentials (LFPs), which represent the electrophysiological activity of neural networks, are chosen as target signals due to stable response patterns across trials and are further divided into different oscillations. As a result, different taste qualities yield quality-specific LFPs in time domain which suggests the selectivity of this in vivo bioelectronic tongue. Meanwhile, more quantitative study in frequency domain indicates that the post-stimulation power of beta and low gamma oscillations shows dependence with concentrations of denatonium benzoate, a prototypical bitter compound, and the limit of detection is deduced to be 0.076 μM, which is two orders lower than previous in vitro bioelectronic tongues and conventional electronic tongues. According to the results, this in vivo bioelectronic tongue in combination with BMI presents a promising method in highly sensitive bitterness detection and is supposed to provide new platform in measuring bitterness degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.

    PubMed

    Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C

    2008-06-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.

  11. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro

    PubMed Central

    Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E

    2009-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634

  12. “A Spoonful of Sugar Helps the Medicine Go Down”: Bitter Masking by Sucrose Among Children and Adults

    PubMed Central

    Reed, Danielle R.; Mathew, Phoebe S.; Roberts, Kristi M.; Mansfield, Corrine J.

    2015-01-01

    Sweeteners are often added to liquid formulations of drugs but whether they merely make them better tasting or actually reduce the perception of bitterness remains unknown. In a group of children and adults, we determined whether adding sucrose to urea, caffeine, denatonium benzoate, propylthiouracil (PROP), and quinine would reduce their bitterness using a forced-choice method of paired comparisons. To better understand individual differences, adults also rated each solution using a more complex test (general Labeled Magnitude Scale [gLMS]) and were genotyped for the sweet taste receptor gene TAS1R3 and the bitter receptor TAS2R38. Sucrose suppressed the bitterness of each agent in children and adults. In adults, sucrose was effective in reducing the bitterness ratings from moderate to weak for all compounds tested, but those with the sensitive form of the sweet receptor reported greater reduction for caffeine and quinine. For PROP, sucrose was most effective for those who were genetically the most sensitive, although this did not attain statistical significance. Not only is the paired comparison method a valid tool to study how sucrose improves the taste of pediatric medicines among children but knowledge gleaned from basic research in bitter taste and how to alleviate it remains an important public health priority. PMID:25381313

  13. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.

    PubMed

    Geran, Laura C; Travers, Susan P

    2006-11-01

    Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.

  14. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    PubMed

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may ultimately have to treat denatonium-impacted water supplies.

  15. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals

    PubMed Central

    Crosson, Garry S.; Sandmann, Emily

    2013-01-01

    Abstract The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo–second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and −0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10−2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may ultimately have to treat denatonium-impacted water supplies. PMID:23781128

  16. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes.

    PubMed

    Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas; Klein, Jochen; Bschleipfer, Thomas; Kummer, Wolfgang

    2014-06-03

    Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.

  17. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  18. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, P.M.; Verma, A.; Bredt, D.S.

    1990-10-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of ({sup 3}H)cytidine diphosphate diacylglycerol formed from ({sup 3}H)cytidine. Accumulated {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited bymore » low concentrations of denatonium, a potently bitter tastant.« less

  19. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells.

    PubMed

    Wu, S Vincent; Rozengurt, Nora; Yang, Moon; Young, Steven H; Sinnett-Smith, James; Rozengurt, Enrique

    2002-02-19

    Although a role for the gastric and intestinal mucosa in molecular sensing has been known for decades, the initial molecular recognition events that sense the chemical composition of the luminal contents has remained elusive. Here we identified putative taste receptor gene transcripts in the gastrointestinal tract. Our results, using reverse transcriptase-PCR, demonstrate the presence of transcripts corresponding to multiple members of the T2R family of bitter taste receptors in the antral and fundic gastric mucosa as well as in the lining of the duodenum. In addition, cDNA clones of T2R receptors were detected in a rat gastric endocrine cell cDNA library, suggesting that these receptors are expressed, at least partly, in enteroendocrine cells. Accordingly, expression of multiple T2R receptors also was found in STC-1 cells, an enteroendocrine cell line. The expression of alpha subunits of G proteins implicated in intracellular taste signal transduction, namely Galpha(gust), and Galpha(t)-(2), also was demonstrated in the gastrointestinal mucosa as well as in STC-1 cells, as revealed by reverse transcriptase-PCR and DNA sequencing, immunohistochemistry, and Western blotting. Furthermore, addition of compounds widely used in bitter taste signaling (e.g., denatonium, phenylthiocarbamide, 6-n-propil-2-thiouracil, and cycloheximide) to STC-1 cells promoted a rapid increase in intracellular Ca(2+) concentration. These results demonstrate the expression of bitter taste receptors of the T2R family in the mouse and rat gastrointestinal tract.

  20. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue

    PubMed Central

    Lipchock, Sarah V.; Spielman, Andrew I.; Mennella, Julie A.; Mansfield, Corrine J.; Hwang, Liang-Dar; Douglas, Jennifer E.; Reed, Danielle R.

    2018-01-01

    We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual’s perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays (TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception. PMID:28118781

  1. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate.

    PubMed

    2008-01-01

    Alcohol Denat. is the generic term used by the cosmetics industry to describe denatured alcohol. Alcohol Denat. and various specially denatured (SD) alcohols are used as cosmetic ingredients in a wide variety of products. Many denaturants have been previously considered, on an individual basis, as cosmetic ingredients by the Cosmetic Ingredient Review (CIR) Expert Panel, whereas others, including Brucine and Brucine Sulfate, Denatonium Benzoate, and Quassin, have not previously been evaluated. Quassin is a bitter alkaloid obtained from the wood of Quassia amara. Quassin has been used as an insect antifeedant and insecticide and several studies demonstrate its effectiveness. At oral doses up to 1000 mg/kg using rats, Quassin was not toxic in acute and short-term tests, but some reversible piloerection, decrease in motor activity, and a partial loss of righting reflex were found in mice at 500 mg/kg. At 1000 mg/kg given intraperitoneally (i.p.), all mice died within 24 h of receiving treatment. In a cytotoxicity test with brine shrimp, 1 mg/ml of Quassin did not possess any cytotoxic or antiplasmodial activity. Quassin administered to rat Leydig cells in vitro at concentrations of 5-25 ng/ml inhibited both the basal and luteinizing hormone (LH)-stimulated testosterone secretion in a dose-related fashion. Quassin at doses up to 2.0 g/kg in drinking water using rats produced no significant effect on the body weights, but the mean weights of the testes, seminal vesicles, and epididymides were significantly reduced, and the weights of the anterior pituitary glands were significantly increased. The sperm counts and levels of LH, follicle-stimulating hormone (FSH), and testosterone were significantly lower in groups treated with Quassin. Brucine is a derivative of 2-hydroxystrychnine. Swiss-Webster mice given Brucine base, 30 ml/kg, had an acute oral LD(50) of 150 mg/kg, with central nervous system depression followed by convulsions and seizures in some cases. In those animals that died, respiratory arrest was the cause. The acute i.p. LD(50) for 15 ml/kg of Brucine base was 62.0 mg/kg, with central nervous system depression prior to the onset of convulsions, just as with oral Brucine. The acute intravenous (i.v.) LD(50) was 12.0 mg/kg. Brucine was nonmutagenic in an Ames assay at levels up to 6666 mu g/plate, with and without metabolic activation. In a repeat-insult patch test, for a hair care product containing 47% SD Alcohol 40 (95%), it was reported that Brucine Sulfate may be considered a nonprimary irritant and a nonprimary sensitizer. Three different sunscreen products (35% SD Alcohol 40-B, 72.4% SD Alcohol 40, and 74.5% SD Alcohol 40) did not show any signs of photoallergy in human subjects. Also, these three formulas did not exhibit any evidence of phototoxicity in humans. Denatonium Benzoate is a bitter substance detectable at a concentration of 10 ppb, discernibly bitter at 50 ppb, and unpleasantly bitter at 10 ppm. The distribution of topically applied lidocaine, a topical anesthetic chemically related to Denatonium Benzoate demonstrated that virtually no lidocaine appears in the plasma, suggesting that the larger Denatonium Benzoate molecule also would have little or no systemic exposure. Denatonium Benzoate (0.1%) did not show adverse effects in 10 rats in an acute inhalation toxicity test and 0.005% to 0.05% was nonirritating to ocular mucosa in 6 albino rabbits. The acute oral LD(50) for the male rats was 640 mg/kg and for females, 584 mg/kg. The LD(50) for the male rabbits was 508 mg/kg and for the female rabbits, 640 mg/kg. In two chronic toxicity studies, Denatonium Benzoate was administered (by gavage) at 1.6, 8, and 16 mg/kg/day, one using cynomologus monkeys and the other rats, resulted in no compound-related toxicity. The toxicity of SD Alcohols has also been tested, with implications for the particular denaturant used. An irritation test of 55.65% SD Alcohol 40-B denatured with Denatonium Benzoate using rabbits produced minimal effects. A spray formula containing 12% SD Alcohol 40-B was found to be nonirritating when evaluated for vaginal mucosal irritation in New Zealand white rabbits. Cosmetic formulations containing SD Alcohol 40-B (denatured with Denatonium Benzoate) were not sensitizers in repeated insult patch tests. A gel formula containing 29% SD Alcohol 40-B and a spray liquid containing 12% SD Alcohol 40-B did not induce photoallergy, dermal sensitization, or phototoxic response in human subjects. Although the absorption of ethanol (aka Alcohol for purposes of cosmetic ingredient labeling) occurs through skin, ethanol does not appear to affect the integrity of the skin barrier nor reach a very high systemic concentration following dermal exposure. Ethanol may be found in the bloodstream as a result of inhalation exposure and ingestion. Topically applied, ethanol can act as a penetration enhancer. Most of the systemic toxicity of ethanol appears to be associated with chronic abuse of alcohol. Although ethanol is denatured to make it unfit for consumption, there have been reports of intentional and unintentional consumption of products containing denatured alcohol. Ethanol is a reproductive and developmental toxicant. Ethanol is genotoxic in some test systems and it has been proposed that the genotoxic effects of ethanol are mediated via its metabolite, acetaldehyde. A brief summary is provided of the effects of chronic ingestion of alcohol including intoxication, liver damage, brain damage, and possible carcinogenicity. The CIR Expert Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. Because dermal application or inhalation of cosmetic products containing these ingredients will not produce significant systemic exposure to ethanol, the CIR Expert Panel concluded that safety of the ingredients should be predicated on the safety of the denaturants used. The Panel considered that the adverse effects known to be associated with Alcohol ingestion included in this safety assessment do not suggest a concern for Alcohol Denat. or SD Alcohols because of the presence of the denaturants, which are added for the express purpose of making the Alcohol unpotable. The CIR Expert Panel has previously conducted safety assessments of t-Butyl Alcohol, Diethyl Phthalate, Methyl Alcohol, Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, in which each was affirmed safe or safe with qualifications. Given their use as denaturants are at low concentrations of use in Alcohol, the CIR Expert Panel determined that Alcohol Denat. denatured with t-Butyl Alcohol, Diethyl Phthalate, Methyl Alcohol, Salicylic Acid, Sodium Salicylate, and Methyl Salicylate is safe as used in cosmetic formulations with no qualifications. Likewise, because they are denatured with either t-Butyl Alcohol, Diethyl Phthalate, or Methyl Alcohol, SD Alcohols 3-A, 30, 39-B, 39-C, and 40-C all are considered safe as used. The Panel considered the available data for Denatonium Benzoate and SD Alcohol 40-B to be sufficient to support the safety of these ingredients in cosmetics. Denatonium Benzoate is sufficiently bitter that it is an effective denaturant at only 0.0006%. The Panel recognized that data on dermal penetration of Denatonium Benzoate were not available, but considered that the available data on lidocaine, a smaller structurally related chemical, indicates that dermal exposure does not result in measurable systemic exposure. The available data, however, were not sufficient to support the safety of Quassin, Brucine, and Brucine Sulfate, Alcohol Denat. denatured with those denaturants, or SD Alcohol 39 and SD Alcohol 40 (SD Alcohols denatured with Quassin, Brucine, and/or Brucine Sulfate), and in order for the Expert Panel to reach a conclusion for these denaturants, additional data are needed.

  2. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction.

    PubMed

    Deshpande, Deepak A; Wang, Wayne C H; McIlmoyle, Elizabeth L; Robinett, Kathryn S; Schillinger, Rachel M; An, Steven S; Sham, James S K; Liggett, Stephen B

    2010-11-01

    Bitter taste receptors (TAS2Rs) on the tongue probably evolved to evoke signals for avoiding ingestion of plant toxins. We found expression of TAS2Rs on human airway smooth muscle (ASM) and considered these to be avoidance receptors for inhalants that, when activated, lead to ASM contraction and bronchospasm. TAS2R agonists such as saccharin, chloroquine and denatonium evoked increased intracellular calcium ([Ca²(+)](i)) in ASM in a Gβγ-, phospholipase Cβ (PLCβ)- and inositol trisphosphate (IP₃) receptor-dependent manner, which would be expected to evoke contraction. Paradoxically, bitter tastants caused relaxation of isolated ASM and dilation of airways that was threefold greater than that elicited by β-adrenergic receptor agonists. The relaxation induced by TAS2Rs is associated with a localized [Ca²(+)](i) response at the cell membrane, which opens large-conductance Ca²(+)-activated K(+) (BK(Ca)) channels, leading to ASM membrane hyperpolarization. Inhaled bitter tastants decreased airway obstruction in a mouse model of asthma. Given the need for efficacious bronchodilators for treating obstructive lung diseases, this pathway can be exploited for therapy with the thousands of known synthetic and naturally occurring bitter tastants.

  3. Stimulus-Dependent Effects of Temperature on Bitter Taste in Humans

    PubMed Central

    Andrew, Kendra

    2017-01-01

    This study investigated the effects of temperature on bitter taste in humans. The experiments were conducted within the context of current understanding of the neurobiology of bitter taste and recent evidence of stimulus-dependent effects of temperature on sweet taste. In the first experiment, the bitterness of caffeine and quinine sampled with the tongue tip was assessed at 4 different temperatures (10°, 21°, 30°, and 37 °C) following pre-exposure to the same solution or to water for 0, 3, or 10 s. The results showed that initial bitterness (0-s pre-exposure) followed an inverted U-shaped function of temperature for both stimuli, but the differences across temperature were statistically significant only for quinine. Conversely, temperature significantly affected adaptation to the bitterness of quinine but not caffeine. A second experiment used the same procedure to test 2 additional stimuli, naringin and denatonium benzoate. Temperature significantly affected the initial bitterness of both stimuli but had no effect on adaptation to either stimulus. These results confirm that like sweet taste, temperature affects bitter taste sensitivity and adaptation in stimulus-dependent ways. However, the thermal effect on quinine adaptation, which increased with warming, was opposite to what had been found previously for adaptation to sweetness. The implications of these results are discussed in relation to findings from prior studies of temperature and bitter taste in humans and the possible neurobiological mechanisms of gustatory thermal sensitivity. PMID:28119357

  4. Soa genotype selectively affects mouse gustatory neural responses to sucrose octaacetate

    PubMed Central

    INOUE, MASASHI; LI, XIA; McCAUGHEY, STUART A.; BEAUCHAMP, GARY K.; BACHMANOV, ALEXANDER A.

    2013-01-01

    In mice, behavioral acceptance of the bitter compound sucrose octaacetate (SOA) depends on allelic variation of a single gene, Soa. The SW.B6-Soab congenic mouse strain has the genetic background of an “SOA taster” SWR/J strain and an Soa-containing donor chromosome fragment from an “SOA nontaster” C57BL/6J strain. Using microsatellite markers polymorphic between the two parental strains, we determined that the donor fragment spans 5–10 cM of distal chromosome 6. The SWR/J mice avoided SOA in two-bottle tests with water and had strong responses to SOA in two gustatory nerves, the chorda tympani (CT) and glossopharyngeal (GL). In contrast, the SW.B6-Soab mice were indifferent to SOA in two-bottle tests and had very weak responses to SOA in both of these nerves. The SWR/J and SW.B6-Soab mice did not differ in responses of either nerve to sucrose, NaCl, HCl, or the bitter-tasting stimuli quinine, denatonium, strychnine, 6-n-propylthiouracil, phenylthiocarbamide, and MgSO4. Thus the effect of the Soa genotype on SOA avoidance is mediated by peripheral taste responsiveness to SOA, involving taste receptor cells innervated by both the CT and GL nerves. PMID:11328963

  5. Bacterial D-Amino Acids Suppress Sinonasal Innate Immunity Through Sweet Taste Receptors in Solitary Chemosensory Cells

    PubMed Central

    Lee, Robert J.; Hariri, Benjamin M.; McMahon, Derek B.; Chen, Bei; Doghramjii, Laurel; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Jiang, Peihua; Margolskee, Robert F.; Cohen, Noam A.

    2017-01-01

    In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of the bitter taste receptor (T2R) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. It is thought that this mechanism exists to control the magnitude of antimicrobial peptide release based upon the sugar content of airway surface liquid. We hypothesized that D-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. Here, we show that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) are present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two D-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, D-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. D-amino acid–mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter-receptor–activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial D-amino acids and the mammalian sweet taste receptor in airway chemosensory cells. PMID:28874606

  6. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers.

    PubMed

    Deloose, Eveline; Janssen, Pieter; Corsetti, Maura; Biesiekierski, Jessica; Masuy, Imke; Rotondo, Alessandra; Van Oudenhove, Lukas; Depoortere, Inge; Tack, Jan

    2017-03-01

    Background: Denatonium benzoate (DB) has been shown to influence ongoing ingestive behavior and gut peptide secretion. Objective: We studied how the intragastric administration of DB affects interdigestive motility, motilin and ghrelin plasma concentrations, hunger and satiety ratings, and food intake in healthy volunteers. Design: Lingual bitter taste sensitivity was tested with the use of 6 concentrations of DB in 65 subjects. A placebo or 1 μmol DB/kg was given intragastrically to assess its effect on fasting gastrointestinal motility and hunger ratings, motilin and ghrelin plasma concentrations, satiety, and caloric intake. Results: Women ( n = 39) were more sensitive toward a lingual bitter stimulus ( P = 0.005) than men ( n = 26). In women ( n = 10), intragastric DB switched the origin of phase III contractions from the stomach to the duodenum ( P = 0.001) and decreased hunger ratings ( P = 0.04). These effects were not observed in men ( n = 10). In women ( n = 12), motilin ( P = 0.04) plasma concentrations decreased after intragastric DB administration, whereas total and octanoylated ghrelin were not affected. The intragastric administration of DB decreased hunger ( P = 0.008) and increased satiety ratings ( P = 0.01) after a meal (500 kcal) in 13 women without affecting gastric emptying in 6 women. Caloric intake tended to decrease after DB administration compared with the placebo (mean ± SEM: 720 ± 58 compared with 796 ± 45 kcal; P = 0.08) in 20 women. Conclusions: Intragastric DB administration decreases both antral motility and hunger ratings during the fasting state, possibly because of a decrease in motilin release. Moreover, DB decreases hunger and increases satiety ratings after a meal and shows potential for decreasing caloric intake. This trial was registered at clinicaltrials.gov as NCT02759926. © 2017 American Society for Nutrition.

  7. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.

    PubMed

    Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E

    2010-02-16

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.

  8. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals

    PubMed Central

    Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.

    2010-01-01

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764

  9. BitterDB: a database of bitter compounds

    PubMed Central

    Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.

    2012-01-01

    Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398

  10. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure.

    PubMed

    Dagan-Wiener, Ayana; Nissim, Ido; Ben Abu, Natalie; Borgonovo, Gigliola; Bassoli, Angela; Niv, Masha Y

    2017-09-21

    Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php ), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70-90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.

  11. The taste of toxicity: A quantitative analysis of bitter and toxic molecules.

    PubMed

    Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y

    2017-12-01

    The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  12. Enhancing Perception of Contaminated Food through Acid-Mediated Modulation of Taste Neuron Responses

    PubMed Central

    Chen, Yan; Amrein, Hubert

    2015-01-01

    SUMMARY Background Natural foods not only contain nutrients, but also non-nutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Results Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids neither activate sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated de-repression of sweet neuron or feeding responses to either sugar/bitter compound mixtures, or sugar/bitter compound/acid mixtures, suggesting two independent pathways by which bitter compounds are sensed. Conclusions Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila’s natural food sources - fruits and cohabitating yeast - are rich in sugars and acids, but are rapidly colonized by microorganisms, such as fungi, protozoan parasites and bacteria, many of which produce bitter compounds. We propose that acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. PMID:25131671

  13. Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses.

    PubMed

    Chen, Yan; Amrein, Hubert

    2014-09-08

    Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids activate neither sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter-compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter-sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated derepression of sweet neuron or feeding responses to either sugar/bitter compound mixtures or sugar/bitter compound/acid mixtures, suggesting that there are two independent pathways by which bitter compounds are sensed. Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila's natural food sources-fruits and cohabitating yeast-are rich in sugars and acids but are rapidly colonized by microorganisms, such as fungi, protozoan parasites, and bacteria, many of which produce bitter compounds. We propose that the acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    PubMed Central

    Boughter, John D; Raghow, Sandeep; Nelson, Theodore M; Munger, Steven D

    2005-01-01

    Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste. PMID:15967025

  15. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  16. BitterSweetForest: A random forest based binary classifier to predict bitterness and sweetness of chemical compounds

    NASA Astrophysics Data System (ADS)

    Banerjee, Priyanka; Preissner, Robert

    2018-04-01

    Taste of a chemical compounds present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96 % and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10 % of the natural product space as sweet with confidence score of 0.60 and above. 77 % of the approved drug set was predicted as bitter and 2% as sweet with a confidence scores of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds from the feature space of a circular fingerprint.

  17. BitterSweetForest: A Random Forest Based Binary Classifier to Predict Bitterness and Sweetness of Chemical Compounds

    PubMed Central

    Banerjee, Priyanka; Preissner, Robert

    2018-01-01

    Taste of a chemical compound present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96% and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10% of the natural product space as sweet with confidence score of 0.60 and above. 77% of the approved drug set was predicted as bitter and 2% as sweet with a confidence score of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds using the feature space of a circular fingerprint. PMID:29696137

  18. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.

    PubMed

    Frank, Oliver; Blumberg, Simone; Kunert, Christof; Zehentbauer, Gerhard; Hofmann, Thomas

    2007-03-07

    Aimed at elucidating intense bitter-tasting molecules in coffee, various bean ingredients were thermally treated in model experiments and evaluated for their potential to produce bitter compounds. As caffeic acid was found to generate intense bitterness reminiscent of the bitter taste of a strongly roasted espresso-type coffee, the reaction products formed were screened for bitter compounds by means of taste dilution analysis, and the most bitter tastants were isolated and purified. LC-MS/MS as well as 1-D/2-D NMR experiments enabled the identification of 10 bitter compounds with rather low recognition threshold concentrations ranging between 23 and 178 micromol/L. These bitter compounds are the previously unreported 1,3-bis(3',4'-dihydroxyphenyl) butane, trans-1,3-bis(3',4'-dihydroxyphenyl)-1-butene, and eight multiply hydroxylated phenylindanes, among which five derivatives are reported for the first time. In addition, the occurrence of each of these bitter compounds in a coffee brew was verified by means of LC-MS/MS (ESI-) operating in the multiple reaction monitoring (MRM) mode. The structures of these bitter compounds show strong evidence that they are generated by oligomerization of 4-vinylcatechol released from caffeic acid moieties upon roasting.

  19. Identification of Bitterness-Masking Compounds from Cheese

    PubMed Central

    2012-01-01

    Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049–0.0060% and 0.5 mM oleic acid to that of 0.0032–0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds. PMID:22502602

  20. Chemoreception and perception of the bitterness of isohumulones.

    PubMed

    Guinard, J X; Hong, D Y; Zoumas-Morse, C; Budwig, C; Russell, G F

    1994-12-01

    Psychophysical experiments were conducted to determine whether isohumulones share a common receptor mechanism with other bitter compounds, and whether parotid saliva flow affects perception of their bitterness. Findings from a study of inter-individual differences in sensitivity to 23 sweet and/or bitter compounds among 25 subjects using the time-intensity (TI) method suggest that isohumulone and tetrahydroisohumulone may share a common receptor mechanism with other bitter compounds except those with the thiourea moiety. Isohumulone and tetrahydroisohumulone displayed a unique dome-shaped TI profile. The bitterness of the two compounds took longer to develop, but it lasted as long as for other bitter stimuli. In a study of the relation between perception of bitterness in beer and parotid saliva flow in 20 young adults, no significant difference was found among the mean saliva flows triggered by 0, 15 and 30 mg/L of isohumulones added to beer, and no significant correlation was found between saliva flow and maximum intensity or total duration of bitterness.

  1. The science and complexity of bitter taste.

    PubMed

    Drewnowski, A

    2001-06-01

    Food choices and eating habits are largely influenced by how foods taste. Without being the dominant taste sensation, bitter taste contributes to the complexity and enjoyment of beverages and foods. Compounds that are perceived as bitter do not share a similar chemical structure. In addition to peptides and salts, bitter compounds in foods may include plant-derived phenols and polyphenols, flavonoids, catechins, and caffeine. Recent studies have shown that humans possess a multitude of bitter taste receptors and that the transduction of bitter taste may differ between one compound and another. Studies of mixture interactions suggest further that bitter compounds suppress or enhance sweet and sour tastes and interact with volatile flavor molecules. Caffeine, a natural ingredient of tea, coffee, and chocolate, has a unique flavor profile. Used as a flavoring agent, it enhances the sensory appeal of beverages. Research developments on the genetics and perception of bitter taste add to our understanding of the role of bitterness in relation to food preference.

  2. Bitterness and antibacterial activities of constituents from Evodia rutaecarpa.

    PubMed

    Liang, Xiaoguang; Li, Bo; Wu, Fei; Li, Tingzhao; Wang, Youjie; Ma, Qiang; Liang, Shuang

    2017-03-29

    Bitter herbs are important in Traditional Chinese Medicine and the Electronic Tongue (e-Tongue) is an instrument that can be trained to evaluate bitterness of bitter herbs and their constituents. The aim of this research was to evaluate bitterness of limonoids and alkaloids from Evodia rutaecarpa to demonstrate that they are main bitter material basic of E. rutaecarpa. Nine compounds, including limonoids, indoloquinazoline alkaloids and quinolone alkaloids, were isolated, identified and analyzed by the e-Tongue. Additionally, the antibacterial activities of the nine compounds were evaluated against E. coli and S. aureus. All the nine compounds had bitter taste and antibacterial activities to some extent. Among them, limonoids, which were the bitterest compounds, had greater antibacterial activities than alkaloids. And there is a positive correlation between bitter taste and antibacterial activities. It was confirmed in our study that limonoids, indoloquinazoline alkaloids and quinolone alkaloids are main bitter material basic of E. rutaecarpa based on two evaluation methods of e-Tongue and antibacterial experiment. In addition, the e-Tongue technique is a suitable new method to measure bitter degree in herbs.

  3. Is the bitter rejection response always adaptive?

    PubMed

    Glendinning, J I

    1994-12-01

    The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially toxic compounds constitute a small portion of their diet. Since the low bitter threshold would reduce substantially the risk of ingesting anything poisonous, carnivores were also expected to have a relatively low tolerance to dietary poisons. This hypothesis was supported by a comparison involving 30 mammal species, in which a suggestive relationship was found between quinine hydrochloride sensitivity and trophic group, with carnivores > omnivores > grazers > browsers. Further support for the hypothesis was provided by a comparison across browsers and grazers in terms of the production of tannin-binding salivary proteins, which probably represent an adaptation for reducing the bitterness and astringency of tannins.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Bitter tastant responses in the amoeba Dictyostelium correlate with rat and human taste assays.

    PubMed

    Cocorocchio, Marco; Ives, Robert; Clapham, David; Andrews, Paul L R; Williams, Robin S B

    2016-01-01

    Treatment compliance is reduced when pharmaceutical compounds have a bitter taste and this is particularly marked for paediatric medications. Identification of bitter taste liability during drug discovery utilises the rat in vivo brief access taste aversion (BATA) test which apart from animal use is time consuming with limited throughput. We investigated the suitability of using a simple, non-animal model, the amoeba Dictyostelium discoideum to investigate taste-related responses and particularly identification of compounds with a bitter taste liability. The effect of taste-related compounds on Dictyostelium behaviour following acute exposure (15 minutes) was monitored. Dictyostelium did not respond to salty, sour, umami or sweet tasting compounds, however, cells rapidly responded to bitter tastants. Using time-lapse photography and computer-generated quantification to monitor changes in cell membrane movement, we developed an assay to assess the response of Dictyostelium to a wide range of structurally diverse known bitter compounds and blinded compounds. Dictyostelium showed varying responses to the bitter tastants, with IC50 values providing a rank order of potency. Comparison of Dictyostelium IC50 values to those observed in response to a similar range of compounds in the rat in vivo brief access taste aversion test showed a significant (p = 0.0172) positive correlation between the two models, and additionally a similar response to that provided by a human sensory panel assessment test. These experiments demonstrate that Dictyostelium may provide a suitable model for early prediction of bitterness for novel tastants and drugs. Interestingly, a response to bitter tastants appears conserved from single-celled amoebae to humans.

  5. Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21).

    PubMed

    Schroer, Adam B; Gross, Joshua D; Kaski, Shane W; Wix, Kim; Siderovski, David P; Vandenbeuch, Aurelie; Setola, Vincent

    2018-05-23

    The mammalian tastes of sweet, umami, and bitter are initiated by activation of G protein-coupled receptors (GPCRs) of the T1R and T2R families on taste receptor cells. GPCRs signal via nucleotide exchange and hydrolysis, the latter hastened by GTPase-accelerating proteins (GAPs) that include the Regulators of G protein Signaling (RGS) protein family. We previously reported that RGS21, uniquely expressed in Type II taste receptor cells, decreases the potency of bitter-stimulated T2R signaling in cultured cells, consistent with its in vitro GAP activity. However, the role of RGS21 in organismal responses to GPCR-mediated tastants was not established. Here, we characterized mice lacking the Rgs21 fifth exon. Eliminating Rgs21 expression had no effect on body mass accumulation (a measure of alimentation), fungiform papillae number and morphology, circumvallate papillae morphology, and taste bud number. Two-bottle preference tests, however, revealed that Rgs21-null mice have blunted aversion to quinine and denatonium, and blunted preference for monosodium glutamate, the sweeteners sucrose and SC45647, and (surprisingly) NaCl. Observed reductions in GPCR-mediated tastant responses upon Rgs21 loss are opposite to original expectations, given that loss of RGS21-a GPCR signaling negative regulator-should lead to increased responsiveness to tastant-mediated GPCR signaling (all else being equal). Yet, reduced organismal tastant responses are consistent with observations of reduced chorda tympani nerve recordings in Rgs21-null mice. Reduced tastant-mediated responses and behaviors exhibited by adult mice lacking Rgs21 expression since birth have thus revealed an underappreciated requirement for a GPCR GAP to establish the full character of tastant signaling.

  6. Taste Receptor Cells That Discriminate Between Bitter Stimuli

    PubMed Central

    Caicedo, Alejandro; Roper, Stephen D.

    2013-01-01

    Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863

  7. A kinetic study of bitter taste receptor sensing using immobilized porcine taste bud tissues.

    PubMed

    Wei, Lihui; Qiao, Lixin; Pang, Guangchang; Xie, Junbo

    2017-06-15

    At present, developing an efficient assay method for truly reflecting the real feelings of gustatory tissues is of great importance. In this study, a novel biosensor was fabricated to investigate the kinetic characteristics of the receptors in taste bud tissues sensing bitter substances for the first time. Porcine taste bud tissues were used as the sensing elements, and the sandwich-type sensing membrane was fixed onto a glassy carbon electrode for assembling the biosensor. With the developed sensor, the response currents induced by sucrose octaacetate, denatonium benzoate, and quercetin stimulating corresponding receptors were determined. The results demonstrated that the interaction between the analyst with their receptors were fitting to hyperbola (R 2 =0.9776, 0.9980 and 0.9601), and the activation constants were 8.748×10 -15 mol/L, 1.429×10 -12 mol/L, 6.613×10 -14 mol/L, respectively. The average number of receptors per cell was calculated as 1.75, 28.58, and 13.23, while the signal amplification factors were 1.08×10 4 , 2.89×10 3 and 9.76×10 4 . These suggest that the sensor can be used to quantitatively describe the interaction characteristics of cells or tissue receptors with their ligands, the role of cellular signaling cascade, the number of receptors, and the signal transmission pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.

    PubMed

    Mashiyama, Kazunori; Nozawa, Yuhei; Ohtubo, Yoshitaka; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-03-27

    We previously showed that the hypertonicity of taste stimulating solutions modified tonic responses, the quasi-steady state component following the transient (phasic) component of each integrated taste nerve response. Here we show that the hypertonicity opens tight junctions surrounding taste receptor cells in a time-dependent manner and modifies whole taste nerve responses in bullfrogs. We increased the tonicity of stimulating solutions with non-taste substances such as urea or ethylene glycol. The hypertonicity enhanced phasic responses to NaCl>0.2M, and suppressed those to NaCl<0.1M, 1mM CaCl2, and 1mM bitter substances (quinine, denatonium and strychnine). The hypertonicity also enhanced the phasic responses to a variety of 0.5M salts such as LiCl and KCl. The enhancing effect was increased by increasing the difference between the ionic mobilities of the cations and anions in the salt. A preincubation time >20s in the presence of 1M non-taste substances was needed to elicit both the enhancing and suppressing effects. Lucifer Yellow CH, a paracellular marker dye, diffused into bullfrog taste receptor organs in 30s in the presence of hypertonicity. These results agreed with our proposed mechanism of hypertonic effects that considered the diffusion potential across open tight junctions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.

    PubMed

    Hsiao, Yi-Hsing; Hsu, Chia-Hsien; Chen, Chihchen

    2016-07-08

    The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.

  10. Promiscuity and selectivity of bitter molecules and their receptors.

    PubMed

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modification of ginseng flavors by bitter compounds found in chocolate and coffee.

    PubMed

    Sook Chung, Hee; Lee, Soo-Yeun

    2012-06-01

    Ginseng is not widely accepted by U.S. consumers due to its unfamiliar flavors, despite its numerous health benefits. Previous studies have suggested that the bitter compounds in chocolate and coffee may mask the off-flavors of ginseng. The objectives of this study were to: (1) profile sensory characteristics of ginseng extract solution, caffeine solution, cyclo (L-Pro-L-Val) solution, theobromine solution, and 2 model solutions simulating chocolate bitterness; and (2) determine the changes in the sensory characteristics of ginseng extract solution by the addition of the bitter compounds found in chocolate and coffee. Thirteen solutions were prepared in concentrations similar to the levels of the bitter compounds found in coffee and chocolate products. Twelve panelists participated in a descriptive analysis panel which included time-intensity ratings. Ginseng extract was characterized as sweeter, starchier, and more green tea than the other sample solutions. Those characteristics of ginseng extract were effectively modified by the addition of caffeine, cyclo (L-Pro-L-Val), and 2 model solutions. A model solution simulating dark chocolate bitterness was the least influenced in intensities of bitterness by the addition of ginseng extract. Results from time-intensity ratings show that the addition of ginseng extract increased duration time in certain bitterness of the 2 model solutions. Bitter compounds found in dark chocolate could be proposed to effectively mask the unique flavors of ginseng. Future studies blending aroma compounds of chocolate and coffee into such model solutions may be conducted to investigate the influence on the perception of the unique flavors through the congruent flavors. © 2012 Institute of Food Technologists®

  12. Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors.

    PubMed

    Di Pizio, Antonella; Shy, Nitzan; Behrens, Maik; Meyerhof, Wolfgang; Niv, Masha Y

    2018-01-01

    Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors ( Gallus gallus taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys 3.29 and Asn 3.36 are suggested as ggTas2r1-specificity-conferring residues; Gln 6.55 as ggTas2r2-specificity-conferring residue; Ser 5.38 and Gln 7.42 as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and in silico approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with in vitro and in vivo experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.

  13. Bitterness prediction in-silico: A step towards better drugs.

    PubMed

    Bahia, Malkeet Singh; Nissim, Ido; Niv, Masha Y

    2018-02-05

    Bitter taste is innately aversive and thought to protect against consuming poisons. Bitter taste receptors (Tas2Rs) are G-protein coupled receptors, expressed both orally and extra-orally and proposed as novel targets for several indications, including asthma. Many clinical drugs elicit bitter taste, suggesting the possibility of drugs re-purposing. On the other hand, the bitter taste of medicine presents a major compliance problem for pediatric drugs. Thus, efficient tools for predicting, measuring and masking bitterness of active pharmaceutical ingredients (APIs) are required by the pharmaceutical industry. Here we highlight the BitterDB database of bitter compounds and survey the main computational approaches to prediction of bitter taste based on compound's chemical structure. Current in silico bitterness prediction methods provide encouraging results, can be constantly improved using growing experimental data, and present a reliable and efficient addition to the APIs development toolbox. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.

    PubMed

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-11-10

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.

  15. Perception of bitterness, sweetness and liking of different genotypes of lettuce.

    PubMed

    Chadwick, M; Gawthrop, F; Michelmore, R W; Wagstaff, C; Methven, L

    2016-04-15

    Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs, such as 8-deoxylactucin-15-sulphate, contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bitter-type magnet plate design with compound conductor of ultrahigh mechanical strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haubenberger, W.D.

    1981-01-01

    A Bitter-type magnet plate design based on a compound conductor of ultrahigh mechanical strength is described. An explosion-bonded and cold-worked copper-austenite compound is jointed by a special procedure with a soft compound sheet.

  17. Physical Approaches to Masking Bitter Taste: Lessons from Food and Pharmaceuticals

    PubMed Central

    Hayes, John E.

    2016-01-01

    Many drugs and desirable phytochemicals are bitter, and bitter tastes are aversive. Food and pharmaceutical manufacturers share a common need for bitterness-masking strategies that allow them to deliver useful quantities of the active compounds in an acceptable form and in this review we compare and contrast the challenges and approaches by researchers in both fields. We focus on physical approaches, i.e., micro- or nano-structures to bind bitter compounds in the mouth, yet break down to allow release after they are swallowed. In all of these methods, the assumption is the degree of bitterness suppression depends on the concentration of bitterant in the saliva and hence the proportion that is bound. Surprisingly, this hypothesis has only rarely been fully tested using a combination of adequate human sensory trials and measurements of binding. This is especially true in pharmaceutical systems, perhaps due to the greater experimental challenges in sensory analysis of drugs. PMID:25205460

  18. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal “bitter taste” cue

    PubMed Central

    Davidson, Terry L.; Powley, Terry L.

    2011-01-01

    The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral “taste” receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants—and concentrations of tastants—in the lumen of the gut can control ingestion. PMID:21865540

  19. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    PubMed

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. Copyright © 2016. Published by Elsevier Inc.

  20. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes

    PubMed Central

    Nolden, Alissa A.; McGeary, John E.; Hayes, John E.

    2016-01-01

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  1. Identification of the key bitter compounds in our daily diet is a prerequisite for the understanding of the hTAS2R gene polymorphisms affecting food choice.

    PubMed

    Hofmann, Thomas

    2009-07-01

    In order to decode genetic variations affecting food choice and to determine whether to accept or to reject certain food products, it is a necessary prerequisite to deorphanize the hTAS2R/ligand pairs using the key bitter compounds in foods as stimuli rather than doing this either by using artificial molcules, to which the normal consumer had never been exposed, or by using food-born molecules which do not at all contribute to the overall bitterness. Therefore, the chemical structure of the most active bitter molecules in foods needs to be unequivocally determined in order to be sure that hTAS2R polymorphisms are related to the key molecules which really contribute to the overall bitterness perception of food products. As most studies focused primarily on quantitatively predominating compounds, rather than selecting the target compounds to be identified with regard to taste-activity, it seems that yet unknown components play a key role in evoking the bitter taste of food products. Driven by the need to discover the key players inducing the food taste, the research area "sensomics" made tremendous efforts in recent years to map the sensometabolome and to identify the most intense taste-active metabolites in fresh and processed foods. The present article summarizes recent studies on the identification of orphan key bitter stimuli in fresh, fermented, and thermally processed foods using carrots, cheese, and roasted coffee as examples.

  2. Sequence analysis of a bitter taste receptor gene repertoires in different ruminant species

    USDA-ARS?s Scientific Manuscript database

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste r...

  3. Activation of human bitter taste receptors by polymethoxylated flavonoids.

    PubMed

    Kuroda, Yuki; Ikeda, Riko; Yamazaki, Toyomi; Ito, Keisuke; Uda, Kazunari; Wakabayashi, Keiji; Watanabe, Tatsuo

    2016-10-01

    Tangeretin and nobiletin are polymethoxylated flavonoids in citrus peel. Both tangeretin and nobiletin are bitter; however, their bitterness has not been evaluated using human bitter taste receptors (hTAS2Rs). We screened 25 kinds of hTAS2Rs and found that hTAS2R14 and hTAS2R46 received both compounds.

  4. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  5. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans*

    PubMed Central

    Lossow, Kristina; Hübner, Sandra; Roudnitzky, Natacha; Slack, Jay P.; Pollastro, Federica; Behrens, Maik; Meyerhof, Wolfgang

    2016-01-01

    One key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets. Human and mouse genomes contain pairs of orthologous bitter receptor genes that have been conserved throughout evolution. Moreover, expansions in both lineages generated species-specific sets of bitter taste receptor genes. It is assumed that the orthologous bitter taste receptor genes mediate the recognition of bitter toxins relevant for both species, whereas the lineage-specific receptors enable the detection of substances differently encountered by mice and humans. By challenging 34 mouse bitter taste receptors with 128 prototypical bitter substances in a heterologous expression system, we identified cognate compounds for 21 receptors, 19 of which were previously orphan receptors. We have demonstrated that mouse taste 2 receptors, like their human counterparts, vary greatly in their breadth of tuning, ranging from very broadly to extremely narrowly tuned receptors. However, when compared with humans, mice possess fewer broadly tuned receptors and an elevated number of narrowly tuned receptors, supporting the idea that a large receptor repertoire is the basis for the evolution of specialized receptors. Moreover, we have demonstrated that sequence-orthologous bitter taste receptors have distinct agonist profiles. Species-specific gene expansions have enabled further diversification of bitter substance recognition spectra. PMID:27226572

  6. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting. PMID:26635553

  7. Bitter and sweet tasting molecules: It's complicated.

    PubMed

    Di Pizio, Antonella; Ben Shoshan-Galeczki, Yaron; Hayes, John E; Niv, Masha Y

    2018-04-19

    "Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Optimizing the orosensory properties of model functional beverages: the influence of novel sweeteners, odorants, bitter blockers, and their mixtures on (+)-catechin.

    PubMed

    Gaudette, Nicole J; Pickering, Gary J

    2012-06-01

    The use of flavor-modifying strategies are important to improving the sensory profile of some excessively bitter and astringent functional ingredients, such as (+)-catechin (CAT). Two bitter blockers (ß-cyclodextrin [CYCLO], homoeriodictyol sodium salt [HED]), two sweeteners (sucrose [SUC], rebaudioside A [REB]), and two odorants (vanillin [VAN], black tea aroma [TEA]) were assessed for their efficacy at modifying the bitterness and astringency of CAT in model aqueous solutions. The intensity of oral sensations elicited by CAT was determined in duplicate in binary, ternary, and quaternary mixtures of these stimuli by a trained panel (n = 15) using a 15 cm visual analogue scale. Overall, bitterness and astringency were most effectively reduced by ternary solutions containing CYCLO + REB or CYCLO + SUC (68%, 60%, and 45%, 43% for bitterness and astringency, respectively). Odorants were not effective at modifying the bitterness or astringency of CAT. We conclude that the use of select bitter blockers and sweeteners may be of value in optimizing the flavor and acceptance of functional food and beverages fortified with phenolic compounds. (+)-Catechin is a bitter-tasting plant-derived health-promoting phenolic compound of interest to functional food and beverage manufacturers. We investigated the efficacy of bitter blockers, plant-based sweeteners, and odorants in decreasing the bitterness and astringency elicited by (+)-catechin. Some of these additives, both alone and in combination, reduced bitterness and astringency, and may therefore assist in optimizing the flavor and consumer acceptance of some phenolic-based functional foods and beverages. © 2012 Institute of Food Technologists®

  9. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans.

    PubMed

    Lossow, Kristina; Hübner, Sandra; Roudnitzky, Natacha; Slack, Jay P; Pollastro, Federica; Behrens, Maik; Meyerhof, Wolfgang

    2016-07-15

    One key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets. Human and mouse genomes contain pairs of orthologous bitter receptor genes that have been conserved throughout evolution. Moreover, expansions in both lineages generated species-specific sets of bitter taste receptor genes. It is assumed that the orthologous bitter taste receptor genes mediate the recognition of bitter toxins relevant for both species, whereas the lineage-specific receptors enable the detection of substances differently encountered by mice and humans. By challenging 34 mouse bitter taste receptors with 128 prototypical bitter substances in a heterologous expression system, we identified cognate compounds for 21 receptors, 19 of which were previously orphan receptors. We have demonstrated that mouse taste 2 receptors, like their human counterparts, vary greatly in their breadth of tuning, ranging from very broadly to extremely narrowly tuned receptors. However, when compared with humans, mice possess fewer broadly tuned receptors and an elevated number of narrowly tuned receptors, supporting the idea that a large receptor repertoire is the basis for the evolution of specialized receptors. Moreover, we have demonstrated that sequence-orthologous bitter taste receptors have distinct agonist profiles. Species-specific gene expansions have enabled further diversification of bitter substance recognition spectra. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines.

    PubMed

    Gonzalo-Diago, Ana; Dizy, Marta; Fernández-Zurbano, Purificación

    2014-07-01

    The aim of this study was to explore the relationship between low molecular weight compounds present in wines and their sensory contribution. Six young red wines were fractionated by gel permeation chromatography and subsequently each fraction obtained was separated from sugars and acids by solid phase extraction. Wines and both fractions were in-mouth evaluated by a trained sensory panel and UPLC-MS analyses were performed. The lack of ethanol and proanthocyanidins greatly increased the acidity perceived. The elimination of organic acids enabled the description of the samples, which were evaluated as bitter, persistent and slightly astringent. Coutaric acid and quercetin-3-O-rutinoside appear to be relevant astringent compounds in the absence of proanthocyanidins. Bitter taste was highly correlated with the in-mouth persistence. A significant predictive model for bitter taste was built by means of PLSR. Further research must be carried out to validate the sensory contribution of the compounds involved in bitterness and astringency and to verify the sensory interactions observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sensomics analysis of key bitter compounds in the hard resin of hops (Humulus lupulus L.) and their contribution to the bitter profile of Pilsner-type beer.

    PubMed

    Dresel, Michael; Dunkel, Andreas; Hofmann, Thomas

    2015-04-08

    Recent brewing trials indicated the occurrence of valuable bitter compounds in the hard resin fraction of hop. Aiming at the discovery of these compounds, hop's ε-resin was separated by means of a sensory guided fractionation approach and the key taste molecules were identified by means of UV/vis, LC-TOF-MS, and 1D/2D-NMR studies as well as synthetic experiments. Besides a series of literature known xanthohumol derivatives, multifidol glucosides, flavon-3-on glycosides, and p-coumaric acid esters, a total of 11 bitter tastants are reported for the first time, namely, 1",2"-dihydroxanthohumol F, 4'-hydroxytunicatachalcone, isoxantholupon, 1-methoxy-4-prenylphloroglucinol, dihydrocyclohumulohydrochinone, xanthohumols M, N, and P, and isoxanthohumols M, N, and P, respectively. Human sensory analysis revealed low bitter recognition threshold concentrations ranging from 5 (co-multifidol glucopyranoside) to 198 μmol/L (trans-p-coumaric acid ethyl ester) depending on their chemical structure. For the first time, LC-MS/MS quantitation of these taste compounds in Pilsner-type beer, followed by taste re-engineering experiments, revealed the additive contribution of iso-α-acids and the identified hard resin components to be truly necessary and sufficient for constructing the authentic bitter percept of beer. Finally, brewing trails using the ε-resin as the only hop source impressively demonstrated the possibility to produce beverages strongly enriched with prenylated hop flavonoids.

  12. Bitter-responsive brainstem neurons: characteristics and functions.

    PubMed

    Travers, Susan P; Geran, Laura C

    2009-07-14

    The sensation that humans describe as "bitter" is evoked by a large group of chemically diverse ligands. Bitter stimuli are avoided by a range of species and elicit reflex rejection, behaviors considered adaptations to the toxicity of many of these compounds. We review novel evidence for neurons that are narrowly tuned to bitter ligands at the initial stages of central processing. These "B-best" neurons in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) respond to multiple types of bitter stimuli and exhibit average responses to bitter tastants that are 6-8 times larger than to moderate concentrations of compounds representing other qualities. However, in the PBN B-best units are appreciably activated by intense salt and acid. Neurons broadly sensitive to salts and acids ("AN" neurons) also responded to bitter stimuli. This sensitivity appeared restricted to stronger intensities of ionic bitters, as cycloheximide remained ineffective across concentrations. In addition to chemosensitive profile, B-best neurons were also distinctive with regard to their posterior receptive fields, long latencies, slow firing rates and projection status. Compared to B-best NST cells, those in the PBN received increased convergence from anterior and posterior receptive fields and responded to a greater number of bitter stimuli. We conclude that B-best neurons likely contribute to pathways underlying gaping, aversive hedonic quality and taste coding. The differential responsiveness of B-best and AN neurons to ionic and nonionic bitter ligands also suggests a potential substrate for discrimination within this quality.

  13. Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    PubMed Central

    Hayes, John E.; Wallace, Margaret R.; Knopik, Valerie S.; Herbstman, Deborah M.; Bartoshuk, Linda M.

    2011-01-01

    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands. PMID:21163912

  14. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults.

    PubMed

    Hayes, John E; Wallace, Margaret R; Knopik, Valerie S; Herbstman, Deborah M; Bartoshuk, Linda M; Duffy, Valerie B

    2011-03-01

    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38-alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands.

  15. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange.

    PubMed

    Moufida, Saïdani; Marzouk, Brahim

    2003-04-01

    This paper reports on the composition of aroma compounds and fatty acids and some physico-chemical parameters (juice percentage, acidity and total sugars) in five varieties of citrus: blood orange, sweet orange, lemon, bergamot and bitter orange. Volatile compounds and methyl esters have been analyzed by gas chromatography. Limonene is the most abundant compound of monoterpene hydrocarbons for all of the examined juices. Eighteen fatty acids have been identified in the studied citrus juices, their quantification points out that unsaturated acids predominate over the saturated ones. Mean concentration of fatty acids varies from 311.8 mg/l in blood orange juice to 678 mg/l in bitter orange juice. Copyright 2003 Elsevier Science Ltd.

  16. Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities.

    PubMed

    Jabri Karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant.

  17. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities

    PubMed Central

    Jabri karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant. PMID:23841062

  18. Kissing bugs can generalize and discriminate between different bitter compounds.

    PubMed

    Asparch, Yamila; Pontes, Gina; Masagué, Santiago; Minoli, Sebastian; Barrozo, Romina B

    2016-10-01

    Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  20. Interactions and thresholds of limonin and nomilin in bitterness perception in orange juice and other matrices

    USDA-ARS?s Scientific Manuscript database

    Limonin and nomilin are two bitter compounds present in citrus and are thought to cause the bitter off-flavor of Huanglongbing-infected fruit/juice. This study determined the thresholds of limonin, nomilin, and their combination in a simple matrix (sucrose and citric acid), a complex matrix (sucrose...

  1. Liposomes as model for taste cells: receptor sites for bitter substances including N-C=S substances and mechanism of membrane potential changes.

    PubMed

    Kumazawa, T; Nomura, T; Kurihara, K

    1988-02-23

    Various bitter substances were found to depolarize liposomes. The results obtained are as follows: (1) Changes in the membrane potential of azolectin liposomes in response to various bitter substances were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. All the bitter substances examined increased the fluorescence intensity of the liposome-dye suspension, which indicates that the substances depolarize the liposomes. There existed a good correlation between the minimum concentrations of the bitter substances to depolarize the liposomes and the taste thresholds in humans. (2) The effects of changed lipid composition of liposomes on the responses to various bitter substances vary greatly among bitter substances, suggesting that the receptor sites for bitter substances are multiple. The responses to N-C=S substances and sucrose octaacetate especially greatly depended on the lipid composition; these compounds depolarized only liposomes having certain lipid composition, while no or hyperpolarizing responses to these compounds were observed in other liposomes examined. This suggested that the difference in "taster" and "nontaster" for these substances can be explained in terms of difference in the lipid composition of taste receptor membranes. (3) It was confirmed that the membrane potential of the planar lipid bilayer is changed in response to bitter substances. The membrane potential changes in the planar lipid bilayer as well as in liposomes in response to the bitter substances occurred under the condition that there is no ion gradient across the membranes. These results suggested that the membrane potential changes in response to bitter substances stem from the phase boundary potential changes induced by adsorption of the substances on the hydrophobic region of the membranes.

  2. Rejection Thresholds in Chocolate Milk: Evidence for Segmentation

    PubMed Central

    Harwood, Meriel L.; Ziegler, Gregory R.; Hayes, John E.

    2012-01-01

    Bitterness is generally considered a negative attribute in food, yet many individuals enjoy some bitterness in products like coffee or chocolate. In chocolate, bitterness arises from naturally occurring alkaloids and phenolics found in cacao. Fermentation and roasting help develop typical chocolate flavor and reduce the intense bitterness of raw cacao by modifying these bitter compounds. As it becomes increasingly common to fortify chocolate with `raw' cacao to increase the amount of healthful phytonutrients, it is important to identify the point at which the concentration of bitter compounds becomes objectionable, even to those who enjoy some bitterness. Classical threshold methods focus on the presence or absence of a sensation rather than acceptability or hedonics. A new alternative, the rejection threshold, was recently described in the literature. Here, we sought to quantify and compare differences in Rejection Thresholds (RjT) and Detection Thresholds (DT) in chocolate milk spiked with a food safe bitterant (sucrose octaacetate). In experiment 1, a series of paired preference tests was used to estimate the RjT for bitterness in chocolate milk. In a new group of participants (experiment 2), we determined the RjT and DT using the forced choice ascending method of limits. In both studies, participants were segmented on the basis of self-declared preference for milk or dark solid chocolate. Based on sigmoid fits of the indifference-preference function, the RjT was ~2.3 times higher for those preferring dark chocolate than the RjT for those preferring milk chocolate in both experiments. In contrast, the DT for both groups was functionally identical, suggesting that differential effects of bitterness on liking of chocolate products are not based on the ability to detect bitterness in these products. PMID:22754143

  3. Rejection Thresholds in Chocolate Milk: Evidence for Segmentation.

    PubMed

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Bitterness is generally considered a negative attribute in food, yet many individuals enjoy some bitterness in products like coffee or chocolate. In chocolate, bitterness arises from naturally occurring alkaloids and phenolics found in cacao. Fermentation and roasting help develop typical chocolate flavor and reduce the intense bitterness of raw cacao by modifying these bitter compounds. As it becomes increasingly common to fortify chocolate with `raw' cacao to increase the amount of healthful phytonutrients, it is important to identify the point at which the concentration of bitter compounds becomes objectionable, even to those who enjoy some bitterness. Classical threshold methods focus on the presence or absence of a sensation rather than acceptability or hedonics. A new alternative, the rejection threshold, was recently described in the literature. Here, we sought to quantify and compare differences in Rejection Thresholds (RjT) and Detection Thresholds (DT) in chocolate milk spiked with a food safe bitterant (sucrose octaacetate). In experiment 1, a series of paired preference tests was used to estimate the RjT for bitterness in chocolate milk. In a new group of participants (experiment 2), we determined the RjT and DT using the forced choice ascending method of limits. In both studies, participants were segmented on the basis of self-declared preference for milk or dark solid chocolate. Based on sigmoid fits of the indifference-preference function, the RjT was ~2.3 times higher for those preferring dark chocolate than the RjT for those preferring milk chocolate in both experiments. In contrast, the DT for both groups was functionally identical, suggesting that differential effects of bitterness on liking of chocolate products are not based on the ability to detect bitterness in these products.

  4. Classification of Bitter Orange Essential Oils According to Fruit Ripening Stage by Untargeted Chemical Profiling and Machine Learning.

    PubMed

    Taghadomi-Saberi, Saeedeh; Mas Garcia, Sílvia; Allah Masoumi, Amin; Sadeghi, Morteza; Marco, Santiago

    2018-06-13

    The quality and composition of bitter orange essential oils (EOs) strongly depend on the ripening stage of the citrus fruit. The concentration of volatile compounds and consequently its organoleptic perception varies. While this can be detected by trained humans, we propose an objective approach for assessing the bitter orange from the volatile composition of their EO. The method is based on the combined use of headspace gas chromatography⁻mass spectrometry (HS-GC-MS) and artificial neural networks (ANN) for predictive modeling. Data obtained from the analysis of HS-GC-MS were preprocessed to select relevant peaks in the total ion chromatogram as input features for ANN. Results showed that key volatile compounds have enough predictive power to accurately classify the EO, according to their ripening stage for different applications. A sensitivity analysis detected the key compounds to identify the ripening stage. This study provides a novel strategy for the quality control of bitter orange EO without subjective methods.

  5. Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds.

    PubMed

    Engel, E; Tournier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed.

  6. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.

    PubMed

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-02-27

    Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.

  7. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    PubMed

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire.

  8. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus)

    PubMed Central

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire. PMID:26488302

  9. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  10. Determination of taste-active compounds of a bitter Camembert cheese by omission tests.

    PubMed

    Engel, E; Septier, C; Leconte, N; Salles, C; Le Quere, J L

    2001-11-01

    The taste-active compounds of a Camembert cheese selected for its intense bitterness defect were investigated. The water-soluble fraction (WSE) was extracted with pure water and fractionated by successive tangential ultrafiltrations and nanofiltration. The physicochemical assessment of these fractions led to the construction of a model WSE which was compared by sensory evaluation to the crude water-soluble extract, using a panel of 16 trained tasters. As no significant difference was perceived, this model WSE was then used directly or mixed with other cheese components for omission tests. Among the main taste characteristics of the WSE (salty, sour, umami and bitter), bitterness was found to be due to small peptides whose mass distribution was obtained by RPHPLC-MS (400-3000 Da) and whose taste properties are discussed.

  11. The Molecular and Cellular Basis of Bitter Taste in Drosophila

    PubMed Central

    Weiss, Linnea A.; Dahanukar, Anupama; Kwon, Jae Young; Banerjee, Diya; Carlson, John R.

    2011-01-01

    Summary The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 bitter neurons, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 Gr taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste. PMID:21262465

  12. Does mere exposure mediate sensitivity to bitter taste on consumer liking and acceptability of whole grain foods?

    USDA-ARS?s Scientific Manuscript database

    Health benefits of whole grains (WG) are well known, yet consumption by Americans falls far short of recommended amounts. Roughly 75% of Americans are sensitive to bitter taste, and WG are known to contain bitter tasting phenolic compounds. It has been reported that individuals with the highest se...

  13. Extra virgin olive oil bitterness evaluation by sensory and chemical analyses.

    PubMed

    Favati, Fabio; Condelli, Nicola; Galgano, Fernanda; Caruso, Marisa Carmela

    2013-08-15

    An experimental investigation was performed on blend extra virgin olive oils (EVOOs) from different cultivars and EVOO from different olive monovarieties (Coratina, Leccino, Maiatica, Ogliarola) with the aim to evaluate the possibility of estimating the perceived bitterness intensity by using chemical indices, such as the total phenol content and the compounds responsible for oil bitterness measured spectrophotometrically at 225 nm (K225 value), as bitterness predictors in different EVOO. Therefore, a bitterness predictive model, based on the relationship between the perceived bitterness intensity of the selected stimuli and the chosen chemicals parameters has been built and validated. The results indicated that the oil bitterness intensity could be satisfactorily predicted by using the K225 values of oil samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Content changes of bitter compounds in 'Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons.

    PubMed

    Li, Shaojie; Wang, Zhuang; Ding, Fan; Sun, Da; Ma, Zhaocheng; Cheng, Yunjiang; Xu, Juan

    2014-02-15

    The main bitter compounds (nomilin, limonin and naringin) in the fruit tissues of 'Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) were determined throughout the fruit development of 3 consecutive growing seasons. Although fluctuating largely at the corresponding developing stages of the 3 years, the contents of these compounds in fruit tissues mostly displayed a declining trend, which implied that the rhythm of the metabolism of these bitter compounds was not consistent among years and was largely growing season dependent. Regarding their distribution, fruit flavedo might be a weak sink that contained the lowest level of naringin, while the segment membrane accumulated large amount of limonin and nomilin, which indicated a possible tissue bias pattern for biosynthesis or accumulation of those compounds. Partial correlation coefficient analysis revealed a synergistic accumulation of naringin and the two limonoid aglycones in fruit tissues during fruit development, indicating an integrated metabolism of flavonoids and limonoids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of drying methods on total antioxidant capacity of bitter gourd (momordica charantia) fruit

    NASA Astrophysics Data System (ADS)

    Tan, Ee Shian; Abdullah, Aminah; Maskat, Mohammad Yusof

    2013-11-01

    The effect of thermal and non-thermal drying methods on hydrophilic and lipophilic antioxidant capacities of bitter gourd fruit was investigated in this study. The bitter gourd fruits were dried by following methods: (i) oven drying 40°C, (ii) oven drying 50°C, (iii) oven drying 60°C, (iv) microwave drying (medium low power), (v) microwave drying (medium power) and (vi) freeze drying. Pure acetone and hexane were used to extract the hydrophilic and lipophilic antioxidant compounds from dried bitter gourd fruits. Freeze dried extracts reported to have highest values in DPPH scavenging activity (hydrophilic and lipophilic fractions), FRAP (lipophilic fraction) and TPC (hydrophilic and lipophilic fraction). Thermal drying slightly increased the values of DPPH scavenging activity, FRAP and TPC assays for hydrophilic extracts. Results concluded bitter gourd fruit is a good source of natural antioxidants and its total antioxidant quality was most preserved by freeze drying. Additionally, the higher value reported in DPPH scavenging activity, FRAP and TPC assays for lipophilic extracts than the hydrophilic extracts suggested that the lipophilic antioxidant compounds of bitter gourd fruit might possess stronger antioxidant power than its counterpart.

  16. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    PubMed

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quantitative determination of cucurbitane-type triterpenes and triterpene glycosides in dietary supplements containing bitter melon (Momordica charantia) by HPLC-MS/MS.

    PubMed

    Ma, Jun; Krynitsky, Alexander J; Grundel, Erich; Rader, Jeanne I

    2012-01-01

    Momordica charantia L. (Cucurbitaceae), commonly known as bitter melon, is widely cultivated in many tropical and subtropical areas of the world. It is a common food staple; its fruits, leaves, seeds, stems, and roots also have a long history of use in traditional medicine. In the United States, dietary supplements labeled as containing bitter melon can be purchased over-the-counter and from Internet suppliers. Currently, no quantitative analytical method is available for monitoring the content of cucurbitane-type triterpenes and triterpene glycosides, the major constituents of bitter melon, in such supplements. We investigated the use of HPLC-electrospray ionization (ESI)-MS/MS for the quantitative determination of such compounds in dietary supplements containing bitter melon. Values for each compound obtained from external calibration were compared with those obtained from the method of standard additions to address matrix effects associated with ESI. In addition, the cucurbitane-type triterpene and triterpene glycoside contents of two dietary supplements determined by the HPLC-ESI-MS/MS method with standard additions were compared with those measured by an HPLC method with evaporative light scattering detection, which was recently developed for quantification of such compounds in dried fruits of M. charantia. The contents of five cucurbitane-type triterpenes and triterpene glycosides in 10 dietary supplements were measured using the HPLC-ESI-MS/MS method with standard additions. The total contents of the five compounds ranged from 17 to 3464 microg/serving.

  18. The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype.

    PubMed

    Bell, Luke; Methven, Lisa; Wagstaff, Carol

    2017-05-01

    Seven accessions of Eruca sativa ("salad rocket") were subjected to a randomised consumer assessment. Liking of appearance and taste attributes were analysed, as well as perceptions of bitterness, hotness, pepperiness and sweetness. Consumers were genotyped for TAS2R38 status to determine if liking is influenced by perception of bitter compounds such as glucosinolates (GSLs) and isothiocyanates (ITCs). Responses were combined with previously published data relating to phytochemical content and sensory data in Principal Component Analysis to determine compounds influencing liking/perceptions. Hotness, not bitterness, is the main attribute on which consumers base their liking of rocket. Some consumers rejected rocket based on GSL/ITC concentrations, whereas some preferred hotness. Bitter perception did not significantly influence liking of accessions, despite PAV/PAV 'supertasters' scoring higher for this attribute. High sugar-GSL/ITC ratios significantly reduce perceptions of hotness and bitterness for some consumers. Importantly the GSL glucoraphanin does not impart significant influence on liking or perception traits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Structure determination of 3-O-caffeoyl-epi-gamma-quinide, an orphan bitter lactone in roasted coffee.

    PubMed

    Frank, Oliver; Blumberg, Simone; Krümpel, Gudrun; Hofmann, Thomas

    2008-10-22

    Recent investigations on the bitterness of coffee as well as 5- O-caffeoyl quinic acid roasting mixtures indicated the existence of another, yet unknown, bitter lactone besides the previously identified bitter compounds 5- O-caffeoyl- muco-gamma-quinide, 3- O-caffeoyl-gamma-quinide, 4- O-caffeoyl- muco-gamma-quinide, 5- O-caffeoyl- epi-delta-quinide, and 4- O-caffeoyl-gamma-quinide. In the present study, this orphan bitter lactone was isolated from the reaction products generated by dry heating of 5- O-caffeoylquinic acid model, and its structure was determined as the previously unreported 3- O-caffeoyl- epi-gamma-quinide by means of liquid chromatography-mass spectrometry (LC-MS) and one-/two-dimensional NMR experiments. The occurrence of this bitter lactone, exhibiting a low bitter recognition threshold of 58 micromol/L, in coffee beverages could be confirmed by LC-MS/MS (negative electrospray ionization) operating in the multiple reaction monitoring mode.

  20. Bitterness values for traditional tonic plants of southern Africa.

    PubMed

    Olivier, D K; van Wyk, B-E

    2013-06-03

    Bitterness values have been determined for southern African plant species that are traditionally used as tonics (imbizas or 'musa-pelo) to alleviate the symptoms of stress and a variety of ailments related to the digestive system. To measure and present, for the first time, the bitterness values of 15 of the best-known and most widely used tonic plants in southern Africa in order to find a rationale for their traditional use in improving appetite and treating digestive ailments. Most of the plants were found to be very bitter, with bitterness values comparable to those reported for internationally well-known bitter tonics such as Artemisia absynthium L. and Gentiana lutea L. The relatively high bitterness values obtained for all of the plants indicate that their alleged value in improving digestion and appetite may at least be partly ascribed to the bitter tonic (amarum) effect, i.e., the stimulation of gastric juices via the nervus vagus. It may be interesting to examine the chemical compounds responsible for the bitter taste, as well as the possible links between bitterness and the anecdotal anti-stress properties ascribed to these species. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Do polymorphisms in chemosensory genes matter for human ingestive behavior?

    PubMed Central

    Hayes, John E.; Feeney, Emma L.; Allen, Alissa L.

    2013-01-01

    In the last decade, basic research in chemoreceptor genetics and neurobiology have revolutionized our understanding of individual differences in chemosensation. From an evolutionary perspective, chemosensory variations appear to have arisen in response to different living environments, generally in the avoidance of toxins and to better detect vital food sources. Today, it is often assumed that these differences may drive variable food preferences and choices, with downstream effects on health and wellness. A growing body of evidence indicates chemosensory variation is far more complex than previously believed. However, just because a genetic polymorphism results in altered receptor function in cultured cells or even behavioral phenotypes in the laboratory, this variation may not be sufficient to influence food choice in free living humans. Still, there is ample evidence to indicate allelic variation in TAS2R38 predicts variation in bitterness of synthetic pharmaceuticals (e.g., propylthiouracil) and natural plant compounds (e.g., goitrin), and this variation associates with differential intake of alcohol and vegetables. Further, this is only one of 25 unique bitter taste genes (TAS2Rs) in humans, and emerging evidence suggests other TAS2Rs may also contain polymorphisms that a functional with respect to ingestive behavior. For example, TAS2R16 polymorphisms are linked to the bitterness of naturally occurring plant compounds and alcoholic beverage intake, a TAS2R19 polymorphism predicts differences in quinine bitterness and grapefruit bitterness and liking, and TAS2R31 polymorphisms associate with differential bitterness of plant compounds like aristolochic acid and the sulfonyl amide sweeteners saccharin and acesulfame-K. More critically with respect to food choices, these polymorphisms may vary independently from each other within and across individuals, meaning a monolithic one-size-fits-all approach to bitterness needs to be abandoned. Nor are genetic differences restricted to bitterness. Perceptual variation has also been associated with polymorphisms in genes involved in odors associated with meat defects (boar taint), green/grassy notes, and cilantro, as well as umami and sweet tastes (TAS1R1/2/3). Here, a short primer on receptor genetics is provided, followed by a summary of current knowledge, and implications for human ingestive behavior are discussed. PMID:23878414

  2. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    PubMed

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  3. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster.

    PubMed

    Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama

    2013-01-01

    Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellular pH drops, which does not rely on previously identified chemoreceptors. Notably, sweet neuron activity depends on the balance of sugar and acid tastant concentrations. This is independent of bitter neuron firing, and allows the fly to avoid acid-laced food sources even in the absence of functional bitter neurons. The two mechanisms may allow the fly to better evaluate the risk of ingesting acidic foods and modulate its feeding decisions accordingly.

  4. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  5. Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons.

    PubMed

    Miyamoto, Tetsuya; Chen, Yan; Slone, Jesse; Amrein, Hubert

    2013-01-01

    Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neurons (GRN) of taste sensilla, thereby assigning distinct taste qualities to sugars and bitter tasting compounds, respectively. Here we report a Ca(2+) imaging method that allows association of ligand-mediated responses to a single GRN. We find that different sweet neurons exhibit distinct response profiles when stimulated with various sugars, and likewise, different bitter neurons exhibit distinct response profiles when stimulated with a set of bitter chemicals. These observations suggest that individual neurons within a taste modality are represented by distinct repertoires of sweet and bitter taste receptors, respectively. Furthermore, we employed this novel method to identify glucose as the primary ligand for the sugar receptor Gr61a, which is not only expressed in sweet sensing neurons of classical chemosensory sensilla, but also in two supersensitive neurons of atypical taste sensilla. Thus, single cell Ca(2+) imaging can be employed as a powerful tool to identify ligands for orphan Gr proteins.

  6. The impact of individual variations in taste sensitivity on coffee perceptions and preferences.

    PubMed

    Masi, Camilla; Dinnella, Caterina; Monteleone, Erminio; Prescott, John

    2015-01-01

    Despite a few relationships between fungiform papillae (FP) density and 6-n-propylthiouracil (PROP) taster status have been reported for sensory qualities within foods, the impact on preferences remains relatively unclear. The present study investigated responses of FP number and PROP taster groups to different bitter compounds and how these affect coffee perception, consumption and liking. Subjects (Ss) with higher FP numbers (HFP) gave higher liking ratings to coffee samples than those with lower FP numbers (LFP), but only for sweetened coffee. Moreover, HFP Ss added more sugar to the samples than LFP Ss. Significant differences between FP groups were also found for the sourness of the coffee samples, but not for bitterness and astringency. However, HFP Ss rated bitter taste stimuli as stronger than did LFP Ss. While coffee liking was unrelated to PROP status, PROP non-tasters (NTs) added more sugar to the coffee samples than did super-tasters (STs). In addition, STs rated sourness, bitterness and astringency as stronger than NTs, both in coffee and standard solutions. These results confirm that FP density and PROP status play a significant role in taste sensitivity for bitter compounds in general and also demonstrate that sugar use is partly a function of fundamental individual differences in physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    PubMed Central

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  8. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyoung; Kim, Ki-Suk; Kim, Kang-Hoon

    Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic β cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor typemore » 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells. - Highlights: • Taste receptor type 2 member 5 (T2R5) is colocalized with GLP-1 hormone in human enteroendocrine cells. • GLP-1 secretion is stimulated by 1,10-phenanthroline via stimulation of T2R5. • Inhibition of the bitter taste pathway reduce GLP-1 secretion.« less

  9. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Regulation of bitter taste responses by tumor necrosis factor

    PubMed Central

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2015-01-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  11. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Ma, Xueying; Yang, Wei; Laaksonen, Oskar; Nylander, Merja; Kallio, Heikki; Yang, Baoru

    2017-11-15

    Sensory profile, flavonols, proanthocyanidins, sugars, and organic acids were investigated in purees of six sea buckthorn (Hippophaë rhamnoides) cultivars. The sensory profiles of the purees were dominated by intense sourness followed by astringency and bitterness due to the high content of malic acid. Malic acid and isorhamnetin glycosides, especially isorhamnetin-3-O-sophoroside-7-O-rhamnoside, had close association with the astringent attributes in the different purees, whereas some of the known astringent compounds such as proanthocyanidin dimers and trimers or quercetin glycosides, had less impact. Moreover, the ratios between contents of acids and phenolic compounds were more important predictors of bitterness than the individual variables alone. Astringency and bitterness are important sensory factors for the consumer acceptance of sea buckthorn products. The current study provides new knowledge on the correlations between sensory properties and composition and supports industrial utilization of the sea buckthorn berries.

  12. A Prediction Error-driven Retrieval Procedure for Destabilizing and Rewriting Maladaptive Reward Memories in Hazardous Drinkers

    PubMed Central

    Das, Ravi K.; Gale, Grace; Hennessy, Vanessa; Kamboj, Sunjeev K.

    2018-01-01

    Maladaptive reward memories (MRMs) can become unstable following retrieval under certain conditions, allowing their modification by subsequent new learning. However, robust (well-rehearsed) and chronologically old MRMs, such as those underlying substance use disorders, do not destabilize easily when retrieved. A key determinate of memory destabilization during retrieval is prediction error (PE). We describe a retrieval procedure for alcohol MRMs in hazardous drinkers that specifically aims to maximize the generation of PE and therefore the likelihood of MRM destabilization. The procedure requires explicitly generating the expectancy of alcohol consumption and then violating this expectancy (withholding alcohol) following the presentation of a brief set of prototypical alcohol cue images (retrieval + PE). Control procedures involve presenting the same cue images, but allow alcohol to be consumed, generating minimal PE (retrieval-no PE) or generate PE without retrieval of alcohol MRMs, by presenting orange juice cues (no retrieval + PE). Subsequently, we describe a multisensory disgust-based counterconditioning procedure to probe MRM destabilization by re-writing alcohol cue-reward associations prior to reconsolidation. This procedure pairs alcohol cues with images invoking pathogen disgust and an extremely bitter-tasting solution (denatonium benzoate), generating gustatory disgust. Following retrieval + PE, but not no retrieval + PE or retrieval-no PE, counterconditioning produces evidence of MRM rewriting as indexed by lasting reductions in alcohol cue valuation, attentional capture, and alcohol craving. PMID:29364255

  13. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    PubMed

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HPLC Analysis of [Alpha]- and [Beta]-Acids in Hops

    ERIC Educational Resources Information Center

    Danenhower, Travis M.; Force, Leyna J.; Petersen, Kenneth J.; Betts, Thomas A.; Baker, Gary A.

    2008-01-01

    Hops have been used for centuries to impart aroma and bitterness to beer. The cones of the female hop plant contain both essential oils, which include many of the fragrant components of hops, and a collection of compounds known as [alpha]- and [beta]-acids that are the precursors to bittering agents. In order for brewers to predict the ultimate…

  15. Taste characteristics based quantitative and qualitative evaluation of ginseng adulteration.

    PubMed

    Cui, Shaoqing; Yang, Liangcheng; Wang, Jun; Wang, Xinlei

    2015-05-01

    Adulteration of American ginseng with Asian ginseng is common and has caused much damage to customers. Panel evaluation is commonly used to determine their differences, but it is subjective. Chemical instruments are used to identify critical compounds but they are time-consuming and expensive. Therefore, a fast, accurate and convenient method is required. A taste sensing system, combining both advantages of the above two technologies, provides a novel potential technology for determining ginseng adulteration. The aim is to build appropriate models to distinguish and predict ginseng adulteration by using taste characteristics. It was found that ginsenoside contents decreased linearly (R(2) = 0.92) with mixed ratios. A bioplot of principal component analysis showed a good performance in classing samples with the first two principal components reaching 89.7%, and it was noted that it was the bitterness, astringency, aftertaste of bitterness and astringency, and saltiness leading the successful determination. After factor screening, bitterness, astringency, aftertaste of bitterness and saltiness were employed to build latent models. Tastes of bitterness, astringency and aftertaste bitterness were demonstrated to be most effective in predicting adulteration ratio, mean while, bitterness and aftertaste bitterness turned out to be most effective in ginsenoside content prediction. Taste characteristics of adulterated ginsengs, considered as taste fingerprint, can provide novel guidance for determining the adulteration of American and Asian ginseng. © 2014 Society of Chemical Industry.

  16. Assessment of bitterness intensity and suppression effects using an Electronic Tongue

    NASA Astrophysics Data System (ADS)

    Legin, A.; Rudnitskaya, A.; Kirsanov, D.; Frolova, Yu.; Clapham, D.; Caricofe, R.

    2009-05-01

    Quantification of bitterness intensity and effectivness of bitterness suppression of a novel active pharmacological ingredient (API) being developed by GSK was performed using an Electronic Tongue (ET) based on potentiometric chemical sensors. Calibration of the ET was performed with solutions of quinine hydrochloride in the concentration range 0.4-360 mgL-1. An MLR calibration model was developed for predicting bitterness intensity expressed as "equivalent quinine concentration" of a series of solutions of quinine, bittrex and the API. Additionally the effectiveness of sucralose, mixture of aspartame and acesulfame K, and grape juice in masking the bitter taste of the API was assessed using two approaches. PCA models were produced and distances between compound containing solutions and corresponding placebos were calculated. The other approach consisted in calculating "equivalent quinine concentration" using a calibration model with respect to quinine concentration. According to both methods, the most effective taste masking was produced by grape juice, followed by the mixture of aspartame and acesulfame K.

  17. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31

    PubMed Central

    Allen, Alissa L.; McGeary, John E.; Hayes, John E.

    2013-01-01

    In order to reduce calories in foods and beverages, the food industry routinely uses non-nutritive sweeteners. Unfortunately, many are synthetically derived, and many consumers have a strong preference for natural sweeteners, irrespective of the safety data on synthetic non-nutritive sweeteners. Additionally, many non-nutritive sweeteners elicit aversive side tastes such as bitter and metallic in addition to sweetness. Bitterness thresholds of acesulfame-K (AceK) and saccharin are known to vary across bitter taste receptors polymorphisms in TAS2R31. RebA has shown to activate hTAS2R4 and hTAS2R14 in vitro. Here we examined bitterness and sweetness perception of natural and synthetic non-nutritive sweeteners. In a follow-up to a previous gene-association study, participants (n=122) who had been genotyped previously rated sweet, bitter and metallic sensations from rebaudioside A (RebA), rebaudioside D (RebD), aspartame, sucrose and gentiobiose in duplicate in a single session. For comparison, we also present sweet and bitter ratings of AceK collected in the original experiment for the same participants. At similar sweetness levels, aspartame elicited less bitterness than RebD, which was significantly less bitter than RebA. The bitterness of RebA and RebD showed wide variability across individuals, and bitterness ratings for these compounds were correlated. However, RebA and RebD bitterness did not covary with AceK bitterness. Likewise, single nucleotide polymorphisms (SNPs) shown previously to explain variation in the suprathreshold bitterness of AceK (rs3741845 in TAS2R9 and rs10772423 in TAS2R31) did not explain variation in RebA and RebD bitterness. Because RebA activates hT2R4 and hT2R14, a SNP in TAS2R4 previously associated with variation in bitterness perception was included here; there are no known functional SNPs for TAS2R14. In present data, a putatively functional SNP (rs2234001) in TAS2R4 did not explain variation in RebA or RebD bitterness. Collectively, these data indicate the bitterness of RebA and RebD cannot be predicted by AceK bitterness, reinforcing our view that bitterness is not a simple monolithic trait that is high or low in an individual. This also implies consumers who reject AceK may not find RebA and RebD aversive, and vice versa. Finally, RebD may be a superior natural non-nutritive sweetener to RebA, as it elicits significantly less bitterness at similar levels of sweetness. PMID:24187601

  18. Optimized aqueous extraction of saponins from bitter melon for production of a saponin-enriched bitter melon powder.

    PubMed

    Tan, Sing P; Vuong, Quan V; Stathopoulos, Costas E; Parks, Sophie E; Roach, Paul D

    2014-07-01

    Bitter melon, Momordica charantia L. (Cucurbitaceae), aqueous extracts are proposed to have health-promoting properties due to their content of saponins and their antioxidant activity. However, the optimal conditions for the aqueous extraction of saponins from bitter melon and the effects of spray drying have not been established. Therefore, this study aimed to optimize the aqueous extraction of the saponins from bitter melon, using response surface methodology, prepare a powder using spray drying, and compare the powder's physical properties, components, and antioxidant capacity with aqueous and ethanol freeze-dried bitter melon powders and a commercial powder. The optimal aqueous extraction conditions were determined to be 40 °C for 15 min and the water-to-sample ratio was chosen to be 20:1 mL/g. For many of its physical properties, components, and antioxidant capacity, the aqueous spray-dried powder was comparable to the aqueous and ethanol freeze-dried bitter melon powders and the commercial powder. The optimal conditions for the aqueous extraction of saponins from bitter melon followed by spray drying gave a high quality powder in terms of saponins and antioxidant activity. This study highlights that bitter melon is a rich source of saponin compounds and their associated antioxidant activities, which may provide health benefits. The findings of the current study will help with the development of extraction and drying technologies for the preparation of a saponin-enriched powdered extract from bitter melon. The powdered extract may have potential as a nutraceutical supplement or as a value-added ingredient for incorporation into functional foods. © 2014 Institute of Food Technologists®

  19. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  20. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  1. Chemical composition and antibacterial activities of lupin seeds extracts.

    PubMed

    Lampart-Szczapa, Eleonora; Siger, Aleksander; Trojanowska, Krystyna; Nogala-Kalucka, Małgorzata; Malecka, Maria; Pacholek, Bogdan

    2003-10-01

    Determination of influence of lupin natural phenolic compounds on antibacterial properties of its seeds was carried out. Raw material were seeds of Lupinus albus, L. luteus, and L. angustifolius. The methods included the determination of the content of proteins, total phenolic compounds, free phenolic acids, and tannins as well as antibacterial properties with ethanol extracts. The content of total phenolic compounds was smaller in testas than in cotyledons and the highest levels are observed in bitter cultivars of Lupinus albus cv. Bac and L. angustifolius cv. Mirela. Lupin tannins mainly occurred in cotyledons of the white lupin, predominantly in the bitter cultivar Bac. Free phenolic acids were mainly found in testas. Only extracts from the testas displayed antibacterial properties, which excludes the possibility of alkaloid influence on the results. The results suggest that inhibition of test bacteria growth depended mainly upon the content of the total phenolic compounds.

  2. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.

    PubMed

    Li, Si-Yu; Duan, Chang-Qing

    2018-01-30

    To understand effects of using oak barrels on the astringency, bitterness and color of dry red wines, phenolic reactions in wines before and after barrel aging are reviewed in this paper, which has been divided into three sections. The first section includes an introduction to chemical reactivities of grape-derived phenolic compounds, a summary of the phenolic reactions that occur in dry red wines before barrel aging, and a discussion of the effects of these reactions on wine astringency, bitterness and color. The second section introduces barrel types that determine the oak barrel constituents in wines (primarily oak aldehydes and ellagitannins) and presents reactions between the oak constituents and grape-derived phenolic compounds that may modulate wine astringency, bitterness and color. The final section illustrates the chemical differences between basic oxidation and over-oxidation in wines, discusses oxygen consumption kinetics in wines during barrel aging by comparing different oxygen consumption kinetics observed previously by others, and speculates on the possible preliminary phenolic reactions that occur in dry red wines during oak barrel aging that soften tannins and stabilize pigments via basic oxidation. Additionally, sulfur dioxide (SO 2 ) addition during barrel aging and suitability of adopting oak barrels for aging wines are briefly discussed.

  3. Potential use of bitter melon (Momordica charantia) derived compounds as antidiabetics: In silico and in vivo studies.

    PubMed

    Elekofehinti, Olusola Olalekan; Ariyo, Esther Opeyemi; Akinjiyan, Moses Orimoloye; Olayeriju, Olanrewaju Sam; Lawal, Akeem Olalekan; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira

    2018-05-12

    Momordica charantia (bitter lemon) belongs to the cucurbitaceae family which has been extensively used in traditional medicines for the cure of various ailments such as cancer and diabetes. The underlying mechanism of M. charantia to maintain glycemic control was investigated. GLP-1 and DPP-4 gene modulation by M. charantia (5-20% inclusion in rats diet) was investigated in vivo by RT-PCR and possible compounds responsible for diabetic action predicted through in silico approach. Phytochemicalss previously characterized from M. charantia were docked into glucacon like peptide-1 receptor (GLP-1r), dipeptidyl peptidase (DPP4) and Takeda-G-protein-receptor-5 (TGR5) predicted using Autodock Vina. The results of the in silico suggests momordicosides D (ligand for TGR5), cucurbitacin (ligand for GLP-1r) and charantin (ligand for DPP-4) as the major antidiabetic compounds in bitter lemon leaf. M. charantia increased the expression of GLP-1 by about 295.7% with concomitant decreased in expression of DPP-4 by 87.2% with 20% inclusion in rat's diet. This study suggests that the mechanism underlying the action of these compounds is through activation of TGR5 and GLP-1 receptor with concurrent inhibition of DPP4. This study confirmed the use of this plant in diabetes management and the possible bioactive compounds responsible for its antidiabetic property are charantin, cucurbitacin and momordicoside D and all belong to the class of saponins. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    PubMed Central

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  5. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    PubMed

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  6. A potential sex dimorphism in the relationship between bitter taste and alcohol consumption.

    PubMed

    Beckett, Emma Louise; Duesing, Konsta; Boyd, Lyndell; Yates, Zoe; Veysey, Martin; Lucock, Mark

    2017-03-22

    Bitterness is an innate aversive taste important in detecting potentially toxic substances, including alcohol. However, bitter compounds exist in many foods and beverages, and can be desirable, such as in beer. TAS2R38 is a well-studied bitter taste receptor with common polymorphisms. Some have reported relationships between TAS2R38 genotypes, bitter taste phenotype and alcohol intake, however results have been mixed. These mixed results may be explained by the varying taste properties of different alcoholic beverages or a sex dimorphism in responses. Bitter taste phenotype was assessed using PROP taste test and TAS2R38-P49A genotype was assessed by RFLP-PCR. Alcohol intake was assessed by food frequency questionnaire and classified by beverage type (beer, wine, spirits or mixed drinks). The relationships between bitter taste phenotype and carriage of the P allele of the TAS2R38-A49P gene and alcohol intake were assessed adjusted for and stratified by sex, and the interaction between taste and sex was evaluated. The relationship between alcohol intake and bitter taste phenotype varied by beverage type, with significant results for beer, spirits and mixed drinks, but not wine. When stratified, results varied by sex, and were only significant in males. Significant interactions were found for taster phenotype and sex (total alcohol intake and intake of beer and spirits). Results were similar for carriage of the TAS2R38-P49A P allele. Sex-specific interactions between bitter taste phenotype, TAS2R38 genotype and alcohol intake may explain variance in previous studies and may have implications for sex-specific disease risk and public health interventions.

  7. Pharmacognosy of swietenia mahagoni bark drug.

    PubMed

    Sanyal, M; Datta, P C

    1986-01-01

    Swietenia mahagoni Jacq. (native to tropical America), a common avenue tree of India, yields a bark drug, used as antipyretic, bitter tonic, astringent, and occasionally as a substitute for Cinchona. The district characteristics of the species are : blackish brown colour; cracks and fissures with both clean cut and thick recurved edges; irregular wrinkles; splintery and fibrous fractures; bitter taste; compound sieve plates; mostly biseriate rays; abundant rhomboidal crystals; presence of tannin, saponin, lignin and absence of alkaloids.

  8. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao).

    PubMed

    Pu, Yunfeng; Ding, Tian; Wang, Wenjun; Xiang, Yanju; Ye, Xingqian; Li, Mei; Liu, Donghong

    2018-01-01

    The taste of dried jujube fruit when compared with fresh ones is less palatable, as it develops bitterness during drying and storage. Therefore, identifying the methods by which bitterness occurs is essential for developing strategies for processing and storage. Bitterness in fresh jujube fruit was negligible; however, it increased by 0.9-, 1.5- and 1.8-fold during drying and storage over 6 and 12 months. The moisture significantly decreased during harvesting and drying. Free amino acids, except proline and tyrosine, significantly decreased during drying and storage. Fructose, glucose and sucrose hardly changed during harvest, drying and storage. Titratable acidity, total phenolic and total flavonoids contents were stable during harvest and drying, but increased upon storage. Additionally, protocatechuic and ellagic acids were not detected in fresh jujube fruit, however, were found to increase during drying and storage. Bitterness in fresh jujube fruit tasted negligible because of meagre amount of phytochemicals, while the condensation effect of moisture reduction, the loss of free amino acids, and the formation of protocatechuic and ellagic acids could aggravate the bitterness of jujube fruit during drying and storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. PHARMACOGNOSY OF SWIETENIA MAHAGONI BARK DRUG

    PubMed Central

    Sanyal, Manisha; Datta, P. C.

    1986-01-01

    Swietenia mahagoni Jacq. (native to tropical America), a common avenue tree of India, yields a bark drug, used as antipyretic, bitter tonic, astringent, and occasionally as a substitute for Cinchona. The district characteristics of the species are : blackish brown colour; cracks and fissures with both clean cut and thick recurved edges; irregular wrinkles; splintery and fibrous fractures; bitter taste; compound sieve plates; mostly biseriate rays; abundant rhomboidal crystals; presence of tannin, saponin, lignin and absence of alkaloids. PMID:22557521

  10. The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.

    PubMed

    Born, Stephan; Levit, Anat; Niv, Masha Y; Meyerhof, Wolfgang; Behrens, Maik

    2013-01-02

    Bitter taste is a basic taste modality, required to safeguard animals against consuming toxic substances. Bitter compounds are recognized by G-protein-coupled bitter taste receptors (TAS2Rs). The human TAS2R10 responds to the toxic strychnine and numerous other compounds. The mechanism underlying the development of the broad tuning of some TAS2Rs is not understood. Using comparative modeling, site-directed mutagenesis, and functional assays, we identified residues involved in agonist-induced activation of TAS2R10, and investigated the effects of different substitutions on the receptor's response profile. Most interestingly, mutations in S85(3.29) and Q175(5.40) have differential impact on stimulation with different agonists. The fact that single point mutations lead to improved responses for some agonists and to decreased activation by others indicates that the binding site has evolved to optimally accommodate multiple agonists at the expense of reduced potency. TAS2R10 shares the agonist strychnine with TAS2R46, another broadly tuned receptor. Engineering the key determinants for TAS2R46 activation by strychnine in TAS2R10 caused a loss of response to strychnine, indicating that these paralog receptors display different strychnine-binding modes, which suggests independent acquisition of agonist specificities. This implies that the gene duplication event preceding primate speciation was accompanied by independent evolution of the strychnine-binding sites.

  11. Peripheral gustatory processing of sweet stimuli by golden hamsters.

    PubMed

    Frank, Marion E; Formaker, Bradley K; Hettinger, Thomas P

    2005-07-15

    Behaviors and taste-nerve responses to bitter stimuli are linked to compounds that bind T2 receptors expressed in one subset of taste-bud receptor cells (TRCs); and behavioral and neural responses to sweet stimuli are linked to chemical compounds that bind a T1 receptor expressed in a different TRC subset. Neural and behavioral responses to bitter-sweet mixtures, however, complicate the ostensible bitter and sweet labeled lines. In the golden hamster, Mesocricetus auratus, quinine hydrochloride, the bitter prototype, suppresses chorda tympani (CT) nerve responses to the sweet prototype: sucrose. This bitter-sweet inhibition was tested with concentration series of sucrose and dulcin, a hydrophobic synthetic sweetener that hamsters behaviorally cross-generalize with sucrose. Dulcin, sucrose and other sweeteners activate one subset of CT fibers: S neurons; whereas, quinine activates a separate subset of CT fibers: E neurons. Whole-nerve and S-neuron CT responses to a sweetener concentration series, mixed with 0, 1, 3 and 10 mM quinine, were measured for 0-2.5 s transient and/or 2.6-10 s steady-state response periods. Ten-sec total single-fiber records, aligned at response onset, were averaged for 100 ms bins to identify response oscillations. Quinine inhibition of dulcin and sucrose responses was identical. Each log molar increment in quinine resulted in equivalent declines in response to either sweetener. Furthermore, sucrose response decrements paralleled response increments in quinine-sensitive CT neurons to the same quinine increases. A 1.43 Hz bursting rhythm to the sweeteners was unchanged by quinine inhibition or decreases in sweetener concentration. Taste-bud processing, possibly between-cell inhibition and within-cell negative feedback, must modify signals initiated by T1 receptors before they are transmitted to the brain.

  12. DESCRIPTIVE ANALYSIS OF DIVALENT SALTS

    PubMed Central

    YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

    2005-01-01

    Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

  13. Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds.

    PubMed

    Talcott, S T; Howard, L R

    1999-04-01

    Physicochemical analysis of processed strained product was performed on 10 carrot genotypes grown in Texas (TX) and Georgia (GA). Carrots from GA experienced hail damage during growth, resulting in damage to their tops. Measurements included pH, moisture, soluble phenolics, total carotenoids, sugars, organic acids, and isocoumarin (6-MM). Sensory analysis was conducted using a trained panel to evaluate relationships between chemical and sensory attributes of the genotypes and in carrots spiked with increasing levels of 6-MM. Preharvest stress conditions in GA carrots seemed to elicit a phytoalexic response, producing compounds that impacted the perception of bitter and sour flavors. Spiking 6-MM into strained carrots demonstrated the role bitter compounds have in lowering sweetness scores while increasing the perception of sour flavor. Screening fresh carrots for the phytoalexin 6-MM has the potential to significantly improve the sensory quality of processed products.

  14. Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: behaviour during storage.

    PubMed

    Chira, Kleopatra; Teissedre, Pierre-Louis

    2013-09-01

    In Merlot wines the evolution of volatile and non-volatile (ellagitannins) compounds extracted from winewoods while being macerated for 12 months was studied. Seven types of winewoods subjected to different toasting methods were used. Different rates of extraction, depending mainly on wood compounds origin (toasting or naturally present in wood) and on the watering process during toasting, were observed, which were reflected in sensory differences. Globally, volatile phenols together with aldehydes, phenols and lactones showed an increase with increasing maceration time. Ellagitannins were extracted faster during the first 3 months; after 6 months an important decrease was observed. Wines with winewoods subjected to watering during toasting were lower in ellagitannins concentrations and demonstrated the greatest decrease of these compounds during maceration. Astringency and bitterness intensified with increasing ellagitannins. Lactones induced positive sweetness sensations, whereas furanic and guaiacol compounds influenced bitterness and astringency. Spicy and vanilla descriptors were related to eugenol, vanillin and other odorous chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quinoa bitterness: causes and solutions for improving product acceptability.

    PubMed

    Suárez-Estrella, Diego; Torri, Luisa; Pagani, Maria Ambrogina; Marti, Alessandra

    2018-02-27

    Awareness of the several agronomic, environmental, and health benefits of quinoa has led to a constant increase in its production and consumption not only in South America, where it is a native crop, but also in Europe and the USA. However, producing wheat or gluten-free based products enriched with quinoa alters some quality characteristics, including sensory acceptance. Several anti-nutritional factors such as saponins are concentrated in the grain pericarp. These bitter and astringent substances may interfere with the digestion and absorption of various nutrients. Developing processes to decrease or modify the bitterness of quinoa can enhance palatability, and thus consumption, of quinoa. In addition to the production of sweet varieties of quinoa, other processes have been proposed. Some of them (i.e. washing, pearling and the combination of the two) have a direct effect on saponins, either by solubilization and/or the mechanical removal of seed layers. Others, such as fermentation or germination, are able to mask the bitterness with aroma compounds and/or sugar formation. This review presents the major sources of the undesirable sensory attributes of quinoa, including bitterness, and various ways of counteracting the negative characteristics of quinoa. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness.

    PubMed

    Kraehenbuehl, Karin; Page-Zoerkler, Nicole; Mauroux, Olivier; Gartenmann, Karin; Blank, Imre; Bel-Rhlid, Rachid

    2017-03-01

    Chlorogenic acid lactones have been identified as key contributors to coffee bitterness. These compounds are formed during roasting by dehydration and cyclization of their precursors, the chlorogenic acids (CGAs). In the present study, we investigated an approach to decompose these lactones in a selective way without affecting the positive coffee attributes developed during roasting. A model system composed of (3-caffeoylquinic acid lactone (3-CQAL), 4- caffeoyl quinic acid lactone (4-CQAL), and 4-feruloylquinic acid lactone (4-FQAL)) was used for the screening of enzymes before treatment of the coffee extracts. Hog liver esterase (HLE) hydrolyzed chlorogenic acid lactones (CQALs, FQALs) selectively, while chlorogenate esterase hydrolyzed all chlorogenic acids (CQAs, FQAs) and their corresponding lactones (CQALs, FQALs) in a non-selective way. Enzymatically treated coffee samples were evaluated for their bitterness by a trained sensory panel and were found significantly less bitter than the untreated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    PubMed

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  18. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  19. Healthy virgin olive oil: a matter of bitterness.

    PubMed

    Vitaglione, Paola; Savarese, Maria; Paduano, Antonello; Scalfi, Luca; Fogliano, Vincenzo; Sacchi, Raffaele

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives VOO a bitter and pungent taste. The recent substantiation by European Food Safety Authority (EFSA) of a health claim for VOO polyphenols may represent an efficient stimulus to get the maximum health benefit from one of the most valuable traditional product of Mediterranean countries educating consumers to the relationship between the VOO bitterness and its health effect. Agronomical practices and new processing technology to avoid phenolic oxidation and hydrolysis and to enhance the aromatic components of the VOO have been developed and they can be used to modulate taste and flavor to diversify the products on the market. VOOs having high concentration of phenol compounds are bitter and pungent therefore many people do not consume them, thus loosing the health benefits related to their intake. In this paper, the chemist's and nutritionist's point of view has been considered to address possible strategies to overcome the existing gap between the quality perceived by consumer and that established by expert tasters. Educational campaigns emphasizing the bitter-health link for olive oils should be developed.

  20. Bitter taste receptor T2R1 activities were compatible with behavioral sensitivity to bitterness in chickens.

    PubMed

    Hirose, Nozomi; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-05-01

    Clarification of the mechanism of the sense of taste in chickens will provide information useful for creating and improving new feedstuffs for chickens, because the character of the taste receptors in oral tissues affects feeding behavior in animals. In this study, we focused on the sensitivity to bitterness in chickens. We cloned one of the bitter taste receptors, T2R1, from the chicken palate, constructed several biosensor-cells expressing chicken T2R1 (cT2R1), and determined a highly sensitive biosensor of cT2R1 among them. By using Ca(2+) imaging methods, we identified two agonists of cT2R1, dextromethorphan (Dex) and diphenidol (Dip). Dex was a new agonist of cT2R1 that was more potent than Dip. In a behavioral drinking study, the intake volumes of solutions of these compounds were significantly lower than that of water in chickens. These aversive concentrations were identical to the concentrations that could activate cT2R1 in a cell-based assay. These results suggest that the cT2R1 activities induced by these agonists are linked to behavioral sensitivity to bitterness in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. AN ATTEMPT TO LOCATE INTERMETALLIC PARTICLES IN ZIRCONIUM ALLOYS USING A BITTER FIGURE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.; Harder, B.R.

    1961-10-01

    The compound ZrFe/sub 2/ is known to be ferromagnetic, and an attempt to locate particles of magnetic material in zircaloy-2 and dilute Zr- Fe alloys by a Bitter figure technlque is described. An Fe/sub 3/O/sub 4/ sol in water-soluble plastic was used to prepare Bitter figures of the alloy surfaces in the form of replicas, which were then examined in an electron microscope. No magnetic particles were located in either zircaloy-2 or a Zr-O.3% Fe alloy. Subsequent work on specimens of ZrFe/sub 2/ showed that the failure to detect it in the dilute alloys arose because the size of themore » intermetallic particles in the latter was smaller than the size of the magnetic domains. (auth)« less

  2. A Drosophila Gustatory Receptor Required for Strychnine Sensation

    PubMed Central

    Lee, Youngseok; Moon, Seok Jun; Wang, Yijin

    2015-01-01

    Strychnine is a potent, naturally occurring neurotoxin that effectively protects plants from animal pests by deterring feeding behavior. In insects, such as the fruit fly, Drosophila melanogaster, bitter-tasting aversive compounds are detected primarily through a family of gustatory receptors (GRs), which are expressed in gustatory receptor neurons. We previously described multiple GRs that eliminate the behavioral avoidance to all bitter compounds tested, with the exception of strychnine. Here, we report the identity of a strychnine receptor, referred to as GR47a. We generated a mutation in Gr47a and found that it eliminated strychnine repulsion and strychnine-induced action potentials. GR47a was narrowly tuned, as the responses to other avoidance compounds were unaffected in the mutant animals. This analysis supports an emerging model that Drosophila GRs fall broadly into two specificity classes—one class is comprised of core receptors that are broadly required, whereas the other class, which includes GR47a, consists of narrowly tuned receptors that define chemical specificity. PMID:26187906

  3. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes.

    PubMed

    Ramírez, Eva; Brenes, Manuel; García, Pedro; Medina, Eduardo; Romero, Concepción

    2016-09-01

    The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied. First, a rapid chemical hydrolysis of oleuropein takes place at a high temperature of 40°C and at a low pH value of 2.8, but the chemical hydrolysis of the bitter compound is slow at the common range of pH for these olives (3.8-4.2). However, decarboxymethyl elenolic acid linked to hydroxytyrosol and hydroxytyrosol have been found in a high concentration during the elaboration of natural green olives. When olives were heated at 90°C for 10min before brining, these compounds are not formed. Hence, the debittering process in natural green olives is due to the activity of β-glucosidase and esterase during the first months of storage and then a slow chemical hydrolysis of oleuropein happens throughout storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.).

    PubMed

    Degenhardt, Andreas Georg; Hofmann, Thomas

    2010-12-22

    Sequential application of solvent extraction and RP-HPLC in combination with taste dilution analyses (TDA) and comparative TDA, followed by LC-MS and 1D/2D NMR experiments, led to the discovery of 10 C(17)-C(21) oxylipins with 1,2,4-trihydroxy-, 1-acetoxy-2,4-dihydroxy-, and 1-acetoxy-2-hydroxy-4-oxo motifs, respectively, besides 1-O-stearoyl-glycerol and 1-O-linoleoyl-glycerol as bitter-tasting compounds in thermally processed avocado (Persea americana Mill.). On the basis of quantitative data, dose-over-threshold (DoT) factors, and taste re-engineering experiments, these phytochemicals, among which 1-acetoxy-2-hydroxy-4-oxo-octadeca-12-ene was found with the highest taste impact, were confirmed to be the key contributors to the bitter off-taste developed upon thermal processing of avocado. For the first time, those C(17)-C(21) oxylipins exhibiting a 1-acetoxy-2,4-dihydroxy- and a 1-acetoxy-2-hydroxy-4-oxo motif, respectively, were discovered to induce a mouthfulness (kokumi)-enhancing activity in sub-bitter threshold concentrations.

  5. Traditional Chinese Medicine in Treatment of Metabolic Syndrome

    PubMed Central

    Yin, Jun; Zhang, Hanjie; Ye, Jianping

    2008-01-01

    In management of metabolic syndrome, the traditional Chinese medicine (TCM) is an excellent representative in alternative and complementary medicines with a complete theory system and substantial herb remedies. In this article, basic principle of TCM is introduced and 22 traditional Chinese herbs are reviewed for their potential activities in the treatment of metabolic syndrome. Three herbs, ginseng, rhizoma coptidis (berberine, the major active compound) and bitter melon, were discussed in detail on their therapeutic potentials. Ginseng extracts made from root, rootlet, berry and leaf of Panax quinquefolium (American ginseng) and Panax ginseng (Asian ginseng), are proved for anti-hyperglycemia, insulin sensitization, islet protection, anti-obesity and anti-oxidation in many model systems. Energy expenditure is enhanced by ginseng through thermogenesis. Ginseng-specific saponins (ginsenosides) are considered as the major bioactive compounds for the metabolic activities of ginseng. Berberine from rhizoma coptidis is an oral hypoglycemic agent. It also has anti-obesity and anti-dyslipidemia activities. The action mechanism is related to inhibition of mitochondrial function, stimulation of glycolysis, activation of AMPK pathway, suppression of adipogenesis and induction of low-density lipoprotein (LDL) receptor expression. Bitter melon or bitter gourd (Momordica charantia) is able to reduce blood glucose and lipids in both normal and diabetic animals. It may also protect β cells, enhance insulin sensitivity and reduce oxidative stress. Although evidence from animals and humans consistently supports the therapeutic activities of ginseng, berberine and bitter melon, multi-center large-scale clinical trials have not been conducted to evaluate the efficacy and safety of these herbal medicines. PMID:18537696

  6. Early milk feeding influences taste acceptance and liking during infancy12345

    PubMed Central

    Mennella, Julie A; Forestell, Catherine A; Morgan, Lindsay K; Beauchamp, Gary K

    2009-01-01

    Background: We identified a model system that exploits the inherent taste variation in early feedings to investigate food preference development. Objective: The objective was to determine whether exposure to differing concentrations of taste compounds in milk and formulas modifies acceptance of exemplars of the 5 basic taste qualities in a familiar food matrix. Specifically, we examined the effects of consuming hydrolyzed casein formulas (HCFs), which have pronounced bitter, sour, and savory tastes compared with breast milk (BM) and bovine milk–based formulas (MFs), in which these taste qualities are weaker. Design: Subgroups of BM-, MF- and HCF-fed infants, some of whom were fed table foods, were studied on 6 occasions to measure acceptance of sweet, salty, bitter, savory, sour, and plain cereals. Results: In infants not yet eating table foods, the HCF group ate significantly more savory-, bitter-, and sour-tasting and plain cereals than did the BM or MF groups. HCF infants displayed fewer facial expressions of distaste while eating the bitter and savory cereals, and they and BM infants were more likely to smile while they were eating the savory cereal. In formula-fed infants eating table foods, preferences for the basic tastes reflected the types of foods they were being fed. In general, those infants who ate more food displayed fewer faces of distaste. Conclusions: The type of formula fed to infants has an effect on their response to taste compounds in cereal before solid food introduction. This model system of research investigation sheds light on sources of individual differences in taste and perhaps cultural food preferences. PMID:19605570

  7. Evaluation of unsaturated alkanoic acid amides as maskers of epigallocatechin gallate astringency.

    PubMed

    Obst, Katja; Paetz, Susanne; Backes, Michael; Reichelt, Katharina V; Ley, Jakob P; Engel, Karl-Heinz

    2013-05-08

    Some foods, beverages, and food ingredients show characteristic long-lasting aftertastes. The sweet, lingering taste of high intensity sweeteners or the astringency of tea catechins are typical examples. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, causes a long-lasting astringency and bitterness. These sensations are mostly perceived as aversive and are only accepted in a few foods (e.g., tea and red wine). For the evaluation of the aftertaste of such constituents over a certain period of time, Intensity Variation Descriptive Methodology (IVDM) was used. The approach allows the measurement of different descriptors in parallel in one panel session. IVDM was evaluated concerning the inter- and intraindividual differences of panelists for bitterness and astringency of EGCG. Subsequently, the test method was used as a screening tool for the identification of potential modality-selective masking compounds. In particular, the intensity of the astringency of EGCG (750 mg kg(-1)) could be significantly lowered by 18-33% during the time course by adding the trigeminal-active compound trans-pellitorine (2E,4E-decadienoic acid N-isobutyl amide 1, 5 mg kg(-1)) without significantly affecting bitterness perception. Further, structurally related compounds were evaluated on EGCG to gain evidence for possible structure-activity relationships. A more polar derivative of 1, (2S)-2-[[(2E,4E)-deca-2,4-dienoyl]amino]propanoic acid 9, was also able to reduce the astringency of EGCG similar to trans-pellitorine but without showing the strong tingling effect.

  8. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  9. Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages.

    PubMed

    Lii, Chong-Kuei; Chen, Haw-Wen; Yun, Wen-Tzu; Liu, Kai-Li

    2009-03-18

    Bitter gourd (Momordica charantia) is used to treat various diseases including inflammation. A wild species of bitter gourd, Momordica charantia Linn. var. abbreviata ser. (WBG), is considered to be more potent in disease prevention than is bitter gourd; however, little is known about the biological and physiological characteristics of WBG. The present study investigated the anti-inflammatory effect of WBG on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among the hot water, 95% ethanol, and ethyl acetate extracts of WBG, the ethanol extract showed the greatest reduction of LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and inducible nitric oxide synthase (iNOS) and pro-interleukin-1beta expression. LPS-induced cyclooxygenase-2 expression was not affected byWBGextracts. Compared with WBG, extracts from bitter gourd showed a lesser inhibition of LPS-induced events. Electrophoretic mobility shift assay further showed that both the hot water and the ethanol extracts of WBG inhibited NF-kappaB activation. Although information is lacking on the bioactive components of WBG, the phenolic compound contents of each extract significantly paralleled its anti-inflammatory ability (r = 0.74, 0.88 and 0.65 for NO, PGE2 and iNOS expression, respectively, P < 0.05). These results suggest that WBG is beneficial for reducing LPS-induced inflammatory responses by modulating NF-kappaB activation.

  10. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enrichment of refined olive oil with phenolic compounds: evaluation of their antioxidant activity and their effect on the bitter index.

    PubMed

    Artajo, Luz S; Romero, María P; Morelló, José R; Motilva, María J

    2006-08-09

    The study of the antioxidant effects of biophenolic compounds is supported by the current interest in natural products and the ongoing replacement of synthetic antioxidants by natural antioxidants from plant sources. Olives and olive oil, especially extra virgin olive oil, contain a variety of bioactive compounds (phytochemicals) widely considered to be potentially beneficial for health. This research was focused on evaluating the antioxidant activity of the enriched refined olive oil to discover a possible functional food application. Different concentrations of individual and combined phenolic compounds were added to the refined olive oil as lipid matrix, and the antioxidant activity expressed as oxidative stability in hours was determined by using the Rancimat method. Additionally, the bitter index was evaluated to assess the effect of the enrichment in relation to the organoleptic quality. The results showed that the antioxidant activity depends on the concentration of the phenol used for the assay and the chemical structure. In general, the most positive effects were observed in 3,4-dihydroxy and 3,4,5-trihydroxy structures linked to an aromatic ring that conferred to the moiety a higher proton dislocation, thus facilitating the scavenging activity.

  12. Tolerance for High Flavanol Cocoa Powder in Semisweet Chocolate

    PubMed Central

    Harwood, Meriel L.; Ziegler, Gregory R.; Hayes, John E.

    2013-01-01

    Endogenous polyphenolic compounds in cacao impart both bitter and astringent characteristics to chocolate confections. While an increase in these compounds may be desirable from a health perspective, they are generally incongruent with consumer expectations. Traditionally, chocolate products undergo several processing steps (e.g., fermentation and roasting) that decrease polyphenol content, and thus bitterness. The objective of this study was to estimate group rejection thresholds for increased content of cocoa powder produced from under-fermented cocoa beans in a semisweet chocolate-type confection. The group rejection threshold was equivalent to 80.7% of the non-fat cocoa solids coming from the under-fermented cocoa powder. Contrary to expectations, there were no differences in rejection thresholds when participants were grouped based on their self-reported preference for milk or dark chocolate, indicating that these groups react similarly to an increase in high cocoa flavanol containing cocoa powder. PMID:23792967

  13. Tolerance for high flavanol cocoa powder in semisweet chocolate.

    PubMed

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2013-06-21

    Endogenous polyphenolic compounds in cacao impart both bitter and astringent characteristics to chocolate confections. While an increase in these compounds may be desirable from a health perspective, they are generally incongruent with consumer expectations. Traditionally, chocolate products undergo several processing steps (e.g., fermentation and roasting) that decrease polyphenol content, and thus bitterness. The objective of this study was to estimate group rejection thresholds for increased content of cocoa powder produced from under-fermented cocoa beans in a semisweet chocolate-type confection. The group rejection threshold was equivalent to 80.7% of the non-fat cocoa solids coming from the under-fermented cocoa powder. Contrary to expectations, there were no differences in rejection thresholds when participants were grouped based on their self-reported preference for milk or dark chocolate, indicating that these groups react similarly to an increase in high cocoa flavanol containing cocoa powder.

  14. 18O stable isotope labeling, quantitative model experiments, and molecular dynamics simulation studies on the trans-specific degradation of the bitter tasting iso-alpha-acids of beer.

    PubMed

    Intelmann, Daniel; Demmer, Oliver; Desmer, Nina; Hofmann, Thomas

    2009-11-25

    The typical bitterness of fresh beer is well-known to decrease in intensity and to change in quality with increasing age. This phenomenon was recently shown to be caused by the conversion of bitter tasting trans-iso-alpha-acids into lingering and harsh bitter tasting tri- and tetracyclic degradation products such as tricyclocohumol, tricyclocohumene, isotricyclocohumene, tetracyclocohumol, and epitetracyclocohumol. Interestingly, the formation of these compounds was shown to be trans-specific and the corresponding cis-iso-alpha-acids were found to be comparatively stable. Application of 18O stable isotope labeling as well as quantitative model studies combined with LC-MS/MS experiments, followed by computer-based molecular dynamics simulations revealed for the first time a conclusive mechanism explaining the stereospecific transformation of trans-iso-alpha-acids into the tri- and tetracyclic degradation products. This transformation was proposed to be induced by a proton-catalyzed carbon/carbon bond formation between the carbonyl atom C(1') of the isohexenoyl moiety and the alkene carbon C(2'') of the isoprenyl moiety of the trans-iso-alpha-acids.

  15. Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners.

    PubMed

    Roudnitzky, Natacha; Bufe, Bernd; Thalmann, Sophie; Kuhn, Christina; Gunn, Howard C; Xing, Chao; Crider, Bill P; Behrens, Maik; Meyerhof, Wolfgang; Wooding, Stephen P

    2011-09-01

    Bitter taste perception is initiated by TAS2R receptors, which respond to agonists by triggering depolarization of taste bud cells. Mutations in TAS2Rs are known to affect taste phenotypes by altering receptor function. Evidence that TAS2Rs overlap in ligand specificity suggests that they may also contribute joint effects. To explore this aspect of gustation, we examined bitter perception of saccharin and acesulfame K, widely used artificial sweeteners with aversive aftertastes. Both substances are agonists of TAS2R31 and -43, which belong to a five-member subfamily (TAS2R30-46) responsive to a diverse constellation of compounds. We analyzed sequence variation and linkage structure in the ∼140 kb genomic region encoding TAS2R30-46, taste responses to the two sweeteners in subjects, and functional characteristics of receptor alleles. Whole-gene sequences from TAS2R30-46 in 60 Caucasian subjects revealed extensive diversity including 34 missense mutations, two nonsense mutations and high-frequency copy-number variants. Thirty markers, including non-synonymous variants in all five genes, were associated (P< 0.001) with responses to saccharin and acesulfame K. However, linkage disequilibrium (LD) in the region was high (D', r(2) > 0.95). Haplotype analyses revealed that most associations were spurious, arising from LD with variants in TAS2R31. In vitro assays confirmed the functional importance of four TAS2R31 mutations, which had independent effects on receptor response. The existence of high LD spanning functionally distinct TAS2R loci predicts that bitter taste responses to many compounds will be strongly correlated even when they are mediated by different genes. Integrative approaches combining phenotypic, genetic and functional analysis will be essential in dissecting these complex relationships.

  16. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    PubMed

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  17. TAS2R bitter taste receptors regulate thyroid function

    PubMed Central

    Clark, Adam A.; Dotson, Cedrick D.; Elson, Amanda E. T.; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Steinle, Nanette I.; Munger, Steven D.

    2015-01-01

    Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca2+ increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca2+ release in Nthy-Ori 3-1 cells, but not basal Ca2+ levels, in a dose-dependent manner. Ca2+ responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism.—Clark, A. A., Dotson, C. D., Elson, A. E. T., Voigt, A., Boehm, U., Meyerhof, W., Steinle, N. I., Munger, S. D. TAS2R bitter taste receptors regulate thyroid function. PMID:25342133

  18. Characterization of taste-active fractions in red wine combining HPLC fractionation, sensory analysis and ultra performance liquid chromatography coupled with mass spectrometry detection.

    PubMed

    Sáenz-Navajas, María-Pilar; Ferreira, Vicente; Dizy, Marta; Fernández-Zurbano, Purificación

    2010-07-19

    Five Tempranillo wines exhibiting marked differences in taste and/or astringency were selected for the study. In each wine the non-volatile extract was obtained by freeze-drying and further liquid extraction in order to eliminate remaining volatile compounds. This extract was fractionated by semipreparative C18-reverse phase-high performance liquid chromatography (C18-RP-HPLC) into nine fractions which were freeze-dried, reconstituted with water and sensory assessed for taste attributes and astringency by a specifically trained sensory panel. Results have shown that wine bitterness and astringency cannot be easily related to the bitter and astringent character of the HPLC fractions, what can be due to the existence of perceptual and physicochemical interactions. While the bitter character of the bitterest fractions may be attributed to some flavonols (myricetin, quercetin and their glycosides) the development of a sensitive UPLC-MS method to quantify astringent compounds present in wines has made it possible to demonstrate that proanthocyanidins monomers, dimers, trimers and tetramers, both galloylated or non-galloylated are not relevant compounds for the perceived astringency of the fractions, while cis-aconitic acid, and secondarily vainillic, and syringic acids and ethyl syringate, are the most important molecules driving astringency in two of the fractions (F5 and F6). The identity of the chemicals responsible for the astringency of the third fraction could be assigned to some proanthocyanidins (higher than the tetramer) capable to precipitate with ovalbumin. 2010 Elsevier B.V. All rights reserved.

  19. A Drosophila Gustatory Receptor Required for Strychnine Sensation.

    PubMed

    Lee, Youngseok; Moon, Seok Jun; Wang, Yijin; Montell, Craig

    2015-09-01

    Strychnine is a potent, naturally occurring neurotoxin that effectively protects plants from animal pests by deterring feeding behavior. In insects, such as the fruit fly, Drosophila melanogaster, bitter-tasting aversive compounds are detected primarily through a family of gustatory receptors (GRs), which are expressed in gustatory receptor neurons. We previously described multiple GRs that eliminate the behavioral avoidance to all bitter compounds tested, with the exception of strychnine. Here, we report the identity of a strychnine receptor, referred to as GR47a. We generated a mutation in Gr47a and found that it eliminated strychnine repulsion and strychnine-induced action potentials. GR47a was narrowly tuned, as the responses to other avoidance compounds were unaffected in the mutant animals. This analysis supports an emerging model that Drosophila GRs fall broadly into two specificity classes-one class is comprised of core receptors that are broadly required, whereas the other class, which includes GR47a, consists of narrowly tuned receptors that define chemical specificity. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Identification of sensory attributes, instrumental and chemical measurements important for consumer acceptability of grilled lamb Longissimus lumborum.

    PubMed

    Oltra, O R; Farmer, L J; Gordon, A W; Moss, B W; Birnie, J; Devlin, D J; Tolland, E L C; Tollerton, I J; Beattie, A M; Kennedy, J T; Farrell, D

    2015-02-01

    In this study, important eating quality attributes that influence consumer liking for grilled lamb loin have been identified using preference mapping techniques. The eating quality attributes identified as driving the consumer liking of lamb loin steaks were “tenderness”, “sweet flavour”, “meaty aftertaste”, “roast lamb flavour” and “roast lamb aftertaste”. In contrast, the texture attribute “rubbery” and the flavour attributes “bitter flavour” and "bitter aftertaste" had a negative influence on consumer perceptions. Associations were observed between eating quality and a number of instrumental and chemical measurements. Warner Bratzler Shear Force showed an association with “rubbery” texture and a negative association with “tenderness” and consumer liking scores. The compounds, glucose, glucose-6-phosphate, inosine, inosine monophosphate and adenosine monophosphate were associated with the attributes, “sweet flavour”,“meaty aftertaste”, “roast lamb flavour”, “roast lamb aftertaste” and with consumer scores for liking of lamb which is probably caused by the role some of these compounds play as precursors of flavour and as taste compounds.

  1. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  2. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract.

    PubMed

    Schütz, Burkhard; Jurastow, Innokentij; Bader, Sandra; Ringer, Cornelia; von Engelhardt, Jakob; Chubanov, Vladimir; Gudermann, Thomas; Diener, Martin; Kummer, Wolfgang; Krasteva-Christ, Gabriela; Weihe, Eberhard

    2015-01-01

    The mouse gastro-intestinal and biliary tract mucosal epithelia harbor choline acetyltransferase (ChAT)-positive brush cells with taste cell-like traits. With the aid of two transgenic mouse lines that express green fluorescent protein (EGFP) under the control of the ChAT promoter (EGFP (ChAT) ) and by using in situ hybridization and immunohistochemistry we found that EGFP (ChAT) cells were clustered in the epithelium lining the gastric groove. EGFP (ChAT) cells were numerous in the gall bladder and bile duct, and found scattered as solitary cells along the small and large intestine. While all EGFP (ChAT) cells were also ChAT-positive, expression of the high-affinity choline transporter (ChT1) was never detected. Except for the proximal colon, EGFP (ChAT) cells also lacked detectable expression of the vesicular acetylcholine transporter (VAChT). EGFP (ChAT) cells were found to be separate from enteroendocrine cells, however they were all immunoreactive for cytokeratin 18 (CK18), transient receptor potential melastatin-like subtype 5 channel (TRPM5), and for cyclooxygenases 1 (COX1) and 2 (COX2). The ex vivo stimulation of colonic EGFP (ChAT) cells with the bitter substance denatonium resulted in a strong increase in intracellular calcium, while in other epithelial cells such an increase was significantly weaker and also timely delayed. Subsequent stimulation with cycloheximide was ineffective in both cell populations. Given their chemical coding and chemosensory properties, EGFP (ChAT) brush cells thus may have integrative functions and participate in induction of protective reflexes and inflammatory events by utilizing ACh and prostaglandins for paracrine signaling.

  3. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor.

    PubMed

    Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya

    2017-05-01

    The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.

  4. Physiological effects following administration of Citrus aurantium for 28 days in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Deborah K., E-mail: deborah.hansen@fda.hhs.gov; George, Nysia I.; White, Gene E.

    Background: Since ephedra-containing dietary supplements were banned from the US market, manufacturers changed their formulations by eliminating ephedra and replacing with other botanicals, including Citrus aurantium, or bitter orange. Bitter orange contains, among other compounds, synephrine, a chemical that is chemically similar to ephedrine. Since ephedrine may have cardiovascular effects, the goal of this study was to investigate the cardiovascular effects of various doses of bitter orange extract and pure synephrine in rats. Method: Female Sprague–Dawley rats were dosed daily by gavage for 28 days with synephrine from two different extracts. One extract contained 6% synephrine, and the other extractmore » contained 95% synephrine. Doses were 10 or 50 mg synephrine/kg body weight from each extract. Additionally, caffeine was added to these doses, since many dietary supplements also contain caffeine. Telemetry was utilized to monitor heart rate, blood pressure, body temperature and QT interval in all rats. Results and conclusion: Synephrine, either as the bitter orange extract or as pure synephrine, increased heart rate and blood pressure. Animals treated with 95% synephrine showed minimal effects on heart rate and blood pressure; more significant effects were observed with the bitter orange extract suggesting that other components in the botanical can alter these physiological parameters. The increases in heart rate and blood pressure were more pronounced when caffeine was added. None of the treatments affected uncorrected QT interval in the absence of caffeine.« less

  5. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine.

    PubMed

    Kaji, Izumi; Karaki, Shin-ichiro; Fukami, Yasuyuki; Terasaki, Masaki; Kuwahara, Atsukazu

    2009-05-01

    Taste transduction molecules, such as Galpha(gust), and taste receptor families for bitter [taste receptor type 2 (T2R)], sweet, and umami, have previously been identified in taste buds and the gastrointestinal (GI) tract; however, their physiological functions in GI tissues are still unclear. Here, we investigated the physiological function and expression of T2R in human and rat large intestine using various physiological and molecular biological techniques. To study the physiological function of T2R, the effect of a bitter compound, 6-n-propyl-2-thiouracil (6-PTU), on transepithelial ion transport was investigated using the Ussing chamber technique. In mucosal-submucosal preparations, mucosal 6-PTU evoked Cl(-) and HCO(3)(-) secretions in a concentration-dependent manner. In rat middle colon, levels of 6-PTU-evoked anion secretion were higher than in distal colon, but there was no such difference in human large intestine. The response to 6-PTU was greatly reduced by piroxicam, but not by tetrodotoxin. Additionally, prostaglandin E(2) concentration-dependently potentiated the response to 6-PTU. Transcripts of multiple T2Rs (putative 6-PTU receptors) were detected in both human and rat colonic mucosa by RT-PCR. In conclusion, these results suggest that the T2R ligand, 6-PTU, evokes anion secretion, and such response is regulated by prostaglandins. This luminal bitter sensing mechanism may be important for host defense in the GI tract.

  6. The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Mazija, Lorena; Wüst, Alexander; Thum, Andreas S.

    2014-01-01

    The sensation of bitter substances can alert an animal that a specific type of food is harmful and should not be consumed. However, not all bitter compounds are equally toxic and some may even be beneficial in certain contexts. Thus, taste systems in general may have a broader range of functions than just in alerting the animal. In this study we investigate bitter sensing and processing in Drosophila larvae using quinine, a substance perceived by humans as bitter. We show that behavioral choice, feeding, survival, and associative olfactory learning are all directly affected by quinine. On the cellular level, we show that 12 gustatory sensory receptor neurons that express both GR66a and GR33a are required for quinine-dependent choice and feeding behavior. Interestingly, these neurons are not necessary for quinine-dependent survival or associative learning. On the molecular receptor gene level, the GR33a receptor, but not GR66a, is required for quinine-dependent choice behavior. A screen for gustatory sensory receptor neurons that trigger quinine-dependent choice behavior revealed that a single GR97a receptor gene expressing neuron located in the peripheral terminal sense organ is partially necessary and sufficient. For the first time, we show that the elementary chemosensory system of the Drosophila larva can serve as a simple model to understand the neuronal basis of taste information processing on the single cell level with respect to different behavioral outputs. PMID:24478653

  7. Proanthocyanidins and Their Contribution to Sensory Attributes of Black Currant Juices.

    PubMed

    Laaksonen, Oskar A; Salminen, Juha-Pekka; Mäkilä, Leenamaija; Kallio, Heikki P; Yang, Baoru

    2015-06-10

    Black currant juices from five different cultivars were analyzed for composition, content, and mean degree of polymerization (mDP) of proanthocyanidins (PA) by UPLC-MS/MS. Juices contained both procyanidins (PC) and prodelphinidins (PD), but the PC-% varied significantly, from 28 to 82% of the total PA. In addition, high PD-% was related to high mDP and total PA content. Enzyme-assisted processing increased significantly total PA (5-14-fold), PD-% (12-65%), and mDP (1.8-6.2-fold) in the juices of all cultivars. Enzymatic treatment increased the contents of large PAs more than those of small PAs. The contents of PA and mDP were positively associated with the mouth-drying and puckering astringent characteristics. However, the PA content did not contribute to the bitter taste. Juices from the most bitter cultivars had the lowest contents of proanthocyanidins regardless of the processing method. This finding indicates the existence of other bitter compounds in black currants in addition to PA.

  8. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans

    PubMed Central

    Hilliard, Massimo A; Bergamasco, Carmela; Arbucci, Salvatore; Plasterk, Ronald HA; Bazzicalupo, Paolo

    2004-01-01

    An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in this response. Two G protein α subunits GPA-3 and ODR-3, expressed in ASH and in different, nonoverlapping sets of sensory neurons, are necessary for the response to quinine, although the effect of odr-3 can only be appreciated in the absence of gpa-3. We identified and cloned a new gene, qui-1, necessary for quinine and SDS avoidance. qui-1 codes for a novel protein with WD-40 domains and which is expressed in the avoidance sensory neurons ASH and ADL. PMID:14988722

  9. Decoding the Nonvolatile Sensometabolome of Orange Juice ( Citrus sinensis).

    PubMed

    Glabasnia, Anneke; Dunkel, Andreas; Frank, Oliver; Hofmann, Thomas

    2018-03-14

    Activity-guided fractionation in combination with the taste dilution analysis, followed by liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance experiments, led to the identification of 10 polymethoxylated flavones (PMFs), 6 limonoid glucosides, and 2 limonoid aglycones as the key bitterns of orange juice. Quantitative studies and calculation of dose-over-threshold factors, followed by taste re-engineering, demonstrated for the first time 25 sensometabolites to be sufficient to reconstruct the typical taste profile of orange juices and indicated that not a single compound can be considered a suitable marker for juice bitterness. Intriguingly, the taste percept of orange juice seems to be created by a rather complex interplay of limonin, limonoid glucosides, PMFs, organic acids, and sugars. For the first time, sub-threshold concentrations of PMFs were shown to enhance the perceived bitterness of limonoids. Moreover, the influence of sugars on the perceived bitterness of limonoids and PMFs in orange juice relevant concentration ranges was quantitatively elucidated.

  10. Bitter-type toroidal field magnet for zephyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathrath, N.; Keinath, W.; Kobusch, W.

    1981-09-01

    A feasibility study concerning stress computations, design and material technology of a Bitter-type magnet for the ZEPHYR project conducted in West Germany is reported. The big overall dimensions of the magnet (6.50 m diam 2.80 m high), access for diagnostics and neutral injection (16 ports), the possibility of remote handling of activated parts and high forces form the main requirements for design and material. A design with 16 identical modules (coils) was chosen, each coil consisting of 16 Bitter plates, plate housings and one diagnostic/neutral injection wedge. The structural parts are connected by bolts and form the bending stiff structuremore » of the magnet. The most critical area of the magnet is the inner wedge-shaped part of the coils (''throat area'') with extremely high tension, compression and shear stress values, to which temperature effects contribute heavily. Steel-copper compounds are found to be the best Bitter-plate materials. Copper-plating austenitic steel can be done galvanically or by explosive techniques. Cold-worked austenitic steels fulfil the requirements in the throat, in the flat-plate region milder steels can be used. Different plate concepts are being considered. Plasma-sprayed Al/sub 2/O/sub 3//TiO/sub 2/ and reinforced epoxy layers are provided as insulating materials in different magnet areas.« less

  11. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

    PubMed Central

    Hariri, Benjamin M.; Payne, Sakeena J.; Chen, Bei; Mansfield, Corrine; Doghramji, Laurel J.; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Niv, Masha Y.

    2016-01-01

    Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming and swarming motility. Biofilm formation and planktonic growth were also assessed. Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth, and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming. Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how this would affect the use of anthocyanidins as therapeutics. This study emphasized the usefulness of in vitro screening of candidate compounds against multiple parameters of both epithelial and bacterial physiologies to prioritize candidates for in vivo therapeutic testing. PMID:27456596

  12. HS-GC-MS Volatile compounds recovered in freshly pressed and commercial Wonderful pomegranate juices

    USDA-ARS?s Scientific Manuscript database

    Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and ...

  13. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.

    PubMed

    Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2017-03-01

    Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Enhancement of antioxidant effects of naringin after atmospheric pressure dielectric barrier discharge plasma treatment.

    PubMed

    Kim, Tae Hoon; Jang, Soo Jeung; Chung, Hyung-Wook; Kim, Hyun-Joo; Yong, Hae In; Choe, Wonho; Jo, Cheorun

    2015-03-15

    Naringin is the natural chief bitter flavonoid found in Citrus species. Herein, bitter naringin was treated with atmospheric pressure plasma to afford two new converted flavonoids, narinplasmins A (2) and B (3), along with the known compound, 2R-naringin. The structures of the two new naringin derivatives were elucidated on the basis of spectroscopic methods. The antioxidant activity of all isolates was evaluated based on 1,1-diphenyl-2-picrylhydrazyl and peroxynitrite (ONOO(-)) scavenging assays. The new flavanone glycoside 2 containing a methoxyalkyl group exhibited significantly improved antioxidant properties in these assays relative to the parent naringin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Transglycosylation of naringin by Bacillus stearothermophilusMaltogenic amylase to give glycosylated naringin.

    PubMed

    Lee, S J; Kim, J C; Kim, M J; Kitaoka, M; Park, C S; Lee, S Y; Ra, M J; Moon, T W; Robyt, J F; Park, K H

    1999-09-01

    Naringin, a bitter compound in citrus fruits, was transglycosylated by Bacillus stearothermophilus maltogenic amylase reaction with maltotriose to give a series of mono-, di-, and triglycosylnaringins. Glycosylation products of naringin were observed by TLC and HPLC. The major glycosylation product was purified by using a Sephadex LH-20 column. The sturcture was determined by using MALDI-TOF MS, methylation analysis, and (1)H and (13)C NMR. The major transglycosylation product was maltosylnaringin, in which the maltose unit was attached by an alpha-1-->6 glycosidic linkage to the D-glucose moiety of naringin. This product was 250 times more soluble in water and 10 times less bitter than naringin.

  16. A new chemical tool for absinthe producers, quantification of α/β-thujone and the bitter components in Artemisia absinthium.

    PubMed

    Bach, Benoit; Cleroux, Marilyn; Saillen, Mayra; Schönenberger, Patrik; Burgos, Stephane; Ducruet, Julien; Vallat, Armelle

    2016-12-15

    The concentrations of α/β-thujone and the bitter components of Artemisia absinthium were quantified from alcoholic wormwood extracts during four phenological stages of their harvest period. A solid-phase micro-extraction method coupled to gas chromatography-mass spectrometry was used to determine the concentration of the two isomeric forms of thujone. In parallel, the combination of ultra-high pressure liquid chromatography and high resolution mass spectrometry allowed to quantify the compounds absinthin, artemisetin and dihydro-epi-deoxyarteannuin B. This present study aimed at helping absinthe producers to determine the best harvesting period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. HopBase: A unified resource for Humulus genomics

    USDA-ARS?s Scientific Manuscript database

    Hop (Humulus lupulus L. var lupulus) is a plant of worldwide significance, used primarily for its’ bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop has led to additional interest from pharmacy and healthcare industries as well a...

  18. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.

  19. Active taste compounds in juice from oranges symptomatic for Huanglongbing (HLB) citrus greening disease

    USDA-ARS?s Scientific Manuscript database

    Citrus greening disease, also known as Huanglongbing (HLB), compromises the quality of citrus fruit and juice, causing increased bitterness, metallic taste, astringency and a burning mouthfeel. The chemical basis responsible for these changes remains largely unknown other than the roles of the bitte...

  20. Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions.

    PubMed

    Acevedo, Waldo; González-Nilo, Fernando; Agosin, Eduardo

    2016-10-12

    Stevia is one of the sweeteners with the greatest consumer demand because of its natural origin and minimal calorie content. Steviol glycosides (SG) are the main active compounds present in the leaves of Stevia rebaudiana and are responsible for its sweetness. However, recent in vitro studies in HEK 293 cells revealed that SG specifically activate the hT2R4 and hT2R14 bitter taste receptors, triggering this mouth feel. The objective of this study was to characterize the interaction of SG with these two receptors at the molecular level. The results showed that SG have only one site for orthosteric binding to these receptors. The binding free energy (ΔG binding ) between the receptor and SG was negatively correlated with SG bitterness intensity, for both hT2R4 (r = -0.95) and hT2R14 (r = -0.89). We also determined, by steered molecular dynamics simulations, that the force required to extract stevioside from the receptors was greater than that required for rebaudioside A, in accordance with the ΔG values obtained by molecular docking. Finally, we identified the loop responsible for the activation by SG of both receptors. As a whole, these results contribute to a better understanding of the resulting off-flavor perception of these natural sweeteners in foods and beverages, allowing for better prediction, and control, of the resulting bitterness.

  1. Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation

    PubMed Central

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90–90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63–69.71%), β-pinene (0.63–31.49%), γ-terpinene (0.04–9.96%), and p-cymene (0.23–9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81–69.00%), 1,8-cineole (0.01–26.43%), and γ-terpinene (2.53–14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52–86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus. PMID:22645427

  2. The good taste of peptides.

    PubMed

    Temussi, Piero A

    2012-02-01

    The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well-known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  3. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches.

    PubMed

    Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika

    2016-11-01

    Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations.

    PubMed

    Su, Yuan; Li, Diyan; Gaur, Uma; Wang, Yan; Wu, Nan; Chen, Binlong; Xu, Zhongxian; Yin, Huadong; Hu, Yaodong; Zhu, Qing

    2016-09-01

    The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G>C, m.503C>A and m.583A>G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G>A, m.421A>C, m.787C>T, m.832G>T, m.907A>T and m.943G>A). Tajima's D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds.

  5. Bitterness in wine.

    PubMed

    Noble, A C

    1994-12-01

    Bitterness in wine is elicited primarily by flavonoid phenols, which are bitter and astringent, and by ethanol. Monomeric flavonoid phenols are primarily bitter but as the molecular weight increases upon polymerization, astringency increases more rapidly than bitterness. The chiral difference between the two wine flavan-3-ol monomers produces a significant difference in temporal perception of bitterness: (-)-epicatechin is significantly more bitter and had significantly longer duration of bitterness than (+)-catechin. Ethanol enhances bitterness intensity and duration, whereas varying wine pH has little or no effect on perceived bitterness. Whereas PROP status had no significant effect on temporal perception of bitterness or astringency, subjects with low salivary flow rates took longer to reach maximum bitterness and astringency intensity and reported longer persistence of both attributes than high-flow subjects.

  6. The mouthfeel of white wine.

    PubMed

    Gawel, Richard; Smith, Paul A; Cicerale, Sara; Keast, Russell

    2017-07-05

    White wine mouthfeel which encompasses the tactile, chemosensory and taste attributes of perceived viscosity, astringency, hotness and bitterness is increasingly being recognized as an important component of overall white wine quality. This review summarizes the physiological basis for the perception of white wine mouthfeel and the direct and interactive effects of white wine composition, specifically those of low molecular weight phenolic compounds, polysaccharides, pH, ethanol, glycerol, dissolved carbon dioxide, and peptides. Ethyl alcohol concentration and pH play a direct role in determining most aspects of mouthfeel perception, and provide an overall framework on which the other minor wine components can interact to influence white wine mouthfeel. Phenolic compounds broadly impact on the mouthfeel by contributing to its viscosity, astringency, hotness and bitterness. Their breadth of influence likely results from their structural diversity which would allow them to activate multiple sensory mechanisms involved in mouthfeel perception. Conversely, polysaccharides have a small modulating effect on astringency and hotness perception, and glycerol does not affect perceived viscosity within the narrow concentration range found in white wine. Many of the major sensory attributes that contribute to the overall impression of mouthfeel are elicited by more than one class compound suggesting that different physiological mechanisms may be involved in the construct of mouthfeel percepts.

  7. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor.

    PubMed

    Magalhães da Veiga Moreira, Igor; de Figueiredo Vilela, Leonardo; da Cruz Pedroso Miguel, Maria Gabriela; Santos, Cledir; Lima, Nelson; Freitas Schwan, Rosane

    2017-05-09

    Chocolate production suffered a vast impact with the emergence of the "witches' broom" disease in cocoa plants. To recover cocoa production, many disease-resistant hybrid plants have been developed. However, some different cocoa hybrids produce cocoa beans that generate chocolate with variable quality. Fermentation of cocoa beans is a microbiological process that can be applied for the production of chocolate flavor precursors, leading to overcoming the problem of variable chocolate quality. The aim of this work was to use a cocktail of microorganisms as a starter culture on the fermentation of the ripe cocoa pods from PH15 cocoa hybrid, and evaluate its influence on the microbial communities present on the fermentative process on the compounds involved during the fermentation, and to perform the chocolate sensorial characterization. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Bitterness was the dominant taste found in non-inoculated chocolate, while chocolate made with inoculated beans showed bitter, sweet, and cocoa tastes. 2,3-Butanediol and 2,3-dimethylpyrazine were considered as volatile compounds making the difference on the flavor of both chocolates. Saccharomyces cerevisiae UFLA CCMA 0200, Lactobacillus plantarum CCMA 0238, and Acetobacter pasteurianus CCMA 0241 are proposed as starter cultures for cocoa fermentation.

  8. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Research progress of the bitter taste receptor genes in primates.

    PubMed

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  10. Rejection thresholds in solid chocolate-flavored compound coating.

    PubMed

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers compared to melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate, a bitter and generally recognized as safe additive. Paired preference tests (blank compared to spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between 2 self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (P= 0.01). Conversely, eating style did not affect group rejection thresholds (P= 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (P= 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. This work makes use of the rejection threshold method to study market segmentation, extending its use to solid foods. We believe this method has broad applicability to the sensory specialist and product developer by providing a process to identify how much is too much when formulating products, even in the context of specific market segments. We illustrate this in solid chocolate-flavored compound coating, identifying substantial differences in the amount of acceptable bitterness in those who prefer milk chocolate compared to dark chocolate. This method provides a direct means to answer the question of how much is too much. © 2012 Institute of Food Technologists®

  11. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

    PubMed

    Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2016-02-01

    Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.

  12. Astringent compounds suppress taste responses in gerbil.

    PubMed

    Schiffman, S S; Suggs, M S; Simon, S A

    1992-11-06

    Astringent tastes are generally considered those that induce long-lasting puckering and drying sensations on the tongue and membranes of the oral cavity. Electrophysiological recordings were made here from the whole chorda tympani nerve in gerbil to understand the interactive effect of astringent-tasting molecules with a broad spectrum of tastants including mono- and divalent salts, bitter compounds, acids, and sweeteners. The astringent tasting compounds were tannic acid (24 mM at pH's 2.9 and 5.5), aluminum ammonium sulfate (30 mM), aluminum potassium sulfate (10 mM) and gallic acid (30 mM). Hydrochloric acid (1 mM, pH 2.9) was also tested to control for acidity, since aqueous solutions of astringent-tasting compounds are acidic. Adaptation of the tongue to tannic acid (24 mM) at both pH 2.9 and 5.5 markedly inhibited responses elicited by salts, acids, sweeteners, and bitter-tasting compounds. The degree of the inhibition at these two pH values is about the same which suggests that tannic acid itself (as opposed to acidity) may produce this inhibition. Chorda tympani responses to sweeteners were completely suppressed by tannic acid; responses to KCl, NH4Cl, and urea were the least suppressed. The aluminum salts also inhibited the chorda tympani responses to all stimuli tested. Gallic acid, which is weakly astringent, had minimal effects on the chorda tympani responses to the test compounds. These data suggest that both tannic acid and the aluminum salts inhibit a variety of transport pathways and receptors in taste cells for a broad spectrum of tastants. The inhibition of some of these pathways may contribute to the astringent taste sensation.

  13. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo

    PubMed Central

    Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M.

    2017-01-01

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema. PMID:28829355

  14. Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric Cancer Risk in Koreans.

    PubMed

    Choi, Jeong-Hwa; Lee, Jeonghee; Choi, Il Ju; Kim, Young-Woo; Ryu, Keun Won; Kim, Jeongseon

    2016-06-01

    The human TAS2R38 gene encodes a bitter taste receptor that regulates the bitterness perception and differentiation of ingested nutritional/poisonous compounds in the oral cavity and gastrointestinal tract. TAS2R38 gene variants are associated with alterations in individual sensitivity to bitter taste and food intake; hence, these genetic variants may modify the risk for diet-related diseases, including cancer. However, little is known about the association between TAS2R38 polymorphisms and gastric cancer susceptibility. The present case-control study examined the influence of TAS2R38 polymorphisms on food intake and determined whether they predict gastric cancer risk in Koreans. A total of 1,580 subjects, including 449 gastric cancer cases, were genotyped for TAS2R38 A49P, V262A, I296V and diplotypes. Dietary data were analysed to determine the total consumption of energy, fibre, vegetables, fruits, sweets, fats, alcohol and cigarettes. TAS2R38 diplotype was not associated with food, alcohol or cigarette consumption, either independent or dependent of gastric cancer phenotype. However, the PAV/AVI diplotype significantly increased gastric cancer risk (adjusted odds ratio: 1.513; 95% confidence interval: 1.148-1.994) independent of dietary intake. Findings suggest that TAS2R38 may be associated with the risk for gastric cancer in Koreans, although the TAS2R38 diplotype did not influence dietary intake.

  15. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M

    2017-08-22

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.

  16. Bitter taste masking of enzyme-treated soy protein in water and bread.

    PubMed

    Bertelsen, Anne S; Laursen, Anne; Knudsen, Tine A; Møller, Stine; Kidmose, Ulla

    2018-08-01

    Bioactive protein hydrolysates are often very bitter. To overcome this challenge, xylitol, sucrose, α-cyclodextrin, maltodextrin and combinations of these were tested systematically as bitter-masking agents of an enzyme-treated soy protein in an aqueous model and in a bread model. Sensory descriptive analysis was used to reveal the bitter-masking effect of the taste-masking blends on the enzyme-treated soy protein. In water, xylitol, sucrose and maltodextrin reduced bitterness significantly, whereas α-cyclodextrin did not. No significant difference was observed in bitterness reduction between xylitol and sucrose. Both reduced bitterness significantly more than maltodextrin. No interactions between the taste-masking agents affecting bitterness reduction were found. Clearer bitter-masking effects were seen in the aqueous model compared with the bread model. The bitter-masking effects of α-cyclodextrin and maltodextrin were similar between water and bread. The effect of xylitol and sucrose on bitterness suppression varied between the systems. In water, bitterness was negatively correlated with sweetness. In bread, bitterness was negatively correlated with freshness, and maltodextrin significantly reduced bitterness of the enzyme-treated soy protein and increased freshness. Bitter-masking effects were generally more discernible in the aqueous model compared with the bread model. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Food Liking Enhances the Plasma Response of 2-Arachidonoylglycerol and of Pancreatic Polypeptide upon Modified Sham Feeding in Humans.

    PubMed

    Mennella, Ilario; Ferracane, Rosalia; Zucco, Francine; Fogliano, Vincenzo; Vitaglione, Paola

    2015-09-01

    Food palatability increases food intake and may lead to overeating. The mechanisms behind this observation are still largely unknown. The aims of this study were the following: 1) to elucidate the plasma responses of endocannabinoids, N-acylethanolamines, and gastrointestinal peptides to a palatable (sweet), unpalatable (bitter), and sensory-acceptable (tasteless control) food, and 2) to verify whether some of these bioactive compounds can serve as plasma biomarkers of food liking in humans. Three puddings providing 60 kcal (35% from proteins, 62% from carbohydrates, and 3% from fats) but with different taste were developed. Twenty healthy subjects (11 women and 9 men; mean age 28 y and BMI 22.7 kg/m(2)), selected because they liked the puddings in the order sweet > control > bitter, participated in a randomized crossover study based on a modified sham feeding (MSF) protocol. Blood samples at baseline and every 5 min up to 20 min after the MSF were analyzed for gastrointestinal peptides, endocannabinoids, and N-acylethanolamines. Thirty minutes after the MSF, energy intake at an ad libitum breakfast was measured. After the MSF, no response was observed in 7 of 9 gastrointestinal peptides measured. The plasma ghrelin concentration at 20 min after the sweet and bitter puddings was 25% lower than after the control pudding (P = 0.04), and the pancreatic polypeptide response after the sweet pudding was 23% greater than after the bitter pudding (P = 0.02). The plasma response of 2-arachidonoylglycerol after the sweet pudding was 37% and 15% higher than after the bitter (P < 0.001) and control (P = 0.03) puddings, respectively. Trends for greater responses of anandamide (P = 0.06), linoleoylethanolamide (P = 0.07), palmitoylethanolamide (P = 0.06), and oleoylethanolamide (P = 0.09) were found after the sweet pudding than after the bitter pudding. No differences in subsequent energy intake were recorded. The data demonstrated that food palatability influenced some plasma endocannabinoid and N-acylethanolamine concentrations during the cephalic phase response and indicated that 2-arachidonoylglycerol and pancreatic polypeptide can be used as biomarkers of food liking in humans. © 2015 American Society for Nutrition.

  18. Genomic basis of the differences between cider and dessert apple varieties

    PubMed Central

    Leforestier, Diane; Ravon, Elisa; Muranty, Hélène; Cornille, Amandine; Lemaire, Christophe; Giraud, Tatiana; Durel, Charles-Eric; Branca, Antoine

    2015-01-01

    Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds. PMID:26240603

  19. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue.

    PubMed

    Ito, Masanori; Ikehama, Kiyoharu; Yoshida, Koichi; Haraguchi, Tamami; Yoshida, Miyako; Wada, Koichi; Uchida, Takahiro

    2013-01-30

    The study objective was to quantitatively predict a drug's bitterness and estimate bitterness masking efficiency using an electronic tongue (e-Tongue). To verify the predicted bitterness by e-Tongue, actual bitterness scores were determined by human sensory testing. In the first study, bitterness intensities of eight H(1)-antihistamines were assessed by comparing the Euclidean distances between the drug and water. The distances seemed not to represent the drug's bitterness, but to be greatly affected by acidic taste. Two sensors were ultimately selected as best suited to bitterness evaluation, and the data obtained from the two sensors depicted the actual taste map of the eight drugs. A bitterness prediction model was established with actual bitterness scores from human sensory testing. Concerning basic bitter substances, such as H(1)-antihistamines, the predictability of bitterness intensity using e-Tongue was considered to be sufficiently promising. In another study, the bitterness masking efficiency when adding an artificial sweetener was estimated using e-Tongue. Epinastine hydrochloride aqueous solutions containing different levels of acesulfame potassium and aspartame were well discriminated by e-Tongue. The bitterness masking efficiency of epinastine hydrochloride with acesulfame potassium was successfully predicted using e-Tongue by several prediction models employed in the study. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  1. Changes in Volatile and Non-Volatile Flavor Chemicals of “Valencia” Orange Juice over the Harvest Seasons

    PubMed Central

    Bai, Jinhe; Baldwin, Elizabeth A.; McCollum, Greg; Plotto, Anne; Manthey, John A.; Widmer, Wilbur W.; Luzio, Gary; Cameron, Randall

    2016-01-01

    Florida “Valencia” oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy. PMID:28231099

  2. Changes in Volatile and Non-Volatile Flavor Chemicals of "Valencia" Orange Juice over the Harvest Seasons.

    PubMed

    Bai, Jinhe; Baldwin, Elizabeth A; McCollum, Greg; Plotto, Anne; Manthey, John A; Widmer, Wilbur W; Luzio, Gary; Cameron, Randall

    2016-01-04

    Florida "Valencia" oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy.

  3. Bitter melon: a panacea for inflammation and cancer

    PubMed Central

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Padhye, Subhash B.; Anant, Shrikant

    2017-01-01

    Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q–U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents. PMID:26968675

  4. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    PubMed

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  6. Taste Quality Confusions: Influences of Age, Smoking, PTC Taster Status, and other Subject Characteristics.

    PubMed

    Doty, Richard L; Chen, Jonathan H; Overend, Jane

    2017-01-01

    Many persons misidentify the quality of taste stimuli, a phenomenon termed "taste confusion." In this study of 1000 persons, we examined the influences of age, sex, causes of chemosensory disturbances, and genetically determined phenylthiocarbamide (PTC) taster status on taste quality confusions for four tastants (sucrose, citric acid, sodium chloride, caffeine). Overall, sour-bitter confusions were most common (19.3%), followed by bitter-sour (11.4%), salty-bitter (7.3%), salty-sour (7.0%), bitter-salty (3.5%), bitter-sweet (3.4), and sour-salty (2.4%) confusions. Confusions for sweet were <1%. Asymmetries were common (e.g., bitter-sour confusions were less frequent than sour-bitter confusions). Women had fewer salty-bitter confusions than did men (5.7% vs. 11.4%). Overall, PTC tasters had fewer confusions than non-tasters except for salty-bitter confusions. Confusions typically increased monotonically with age. Current smokers exhibited more sour-bitter confusions than never smokers (48.9% vs. 32.2%), whereas past smokers had more bitter-sour confusions than never smokers (23.8% vs. 14.2%). Previous head trauma was associated with higher bitter-salty and salty-bitter confusions relative to those of some other etiologies. This study demonstrates, for the first time, that multiple subject factors influence taste confusions and, along with literature accounts, supports the view that there are both biological and psychological determinants of taste quality confusions.

  7. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.

    PubMed

    Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David

    2017-09-01

    The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype

    PubMed Central

    2013-01-01

    Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306

  9. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    NASA Astrophysics Data System (ADS)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  10. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    USDA-ARS?s Scientific Manuscript database

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  11. Oleuropein in Olive and its Pharmacological Effects

    PubMed Central

    Omar, Syed Haris

    2010-01-01

    Olive from Olea europaea is native to the Mediterranean region and, both the oil and the fruit are some of the main components of the Mediterranean diet. The main active constituents of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolic compounds, hydroxytyrosol and oleuropein, give extra-virgin olive oil its bitter, pungent taste. The present review focuses on recent works that have analyzed the relationship between the major phenolic compound oleuropein and its pharmacological activities including antioxidant, anti-inflammatory, anti-atherogenic, anti-cancer activities, antimicrobial activity, antiviral activity, hypolipidemic and hypoglycemic effect. PMID:21179340

  12. A revision of the “African Non-Spiny” Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae)

    PubMed Central

    Knapp, Sandra; Vorontsova, Maria S.

    2016-01-01

    Abstract The African Non-Spiny (ANS) clade contains 14 species of mostly large canopy lianas or scandent shrubs confined to Madagascar (10) and continental Africa (4, with with one species reaching the southern Arabian peninsula). Members of the clade were previously classified in sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Macronesiotes Bitter and Quadrangulare Bitter, and were throught to be related to a variety of New World groups. The group is an early-branching lineage of non-spiny solanums and characters shared with other vining New World solanums are homoplastic. The 14 species of the group occupy a wide range of habitats, from wet forests in western Africa to savanna and dry forests of southern Madagascar and dune habitats in South Africa. Many members of the group are highly variable morphologically, and habit can vary between shrub and canopy vine in a single locality. We here review the taxonomic history, morphology, potential relationships and ecology of these species; we provide keys for their identification, descriptions, full synonymy (including designations of lectotypes and neotypes) and nomenclatural notes. Illustrations, distribution maps and preliminary conservation assessments are provided for all species. PMID:27489494

  13. Bitter melon: a panacea for inflammation and cancer.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Padhye, Subhash B; Anant, Shrikant

    2016-02-01

    Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.

    PubMed

    Shan, Lei; Wu, Qi; Wang, Le; Zhang, Lei; Wei, Fuwen

    2018-03-01

    Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods

    PubMed Central

    Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu

    2018-01-01

    In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist. PMID:29651416

  16. e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-learning Methods

    NASA Astrophysics Data System (ADS)

    Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu

    2018-03-01

    In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.

  17. TAS2R38 Predisposition to Bitter Taste Associated with Differential Changes in Vegetable Intake in Response to a Community-Based Dietary Intervention

    PubMed Central

    Calancie, Larissa; Keyserling, Thomas C.; Taillie, Lindsey Smith; Robasky, Kimberly; Patterson, Cam; Ammerman, Alice S.; Schisler, Jonathan C.

    2018-01-01

    Although vegetable consumption associates with decreased risk for a variety of diseases, few Americans meet dietary recommendations for vegetable intake. TAS2R38 encodes a taste receptor that confers bitter taste sensing from chemicals found in some vegetables. Common polymorphisms in TAS2R38 lead to coding substitutions that alter receptor function and result in the loss of bitter taste perception. Our study examined whether bitter taste perception TAS2R38 diplotypes associated with vegetable consumption in participants enrolled in either an enhanced or a minimal nutrition counseling intervention. DNA was isolated from the peripheral blood cells of study participants (N = 497) and analyzed for polymorphisms. Vegetable consumption was determined using the Block Fruit and Vegetable screener. We tested for differences in the frequency of vegetable consumption between intervention and genotype groups over time using mixed effects models. Baseline vegetable consumption frequency did not associate with bitter taste diplotypes (P = 0.937), however after six months of the intervention, we observed an interaction between bitter taste diplotypes and time (P = 0.046). Participants in the enhanced intervention increased their vegetable consumption frequency (P = 0.020) and within this intervention group, the bitter non-tasters and intermediate-bitter tasters had the largest increase in vegetable consumption. In contrast, in the minimal intervention group, the bitter tasting participants reported a decrease in vegetable consumption. Bitter-non tasters and intermediate-bitter tasters increased vegetable consumption in either intervention more than those who perceive bitterness. Future precision medicine applications could consider genetic variation in bitter taste perception genes when designing dietary interventions. PMID:29686110

  18. Leptin suppresses sweet taste responses of enteroendocrine STC-1 cells.

    PubMed

    Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-09-22

    Leptin is an important hormone that regulates food intake and energy homeostasis by acting on central and peripheral targets. In the gustatory system, leptin is known to selectively suppress sweet responses by inhibiting the activation of sweet sensitive taste cells. Sweet taste receptor (T1R2+T1R3) is also expressed in gut enteroendocrine cells and contributes to nutrient sensing, hormone release and glucose absorption. Because of the similarities in expression patterns between enteroendocrine and taste receptor cells, we hypothesized that they may also share similar mechanisms used to modify/regulate the sweet responsiveness of these cells by leptin. Here, we used mouse enteroendocrine cell line STC-1 and examined potential effect of leptin on Ca(2+) responses of STC-1 cells to various taste compounds. Ca(2+) responses to sweet compounds in STC-1 cells were suppressed by a rodent T1R3 inhibitor gurmarin, suggesting the involvement of T1R3-dependent receptors in detection of sweet compounds. Responses to sweet substances were suppressed by ⩾1ng/ml leptin without affecting responses to bitter, umami and salty compounds. This effect was inhibited by a leptin antagonist (mutant L39A/D40A/F41A) and by ATP gated K(+) (KATP) channel closer glibenclamide, suggesting that leptin affects sweet taste responses of enteroendocrine cells via activation of leptin receptor and KATP channel expressed in these cells. Moreover, leptin selectively inhibited sweet-induced but not bitter-induced glucagon-like peptide-1 (GLP-1) secretion from STC-1 cells. These results suggest that leptin modulates sweet taste responses of enteroendocrine cells to regulate nutrient sensing, hormone release and glucose absorption in the gut. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Effect of the bitterness of food on muscular activity and masticatory movement.

    PubMed

    Okada, Yamato; Shiga, Hiroshi

    2017-10-01

    The purpose of this study was to clarify the effect of the bitterness of food on muscular activity and masticatory movement. Twenty healthy subjects were asked to chew a non-bitter gummy jelly and a bitter gummy jelly on their habitual chewing side. The masseter muscular activity and the movement of mandibular incisal point were recorded simultaneously. For all cycles excluding the first cycle, parameters representing the muscular activity (total integral value and integral value per cycle) and masticatory movement (path, rhythm, and stability) were calculated and compared between the two types of gummy jellies. The total integral value of masseter muscular activity during the chewing of bitter gummy jelly was significantly smaller than during the chewing of non-bitter gummy jelly, however, no definite trends in the integral value per cycle and the stability of movement were observed. The parameters representing the movement path tended to be small during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. The masticatory width was significantly smaller during the chewing of bitter gummy jelly. The parameters representing the rhythm of movement were significantly longer during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. From these results it was suggested that the bitterness of food does not affect the integral value per cycle or the stability of the masticatory movement, but it does affect the movement path and rhythm, with narrowing of the path and slowing of the rhythm. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Screening of Antioxidant Activity of Gentian Lutea Root and Its Application in Oil-in-Water Emulsions.

    PubMed

    Azman, Nurul Aini Mohd; Segovia, Francisco; Martínez-Farré, Xavier; Gil, Emilio; Almajano, María Pilar

    2014-06-19

    Gentiana Lutea root (G. Lutea) is a medicinal herb, traditionally used as a bitter tonic in gastrointestinal ailments for improving the digestive system. The active principles of G. Lutea were found to be secoiridoid bitter compounds as well as many other active compounds causing the pharmacological effects. No study to date has yet determined the potential of G. Lutea antioxidant activity on lipid oxidation. Thus, the aim of this study was to evaluate the effects of an extract of G. Lutea on lipid oxidation during storage of an emulsion. G. Lutea extracts showed excellent antioxidant activity measured by DPPH scavenging assay and Trolox equivalent antioxidant capacity (TEAC) assays. An amount of 0.5% w/w G. Lutea lyophilise was able to inhibit lipid oxidation throughout storage (p < 0.05). A mixture of G. Lutea with 0.1% (w/w) BSA showed a good synergic effect and better antioxidant activity in the emulsion. Quantitative results of HPLC showed that G. Lutea contained secoiridoid-glycosides (gentiopiocroside and sweroside) and post column analysis displayed radical scavenging activity of G. Lutea extract towards the ABTS radical. The results from this study highlight the potential of G. Lutea as a food ingredient in the design of healthier food commodities.

  1. Screening of Antioxidant Activity of Gentian Lutea Root and Its Application in Oil-in-Water Emulsions

    PubMed Central

    Mohd Azman, Nurul Aini; Segovia, Francisco; Martínez-Farré, Xavier; Gil, Emilio; Almajano, María Pilar

    2014-01-01

    Gentiana Lutea root (G. Lutea) is a medicinal herb, traditionally used as a bitter tonic in gastrointestinal ailments for improving the digestive system. The active principles of G. Lutea were found to be secoiridoid bitter compounds as well as many other active compounds causing the pharmacological effects. No study to date has yet determined the potential of G. Lutea antioxidant activity on lipid oxidation. Thus, the aim of this study was to evaluate the effects of an extract of G. Lutea on lipid oxidation during storage of an emulsion. G. Lutea extracts showed excellent antioxidant activity measured by DPPH scavenging assay and Trolox equivalent antioxidant capacity (TEAC) assays. An amount of 0.5% w/w G. Lutea lyophilise was able to inhibit lipid oxidation throughout storage (p < 0.05). A mixture of G. Lutea with 0.1% (w/w) BSA showed a good synergic effect and better antioxidant activity in the emulsion. Quantitative results of HPLC showed that G. Lutea contained secoiridoid-glycosides (gentiopiocroside and sweroside) and post column analysis displayed radical scavenging activity of G. Lutea extract towards the ABTS radical. The results from this study highlight the potential of G. Lutea as a food ingredient in the design of healthier food commodities. PMID:26784881

  2. Bitter melon (Momordica charantia): a review of efficacy and safety.

    PubMed

    Basch, Ethan; Gabardi, Steven; Ulbricht, Catherine

    2003-02-15

    The pharmacology, clinical efficacy, adverse effects, drug interactions, and place in therapy of bitter melon are described. Bitter melon (Momordica charantia) is an alternative therapy that has primarily been used for lowering blood glucose levels in patients with diabetes mellitus. Components of bitter melon extract appear to have structural similarities to animal insulin. Antiviral and antineoplastic activities have also been reported in vitro. Four clinical trials found bitter melon juice, fruit, and dried powder to have a moderate hypoglycemic effect. These studies were small and were not randomized or double-blind, however. Reported adverse effects of bitter melon include hypoglycemic coma and convulsions in children, reduced fertility in mice, a favism-like syndrome, increases in gamma-glutamyltransferase and alkaline phosphatase levels in animals, and headaches. Bitter melon may have additive effects when taken with other glucose-lowering agents. Adequately powered, randomized, placebo-controlled trials are needed to properly assess safety and efficacy before bitter melon can be routinely recommended. Bitter melon may have hypoglycemic effects, but data are not sufficient to recommend its use in the absence of careful supervision and monitoring.

  3. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy

    PubMed Central

    Raina, Komal; Kumar, Dileep; Agarwal, Rajesh

    2016-01-01

    Recently, there is a paradigm shift that the whole food-derived components are not ‘idle bystanders’ but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is ‘bitter melon’ (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon effects on metabolism enzymes and drug transporters. This has important implications, given that a large proportion of individuals, taking bitter melon based supplements/phytochemical extracts/food based home-remedies, are also likely to be taking conventional therapeutic drugs at the same time. Accordingly, the comprehensively reviewed information here could be prudently translated to the clinical implications associated with any potential concerns regarding bitter melon consumption by cancer patients. PMID:27452666

  4. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy.

    PubMed

    Raina, Komal; Kumar, Dileep; Agarwal, Rajesh

    2016-10-01

    Recently, there is a paradigm shift that the whole food-derived components are not 'idle bystanders' but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is 'bitter melon' (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon effects on metabolism enzymes and drug transporters. This has important implications, given that a large proportion of individuals, taking bitter melon based supplements/phytochemical extracts/food based home-remedies, are also likely to be taking conventional therapeutic drugs at the same time. Accordingly, the comprehensively reviewed information here could be prudently translated to the clinical implications associated with any potential concerns regarding bitter melon consumption by cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila.

    PubMed

    Hiroi, Makoto; Meunier, Nicolas; Marion-Poll, Frédéric; Tanimura, Teiichi

    2004-12-01

    In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. copyright (c) 2004 Wiley Periodicals, Inc.

  6. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  7. The human sweet tooth.

    PubMed

    Reed, Danielle R; McDaniel, Amanda H

    2006-06-15

    Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries.

  8. Using milk fat to reduce the irritation and bitter taste of ibuprofen

    PubMed Central

    Bennett, Samantha M.; Zhou, Lisa; Hayes, John E.

    2012-01-01

    Bitterness and irritation elicited by pharmaceutically active molecules remain problematic for pediatric medications, fortified foods and dietary supplements. Few effective methods exist for reducing these unpalatable sensations, negatively impacting medication compliance and intake of beneficial phytonutrients. A physicochemical approach to masking these sensations may be the most successful approach for generalizability to a wide range of structurally and functionally unique compounds. Here, solutions of the non-steroidal anti- inflammatory drug, ibuprofen, were prepared in milk products with varying fat content. Our hypothesis, based on other reports of similar phenomena, was that increasing the fat content would cause ibuprofen to selectively partition into the fat phase, thereby reducing interaction with sensory receptors and decreasing adversive sensations. Quantification of the aqueous concentration of ibuprofen was performed using an isocratic HPLC method coupled with an external standard curve. Sensory testing showed a modest but significant decrease (~20%) in irritation ratings between the skim milk (0% fat) and the half-and-half (11% fat) samples, indicating that increased fat may contribute to a reduced sensory response. Bitterness was not reduced, remaining constant over all fat levels. The HPLC results indicate a constant amount of ibuprofen remained in the aqueous phase regardless of fat level, so a simple partitioning hypothesis cannot explain the reduced irritancy ratings. Association of ionized ibuprofen with continuous phase solutes such as unabsorbed protein should be explored in future work. PMID:23527314

  9. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  10. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): A vegetable commonly used for diabetes management

    PubMed Central

    2011-01-01

    Background Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. Momordica charantia, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies. Methods A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC) before and after receiving health information were analyzed by Chi-square (χ2) analyses. Results Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC. Conclusions This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results. PMID:21794176

  11. Cucurbit powdery mildew-resistant bitter gourd breeding lines reveal four races of Podosphaera xanthii in Asia

    USDA-ARS?s Scientific Manuscript database

    Bitter gourd (Momordica charantia L.) is a commercially and nutritionally important market vegetable in Asia cultivated mainly by smallholder farmers. Cucurbit powdery mildew (CPM) caused by Podosphaera xanthii (Px) is a nearly ubiquitous and serious fungal disease of bitter gourd. Five bitter gourd...

  12. Rejection Thresholds in Solid Chocolate-Flavored Compound Coating

    PubMed Central

    Harwood, Meriel L.; Ziegler, Gregory R.; Hayes, John E.

    2012-01-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers versus melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate (SOA), a bitter GRAS additive. Paired preference tests (blank vs. spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between two self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (p = 0.01). Conversely, eating style did not affect group rejection thresholds (p = 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (p = 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. PMID:22924788

  13. Quinine sensitivity influences the acceptance of sea-buckthorn and grapefruit juices in 9- to 11-year-old children.

    PubMed

    Hartvig, Ditte; Hausner, Helene; Wendin, Karin; Bredie, Wender L P

    2014-03-01

    The acceptance of novel foods by children is related to a number of factors, and differences in taste sensitivity may form some specific challenges. High sensitivity might be a barrier to the acceptance of sour/bitter products by children. This study investigated the effect of sensitivity to bitter, sour, sweet, and salty tastes on the acceptance of Nordic juices in 9- to 11-year-old children. A total of 328 children were subjected to two taste sensitivity tests for quinine, citric acid, sucrose, and NaCl. Their acceptance of six juices (carrot, rosehip, sea-buckthorn, lingonberry, grapefruit, and aronia) was measured. Bitter sensitivity was found to be significantly correlated to the intake of the sweet sea-buckthorn and lingonberry juices; the most bitter-sensitive children exhibited the highest intake of these juices. The opposite relationship was found for bitter sensitivity and the intake of the bitter grapefruit juice. Sour, sweet, and salt sensitivities did not affect the intake of any of the juices. Liking scores were not affected by sensitivity. In conclusion, bitter sensitivity appears to influence food intake in children to a greater extent than sour, sweet, or salt sensitivity. Bitter-sensitive children exhibited a reduced intake of grapefruit juice and a higher intake of sucrose-sweetened juices. Thus, bitter sensitivity might be a challenge in the acceptance of certain bitter foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  15. Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31

    PubMed Central

    2013-01-01

    Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216

  16. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  17. Effect of flavonols on wine astringency and their interaction with human saliva.

    PubMed

    Ferrer-Gallego, Raúl; Brás, Natércia F; García-Estévez, Ignacio; Mateus, Nuno; Rivas-Gonzalo, Julián C; de Freitas, Victor; Escribano-Bailón, M Teresa

    2016-10-15

    The addition of external phenolic compounds to wines in order to improve their sensory quality is an established winemaking practice. This study was aimed at evaluating the effect of the addition of quercetin 3-O-glucoside on the astringency and bitterness of wines. Sensory results showed that the addition of this flavonol to wines results in an increase in astringency and bitterness. Additionally, flavonol-human salivary protein interactions were studied using fluorescence spectroscopy, dynamic light scattering and molecular dynamic simulations (MD). The apparent Stern-Volmer (KsvApp) and the apparent bimolecular quenching constants (kqApp) were calculated from fluorescence spectra. The KsvApp was 12620±390M(-1), and the apparent biomolecular constant was 3.94×10(12)M(-1)s(-1), which suggests that a complex was formed between the human salivary proteins and quercetin 3-O-glucoside. MD simulations showed that the quercetin 3-O-glucoside molecules have the ability to bind to the IB937 model peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Taste Receptors Mediate Sinonasal Immunity and Respiratory Disease

    PubMed Central

    Douglas, Jennifer E.; Cohen, Noam A.

    2017-01-01

    The bitter taste receptor T2R38 has been shown to play a role in the pathogenesis of chronic rhinosinusitis (CRS), where the receptor functions to enhance upper respiratory innate immunity through a triad of beneficial immune responses. Individuals with a functional version of T2R38 are tasters for the bitter compound phenylthiocarbamide (PTC) and exhibit an anti-microbial response in the upper airway to certain invading pathogens, while those individuals with a non-functional version of the receptor are PTC non-tasters and lack this beneficial response. The clinical ramifications are significant, with the non-taster genotype being an independent risk factor for CRS requiring surgery, poor quality-of-life (QOL) improvements post-operatively, and decreased rhinologic QOL in patients with cystic fibrosis. Furthermore, indirect evidence suggests that non-tasters also have a larger burden of biofilm formation. This new data may influence the clinical management of patients with infectious conditions affecting the upper respiratory tract and possibly at other mucosal sites throughout the body. PMID:28218655

  19. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements.

    PubMed

    Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin

    2014-05-15

    A commercial electronic tongue was used to discriminate Korean rice wines (makgeolli) brewed from nine cultivars of rice with different amino acid and fatty acid compositions. The E-tongue was applied to establish prediction models with sensory evaluation or LC-MS/MS by partial least squares regression (PLSR). All makgeollis were classified into three groups by principal components analysis, and the separation pattern was affected by rice qualities and yeast fermentation. Makgeolli taste changed from the complicated comprising sweetness, saltiness, and umami to the uncomplicated, such as bitterness and then, sourness, with a decrease of amino acids and fatty acids in the rice. The quantitative correlation between E-tongue and sensory scores or LC-MS/MS by PLSR demonstrated that E-tongue could well predict most of the sensory attributes with relatively acceptable r(2), except for bitterness, but could not predict most of the chemical compounds responsible for taste attributes, except for ribose, lactate, succinate, and tryptophan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols.

    PubMed

    Serrano, Joan; Casanova-Martí, Àngela; Depoortere, Inge; Blay, Maria Teresa; Terra, Ximena; Pinent, Montserrat; Ardévol, Anna

    2016-12-01

    Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder.

    PubMed

    Ishizaka, Toshihiko; Okada, Sachie; Takemoto, Eri; Tokuyama, Emi; Tsuji, Eriko; Mukai, Junji; Uchida, Takahiro

    2007-10-01

    The aim of the present study was to identify a medicine which strongly enhanced the bitterness of clarithromycin dry syrup (CAMD) when administered concomitantly and to develop a method to suppress this enhanced bitterness. The bitterness enhancement was evaluated not only by gustatory sensation tests but also using pH and taste sensor measurements of the mixed sample. A remarkable bitterness enhancement was found when CAMD was mixed with the acidic powder L-carbocysteine. The acidic pH (pH 3.40) of the suspension made from these two preparations, seemed to be due to enhanced release of clarithromycin caused by the dissolution of the alkaline polymer film-coating. Several methods for preventing this bitterness enhancement were investigated. Neither increasing the volume of water taken with the mixture, nor changing the ratio of CAMD:L-carbocysteine in the mixture, were effective in reducing the bitterness intensity of the CAMD/L-carbocysteine mixture. The best way to achieve taste masking was to first administer CAMD mixed with chocolate jelly, which has a neutral pH, followed by the L-carbocysteine suspension. Similar results were obtained for the bitterness suppression of azithromycin fine granules with L-carbocysteine. The chocolate jelly will be useful for taste masking of bitter macrolide drug formulations, when they need to be administered together with acidic drug formulations.

  2. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.

  3. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    PubMed

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values (<26.0%) comparable to that of intact NaCas (13.8 ± 2.0%, P > 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  5. The Taste of Caffeine

    PubMed Central

    Tordoff, Michael G.

    2017-01-01

    Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093

  6. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    PubMed

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  7. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    PubMed

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  8. Juice blends--a way of utilization of under-utilized fruits, vegetables, and spices: a review.

    PubMed

    Bhardwaj, Raju Lal; Pandey, Shruti

    2011-07-01

    The post-harvest shelf life of maximum of fruits and vegetables is very limited due to their perishable nature. In India more then 20-25 percent of fruits and vegetables are spoiled before utilization. Despite being the world's second largest producer of fruits and vegetables, in India only 1.5 percent of the total fruits and vegetables produced are processed. Maximum amounts of fruit and vegetable juices turn bitter after extraction due to conversion of chemical compounds. In spite of being under utilized, the utilization of highly nutritive fruits and vegetables is very limited due to high acidity, astringency, bitterness, and some other factors. While improving flavor, palatability, and nutritive and medicinal value of various fruit juices such as aonla, mango, papaya, pineapple, citrus, ber, pear, apple, watermelon, and vegetables including bottle gourd, carrot, beet root, bitter gourd, medicinal plants like aloe vera and spices can also be used for juice blending. All these natural products are valued very highly for their refreshing juice, nutritional value, pleasant flavor, and medicinal properties. Fruits and vegetables are also a rich source of sugars, vitamins, and minerals. However, some fruits and vegetables have an off flavor and bitterness although they are an excellent source of vitamins, enzymes, and minerals. Therefore, blending of two or more fruit and vegetable juices with spices extract for the preparation of nutritive ready-to-serve (RTS), beverages is thought to be a convenient and economic alternative for utilization of these fruits and vegetables. Moreover, one could think of a new product development through blending in the form of a natural health drink, which may also serve as an appetizer. The present review focuses on the blending of fruits, under-utilized fruits, vegetables, medicinal plants, and spices in appropriate proportions for the preparation of natural fruit and vegetable based nutritive beverages.

  9. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance/adherence by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations. PMID:23886820

  10. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences.

    PubMed

    Harwood, Meriel L; Loquasto, Joseph R; Roberts, Robert F; Ziegler, Gregory R; Hayes, John E

    2013-08-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become objectionable at high intensities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences

    PubMed Central

    Harwood, Meriel L.; Loquasto, Joseph R.; Roberts, Robert F.; Ziegler, Gregory R.; Hayes, John E.

    2016-01-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become objectionable at high intensities. PMID:23769376

  13. Vegetable Intake in College-Aged Adults Is Explained by Oral Sensory Phenotypes and TAS2R38 Genotype

    PubMed Central

    Hayes, John E.; Davidson, Andrew C.; Kidd, Judith R.; Kidd, Kenneth K.; Bartoshuk, Linda M.

    2010-01-01

    Taste and oral sensations vary in humans. Some of this variation has a genetic basis, and two commonly measured phenotypes are the bitterness of propylthiouracil (PROP) and the number of fungiform papillae on the anterior tongue. While the genetic control of fungiform papilla is unclear, PROP bitterness associates with allelic variation in the taste receptor gene, TAS2R38. The two common alleles are AVI and PAV (proline, alanine, valine, and isoleucine); AVI/AVI homozygotes taste PROP as less bitter than heterozygous or homozygous PAV carriers. In this laboratory-based study, we determined whether taste of a bitter probe (quinine) and vegetable intake varied by taste phenotypes and TAS2R38 genotype in healthy adults (mean age=26 years). Vegetable intake was assessed via two validated, complementary methods: food records (Food Pyramid servings standardized to energy intake) and food frequency questionnaire (general intake question and composite vegetable groups). Quinine bitterness varied with phenotypes but not TAS2R38; quinine was more bitter to those who tasted PROP as more bitter or had more papillae. Nontasters by phenotype or genotype reported greater consumption of vegetables, regardless of type (i.e., the effect generalized to all vegetables and was not restricted to those typically thought of as being bitter). Furthermore, nontasters with more papillae reported greater vegetable consumption than nontasters with fewer papillae, suggesting that when bitterness does not predominate, more papillae enhance vegetable liking. These findings suggest that genetic variation in taste, measured by multiple phenotypes or TAS2R38 genotype, can explain differences in overall consumption of vegetables, and this was not restricted to vegetables that are predominantly bitter. PMID:21157576

  14. Sociodemographic profiles regarding bitter food consumption: cross-sectional evidence from a general French population.

    PubMed

    Andreeva, Valentina A; Martin, Christophe; Issanchou, Sylvie; Hercberg, Serge; Kesse-Guyot, Emmanuelle; Méjean, Caroline

    2013-08-01

    Certain beneficial foods taste bitter (e.g., cruciferous vegetables) and might be aversive to consumers. Here, individual characteristics according to bitter food consumption patterns were assessed. The study included 2327 participants in the SU.VI.MAX antioxidant-based randomized controlled trial (1994-2002). The sample was drawn from the general French population. Dietary data were obtained from a minimum of twelve 24-h dietary records provided during the first 2years of follow-up. Two bitter food consumption scores were computed - one assessing the variety of items consumed (unweighted score) and the other reflecting exposure to bitterness estimated via complementary sensory panel data from the EpiPref project (weighted score). Associations with sociodemographic, health, and lifestyle factors were analyzed with multiple linear regression. Among men, the variety of bitter foods consumed was positively associated with educational level and alcohol intake and inversely associated with physical activity and rural area of residence. Among women, the same outcome was positively associated with alcohol intake and inversely associated with diabetes. In turn, Body Mass Index displayed a significant inverse association with the bitterness-weighted score across sex, whereas educational level was supported only in women. This study adds to the presently scant knowledge about non-genetic determinants or moderators of actual bitter food intake. Future studies should elucidate the impact of diabetes and body size on bitter food intake patterns. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rewiring the taste system.

    PubMed

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  16. Rewiring the Taste System

    PubMed Central

    Lee, Hojoon; Macpherson, Lindsey J.; Parada, Camilo A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2018-01-01

    In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells. PMID:28792937

  17. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions.

    PubMed

    Urasaki, Naoya; Takagi, Hiroki; Natsume, Satoshi; Uemura, Aiko; Taniai, Naoki; Miyagi, Norimichi; Fukushima, Mai; Suzuki, Shouta; Tarora, Kazuhiko; Tamaki, Moritoshi; Sakamoto, Moriaki; Terauchi, Ryohei; Matsumura, Hideo

    2017-02-01

    Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. Effect of Storage on Sensory and Nutritional Quality of Meal, Ready-to- Eat, Individual (MRE-1)

    DTIC Science & Technology

    1993-12-01

    described as bitter, slightly fermented and slightly oxidized. After 24 months, panelists found the chicken ala King to have a dark color, bitter, scorched...flavor and dry, tough texture; Brownies were described as soapy, bitter, and slightly medicinal; Strawberries (A) had a bitter, scorched, fermented ...weeping ODOR: Sweet, apple, slight fermented FLAVOR: Moderately sweet, apple TEXTURE: Smooth, firm gel Your rating and comments will indicate the quality

  19. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion.

    PubMed

    Liszt, Kathrin Ingrid; Eder, Reinhard; Wendelin, Sylvia; Somoza, Veronika

    2015-09-09

    Organic acids of wine, in addition to ethanol, have been identified as stimulants of gastric acid secretion. This study characterized the influence of other wine compounds, particularly phenolic compounds, on proton secretion. Forty wine parameters were determined in four red wines and six white wines, including the contents of organic acids and phenolic compounds. The secretory activity of the wines was determined in a gastric cell culture model (HGT-1 cells) by means of a pH-sensitive fluorescent dye. Red wines stimulated proton secretion more than white wines. Lactic acid and the phenolic compounds syringic acid, catechin, and procyanidin B2 stimulated proton secretion and correlated with the pro-secretory effect of the wines. Addition of the phenolic compounds to the least active white wine sample enhanced its proton secretory effect by 65 ± 21% (p < 0.05). These results indicate that not only malic and lactic acid but also bitter and astringent tasting phenolic compounds in wine contribute to its stimulatory effect on gastric acid secretion.

  20. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    PubMed

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  1. Validation of a paper-disk approach to facilitate the sensory evaluation of bitterness in dairy protein hydrolysates from a newly developed food-grade fractionation system.

    PubMed

    Murray, Niamh M; O'Riordan, Dolores; Jacquier, Jean-Christophe; O'Sullivan, Michael; Cohen, Joshua L; Heymann, Hildegarde; Barile, Daniela; Dallas, David C

    2017-06-01

    Casein-hydrolysates (NaCaH) are desirable functional ingredients, but their bitterness impedes usage in foods. This study sought to validate a paper-disk approach to help evaluate bitterness in NaCaHs and to develop a food-grade approach to separate a NaCaH into distinct fractions, which could be evaluated by a sensory panel. Membrane filtration generated <0.2-μm and <3-kDa permeates. Further fractionation of the <3-kDa permeate by flash-chromatography generated four fractions using ethanol (EtOH) concentrations of 5, 10, 30 and 50%. As some fractions were poorly soluble in water, the fractions were resolubilzed in EtOH and impregnated into paper-disks for sensory evaluation. Bitterness differences observed in the membrane fractions using this sensory evaluation approach reflected those observed for the same fractions presented as a liquid. The flash-chromatography fractions increased in bitterness with an increase in hydrophobicity, except for the 50% EtOH fraction which had little bitterness. Amino acid analysis of the fractions showed enrichment of different essential amino acids in both the bitter and less bitter fractions. The developed food-grade fractionation system, allowed for a simple and reasonably scaled approach to separating a NaCaH, into physicochemically different fractions that could be evaluated by a sensory panel. The method of sensory evaluation used in this study, in which NaCaH samples are impregnated into paper-disks, provided potential solutions for issues such as sample insolubility and limited quantities of sample. As the impregnated paper-disk samples were dehydrated, their long storage life could also be suitable for sensory evaluations distributed by mail for large consumer studies. The research, in this study, allowed for a greater understanding of the physicochemical basis for bitterness in this NaCaH. As some essential amino acids were enriched in the less bitter fractions, selective removal of bitter fractions could allow for the incorporation of the less bitter NaCaH fractions into food products for added nutritional value, without negatively impacting sensory properties. There is potential for this approach to be applied to other food ingredients with undesirable tastes, such as polyphenols.

  2. Validation of a paper-disk approach to facilitate the sensory evaluation of bitterness in dairy protein hydrolysates from a newly developed food-grade fractionation system

    PubMed Central

    Murray, Niamh M.; O'Riordan, Dolores; Jacquier, Jean-Christophe; O'Sullivan, Michael; Cohen, Joshua L.; Heymann, Hildegarde; Barile, Daniela; Dallas, David C.

    2017-01-01

    Casein-hydrolysates (NaCaH) are desirable functional ingredients, but their bitterness impedes usage in foods. This study sought to validate a paper-disk approach to help evaluate bitterness in NaCaHs and to develop a food-grade approach to separate a NaCaH into distinct fractions, which could be evaluated by a sensory panel. Membrane filtration generated <0.2-μm and <3-kDa permeates. Further fractionation of the <3-kDa permeate by flash-chromatography generated four fractions using ethanol (EtOH) concentrations of 5, 10, 30 and 50%. As some fractions were poorly soluble in water, the fractions were resolubilzed in EtOH and impregnated into paper-disks for sensory evaluation. Bitterness differences observed in the membrane fractions using this sensory evaluation approach reflected those observed for the same fractions presented as a liquid. The flash-chromatography fractions increased in bitterness with an increase in hydrophobicity, except for the 50% EtOH fraction which had little bitterness. Amino acid analysis of the fractions showed enrichment of different essential amino acids in both the bitter and less bitter fractions. Practical Applications The developed food-grade fractionation system, allowed for a simple and reasonably scaled approach to separating a NaCaH, into physicochemically different fractions that could be evaluated by a sensory panel. The method of sensory evaluation used in this study, in which NaCaH samples are impregnated into paper-disks, provided potential solutions for issues such as sample insolubility and limited quantities of sample. As the impregnated paper-disk samples were dehydrated, their long storage life could also be suitable for sensory evaluations distributed by mail for large consumer studies. The research, in this study, allowed for a greater understanding of the physicochemical basis for bitterness in this NaCaH. As some essential amino acids were enriched in the less bitter fractions, selective removal of bitter fractions could allow for the incorporation of the less bitter NaCaH fractions into food products for added nutritional value, without negatively impacting sensory properties. There is potential for this approach to be applied to other food ingredients with undesirable tastes, such as polyphenols. PMID:29104365

  3. An Improved Method for Determination of Cyanide Content in Bitter Almond Oil.

    PubMed

    Chen, Jia; Liu, Lei; Li, Mengjun; Yu, Xiuzhu; Zhang, Rui

    2018-01-01

    An improved colorimetric method for determination of cyanide content in bitter almond oil was developed. The optimal determination parameters were as follows: volume ratio of hydrochloric acid to bitter almond oil (v/v), 1.5:1; holding time for hydrolysis, 120 min; and volume ratio of distillation solution to bitter almond oil (v/v), 8:1. Analytical results showed that the relative standard deviations (SDs) of determinations were less than 10%, which satisfies the test requirements. The results of high-performance liquid chromatography and measurements exhibited a significant correlation (R = 0.9888, SD = 0.2015). Therefore, the improved colorimetric method can be used to determine cyanide content in bitter almond oil.

  4. Development of delayed bitterness and effect of harvest date in stored juice from two complex citrus hybrids.

    PubMed

    Raithore, Smita; Dea, Sharon; McCollum, Greg; Manthey, John A; Bai, Jinhe; Leclair, Clotilde; Hijaz, Faraj; Narciso, Jan A; Baldwin, Elizabeth A; Plotto, Anne

    2016-01-30

    Mandarins and mandarin hybrids have excellent flavor and color attributes, making them good candidates for consumption as fresh fruit. When processed into juice, however, they are less palatable, as they develop delayed bitterness when stored for a period of time. In this study the kinetics of delayed bitterness in two citrus mandarin hybrid siblings, 'Ambersweet' and USDA 1-105-106, was explored by sensory and instrumental analyses. In addition to the bitter limonoids, other quality factors (i.e. sugars, acids, pH, soluble solids content (SSC), titratable acidity (TA) and the ratio SSC/TA) were also measured. The two citrus hybrid siblings had different chemical profiles, which were perceived by taste panels. USDA 1-105-106 developed delayed bitterness when the juice was stored for more than 4 h, similar to juice from 'Navel' oranges, but 'Ambersweet' did not. Bitterness in 'Ambersweet' was more affected by harvest maturity, as juice from earlier harvest had lower SSC but higher TA and bitter limonoids. Since juice of USDA 1-105-106 shows delayed bitterness when stored for more than 4 h, this cultivar is not suitable for juice processing. Our finding that siblings can differ in chemical and sensory properties emphasize the importance of post-processing storage studies before releasing cultivars for juice. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14.

    PubMed

    Levit, Anat; Nowak, Stefanie; Peters, Maximilian; Wiener, Ayana; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2014-03-01

    Bitter taste receptors (TAS2Rs) mediate aversive response to toxic food, which is often bitter. These G-protein-coupled receptors are also expressed in extraoral tissues, and emerge as novel targets for therapeutic indications such as asthma and infection. Our goal was to identify ligands of the broadly tuned TAS2R14 among clinical drugs. Molecular properties of known human bitter taste receptor TAS2R14 agonists were incorporated into pharmacophore- and shape-based models and used to computationally predict additional ligands. Predictions were tested by calcium imaging of TAS2R14-transfected HEK293 cells. In vitro testing of the virtual screening predictions resulted in 30-80% success rates, and 15 clinical drugs were found to activate the TAS2R14. hERG potassium channel, which is predominantly expressed in the heart, emerged as a common off-target of bitter drugs. Despite immense chemical diversity of known TAS2R14 ligands, novel ligands and previously unknown polypharmacology of drugs were unraveled by in vitro screening of computational predictions. This enables rational repurposing of traditional and standard drugs for bitter taste signaling modulation for therapeutic indications.

  6. Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L.

    PubMed

    Mustafa, Ahmed M; Caprioli, Giovanni; Ricciutelli, Massimo; Maggi, Filippo; Marín, Rosa; Vittori, Sauro; Sagratini, Gianni

    2015-05-01

    The root of Gentiana lutea L., famous for its bitter properties, is often used in alcoholic bitter beverages, food products and traditional medicine to stimulate the appetite and improve digestion. This study presents a new, fast, and accurate HPLC method using HPLC/ESI-MS and HPLC/DAD for simultaneous analysis of iridoids (loganic acid), secoiridoids (gentiopicroside, sweroside, swertiamarin, amarogentin) and xanthones (isogentisin) in different populations of G.lutea L., cultivated in the Monti Sibillini National Park, obtained wild there, or purchased commercially. Comparison of HPLC/ESI-MS and HPLC/DAD indicated that HPLC/ESI-MS is more sensitive, reliable and selective. Analysis of twenty samples showed that gentiopicroside is the most dominant compound (1.85-3.97%), followed by loganic acid (0.11-1.30%), isogentisin (0.03-0.48%), sweroside (0.05-0.35%), swertiamarin (0.08-0.30%), and amarogentin (0.01-0.07%). The results confirmed the high quality of the G.lutea cultivated in the Monti Sibillini National Park. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene

    PubMed Central

    Ellis, Hillary T.

    2013-01-01

    The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR × NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction. PMID:23859941

  8. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration

    PubMed Central

    Finger, Thomas E.; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T.; Alimohammadi, Hessamedin; Silver, Wayne L.

    2003-01-01

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R “bitter-taste” receptors and α-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates. PMID:12857948

  9. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.

    PubMed

    Finger, Thomas E; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T; Alimohammadi, Hessamedin; Silver, Wayne L

    2003-07-22

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R "bitter-taste" receptors and alpha-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates.

  10. Aquatic ecosystem health and trophic status classification of the Bitter Lakes along the main connecting link between the Red Sea and the Mediterranean.

    PubMed

    El-Serehy, Hamed A; Abdallah, Hala S; Al-Misned, Fahad A; Irshad, Rizwan; Al-Farraj, Saleh A; Almalki, Esam S

    2018-02-01

    The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria's. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315-7376 ind. l -1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll- a measurements of 0.35-0.96 µg l -1 there are more indicative of little algal biomass and lower biological productivity. At 0.76-2.3 µg l -1 , meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13 m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.

  11. Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways.

    PubMed

    Farooqi, Ammad Ahmad; Khalid, Sumbul; Tahir, Fatima; Sabitaliyevich, Uteuliev Yerzhan; Yaylim, Ilhan; Attar, Rukset; Xu, Baojun

    2018-05-10

    Research over decades has progressively explored pharmacological actions of bitter gourd (Momordica charantia). Biologically and pharmacologically active molecules isolated from M. charantia have shown significant anti-cancer activity in cancer cell lines and xenografted mice. In this review spotlight was set on the bioactive compounds isolated from M. charantia that effectively inhibited cancer development and progression via regulation of protein network in cancer cells. We summarize most recent high-quality research work in cancer cell lines and xenografted mice related to tumor suppressive role-play of M. charantia and its bioactive compounds. Although M. charantia mediated health promoting, anti-diabetic, hepatoprotective, anti-inflammatory effects have been extensively investigated, there is insufficient information related to regulation of signaling networks by bioactive molecules obtained from M. charantia in different cancers. M. charantia has been shown to modulate AKT/mTOR/p70S6K signaling, p38MAPK-MAPKAPK-2/HSP-27 pathway, cell cycle regulatory proteins and apoptosis-associated proteins in different cancers. However, still there are visible knowledge gaps related to the drug targets in different cancers because we have not yet developed comprehensive understanding of the M. charantia mediated regulation of signal transduction pathways. To explore these questions, experimental platforms are needed that can prove to be helpful in getting a step closer to personalized medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    PubMed

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.).

    PubMed

    Taniguchi, Yoshimasa; Yamada, Makiko; Taniguchi, Harumi; Matsukura, Yasuko; Shindo, Kazutoshi

    2015-11-25

    The bitter taste of beer originates from resins in hops (Humulus lupulus L.), which are classified into two subtypes (soft and hard). Whereas the nature and reactivity of soft-resin-derived compounds, such as α-, β-, and iso-α-acids, are well studied, there is only a little information on the compounds in hard resin. For this work, hard resin was prepared from stored hops and investigated for its compositional changes in an experimental model of beer aging. The hard resin contained a series of α-acid oxides. Among them, 4'-hydroxyallohumulinones were unstable under beer storage conditions, and their transformation induced primary compositional changes of the hard resin during beer aging. The chemical structures of the products, including novel polycyclic compounds scorpiohumulinols A and B and dicyclohumulinols A and B, were determined by HRMS and NMR analyses. These compounds were proposed to be produced via proton-catalyzed cyclization reactions of 4'-hydroxyallohumulinones. Furthermore, they were more stable than their precursor 4'-hydroxyallohumulinones during prolonged storage periods.

  14. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts.

    PubMed

    Qian, Hongmei; Liu, Tianyu; Deng, Mingdan; Miao, Huiying; Cai, Congxi; Shen, Wangshu; Wang, Qiaomei

    2016-04-01

    The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sweetness prediction of natural compounds.

    PubMed

    Chéron, Jean-Baptiste; Casciuc, Iuri; Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien

    2017-04-15

    Based on the most exhaustive database of sweeteners with known sweetness values, a new quantitative structure-activity relationship model for sweetness prediction has been set up. Analysis of the physico-chemical properties of sweeteners in the database indicates that the structure of most potent sweeteners combines a hydrophobic scaffold functionalized by a limited number of hydrogen bond sites (less than 4 hydrogen bond donors and 10 acceptors), with a moderate molecular weight ranging from 350 to 450g·mol -1 . Prediction of sweetness, bitterness and toxicity properties of the largest database of natural compounds have been performed. In silico screening reveals that the majority of the predicted natural intense sweeteners comprise saponin or stevioside scaffolds. The model highlights that their sweetness potency is comparable to known natural sweeteners. The identified compounds provide a rational basis to initiate the design and chemosensory analysis of new low-calorie sweeteners. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sensory characteristics and volatile profiles of parsley ( Petroselinum crispum [Mill.] Nym.) in correlation to resistance properties against Septoria Blight ( Septoria petroselini ).

    PubMed

    Ulrich, Detlef; Bruchmüller, Tobias; Krüger, Hans; Marthe, Frank

    2011-10-12

    Sixteen different genotypes of parsley, including two cultivars, six populations, and eight inbred lines, were investigated regarding their sensory characteristics in relation to the volatile patterns and resistance to Septoria petroselini . The sensory quality was determined by a combination of profile analysis and preference test, whereas the volatile patterns were analyzed by headspace-SPME-GC of leaf homogenates with subsequent nontargeted data processing to prevent a possible overlooking of volatile compounds. The more resistant genotypes are characterized by several negative sensory characteristics such as bitter, grassy, herbaceous, pungent, chemical, and harsh. In contrast, the contents of some volatile compounds correlate highly and significantly either with resistance (e.g., hexanal and α-copaene) or with susceptibility (e.g., p-menthenol). Some of these compounds with very strong correlation to resistance are still unidentified and are presumed to act as resistance markers.

  17. Functional characterization of the TAS2R38 bitter taste receptor for phenylthiocarbamide in colobine monkeys

    PubMed Central

    Purba, Laurentia Henrieta Permita Sari; Widayati, Kanthi Arum; Tsutsui, Kei; Suzuki-Hashido, Nami; Hayakawa, Takashi; Nila, Sarah; Suryobroto, Bambang

    2017-01-01

    Bitterness perception in mammals is mostly directed at natural toxins that induce innate avoidance behaviours. Bitter taste is mediated by the G protein-coupled receptor TAS2R, which is located in taste cell membranes. One of the best-studied bitter taste receptors is TAS2R38, which recognizes phenylthiocarbamide (PTC). Here we investigate the sensitivities of TAS2R38 receptors to PTC in four species of leaf-eating monkeys (subfamily Colobinae). Compared with macaque monkeys (subfamily Cercopithecinae), colobines have lower sensitivities to PTC in behavioural and in vitro functional analyses. We identified four non-synonymous mutations in colobine TAS2R38 that are responsible for the decreased sensitivity of the TAS2R38 receptor to PTC observed in colobines compared with macaques. These results suggest that tolerance to bitterness in colobines evolved from an ancestor that was sensitive to bitterness as an adaptation to eating leaves. PMID:28123110

  18. Bitterness in Almonds1[C][OA

    PubMed Central

    Sánchez-Pérez, Raquel; Jørgensen, Kirsten; Olsen, Carl Erik; Dicenta, Federico; Møller, Birger Lindberg

    2008-01-01

    Bitterness in almond (Prunus dulcis) is determined by the content of the cyanogenic diglucoside amygdalin. The ability to synthesize and degrade prunasin and amygdalin in the almond kernel was studied throughout the growth season using four different genotypes for bitterness. Liquid chromatography-mass spectrometry analyses showed a specific developmentally dependent accumulation of prunasin in the tegument of the bitter genotype. The prunasin level decreased concomitant with the initiation of amygdalin accumulation in the cotyledons of the bitter genotype. By administration of radiolabeled phenylalanine, the tegument was identified as a specific site of synthesis of prunasin in all four genotypes. A major difference between sweet and bitter genotypes was observed upon staining of thin sections of teguments and cotyledons for β-glucosidase activity using Fast Blue BB salt. In the sweet genotype, the inner epidermis in the tegument facing the nucellus was rich in cytoplasmic and vacuolar localized β-glucosidase activity, whereas in the bitter cultivar, the β-glucosidase activity in this cell layer was low. These combined data show that in the bitter genotype, prunasin synthesized in the tegument is transported into the cotyledon via the transfer cells and converted into amygdalin in the developing almond seed, whereas in the sweet genotype, amygdalin formation is prevented because the prunasin is degraded upon passage of the β-glucosidase-rich cell layer in the inner epidermis of the tegument. The prunasin turnover may offer a buffer supply of ammonia, aspartic acid, and asparagine enabling the plants to balance the supply of nitrogen to the developing cotyledons. PMID:18192442

  19. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.

    PubMed

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao

    2013-12-01

    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  20. Bitter Gourd: Botany, Horticulture, Breeding

    USDA-ARS?s Scientific Manuscript database

    Bitter gourd fruits are a good source of carbohydrates, proteins, vitamins, and minerals and have the highest nutritive value among cucurbits. Moreover, the crude protein content (11.4-20.9 g.kg-1) of bitter gourd fruits is higher than that of tomato and cucumber. This book chapter focuses on the ...

  1. Disgust evoked by strong wormwood bitterness influences the processing of visual food cues in women: An ERP study.

    PubMed

    Schwab, Daniela; Giraldo, Matteo; Spiegl, Benjamin; Schienle, Anne

    2017-01-01

    The perception of intense bitterness is associated with disgust and food rejection. The present cross-modal event-related potential (ERP) study investigated whether a bitter aftertaste is able to influence affective ratings and the neuronal processing of visual food cues. We presented 39 healthy normal-weight women (mean age: 22.5 years) with images depicting high-caloric meat dishes, high-caloric sweets, and low-caloric vegetables after they had either rinsed their mouth with wormwood tea (bitter group; n = 20) or water (control group; n = 19) for 30s. The bitter aftertaste of wormwood enhanced fronto-central early potentials (N100, N200) and reduced P300 amplitudes for all food types (meat, sweets, vegetables). Moreover, meat and sweets elicited higher fronto-central LPPs than vegetables in the water group. This differentiation was absent in the bitter group, which gave lower arousal ratings for the high-caloric food. We found that a minor intervention ('bitter rinse') was sufficient to induce changes in the neuronal processing of food images reflecting increased early attention (N100, N200) as well as reduced affective value (P300, LPP). Future studies should investigate whether this intervention is able to influence eating behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Processing of visual food cues during bitter taste perception in female patients with binge-eating symptoms: A cross-modal ERP study.

    PubMed

    Schienle, Anne; Scharmüller, Wilfried; Schwab, Daniela

    2017-11-01

    In healthy individuals, the perception of an intense bitter taste decreased the reward value of visual food cues, as reflected by the reduction of a specific event-related brain potential (ERP), frontal late positivity. The current cross-modal ERP study investigated responses of female patients with binge-eating symptoms (BES) to this type of visual-gustatory stimulation. Women with BES (n=36) and female control participants (n=38) viewed food images after they rinsed their mouth with either bitter wormwood tea or water. Relative to controls, the patients showed elevated late positivity (LPP: 400-700ms) to the food images in the bitter condition. The LPP source was located in the medial prefrontal cortex. Both groups did not differ in the ratings for the fluids (intensity, bitterness, disgust). This ERP study showed that a bitter taste did not decrease late positivity to visual food cues (reflecting food reward) in women with BES. The atypical bitter responding might be a biological marker of this condition and possibly contributes to overeating. Future studies should additionally record food intake behavior to further investigate this mechanism. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  3. Utilization of a modified special-cubic design and an electronic tongue for bitterness masking formulation optimization.

    PubMed

    Li, Lianli; Naini, Venkatesh; Ahmed, Salah U

    2007-10-01

    A unique modification of simplex design was applied to an electronic tongue (E-Tongue) analysis in bitterness masking formulation optimization. Three formulation variables were evaluated in the simplex design, i.e. concentrations of two taste masking polymers, Amberlite and Carbopol, and pH of the granulating fluid. Response of the design was a bitterness distance measured using an E-Tongue by applying a principle component analysis, which represents taste masking efficiency of the formulation. The smaller the distance, the better the bitterness masking effect. Contour plots and polynomial equations of the bitterness distance response were generated as a function of formulation composition and pH. It was found that interactions between polymer and pH reduced the bitterness of the formulation, attributed to pH-dependent ionization and complexation properties of the ionic polymers, thus keeping the drug out of solution and unavailable to bitterness perception. At pH 4.9 and an Amberlite/Carbopol ratio of 1.4:1 (w/w), the optimal taste masking formulation was achieved and in agreement with human gustatory sensation study results. Therefore, adopting a modified simplex experimental design on response measured using an E-Tongue provided an efficient approach to taste masking formulation optimization using ionic binding polymers. (c) 2007 Wiley-Liss, Inc.

  4. Bitter-sweet processing in larval Drosophila.

    PubMed

    König, Christian; Schleyer, Michael; Leibiger, Judith; El-Keredy, Amira; Gerber, Bertram

    2014-07-01

    "Sweet-" and "bitter-" tasting substances distinctively support attractive and aversive choice behavior, respectively, and therefore are thought to be processed by distinct pathways. Interestingly, electrophysiological recordings in adult Drosophila suggest that bitter and salty tastants, in addition to activating bitter, salt, or bitter/salt sensory neurons, can also inhibit sweet-sensory neurons. However, the behavioral significance of such a potential for combinatorial coding is little understood. Using larval Drosophila as a study case, we find that the preference towards fructose is inhibited when assayed in the background of the bitter tastant quinine. When testing the influence of quinine on the preference to other, equally preferred sweet tastants, we find that these sweet tastants differ in their susceptibility to be inhibited by quinine. Such stimulus specificity argues that the inhibitory effect of quinine is not due to general effects on locomotion or nausea. In turn, not all bitter tastants have the same potency to inhibit sweet preference; notably, their inhibitory potency is not determined by the strength of the avoidance of them. Likewise, equally avoided concentrations of sodium chloride differ in their potency to inhibit sugar preference. Furthermore, Gr33a-Gal4-positive neurons, while being necessary for bitter avoidance, are dispensable for inhibition of the sweet pathway. Thus, interactions across taste modalities are behaviorally significant and, as we discuss, arguably diverse in mechanism. These results suggest that the coding of tastants and the organization of gustatory behavior may be more combinatorial than is generally acknowledged. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets.

    PubMed

    Sotoyama, Mai; Uchida, Shinya; Tanaka, Shimako; Hakamata, Akio; Odagiri, Keiichi; Inui, Naoki; Watanabe, Hiroshi; Namiki, Noriyuki

    2017-01-01

    Orally disintegrating tablets (ODTs) are formulated to disintegrate upon contact with saliva, allowing administration without water. Olopatadine hydrochloride, a second-generation antihistamine, is widely used for treating allergic rhinitis. However, it has a bitter taste; therefore, the development of taste-masked olopatadine ODTs is essential. Some studies have suggested that citric acid could suppress the bitterness of drugs. However, these experiments were performed using solutions, and the taste-masking effect of citric acid on ODTs has not been evaluated using human gustatory sensation tests. Thus, this study evaluated citric acid's taste-masking effect on olopatadine ODTs. Six types of olopatadine ODTs containing 0-10% citric acid were prepared and subjected to gustatory sensation tests that were scored using the visual analog scale. The bitterness and overall palatability of olopatadine ODTs during disintegration in the mouth and after spitting out were evaluated in 11 healthy volunteers (age: 22.8±2.2 years). The hardness of the ODTs was >50 N. Disintegration time and dissolution did not differ among the different ODTs. The results of the gustatory sensation tests suggest that citric acid could suppress the bitterness of olopatadine ODTs in a dose-dependent manner. Olopatadine ODTs with a high content of citric acid (5-10%) showed poorer overall palatability than that of those without citric acid despite the bitterness suppression. ODTs containing 2.5% citric acid, yogurt flavoring, and aspartame were the most suitable formulations since they showed low bitterness and good overall palatability. Thus, citric acid is an effective bitterness-masking option for ODTs.

  6. Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.).

    PubMed

    Dawid, Corinna; Hofmann, Thomas

    2014-02-15

    A sensitive HPLC-MS/MS method was developed enabling the simultaneous quantification of bitter-tasting mono- and bidesmosidic saponins in fresh and processed asparagus (Asparagus officinalis L.). Based on quantitative data and bitter taste recognition thresholds, dose-over-threshold factors were determined for the first time to determine the bitter impact of the individual saponins. Although 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl]-(25R/S)-spirost-5-ene-3β-ol was found based on dose-over-threshold factors to be the predominant bitter saponin in raw asparagus spears, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25R)-22-hydroxyfurost-5-ene-3β,26-diol, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25S)-22-hydroxyfurost-5-ene-3β,26-diol, and (25R)- and (25S)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside were found as key bitter contributors after cooking. Interestingly, the monodesmosidic saponins 5a/b were demonstrated for the first time to be the major contributor to the bitter taste of fresh asparagus spears, while the bidesmosides 1a/b and 2a/b may be considered the primary determinants for the bitter taste of cooked asparagus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The tarsal taste of honey bees: behavioral and electrophysiological analyses

    PubMed Central

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee. PMID:24550801

  8. The tarsal taste of honey bees: behavioral and electrophysiological analyses.

    PubMed

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee.

  9. The bitterness intensity of clarithromycin evaluated by a taste sensor.

    PubMed

    Tanigake, Atsu; Miyanaga, Yohko; Nakamura, Tomoko; Tsuji, Eriko; Matsuyama, Kenji; Kunitomo, Masaru; Uchida, Takahiro

    2003-11-01

    The purpose of this study was to evaluate the ability of a quantitative prediction method using a taste sensor to determine the bitterness of clarithromycin powder suspensions of various concentrations and of a commercial clarithromycin dry syrup product (Clarith dry syrup, Taisho Pharmaceutical Co., Ltd., Tokyo) containing aminoalkyl methacrylate polymer as a taste-masker. The bitterness of the clarithromycin dry syrup product dissolved in various beverages was also evaluated in gustatory sensation tests and using the taste sensor. In the sensor measurements, three variables were used to predict bitterness in single and multiple regression analysis: relative sensor output (R), the change of membrane potential caused by adsorption (CPA), and CPA/R ratio. The CPA values for channel 3 of the sensor predicted well the bitterness of clarithromycin powder suspensions and their filtered solutions. For Clarith dry syrup, the sensor output was small, suggesting that aminoalkyl methacrylate polymer was successful in almost complete masking of the bitter taste of the dry syrup product. When the bitterness intensities of mixtures of 1 g of Clarith dry syrup with 25 ml of water, coffee, tea, green tea, cocoa, milk, and a sports drink were examined, a good correlation was obtained between the results from human taste tests and the predicted values calculated on the basis of multiple regression analysis using CPA data from channel 4, and the CPA/R ratio from channel 3 of the taste sensor (r(2)=0.963, p<0.005). Co-administration of 1 g of Clarith dry syrup with an acidic sports drink was found to be the most bitter using either method.

  10. Evaluation of the palatabilities in 10 different famotidine orally disintegrating tablets by combination of disintegration device and taste sensor.

    PubMed

    Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Uchida, Takahiro

    2015-01-01

    The purpose of this study was to evaluate the palatabilities of the original and nine generic versions of famotidine orally disintegrating tablets (FODTs) by means of disintegration times and bitterness intensities determined using in combination disintegration device and taste sensor comparison of human gustatory sensation tests. The disintegration times were determined using a new disintegration testing equipment for ODTs, the OD-mate and bitterness intensities were determined using the SA501C taste-sensing system. The disintegration time and bitterness of each FODT was evaluated in gustatory sensation tests. There was a good correlation between the disintegration times of 10 FODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of FODTs at 10, 20 and 30 s after starting the disintegration using the OD-mate and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. A combination of the OD-mate and the SA501C was capable of predicting the palatabilities, disintegration properties and bitterness intensity of FODTs.

  11. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    PubMed

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors.

  12. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    PubMed

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  13. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells

    PubMed Central

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors. PMID:28467517

  14. Association Analysis of Bitter Receptor Genes in Five Isolated Populations Identifies a Significant Correlation between TAS2R43 Variants and Coffee Liking

    PubMed Central

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M.; Pistis, Giorgio; d’Adamo, Pio; Amin, Najaf; d’Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C.; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people’s health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics. PMID:24647340

  15. Caffeine in floral nectar enhances a pollinator's memory of reward.

    PubMed

    Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C

    2013-03-08

    Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.

  16. Caffeine in floral nectar enhances a pollinator’s memory of reward

    PubMed Central

    Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C.

    2015-01-01

    Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. PMID:23471406

  17. Chromatographic Evaluation and Characterization of Components of Gentian Root Extract Used as Food Additives.

    PubMed

    Amakura, Yoshiaki; Yoshimura, Morio; Morimoto, Sara; Yoshida, Takashi; Tada, Atsuko; Ito, Yusai; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2016-01-01

    Gentian root extract is used as a bitter food additive in Japan. We investigated the constituents of this extract to acquire the chemical data needed for standardized specifications. Fourteen known compounds were isolated in addition to a mixture of gentisin and isogentisin: anofinic acid, 2-methoxyanofinic acid, furan-2-carboxylic acid, 5-hydroxymethyl-2-furfural, 2,3-dihydroxybenzoic acid, isovitexin, gentiopicroside, loganic acid, sweroside, vanillic acid, gentisin 7-O-primeveroside, isogentisin 3-O-primeveroside, 6'-O-glucosylgentiopicroside, and swertiajaposide D. Moreover, a new compound, loganic acid 7-(2'-hydroxy-3'-O-β-D-glucopyranosyl)benzoate (1), was also isolated. HPLC was used to analyze gentiopicroside and amarogentin, defined as the main constituents of gentian root extract in the List of Existing Food Additives in Japan.

  18. 77 FR 21797 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Ventura, Kern, San Luis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., and visitor and volunteer opportunities. Alternatives for Blue Ridge NWR Under Alternative B...-FF08R00000] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Ventura, Kern, San Luis... Conservation Plan (CCP) and Environmental Assessment (EA) for the Hopper Mountain, Bitter Creek, and Blue Ridge...

  19. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo, Tulare... Wildlife Refuges (NWRs) located in Kern, San Luis Obispo, Tulare, and Ventura counties of California. We... developing a CCP for Hopper Mountain, Bitter Creek, and Blue Ridge NWRs in Kern, San Luis Obispo, Tulare, and...

  20. Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor.

    PubMed

    Miyanaga, Yohko; Inoue, Naoko; Ohnishi, Ayako; Fujisawa, Emi; Yamaguchi, Maki; Uchida, Takahiro

    2003-12-01

    The purpose of the study was to develop a method for the quantitative prediction of the bitterness suppression of elemental diets by various flavors and to predict the optimum composition of such elemental diets for oral administration using a multichannel taste sensor. We examined the effects of varying the volume of water used for dilution and of adding varying quantities of five flavors (pineapple, apple, milky coffee, powdered green tea, and banana) on the bitterness of the elemental diet, Aminoreban EN. Gustatory sensation tests with human volunteers (n = 9) and measurements using the artificial taste sensor were performed on 50 g Aminoreban EN dissolved in various volumes (140), 180, 220, 260, 300, 420, 660, 1140, and 2100 ml) of water, and on 50 g Aminoreban EN dissolved in 180 ml of water with the addition of 3-9 g of various flavors for taste masking. In gustatory sensation tests, the relationship between the logarithmic values of the volumes of water used for dilution and the bitterness intensity scores awarded by the volunteers proved to be linear. The addition of flavors also reduced the bitterness of elemental diets in gustatory sensation tests; the magnitude of this effect was, in decreasing order, apple, pineapple, milky coffee, powdered green tea, and banana. With the artificial taste sensor, large changes of membrane potential in channel 1, caused by adsorption (CPA values, corresponding to a bitter aftertaste), were observed for Aminoreban EN but not for any of the flavors. There was a good correlation between the CPA values in channel 1 and the results of the human gustatory tests, indicating that the taste sensor is capable of evaluating not only the bitterness of Aminoreban EN itself but also the bitterness-suppressing effect of the five flavors, which contained many elements such as organic acids and flavor components, and the effect of dilution (by water) on this bitterness. Using regression analysis of data derived from the taste sensor and from human gustatory data for four representative points, we were able to predict the bitterness of 50 g Aminoreban EN solutions diluted with various volumes of water (14-300 ml), with or without the addition of a selected flavor. Even though this prediction method does not offer perfect simulation of human taste sensations, the artificial taste sensor may be useful for predicting the bitterness intensity of elemental diets containing various flavors in the absence of results from full gustatory sensation tests.

  1. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  2. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences.

    PubMed

    Lesschaeve, Isabelle; Noble, Ann C

    2005-01-01

    Bitterness and astringency are found in a variety of foods, including nuts, fruits, chocolate, tea, wine, and soymilk. In fruits and beverages, the taste of bitterness and the tactile sensation of astringency are elicited primarily by flavanol polymers (proanthocyanidins or condensed tannins). Variations in proanthocyanidin composition, such as polymer size, extent of galloylation, and formation of derivatives, affect both bitterness and astringency. In beverages, other factors also influence these sensations, including the pH and the levels of ethanol, sweetness, and viscosity. Similarly, foods eaten with beverages can influence astringency. For example, eating dark chocolate increases the astringency of red wine more than does milk chocolate. Individuals perceive astringency differently because of variations in salivary flow rates, and preferences for and acceptance of a product may vary tremendously among individuals; decreasing bitterness and/or astringency may not increase preference. Factors influencing bitterness, astringency, and individual preference decisions are discussed.

  3. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives.

    PubMed

    Selli, Serkan; Kelebek, Hasim; Kesen, Songul; Sonmezdag, Ahmet Salih

    2018-02-01

    Olives are processed in different ways depending on consumption habits, which vary between countries. Different de-bittering methods affect the aroma and aroma-active compounds of table olives. This study focused on analyzing the aroma and aroma-active compounds of black dry-salted olives using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) techniques. Thirty-nine volatile compounds which they have a total concentration of 29 459 µg kg -1 , were determined. Aroma extract dilution analysis (AEDA) was used to determine key aroma compounds of table olives. Based on the flavor dilution (FD) factor, the most powerful aroma-active compounds in the sample were methyl-2-methyl butyrate (tropical, sweet; FD: 512) and (Z)-3-hexenol (green, flowery; FD: 256). Phenolic compounds in table olives were also analyzed by LC-DAD-ESI-MS/MS. A total of 20 main phenolic compounds were identified and the highest content of phenolic compound was luteolin-7-glucoside (306 mg kg -1 ), followed by verbascoside (271 mg kg -1 ), oleuropein (231 mg kg -1 ), and hydroxytyrosol (3,4-DHPEA) (221 mg kg -1 ). Alcohols, carboxylic acids, and lactones were qualitatively and quantitatively the dominant volatiles in black dry-salted olives. Results indicated that esters and alcohols were the major aroma-active compounds. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. The Molecular and Cellular Basis of Taste Coding in the Legs of Drosophila

    PubMed Central

    Ling, Frederick; Dahanukar, Anupama; Weiss, Linnea A.; Kwon, Jae Young

    2014-01-01

    To understand the principles of taste coding, it is necessary to understand the functional organization of the taste organs. Although the labellum of the Drosophila melanogaster head has been described in detail, the tarsal segments of the legs, which collectively contain more taste sensilla than the labellum, have received much less attention. We performed a systematic anatomical, physiological, and molecular analysis of the tarsal sensilla of Drosophila. We construct an anatomical map of all five tarsal segments of each female leg. The taste sensilla of the female foreleg are systematically tested with a panel of 40 diverse compounds, yielding a response matrix of ∼500 sensillum–tastant combinations. Six types of sensilla are characterized. One type was tuned remarkably broadly: it responded to 19 of 27 bitter compounds tested, as well as sugars; another type responded to neither. The midleg is similar but distinct from the foreleg. The response specificities of the tarsal sensilla differ from those of the labellum, as do n-dimensional taste spaces constructed for each organ, enhancing the capacity of the fly to encode and respond to gustatory information. We examined the expression patterns of all 68 gustatory receptors (Grs). A total of 28 Gr–GAL4 drivers are expressed in the legs. We constructed a receptor-to-sensillum map of the legs and a receptor-to-neuron map. Fourteen Gr–GAL4 drivers are expressed uniquely in the bitter-sensing neuron of the sensillum that is tuned exceptionally broadly. Integration of the molecular and physiological maps provides insight into the underlying basis of taste coding. PMID:24849350

  5. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content.

    PubMed

    Pasini, Federica; Verardo, Vito; Cerretani, Lorenzo; Caboni, Maria Fiorenza; D'Antuono, Luigi Filippo

    2011-12-01

    Salad crops of the Brassicaceae family, such as Diplotaxis tenuifolia and Eruca vesicaria, commonly referred to as 'rocket salads', have attracted considerable interest as culinary vegetables because of their strong flavour and their content of putative health-promoting compounds. Among such compounds, glucosinolates and phenolics are well-known phytochemicals with an important role also in determining the characteristic flavour of these species. In this study, to identify potentially high-value rocket salads, 37 cultivated types were examined for sensory characters and their relations with glucosinolate and phenolic contents, which ranged from 0.76 to 3.03 g kg(-1) dry weight (DW) and from 4.68 to 31.39 g kg(-1) DW, respectively. The perception of bitter taste was significantly affected by specific glucosinolates, namely progoitrin/epiprogoitrin and dimeric glucosativin. Aroma intensity was negatively related to glucoalyssin content, whereas pungency was significantly related to total glucosinolate content. Kaempferol-3-(2-sinapoyl-glucoside)-4'-glucoside was positively and significantly related to all flavour trait perceptions. Aroma intensity, pungency, crunchiness and juiciness were positively related to typical rocket salad flavour perception through a prominent direct effect. Aroma intensity, pungency, crunchiness and juiciness were strong determinants of overall rocket salad flavour perception. Visual traits also characterised sensory components. Bitterness, usually considered a negative flavour trait, was moderately perceived in the examined material, without negatively affecting typical flavour perception. In the range of the examined material, glucosinolate content did not contrast with typical flavour, demonstrating that good taste and putative health-promoting properties may coexist. Copyright © 2011 Society of Chemical Industry.

  6. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.).

    PubMed

    Poovitha, Sundar; Parani, Madasamy

    2016-07-18

    α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo. The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose. Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.

  7. Active compounds and distinctive sensory features provided by American ginseng (Panax quinquefolius L.) extract in a new functional milk beverage.

    PubMed

    Tárrega, A; Salvador, A; Meyer, M; Feuillère, N; Ibarra, A; Roller, M; Terroba, D; Madera, C; Iglesias, J R; Echevarría, J; Fiszman, S

    2012-08-01

    American ginseng (Panax quinquefolius L.) has recognized neurocognitive effects, and a ginsenoside-rich extract of the root of the plant has been shown to improve cognitive functions in young adults. This study aimed at assessing the chemical and sensory profiles of a UHT-treated, low-lactose functional milk containing American ginseng. Individual ginsenosides in the milk were analyzed by HPLC. Descriptive sensory analysis was performed by a trained panel to quantitatively document sensory changes resulting from the addition of ginseng and the UHT process on flavored and unflavored milks. Consumer acceptance of the product was also investigated. Total ginsenoside content in the UHT-treated milk enriched with the ginseng extract after UHT process treatment was 7.52 mg/100 g of milk, corresponding to a recovery of 67.6% compared with the content in the unprocessed extract. The intake of 150 to 300 mL of this ginseng-enriched milk provides the amount of total ginsenosides (11.5 to 23 mg) necessary to improve cognitive function after its consumption. Both the presence of ginsenosides and their thermal treatment affected some sensory properties of the milk, most notably an increase in bitterness and metallic taste, the appearance of a brownish color, and a decrease in milky flavor. Levels of brown color, bitterness, and metallic taste were highest in the industrially processed ginseng-enriched milk. The bitterness attributable to ginseng extract was reduced by addition of vanilla flavor and sucralose. A consumer exploratory study revealed that a niche of consumers exists who are willing to consume this type of product. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Preliminary evaluation of resistance to powdery mildew (Podosphaera xanthii) in AVRDC collections of bitter gourd (Momordica charantia L.)

    USDA-ARS?s Scientific Manuscript database

    Bitter gourd (Momordica charantia L.) is an important market vegetable in Asia, where it is also used in folk medicine to manage type 2 diabetes. Powdery mildew caused by Podosphaera xanthii is a serious fungal disease of bitter gourd and yield losses of up to 50% have been reported. After observi...

  9. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    USDA-ARS?s Scientific Manuscript database

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  10. First report of phytophthora fruit rot on bitter gourd (Mormodica charantia) and sponge gourd (Luffa cylindrica) caused by phytophthora capsici

    USDA-ARS?s Scientific Manuscript database

    Luffa sponge (smooth gourd) and bitter gourds (bitter melon) are specialty cucurbit vegetables cultivated in the United States (US) on a small scale for select markets. Luffa gourds are also grown for the sponge obtained from dried fruit for personal hygiene and skin care. These two cucurbits prod...

  11. Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia).

    PubMed

    Cuong, Do Manh; Jeon, Jin; Morgan, Abubaker M A; Kim, Changsoo; Kim, Jae Kwang; Lee, Sook Young; Park, Sang Un

    2017-08-23

    Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.

  12. Absence of furanocoumarins in Advantra Z® (Citrus aurantium, bitter orange) extracts.

    PubMed

    Stohs, Sidney J; Miller, Howard; Romano, Felice

    2014-09-01

    Grapefruit (Citrus paradisi) juice is known for its ability to alter drug metabolism through inhibition of the cytochrome P450-3A4 (CYP3A4) system, and result in drug-food interactions that may be life threatening. The primary active ingredients in grapefruit responsible for these effects are the furanocoumarins bergapten, bergamottin, and 6',7'-dihydroxybergamottin (DHB). Bergamottin and DHB appear to be the most important in terms of adverse drug interactions. Furanocoumarins are present in the juices and fruits of other Citrus species including C. aurantium (bitter oranges). Bergapten is the predominant furanocoumarin in bitter orange. Bitter orange extracts are widely used in products associated with weight loss, sports performance, and energy production. Questions have been raised about the potential of bitter orange extracts to cause drug interactions. This study examined the furanocoumarin content of four standardized bitter orange extracts (Advantra Z®) by liquid chromatography-mass spectroscopy. The results indicated that the total furanocoumarin content of each of the four extracts was less than 20 μg/g, amounts insufficient to exert significant effects on the metabolism of susceptible drugs in human subjects at the doses commonly used for these extracts.

  13. Application of dry elixir system to oriental traditional medicine: taste masking of peonjahwan by coated dry elixir.

    PubMed

    Choi, H G; Kim, C K

    2000-02-01

    Peonjahwan, an oriental traditional medicine composed of crude herbal drugs and animal tissues is bitter and poorly water-soluble. To mask the bitterness of peonjahwan and enhance the release of bilirubin, one of the crude active ingredients of peonjahwan, peonja dry elixir (PDE), was prepared using a spray-dryer after extracting the crude materials in ethanol-water solution. Coated peonja dry elixir (CPDE) was then prepared by coating the PDE with Eudragit acrylic resin. Panel assessed bitterness and release test of bilirubin from PDE and CPDE were carried out and compared with peonjahwan alone. PDE was found to have little effect upon the reduction of the bitterness of peonjahwan. However, the bitterness of CPDE was found to reduce to 1/4 of that of peonjahwan due to the encapsulation of crude active ingredients by the dextrin and Eudragit shell (P<0.05). The release rate of bilirubin from PDE and CPDE for 60 min increased about 3.5- and 2.5- fold, respectively, compared to peonjahwan at pH 1.2. It is concluded that CPDE, which masked the bitterness of peonjahwan and enhanced the release of bilirubin, is a preferable delivery system for peonjahwan.

  14. From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds.

    PubMed

    Cheled-Shoval, Shira; Behrens, Maik; Korb, Ayelet; Di Pizio, Antonella; Meyerhof, Wolfgang; Uni, Zehava; Niv, Masha Y

    2017-05-17

    Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.

  15. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    PubMed Central

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  16. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    PubMed

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  17. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    PubMed Central

    Zhong, Huaming; Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhu, Wanchao; Yan, Jiakuo; Li, Haotian

    2017-01-01

    As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs) in reptiles, we identified Tas2r genes in 19 genomes (species) corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death) of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1) gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC) analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles. PMID:28828281

  18. Perceived 6-n-Propylthiouracil (PROP) Bitterness Is Associated with Dietary Sodium Intake in Female Japanese College Students.

    PubMed

    Inoue, Hiroko; Kuwano, Toshiko; Yamakawa-Kobayashi, Kimiko; Waguri, Toshiharu; Nakano, Teruyo; Suzuki, Yuichi

    2017-01-01

    Despite the negative health consequences of a high sodium consumption, humans consume well above the recommended levels. This study examines whether or not the dietary intake of sodium was affected by individual variation of the perceived bitterness of 6-n-propylthiouracil (PROP), and examines the relationship between the perceived bitterness of PROP and the preferred NaCl concentration of broth. Female students (20-22 y old) were recruited from the university community. Genotypes of A49P and I296V polymorphism of the TAS2R38 bitter taste receptor were determined for each subject. Samples containing NaCl, PROP or broth in 5-mL portions were evaluated by sensory testing. The participants completed a food record for each diet. Our results indicate that the individuals perceiving PROP to be more bitter had consumed a greater amount of dietary sodium. In contrast, there was no significant positive correlation between an individual's perceived saltiness and the dietary sodium intake. Those who perceived PROP to be more bitter preferred a broth containing a higher concentration of NaCl. All of these correlations were apparent even after those subjects with TAS2R38 AI/AI homozygotes (PROP non-taster) had been excluded. In conclusion, the results of this study suggest that a factor affecting the bitter rating of PROP other than the AI/AI homozygotes of TAS2R38 contributes to the variation in sodium intake and the preference for salty food.

  19. Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCl, and caffeine.

    PubMed

    Hansen, Jonathan L; Reed, Danielle R; Wright, Margaret J; Martin, Nicholas G; Breslin, Paul A S

    2006-06-01

    The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 +/- 3.1 years), including 62 monozygotic and 131 dizygotic twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22-28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7-22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes.

  20. Heritability and Genetic Covariation of Sensitivity to PROP, SOA, Quinine HCl, and Caffeine

    PubMed Central

    Hansen, Jonathan L.; Reed, Danielle R.; Wright, Margaret J.; Martin, Nicholas G.; Breslin, Paul A. S.

    2006-01-01

    The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 ± 3.1 years), including 62 MZ and 131 DZ twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22–28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7–22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes. PMID:16527870

  1. Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR.

    PubMed

    Farag, Mohamed A; Porzel, Andrea; Wessjohann, Ludger A

    2015-11-10

    Trigonelline (3-carboxy-1-methyl pyridinium) was identified as a relevant bioactivity and taste imparting component in Balanites aegyptiaca fruit, using (1)H NMR of crude extracts without any fractionation or isolation step. The structural integrity of trigonelline was established within the extract matrix via(1)H NMR, (1)H-(1)H COSY, HMQC and HMBC and by comparison with authentic standard. A quantitative (1)H NMR method (qHNMR) was used to determine trigonelline concentrations in the peel and pulp of B. aegyptiaca fruit of 8 and 13mgg(-1), respectively. Trigonelline so far has not been reported from B. aegyptiaca or its genus as it easily escapes LC-MS based detection. Its discovery provides novel insight into the balanite fruits antidiabetic properties as the compound is known for a pronounced hypoglycemic effect. In addition, it is likely to impart the perceptible bitter taste portion to balanites sweet bitter taste. UPLC-MS of the crude extract additionally revealed the fruit flavonoid pattern showing quercetin/isorhamnetin flavonol conjugates in addition to epicatechin, the latter being present at much lower levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults.

    PubMed

    Mattes, Richard D

    2007-05-01

    Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty acids sensitize taste receptor cells to stimulation by taste compounds.

  3. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review.

    PubMed

    Le Floch, Alexandra; Jourdes, Michael; Teissedre, Pierre-Louis

    2015-11-19

    It is widely accepted that alcoholic beverage quality depends on their ageing in premium quality oak wood. From the choice of wood to beverage ageing, through the different steps in cask manufacturing, many factors should be considered. One of the biggest challenge in cooperages is to take into account all these factors. Most of the studies are interested in phenolic compounds, extracted during ageing and especially involved in wine oxidation, colour, and sensory properties such as astringency and bitterness. Oak aroma volatile compounds have also been the subject of numerous studies. These compounds of interest are part of low molecular weight compounds which represent 2%-10% of oak wood composition. However, three polymers constitute the main part of oak wood: cellulose, hemicellulose and lignin. As far as we are aware, few studies concerning the role of these major macromolecules in oak wood have been published previously. This article reviews oak wood polysaccharides and lignin, their potential interest and different assays used to determine their content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evolution of Taste Compounds of Dezhou-Braised Chicken During Cooking Evaluated by Chemical Analysis and an Electronic Tongue System.

    PubMed

    Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian

    2017-05-01

    This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.

  5. Development of tf coil support concepts by design methodology in the case of a Bitter-type magnet. [Bitter-type magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brossmann, U.B.

    1981-01-01

    The application of the methodological design is demonstrated for the development of support concepts in the case of a Bitter-type magnet designed for a compact tokamak experimentat aiming at ignition of a DT plasma. With this methodology all boundary conditions and design criteria are more easily satisfied in a technical and economical way.

  6. Identification of functional bitter taste receptors and their antagonist in chickens.

    PubMed

    Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji

    2017-01-22

    Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods.

    PubMed

    González-Centeno, M R; Chira, K; Teissedre, P-L

    2016-11-01

    Ellagitannins and aromatic compounds evolution in Cabernet Sauvignon wines macerated in oak barrels for a year was studied. Identical barrels with different toastings (medium toasting, medium toasting with watering, Noisette) were used in French, Italian and USA cellars. Ellagitannins increased by 84-96% with aging time, as did woody volatiles, by 86-91% in French wines and 23-35% in Italian wines, while fruity aroma compounds declined by 50-57% in the French and Italian wines over a 12-months period. Nevertheless, other behaviors and different kinetics rates for these compounds were observed depending on barrel toasting, wine matrix and their interactions. Perceived overall woody intensity was closely related to trans-whiskey lactone, guaiacol and vanillin, whereas astringency and bitterness were significantly linked to ellagitannins (p<0.05). This is the first study that evaluates the toasting effect on wines from different countries matured in the same oak barrels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Striking changes in tea metabolites due to elevational effects.

    PubMed

    Kfoury, Nicole; Morimoto, Joshua; Kern, Amanda; Scott, Eric R; Orians, Colin M; Ahmed, Selena; Griffin, Timothy; Cash, Sean B; Stepp, John Richard; Xue, Dayuan; Long, Chunlin; Robbat, Albert

    2018-10-30

    Climate effects on crop quality at the molecular level are not well-understood. Gas and liquid chromatography-mass spectrometry were used to measure changes of hundreds of compounds in tea at different elevations in Yunnan Province, China. Some increased in concentration while others decreased by 100's of percent. Orthogonal projection to latent structures-discriminant analysis revealed compounds exhibiting analgesic, antianxiety, antibacterial, anticancer, antidepressant, antifungal, anti-inflammatory, antioxidant, anti-stress, and cardioprotective properties statistically (p = 0.003) differentiated high from low elevation tea. Also, sweet, floral, honey-like notes were higher in concentration in the former while the latter displayed grassy, hay-like aroma. In addition, multivariate analysis of variance showed low elevation tea had statistically (p = 0.0062) higher concentrations of caffeine, epicatechin gallate, gallocatechin, and catechin; all bitter compounds. Although volatiles represent a small fraction of the total mass, this is the first comprehensive report illustrating how normal variations in temperature, 5 °C, due to elevational effects impact tea quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon)

    PubMed Central

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others. PMID:22493531

  10. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon).

    PubMed

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others.

  11. Individual differences in bitter taste preferences are associated with antisocial personality traits.

    PubMed

    Sagioglou, Christina; Greitemeyer, Tobias

    2016-01-01

    In two studies, we investigated how bitter taste preferences might be associated with antisocial personality traits. Two US American community samples (total N = 953; mean age = 35.65 years; 48% females) self-reported their taste preferences using two complementary preference measures and answered a number of personality questionnaires assessing Machiavellianism, psychopathy, narcissism, everyday sadism, trait aggression, and the Big Five factors of personality. The results of both studies confirmed the hypothesis that bitter taste preferences are positively associated with malevolent personality traits, with the most robust relation to everyday sadism and psychopathy. Regression analyses confirmed that this association holds when controlling for sweet, sour, and salty taste preferences and that bitter taste preferences are the overall strongest predictor compared to the other taste preferences. The data thereby provide novel insights into the relationship between personality and the ubiquitous behaviors of eating and drinking by consistently demonstrating a robust relation between increased enjoyment of bitter foods and heightened sadistic proclivities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    PubMed

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  14. Potential Natural Vegetation of the Mississippi Alluvial Valley: Bayou Meto Basin, Arkansas, Field Atlas

    DTIC Science & Technology

    2012-09-01

    most sites and overcup oak is the principal species in vernal pools. RB7 Frequently flooded lowlands Dominants: Overcup oak Bitter pecan ...controlled by extended periods of backwater flooding in most years. The characteristic community is dominated by overcup oak, bitter pecan , and a limited...stream: Dominants: Overcup oak Water locust Bitter pecan Associates: Nuttall oak Water elm Swamp privet Side slopes of abandoned

  15. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    PubMed Central

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  16. Quantity and quality of guinea pig (cavia porcellus) spermatozoa after administration of methanol extract of bitter melon (momordica charantia) seed and depot medroxy progesterone acetate (DMPA)

    NASA Astrophysics Data System (ADS)

    Ilyas, Syafruddin; Hutahaean, Salomo; Nursal

    2018-03-01

    The discovery of male contraceptive drugs continues to be pursued, due to the few participation of men associated with the lack of contraceptive options for men. The combination of bitter melon seed methanol extract and DMPA are the options that currently apply to men. Therefore, the use of guinea pigs as experimental animals conducted research using experimental methods with complete randomized design (CRD). There are 4 control groups and 4 treatment groups. The first group, control group of dimethyl sulphoxide (DMSO) for 0 week (K0), The second one, bitter melon seed extract of 50 mg/100g Body Weight/day for 0 week (P0), the third one, control group of dimethyl sulfoxide (DMSO) for 4 weeks (K1), the fourth one, bitter melon seed extract of 50 mg/100g BW/day for 4 weeks + Depot medroxy Progesterone Acetate (P1), the fifth one, control group of dimethyl sulfoxide (DMSO) for 8 weeks (K2), the sixth one, bitter melon seed extract of 50 mg/100g BW/day for 8 weeks + DMPA (P2), the seventh one, control group of dimethyl sulfoxide (DMSO) for 12 weeks (K3), the eighth one, bitter melon seed extract of 50 mg/100g BW/day for 12 weeks + DMPA (P3). Methanol extract of bitter melon seed to decrease the quantity and quality of guinea pig spermatozoa decreased significantly, i.e. viability and normal morphology of spermatozoa (p<0.05).

  17. The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46.

    PubMed

    Suess, Barbara; Brockhoff, Anne; Meyerhof, Wolfgang; Hofmann, Thomas

    2018-03-14

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

  18. Using different ratios of bitter vetch (Vicia ervilia) seed for moult induction and post-moult performance in commercial laying hens.

    PubMed

    Mohammadi, L; Sadeghi, Gh

    2009-03-01

    1. The applicability of different ratios of bitter vetch seed as a new method for moult induction in laying hens was studied. The effectiveness of bitter vetch seed on post-moult production and post-moult egg quality was also investigated. 2. A total of 120 Single Comb White Leghorn hens, 78 weeks of age, were used in this study. The hens were randomly assigned to 5 treatment groups of 24 birds each. The treatments were 30% bitter vetch seed (BV30) diet, 60% bitter vetch seed (BV60) diet, 90% bitter vetch seed (90BV) diet, feed withdrawal method (FW) and full-fed non-moulted control (CON). 3. Egg production ceased first in FW and BV90 treated hens and last in BV30 treated hens. As the percentage of bitter vetch seed increased in the moulting ration, feed intake decreased and body weight loss increased during the 10-d moult induction period. Time to first egg production was significantly greater in hens exposed to the FW and BV90 diets. 4. FW and BV90 treatment hens had significantly higher hen-d egg production than non-moulted control hens. Egg weight was significantly higher in BV30 and BV90 treatments. There were no differences in egg mass, feed intake and mortality among experimental treatments during the post-moult period. 5. No significant improvements were observed in exterior or interior egg quality in moulted hens, except for Haugh units, which were significantly higher in moulted hens when compared to the non-moulted control hens. 6. In conclusion, the present study showed ad libitum feeding of a layer ration with 90% of bitter vetch seed for 10 d proved to be effective for inducing moult, increasing post-moult egg production and improving some internal egg quality parameters.

  19. Dose-Dependent Effects of L-Arginine on PROP Bitterness Intensity and Latency and Characteristics of the Chemical Interaction between PROP and L-Arginine.

    PubMed

    Melis, Melania; Arca, Massimiliano; Aragoni, Maria Carla; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J; Tomassini Barbarossa, Iole

    2015-01-01

    Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the -NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a 'carrier' of various bitter molecules in saliva.

  20. Time-intensity and reaction-time methodology applied to the dynamic perception and liking of bitterness in relation to body mass index.

    PubMed

    León Bianchi, L; Galmarini, M V; García-Burgos, D; Zamora, M C

    2018-07-01

    There are very few studies which have considered perception temporality when relating perceived intensity and hedonic responses in relation to body mass index (BMI; kg/cm 2 ). The aim of the present study was to determine the relationship between BMI with the dynamic perception and liking of bitter tasting solutions. For this purpose, two different categories of bitter products were applied: 6-n-propilthiouracil (PROP) solutions (0.010, 0.032 and 0.060 mmol/L) and commercial beverages (coffee, yerba mate infusion and grapefruit juice). The proposed methodology to evaluate perception and hedonic response was based on the measurement of reaction-time (R-T) and multiple-sip time-intensity (T-I) registers in people with a high BMI (25 < BMI < 30; overweight group) and a normal BMI (<25; normal-weight control group). The multiple-sip evaluation to describe perception of PROP solutions and liking of beverages was used as a more ecologically valid laboratory methodology to simulate a situation of usual consumption. In this sense, working with a multiple-sip design helped confirm that bitter taste has a cumulative effect since in every case the sip effect was significant when evaluating the maximum intensity; this effect was more important as the bitterness increased. Regarding the body weight group comparisons, the normal BMI group perceived bitter taste more intensely and the time to react to it was shorter (faster reaction) for both PROP solutions and the three beverages. Interestingly, even though the high BMI group rated the bitter taste as less intense, they had a lower level of acceptance than normal BMI. This result suggests that the hedonic rather than the sensory component might be playing a crucial role in the perception of bitter taste in individuals with high BMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex.

    PubMed

    Kim, Jong-Il; Cho, Sang-Min; Cui, Jing-Hao; Cao, Qing-Ri; Oh, Euichaul; Lee, Beom-Jin

    2013-10-15

    Although the taste-masking of bitter drug using ion exchange resin has been recognized, in vitro testing using an electronic tongue (e-Tongue) and in vivo bitterness test by human panel test was not fully understood. In case of orally disintegrating tablet (ODT) containing bitter medicine, in vitro and in vivo disintegration is also importance for dosage performance. Donepezil hydrochloride was chosen as a model drug due to its bitterness and requires rapid disintegration for the preparation of ODT. In this study, ion exchange resin drug complex (IRDC) at three different ratios (1:2, 1:1, 2:1) was prepared using a spray-drying method and then IRDC-loaded ODT containing superdisintegrants (crospovidone, croscarmellose sodium, and sodium starch glycolate) were prepared by the direct compression method. The physical properties and morphologies were then characterized by scanning electron microscopy (SEM), X-ray powder diffraction (PXRD) and electrophoretic laser scattering (ELS), respectively. The in vitro taste-masking efficiency was measured with an electronic tongue (e-Tongue). In vivo bitterness scale was also evaluated by human volunteers and then we defined new term, "bitterness index (BI)" to link in vitro e-Tongue. There was a good correlation of IRDC between in vitro e-Tongue values and in vivo BI. Furthermore, IRDC-loaded ODT showed good in vitro/in vivo correlation in the disintegration time. The optimal IRDC-loaded ODTs displayed similar drug release profiles to the reference tablet (Aricept(®) ODT) in release media of pH 1.2, pH 4.0, pH 6.8 and distilled water but had significantly better palatability in vivo taste-masking evaluation. The current IRDC-loaded ODT according to the in vitro and in vivo correlation of disintegration and bitter taste masking could provide platforms in ODT dosage formulations of donepezil hydrochloride for improved patient compliances. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dose-Dependent Effects of L-Arginine on PROP Bitterness Intensity and Latency and Characteristics of the Chemical Interaction between PROP and L-Arginine

    PubMed Central

    Melis, Melania; Arca, Massimiliano; Aragoni, Maria Carla; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J.; Tomassini Barbarossa, Iole

    2015-01-01

    Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the –NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a ‘carrier’ of various bitter molecules in saliva. PMID:26103639

  3. Characterisation of taste-active extracts from raw Brassica oleracea vegetables.

    PubMed

    Zabaras, Dimitrios; Roohani, Mahshid; Krishnamurthy, Raju; Cochet, Maeva; Delahunty, Conor M

    2013-04-25

    Chemical and sensory characterisation of whole and fractionated myrosinase-free extracts from selected Australian-grown, raw Brassica vegetables (broccoli, cauliflower, Brussels sprouts and red cabbage) was carried out to determine the contribution of key phytochemicals (i.e. glucosinolates, free sugars, phenolics) to the taste profiles of these vegetables. Glucosinolate (GS) and phenolic profiles were determined by liquid chromatography coupled with photodiode array detection and mass spectrometry. Ten glucosinolates (GS) were quantified across the vegetables investigated. Brussels sprouts (186.3 μg g(-1) FW) followed by broccoli (164.1 μg g(-1) FW) were found to contain the most GS. The phenolic profiles of all samples were dominated by hydroxycinnamic acid derivatives. As expected, red cabbage was the only vegetable with a significant anthocyanin signal (574.0 μg g(-1) FW). Red cabbage (26.7 mg g(-1) FW) and cauliflower (18.7 mg g(-1) FW) were found to contain a higher concentration of free sugars than Brussels sprouts (12.6 mg g(-1) FW) and broccoli (10.2 mg g(-1) FW). Descriptive sensory analysis of the whole extracts found sweetness (cauliflower and red cabbage sweeter than broccoli and Brussels sprouts) and bitterness (Brussels sprouts more bitter than others) as the most discriminating attributes. A hydrophilic fraction with sweetness, umami and saltiness as the main attributes was the most taste active fraction across all Brassica whole extracts. Sub-fractionation showed that this fraction was also bitter but the presence of sugars counteracted bitterness. Several components within each extract were found to contribute to the bitterness of whole Brassica extracts. The total and individual GS content alone could not explain the perceived bitterness of these extracts. Phenolics and/or other components are likely to be contributing to the bitterness associated with these vegetables.

  4. Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables.

    PubMed

    Bakke, Alyssa J; Stubbs, Cody A; McDowell, Elliott H; Moding, Kameron J; Johnson, Susan L; Hayes, John E

    2018-07-01

    Only a quarter of adults and 7% of children consume recommended amounts of vegetables each day. Often vegetables are not initially palatable due to bitterness, which may lead children and adults to refuse to taste or eat them. The objective of this research was to determine if very small amounts of sugar or salt (common household ingredients) could lead to significant reductions in bitterness intensity and increased hedonic ratings of green vegetable purees. For Experiment 1, three different green vegetable purees (broccoli, spinach, and kale) were prepared with different levels of sugar (0%, 0.6%, 1.2%, and 1.8%) or salt (0 and 0.2%). Samples were evaluated using standard descriptive analysis techniques with nine adults who completed more than 20 h of green vegetable specific training as a group. For Experiment 2, each vegetable puree was prepared with either 0% or 2% sugar, and bitterness was assessed via a forced choice task with 84 adults. For Experiment 3, each vegetable puree was prepared with 0%, 1%, or 2% sugar and rated for liking on standard 9 point hedonic scales by 99 adults. Experiments 1 and 2 showed that addition of small amounts of sugar and salt each reduced the bitterness (and increased sweetness and saltiness) from all three vegetables without altering other sensory properties (e.g. texture or aroma). Experiment 3 showed that adding sugar to vegetable purees increased hedonic ratings for adult consumers. We also found parents had mixed attitudes about the idea of adding sugar to foods intended for infants and toddlers. Further research on the effects of bitterness masking especially for specific populations (e.g., infants and young children or adults who have higher sensitivity to bitter taste) is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Synergistic effects of sour taste and low temperature in suppressing the bitterness of Aminoleban® EN.

    PubMed

    Haraguchi, Tamami; Yoshida, Miyako; Hazekawa, Mai; Uchida, Takahiro

    2011-01-01

    Aminoleban® EN, a nutritional product for patients with liver failure, contains three branched-chain amino acids (BCAAs): L-leucine, L-isoleucine, and L-valine. As BCAAs are extremely bitter, Aminoleban® EN has a low palatability, which is a major cause of patient noncompliance. Nutrients for liver failure often need to be taken for long periods, and poor medication compliance can cause serious problems, such as encephalopathy. Therefore it is important to suppress the bitter taste of Aminoleban® EN and thereby improve patient compliance. There are already six different flavoured powders (coffee, green-tea, apple, fruit, plum and pineapple) which can be added to Aminoleban® EN to reduce its unpleasant taste and smell, but it is possible that other factors, such as temperature, may also improve the palatability of Aminoleban® EN. In this study, flavours alone significantly decreased the bitterness intensity of Aminoleban® EN. It was thought that the sweetness and sourness of the flavoured powder would be the main factors involved in decreasing the bitterness. However, low temperature (0-5 °C) decreased the bitterness intensity of Aminoleban® EN, with or without the flavoured powders, compared with normal room temperature (25-30 °C). The sourness intensity of flavoured powders was not decreased at low temperatures, but the sweetness intensity of some flavoured powders did decrease. These results suggest that sourness can be tasted even at low temperatures. As not only the addition of flavoured powders but also low temperatures can reduce the bitterness of Aminioleban® EN, the combination of a sour-flavoured powder and a low temperature will improve the palatability of Aminoleban® EN the most.

  6. Endocannabinoids selectively enhance sweet taste.

    PubMed

    Yoshida, Ryusuke; Ohkuri, Tadahiro; Jyotaki, Masafumi; Yasuo, Toshiaki; Horio, Nao; Yasumatsu, Keiko; Sanematsu, Keisuke; Shigemura, Noriatsu; Yamamoto, Tsuneyuki; Margolskee, Robert F; Ninomiya, Yuzo

    2010-01-12

    Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.

  7. Toxicological evaluation of two novel bitter modifying flavour compounds: 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione and 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)-5,5-dimethylimidazolidine-2,4-dione.

    PubMed

    Karanewsky, Donald S; Arthur, Amy J; Liu, Hanghui; Chi, Bert; Ida, Lily; Markison, Stacy

    2016-01-01

    A toxicological evaluation of two novel bitter modifying flavour compounds, 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1 H -pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione (S6821, CAS 1119831-25-2) and 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1 H -pyrazol-4-yl)-1-(3-hydroxybenzyl)-5,5-dimethylimidazolidine-2,4-dione (S7958, CAS 1217341-48-4), were completed for the purpose of assessing their safety for use in food and beverage applications. S6821 undergoes oxidative metabolism in vitro , and in rat pharmacokinetic studies both S6821 and S7958 are rapidly converted to the corresponding O-sulfate and O-glucuronide conjugates. S6821 was not found to be mutagenic or clastogenic in vitro , and did not induce micronuclei in bone marrow polychromatic erythrocytes in vivo . S7958, a close structural analog of S6821, was also found to be non-mutagenic in vitro . In short term and subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for both S7958 and S6821 was 100 mg/kg bw/day (highest dose tested) when administered as a food ad-mix for either 28 or 90 consecutive days, respectively. Furthermore, S6821 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

  8. Effects of olive maturation and stoning on quality indices and antioxidant content of extra virgin oils (cv. Coratina) during storage.

    PubMed

    Gambacorta, G; Faccia, M; Previtali, M A; Pati, S; La Notte, E; Baiano, A

    2010-04-01

    Quality indices, antioxidant compounds, and antioxidant activities of extra-virgin oils from Coratina olives were evaluated during a 12-mo storage. Whole and stoned olives, picked at 2 different maturation index (MI), were submitted to malaxation for 45 min and extracted by a 3-phase continuous system. A 90-min malaxation trial was also performed for the stoned olives. The following parameters were monitored: free acidity, peroxide value, K(232) and K(270) indices, sensory profile, total phenolic content (TPC), phenolic profiles, tocopherol compounds, and antioxidant activity (AA). The highest TPC, AA, and sensory score were found for the oils obtained by olives picked at low MI and by stoned olives. After 12 mo, all the oils were still included into the "extra-virgin" category, and those deriving from whole olives picked at the lowest MI showed the best sensory characteristics due to high fruity and well-balanced pungent and bitter tastes. This study could represent a helpful tool for oil-makers to improve the marketing of extra-virgin olive oils produced from cultivars with very high phenolic contents, such as Coratina, generally not adequately appreciated by consumers because of their excessive bitterness and pungent taste. These oils, when extracted from whole olives, are generally consumed after a certain period of time (at least 6 mo) during which a decrease in the phenolic content occurs. The results of the present work demonstrate that oils extracted from olives picked at low maturation index can be marketed immediately after production if subjected to stoning and malaxed for a short time. This procedure allows to adjust the phenolic content and to obtain a high flavor and a well-balanced taste.

  9. Major taste loss in carnivorous mammals

    PubMed Central

    Jiang, Peihua; Josue, Jesusa; Li, Xia; Glaser, Dieter; Li, Weihua; Brand, Joseph G.; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.

    2012-01-01

    Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations. PMID:22411809

  10. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County

    PubMed Central

    Zhang, Xue-Bo

    2015-01-01

    Summary In order to attenuate the bitter taste and improve the aroma of the summer tieguanyin oolong tea from the Chinese Anxi county, the effects of processing treatment with exogenous laccase and α-galactosidase on tea sensory quality and related compounds were investigated. The solutions of laccase and/or α-galactosidase were sprayed on the tea leaves before the first drying process. The sensory evaluation results showed that the sensory quality of the tea was significantly enhanced with the enzymatic treatment. The combined application of laccase at 8.25 and α-galactosidase at 22 U per kg of fresh tea shoots achieved the most satisfying sensory quality. Further analysis of flavour-related constituents was carried out by HPLC and GC-MS. The HPLC analysis showed that the contents of catechins and total polyphenols were reduced, compared to the untreated group, by 11.9 and 13.3% respectively, and the total soluble sugars and water extract content were increased by 19.4 and 6.6% respectively, after the treatment with both enzymes. The decrease of catechins and total polyphenols reduced the bitterness and astringency of the summer tea, while the increase of total soluble sugars and water extract content improved the sweetness and mellow taste. The aromatic compound data from GC-MS showed that the total essential oil content in these tea samples co-treated with laccase and α-galactosidase increased significantly, in which aldehydes, alcohols, esters and alkenes increased by 23.28, 37.05, 20.10 and 38.99%, respectively. Our data suggest that the exogenous enzymatic treatment can enhance the summer oolong tea quality, especially its taste and aroma. PMID:27904347

  11. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil.

    PubMed

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-05-25

    Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  12. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    PubMed Central

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-01-01

    Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069

  13. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  14. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p‐Synephrine

    PubMed Central

    2017-01-01

    Citrus aurantium L. (bitter orange) extracts that contain p‐synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p‐synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p‐synephrine. Numerous studies have been conducted with respect to p‐synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p‐synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p‐synephrine exerts its effects through multiple actions, which are discussed. Because p‐synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p‐synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd. PMID:28752649

  15. Evaluation of palatability of 10 commercial amlodipine orally disintegrating tablets by gustatory sensation testing, OD-mate as a new disintegration apparatus and the artificial taste sensor.

    PubMed

    Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu

    2013-09-01

    The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.

  16. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  17. Development of repaglinide microspheres using novel acetylated starches of bitter and Chinese yams as polymers.

    PubMed

    Okunlola, Adenike; Adebayo, Amusa Sarafadeen; Adeyeye, Moji Christianah

    2017-01-01

    Tropical starches from Dioscorea dumetorum (bitter) and Dioscorea oppositifolia (Chinese) yams were acetylated with acetic anhydride in pyridine medium and utilized as polymers for the delivery of repaglinide in microsphere formulations in comparison to ethyl cellulose. Acetylated starches of bitter and Chinese yams with degrees of substitution of 2.56 and 2.70 respectively were obtained. Acetylation was confirmed by FTIR, 1 H NMR spectroscopy. A 3 2 factorial experimental design was performed using polymer type and drug-polymer ratio as independent variables. Particle size, swelling, entrapment and time for 50% drug release (t 50 ) were dependent variables. Contour plots showed the relationship between the independent factors and the response variables. All variables except swelling increased with drug: polymer ratio. Entrapment efficiency was generally in the rank of Bitter yam>Ethyl cellulose>Chinese yam. Repaglinide microspheres had size 50±4.00 to 350±18.10μm, entrapment efficiency 75.30±3.03 to 93.10±2.75% and t 50 3.20±0.42 to 7.20±0.55h. Bitter yam starch gave longer dissolution times than Chinese yam starch at all drug-polymer ratios. Drug release fitted Korsmeyer-Peppas and Hopfenberg models. Acetylated bitter and Chinese yam starches were found suitable as polymers to prolong release of repaglinide in microsphere formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Study of the effects of the casein derived bitter tastant on the melanophores in milieu with the melatonin receptors.

    PubMed

    Mubashshir, Md; Ahmed, Fraz; Ovais, Mohd

    2011-10-01

    The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34×10(-16) M to 3.34×10(-4) M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant's response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.

  19. Rapid and sensitive ultrasonic-assisted derivatisation microextraction (UDME) technique for bitter taste-free amino acids (FAA) study by HPLC-FLD.

    PubMed

    Chen, Guang; Li, Jun; Sun, Zhiwei; Zhang, Shijuan; Li, Guoliang; Song, Cuihua; Suo, Yourui; You, Jinmao

    2014-01-15

    Amino acids, as the main contributors to taste, are usually found in relatively high levels in bitter foods. In this work, we focused on seeking a rapid, sensitive and simple method to determine FAA for large batches of micro-samples and to explore the relationship between FAA and bitterness. Overall condition optimisation indicated that the new UDME technique offered higher derivatisation yields and extraction efficiencies than traditional methods. Only 35min was needed in the whole operation process. Very low LLOQ (Lower limit of quantification: 0.21-5.43nmol/L) for FAA in twelve bitter foods was obtained, with which BTT (bitter taste thresholds) and CABT (content of FAA at BTT level) were newly determined. The ratio of CABT to BTT increased with decreasing of BTT. This work provided powerful potential for the high-throughput trace analysis of micro-sample and also a methodology to study the relationship between the chemical constituents and the taste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines

    PubMed Central

    Wu, Xiao; Onitake, Hideya; Huang, Zhiqin; Shiino, Takeshi; Tahara, Yusuke; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2017-01-01

    This paper reports the improvement of a bitterness sensor based on a lipid polymer membrane consisting of phosphoric acid di-n-decyl ester (PADE) as a lipid and bis(1-butylpentyl) adipate (BBPA) and tributyl o-acetylcitrate (TBAC) as plasticizers. Although the commercialized bitterness sensor (BT0) has high sensitivity and selectivity to the bitterness of medicines, the sensor response gradually decreases to almost zero after two years at room temperature and humidity in a laboratory. To reveal the reason for the deterioration of the response, we investigated sensor membranes by measuring the membrane potential, contact angle, and adsorption amount, as well as by performing gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS). We found that the change in the surface charge density caused by the hydrolysis of TBAC led to the deterioration of the response. The acidic environment generated by PADE promoted TBAC hydrolysis. Finally, we succeeded in fabricating a new membrane for sensing the bitterness of medicines with higher durability and sensitivity by adjusting the proportions of the lipid and plasticizers. PMID:29113047

  1. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia.

    PubMed

    Krawinkel, Michael B; Keding, Gudrun B

    2006-07-01

    Bitter gourd (Momordica charantia) is a vegetable with pantropical distribution. It contains substances with antidiabetic properties such as charantin, vicine, and polypeptide-p, as well as other unspecific bioactive components such as antioxidants. Metabolic and hypoglycemic effects of bitter gourd extracts have been demonstrated in cell culture, animal, and human studies. The mechanism of action, whether it is via regulation of insulin release or altered glucose metabolism and its insulin-like effect, is still under debate. Adverse effects are also known. Nevertheless, bitter gourd has the potential to become a component of the diet or a dietary supplement for diabetic and prediabetic patients. Well-designed interdisciplinary research by nutritionists, medical doctors, and agronomists is needed before a dietary recommendation can be given and a product brought to the market.

  2. Motor control in a Drosophila taste circuit

    PubMed Central

    Gordon, Michael D.; Scott, Kristin

    2009-01-01

    Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior, and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis. PMID:19217375

  3. Characterization of taste-active compounds of various cherry wines and their correlation with sensory attributes.

    PubMed

    Niu, Yunwei; Zhang, Xiaoming; Xiao, Zuobing; Song, Shiqing; Jia, Chengsheng; Yu, Haiyan; Fang, Lingling; Xu, Chunhua

    2012-08-01

    Five cherry wines exhibiting marked differences in taste and mouthfeel were selected for the study. The taste and mouthfeel of cherry wines were described by four sensory terms as sour, sweet, bitter and astringent. Eight organic acids, seventeen amino acids, three sugars and tannic acid were determined by high performance liquid chromatography (HPLC). Five phenolic acids were determined by ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The relationship between these taste-active compounds, wine samples and sensory attributes was modeled by partial least squares regression (PLSR). The regression analysis indicated tartaric acid, methionine, proline, sucrose, glucose, fructose, asparagines, serine, glycine, threonine, phenylalanine, leucine, gallic acid, chlorogenic acid, vanillic acid, arginine and tannic acid made a great contribution to the characteristic taste or mouthfeel of cherry wines. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Staying Healthy and Safe

    MedlinePlus

    ... bitter melon (karela), noni juice, and unripe papaya. Raw sprouts of any kind (including alfalfa, clover, radish, ... bitter melon (karela), noni juice, and unripe papaya. Raw sprouts of any kind (including alfalfa, clover, radish, ...

  5. Antioxidants and sensory properties of the infusions of wild passiflora from Brazilian savannah: potential as functional beverages.

    PubMed

    Pineli, Lívia de L de O; Rodrigues, Juliana da S Q; Costa, Ana M; de Lima, Herbert C; Chiarello, Marileusa D; Melo, Lauro

    2015-05-01

    The study of biodiversity for species recovery and sustainable use has encouraged research with plants from Brazilian savannah. We aimed to characterize chemical and sensory properties of infusions of passifloras, due to their potential as functional beverages. Infusions and hydroalcoholic extracts of four species of wild passifloras, three varieties of Passiflora edulis and a commercial passiflora tea were evaluated for total phenolics (TPs), total flavonoids (TFs), condensed tannins (CTs), and antioxidant activity (DPPH and FRAP). Free-choice Profile and acceptance, compared with green tea, were performed for sensory characterization. In general, infusions had higher levels of TPs and CTs than hydroalcoholic extracts, which in turn had higher levels of TFs. Infusion of P. nitida showed higher amounts of TPs and antioxidant activity. Acceptance of passiflora infusions was similar or higher than that of green tea, except for P. alata. P. setacea presented a sensory profile similar to other commercial teas and higher acceptance by a group of consumers. Passiflora infusions showed different degrees of suitability as acceptable functional beverage. Identification of phenolics and other bitter compounds is needed to understand the intense bitterness of P. alata, as it did not present the highest contents of TPs, CTs and TFs. © 2014 Society of Chemical Industry.

  6. Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils.

    PubMed

    Valli, Enrico; Bendini, Alessandra; Popp, Martin; Bongartz, Annette

    2014-08-01

    Sensory analysis is a crucial tool for evaluating the quality of extra virgin olive oils. One aim of such an investigation is to verify if the sensory attributes themselves - which are strictly related to volatile and phenolic compounds - may permit the discrimination of high-quality products obtained by olives of different cultivars and/or grown in various regions. Moreover, a crucial topic is to investigate the interdependency between relevant parameters determining consumer acceptance and objective sensory characteristics evaluated by the panel test. By statistically analysing the sensory results, a grouping - but not discriminatory - effect was shown for some cultivars and some producing areas. The preference map shows that the most appreciated samples by consumers were situated in the direction of the 'ripe fruity' and 'sweet' axis and opposite to the 'bitter' and 'other attributes' (pungent, green fruity, freshly cut grass, green tomato, harmony, persistency) axis. Extra virgin olive oils produced from olives of the same cultivars and grown in the same areas shared similar sensorial attributes. Some differences in terms of expectation and interpretation of sensory characteristics of extra virgin olive oils might be present for consumers and panellists: most of the consumers appear unfamiliar with positive sensorial attributes, such as bitterness and pungency. © 2013 Society of Chemical Industry.

  7. In vivo test of bitter (andrographis paniculata nees.) extract to ejaculated sperm quality

    NASA Astrophysics Data System (ADS)

    Sumarmin, R.; Huda, NK; Yuniarti, E.; Violita

    2018-03-01

    Sambiloto or Bitter (Andrographis paniculata Nees.), are often used to treat various diseases, such as influenza, cancer, anti-inflammation, anti-HIV, anti-mitotic and anti-fertility. This study aimed to determine the effects of the bitter (Andrographis paniculata Nees.) extract to ejaculated sperm mice quality (Mus musculus L. Swiss Webster). This research was conducted using Completely Randomized Design with 4 treatments, which are 0.0 g/b.w., (P0), 0.2 g/b.w., (P1), 0,4 g/b.w., (P3), or 0.6 g/b.w., (P4) bitter extract orally for 36 days. After treatment, the mice decapitated, dissected and collected the sperm from vas deferens. Then, the number of sperm counted by used the improved Neubauer and then stained by Eosin to count the abnormal sperm. Data analyzed by ANOVA (Analysis of Variance) then DNMRT. The results showed that the average numbers of sperm are 28.80 x 105 (P0), 19.50 x 105 (P1), 12.50 x105 (P2) and 9.50 x 105 (P3). The average abnormal sperm numbers are 18.33 x 105 (P0), 22.50 x 105 (P1), 31.50 x105 (P2) and 39.33 x 105 (P3). It showed that the effective treatment to decrease sperm number was 0.2 g/b.w., of bitter extract. It can conclude that the bitter (Andrographis paniculata Nees.) extract decreases the quality of the ejaculated sperm of mice (Mus musculus L.)

  8. Quantification of amygdalin in nonbitter, semibitter, and bitter almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS.

    PubMed

    Lee, Jihyun; Zhang, Gong; Wood, Elizabeth; Rogel Castillo, Cristian; Mitchell, Alyson E

    2013-08-14

    Amygdalin is a cynaogenic diglucoside responsible for the bitterness of almonds. Almonds display three flavor phenotypes, nonbitter, semibitter, and bitter. Herein, the amygdalin content of 20 varieties of nonbitter, semibitter, and bitter almonds from four primary growing regions of California was determined using solid-phase extraction and ultrahigh-pressure liquid chromatography electrospray triple-quadrupole mass spectrometry (UHPLC-(ESI)QqQ MS/MS). The detection limit for this method is ≤ 0.1 ng/mL (3 times the signal-to-noise ratio) and the LOQ is 0.33 ng/mL (10 times the signal-to-noise ratio), allowing for the reliable quantitation of trace levels of amygdalin in nonbitter almonds (0.13 mg/kg almond). Results indicate that amygdalin concentrations for the three flavor phenotypes were significantly different (p < 0.001). The mean concentrations of amygdalin in nonbitter, semibitter, and bitter almonds are 63.13 ± 57.54, 992.24 ± 513.04, and 40060.34 ± 7855.26 mg/kg, respectively. Levels of amygdalin ranged from 2.16 to 157.44 mg/kg in nonbitter, from 523.50 to 1772.75 mg/kg in semibitter, and from 33006.60 to 53998.30 mg/kg in bitter almonds. These results suggest that phenotype classification may be achieved on the basis of amygdalin levels. Growing region had a statistically significant effect on the amygdalin concentration in commercial varieties (p < 0.05).

  9. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.

    PubMed

    Yiğit, D; Yiğit, N; Mavi, A

    2009-04-01

    The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.

  10. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. Georg Thieme Verlag KG Stuttgart · New York.

  11. Sweet and bitter taste in the brain of awake behaving animals

    PubMed Central

    Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao; Tränkner, Dimitri; Ryba, Nicholas J. P.; Zuker, Charles S.

    2015-01-01

    Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviors, preventing the ingestion of toxic substances, and helping ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste permits the identification of energy-rich nutrients while bitter warns against the intake of potentially noxious chemicals1. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain2. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map3,4, with each taste quality encoded by distinct cortical fields4. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal’s internal representation, sensory perception, and behavioral actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviors in the absence of sensory input. PMID:26580015

  12. Characterization and Modulation of the Bitterness of Polymethoxyflavones Using Sensory and Receptor-Based Methods.

    PubMed

    Batenburg, A Max; de Joode, Teun; Gouka, Robin J

    2016-03-30

    An obstacle in the application of many "health ingredients" is their alleged off-flavor. We used a combination of chemical, sensory, and biological analyses to identify the bitter components in citrus peel-derived polymethoxyflavone preparations, claimed to be functional in the lowering of cholesterol. Nobiletin (56-81%) and tangeretin (10-33%) were found to be the main bitter components. Using in vitro receptor assays, hTAS2R14 was shown to be the main bitter receptor involved in their perception, with EC50 values of 14 and 63 μM, respectively. Our analysis provided several routes for off-flavor reduction. Purification is an option because a purified, single PMF species proved to be considerably less bitter upon application in emulsified foods, due to limited solubility in the aqueous phase. A second route, also demonstrated in vivo, is C5-specific demethoxylation, in line with the finding that 5-desmethylnobiletin does not activate hTAS2R14. A third route could be the use of TAS2R14 antagonists. As a proof of principle, several antagonists, with IC50 values ranging from 10 to 50 μM, were identified.

  13. Design of a poly-Bitter magnet at the NHMFL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.

    1996-07-01

    The world`s first 33 Tesla resistive magnet is being designed and built at the National High Magnetic Field Laboratory in Tallahassee, FL. Completion of the magnet is expected in the fourth quarter of 1995. It will produce a peak on-axis field greater than 33 Teslas in a 32 mm warm bore while consuming 20 megawatts of power. This magnet consists of two small concentric parallel coils (poly-Bitter) in series with two larger Bitter coils. Details of optimization calculations and the resulting magnet design and construction are presented.

  14. Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT).

    PubMed

    Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry

    2018-08-15

    Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography-mass spectrometry, multivariate data analysis, and descriptive sensory analysis.

    PubMed

    Wang, Chao; Zhang, Chenxia; Kong, Yawen; Peng, Xiaopei; Li, Changwen; Liu, Shunhang; Du, Liping; Xiao, Dongguang; Xu, Yongquan

    2017-10-01

    Dianhong teas produced from fresh leaves of different tea cultivars (YK is Yunkang No. 10, XY is Xueya 100, CY is Changyebaihao, SS is Shishengmiao), were compared in terms of volatile compounds and descriptive sensory analysis. A total of 73 volatile compounds in 16 tea samples were tentatively identified. YK, XY, CY, and SS contained 55, 53, 49, and 51 volatile compounds, respectively. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were used to classify the samples, and 40 key components were selected based on variable importance in the projection. Moreover, 11 flavor attributes, namely, floral, fruity, grass/green, woody, sweet, roasty, caramel, mellow and thick, bitter, astringent, and sweet aftertaste were identified through descriptive sensory analysis (DSA). In generally, innate differences among the tea varieties significantly affected the intensities of most of the key sensory attributes of Dianhong teas possibly because of the different amounts of aroma-active and taste components in Dianhong teas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of genetic and vintage factors in flavan-3-ol composition of grape seeds of a segregating Vitis vinifera population.

    PubMed

    Hernández, Maria M; Song, Shiren; Menéndez, Cristina M

    2017-01-01

    Flavan-3-ol compounds are important secondary metabolites which show high antioxidant activity and are responsible for bitterness and astringency of food products. The aim of this work was to evaluate the potential for selecting grape materials with higher seed flavanol content from a breeding population. The composition and content of flavan-3-ols from 151 genotypes obtained from crossing wine grape varieties was evaluated by UPLC in three consecutive years. Chromatograms of flavan-3-ol compounds showed the same 12 compounds for all samples, but quantitative differences were observed between genotypes as well as parental varieties. The most abundant compounds were (-)-epicatechin and (+)-catechin followed by proanthocyanidins A2 and B2. Progeny showed higher values than the parental genotypes for every detected compound indicating directional transgressive segregation. With these results genotypes with as much as five times more flavanols than their parents could be identified. The year effect was significant; however, high correlations between years for each compound indicated that there is a strong genetic component in the determination of flavanol content. Higher contents of seed flavan-3-ols can be obtained by hybridisation, and those genotypes could be used for extracting healthy phytochemicals, adding value to seeds as a sub-product in wine elaboration. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman.

    PubMed

    Mikołajczyk-Stecyna, Joanna; Malinowska, Anna M; Chmurzynska, Agata

    2017-09-01

    Taste sensitivity is one of the most important biological determinants of food choice. Three SNPs of the TAS2R38 gene (rs713598, rs1726866, and rs10246939) give rise to two common haplotypes: PAV and AVI. These haplotypes, as well as an SNP within the CA6 gene (rs2274333) that encodes carbonic anhydrase VI (CA6), correlate with bitterness perception. The extent of consumption of bitter food may influence some health outcomes. The aim of this study is thus to investigate the impact of the TAS2R38 and CA6 genetic polymorphisms on the choice of bitter food, BMI, blood lipoprotein, and glucose concentrations as well as systemic inflammation in elderly women. The associations between the TAS2R38 diplotype, CA6 genotype, and the intake of bitter-tasting foods were studied in a group of 118 Polish women over 60 years of age. The intake of Brassica vegetables, grapefruit, and coffee was assessed using a food frequency questionnaire. Biochemical parameters were measured using the spectrophotometric method. Genotyping was performed using the high resolution melting method. We found a correlation between lipid profile, glucose and CRP levels, and frequency of bitter food intake. The AVI/AVI subjects drank coffee more frequently than did the PAV/PAV homozygotes, as did the A carriers of CA6 in comparison with the GG homozygotes. We also observed that simultaneous carriers of the PAV haplotype and A allele of TAS2R38 and CA6, respectively, choose white cabbage more frequent and had lower plasma levels of CRP and glucose than did AVI/AVI and GG homozygotes. In elderly women, the TAS2R38 and CA6 polymorphisms may affect the frequency of consumption of coffee and white cabbage, but not of other bitter-tasting foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Proposed Synthetic Minor NSR Permit: Anadarko Uintah Midstream, LLC - Bitter Creek Compressor Station

    EPA Pesticide Factsheets

    Proposed synthetic minor NSR permit, public notice bulletin, and administrative permit docket for the Anadarko Uintah Midstream, LLC, Bitter Creek Compressor Station, located on Uintah and Ouray Indian Reservation in Utah.

  19. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    PubMed

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  20. Citrus peel extract incorporated ice cubes to protect the quality of common pandora: Fish storage in ice with citrus.

    PubMed

    Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Gokoglu, Nalan

    2015-12-01

    The objective of this study was to investigate the effects of ice with albedo and flavedo fragments of Citrus (Grapefruit (Citrus paradisi) and Bitter orange (Citrus aurantium L.)) extracts on the quality of common pandora (Pagellus erythrinus). Concentrated citrus extracts were diluted with distilled water (1/100 w/v) before making of ice. The ice cubes were spread on each layer of fishes and stored at 0 °C for 15 days. The pH value showed a regular increase in all samples. TVB-N levels of bitter orange treatment groups were recorded lower than the other groups reaching to 25.11 ± 0.02 mg/100 g at the end of the storage. The TMA-N values of bitter orange treatment groups were lower than that of control and grapefruit treatment groups. In terms of TBARS value, alteration was observed in the control samples and this value significantly (p < 0.01) increased from 0.101 ± 0.011 mg MA/kg to 0.495 ± 0.083 mg MA/kg, while remained lower in the citrus extracts treatment groups at the end of storage since their antioxidant capacity. The oxidation was suppressed in citrus extracts treatment groups, especially in bitter orange flavedo treatment. The results showed the bitter orange albedo and bitter orange flavedo extracts in combination with ice storage have more effectiveness in controlling the biochemical indices in common pandora.

  1. Flavor characteristics of seven grades of black tea produced in Turkey.

    PubMed

    Alasalvar, Cesarettin; Topal, Bahar; Serpen, Arda; Bahar, Banu; Pelvan, Ebru; Gökmen, Vural

    2012-06-27

    Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were compared for their differences in descriptive sensory analysis (DSA), aroma-active compounds (volatile compounds), and taste-active compounds (sugar, organic acid, and free amino acid compositions). Ten flavor attributes such as 'after taste', 'astringency', 'bitter', 'caramel-like', 'floral/sweet', 'green/grassy', 'hay-like', 'malty', 'roasty', and 'seaweed' were identified. Intensities for a number of flavor attributes ('after taste', 'caramel-like', 'malty', and 'seaweed') were not significantly different (p > 0.05) among seven grades of black tea. A total of 57 compounds in seven grades of black tea (14 aldehydes, eight alcohols, eight ketones, two esters, four aromatic hydrocarbons, five aliphatic hydrocarbons, nine terpenes, two pyrazines, one furan, two acids, and two miscellaneous compounds) were tentatively identified. Of these, aldeyhdes comprised more than 50% to the total volatile compounds identified. In general, high-grade quality tea had more volatiles than low-grade quality tea. With respect to taste-active compounds, five sugars, six organic acids, and 18 free amino acids were positively identified in seven grades of black tea, of which fructose, tannic acid, and theanine predominated, respectively. Some variations (p < 0.05), albeit to different extents, were observed among volatile compounds, sugars, organic acids, and free amino acids in seven grades of black tea. The present study suggests that a certain flavor attributes correlate well with taste- and aroma-active compounds. High- and low-quality black teas should not be distinguished solely on the basis of their DSA and taste- and aroma-active compounds. The combination of taste-active compounds together with aroma-active compounds renders combination effects that provide the characteristic flavor of each grade of black tea.

  2. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network.

    PubMed

    Liu, Ruixin; Zhang, Xiaodong; Zhang, Lu; Gao, Xiaojie; Li, Huiling; Shi, Junhan; Li, Xuelin

    2014-06-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue.

  3. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network

    PubMed Central

    LIU, RUIXIN; ZHANG, XIAODONG; ZHANG, LU; GAO, XIAOJIE; LI, HUILING; SHI, JUNHAN; LI, XUELIN

    2014-01-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue. PMID:24926369

  4. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes

    PubMed Central

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y.

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity. PMID:29552563

  5. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.).

    PubMed

    Davidovich-Rikanati, Rachel; Shalev, Lior; Baranes, Nadine; Meir, Ayala; Itkin, Maxim; Cohen, Shahar; Zimbler, Kobi; Portnoy, Vitaly; Ebizuka, Yutaka; Shibuya, Masaaki; Burger, Yosef; Katzir, Nurit; Schaffer, Arthur A; Lewinsohn, Efraim; Tadmor, Ya'akov

    2015-01-01

    Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. Copyright © 2014 John Wiley & Sons, Ltd.

  6. The development of basic taste sensitivity and preferences in children.

    PubMed

    Fry Vennerød, Frida Felicia; Nicklaus, Sophie; Lien, Nanna; Almli, Valérie L

    2018-08-01

    This study aims at understanding how preference and sensitivity to the basic tastes develop in the preschool years, and how the two relate to each other. To expand on the existing literature regarding taste preferences conducted in cross-sectional studies, a longitudinal design was applied with children from age four to six years old. During the springs of 2015, 2016, and 2017, 131 children born in 2011 were tested in their kindergartens. To investigate preferences for sweet, sour and bitter tastes, the children performed ranking-by-elimination procedures on fruit-flavored beverages and chocolates with three taste intensity levels. The beverages varied in either sucrose, citric acid, or the bitter component isolone. The chocolates varied in the bitter component theobromine from cocoa and sucrose content. Each year, the children also performed paired-comparison tasks opposing plain water to tastant dilutions at four concentrations. The stimuli consisted of the five basic tastes: sweet (sucrose) sour (citric acid monohydrate) umami (monosodium glutamate), salty (sodium chloride), and bitter (quinine hydrochloride dihydrate). Preference for sweetness levels increased with age, while preference for bitterness and sourness levels were stable. Concerning taste sensitivity, the children showed an increase in sensitivity for sourness and saltiness, a decrease for sweetness, and stability for umami and bitterness. A negative association was found between sweetness sensitivity and preference for sweetness. The study highlights different trajectories of sensitivity and preferences across tastes. On average, a reduction in sweetness sensitivity combined with an increase in preference for higher sweetness was observed from the age of four to six. The weak relationship between taste sensitivity and taste preference in our data suggests that taste preference development is shaped by a multitude of factors in addition to taste sensitivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes.

    PubMed

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  8. Development of a Time-Intensity Evaluation System for Consumers: Measuring Bitterness and Retronasal Aroma of Coffee Beverages in 106 Untrained Panelists.

    PubMed

    Gotow, Naomi; Moritani, Ami; Hayakawa, Yoshinobu; Akutagawa, Akihito; Hashimoto, Hiroshi; Kobayakawa, Tatsu

    2015-06-01

    In order to develop products that are acceptable to consumers, it is necessary to incorporate consumers' intentions into products' characteristics. Therefore, investigation of consumers' perceptions of the taste or smell of common beverages provides information that should be useful in predicting market responses. In this study, we sought to develop a time-intensity evaluation system for consumer panels. Using our system, we performed time-intensity evaluation of flavor attributes (bitterness and retronasal aroma) that consumers perceived after swallowing a coffee beverage. Additionally, we developed quantitative evaluation methods for determining whether consumer panelists can properly perform time-intensity evaluation. In every trial, we fitted an exponential function to measured intensity data for bitterness and retronasal aroma. The correlation coefficients between measured time-intensity data and the fitted exponential curves were greater than 0.8 in about 90% of trials, indicating that we had successfully developed a time-intensity system for use with consumer panelists, even after just a single training trial using a nontrained consumer. We classified participants into two groups based on their consumption of canned coffee beverages. Significant difference was observed in only AUC of sensory modality (bitterness compared with retronasal aroma) among conventional TI parameters using two-way ANOVA. However, three-way ANOVA including a time course revealed significant difference between bitterness and retronasal aroma in the high-consumption group. Moreover, the high-consumption group more easily discriminated between bitterness and retronasal aroma than the low-consumption group. This finding implied that manufacturers should select consumer panelists who are suitable for their concepts of new products. © 2015 Institute of Food Technologists®

  9. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    PubMed Central

    Toko, Kiyoshi; Hara, Daichi; Tahara, Yusuke; Yasuura, Masato; Ikezaki, Hidekazu

    2014-01-01

    The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA) using a taste sensor (electronic tongue). In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane. PMID:25184491

  10. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  11. What Are Taste Buds?

    MedlinePlus

    ... on your tongue and allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ... send messages to the brain about how something tastes, so you know if it's sweet, sour, bitter, or salty. The average person has about 10,000 taste ...

  12. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    NASA Astrophysics Data System (ADS)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  13. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame.

    PubMed

    Bouayad-Gervais, Samir H; Lubell, William D

    2013-11-28

    The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  14. What do love and jealousy taste like?

    PubMed

    Chan, Kai Qin; Tong, Eddie M W; Tan, Deborah H; Koh, Alethea H Q

    2013-12-01

    Metaphorical expressions linking love and jealousy to sweet, sour, and bitter tastes are common in normal language use and suggest that these emotions may influence perceptual taste judgments. Hence, we investigated whether the phenomenological experiences of love and jealousy are embodied in the taste sensations of sweetness, sourness, and bitterness. Studies 1A and 1B validated that these metaphors are widely endorsed. In three subsequent studies, participants induced to feel love rated a variety of tastants (sweet-sour candy, bitter-sweet chocolates, and distilled water) as sweeter than those who were induced to feel jealous, neutral, or happy. However, those induced to feel jealous did not differ from those induced to feel happy or neutral on bitter and sour ratings. These findings imply that emotions can influence basic perceptual judgments, but metaphors that refer to the body do not necessarily influence perceptual judgments the way they imply. We further suggest that future research in metaphoric social cognition and metaphor theory may benefit from investigating how such metaphors could have originated.

  15. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

    PubMed

    Sparks, Jackson T; Dickens, Joseph C

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  16. PTC/PROP tasting: anatomy, psychophysics, and sex effects.

    PubMed

    Bartoshuk, L M; Duffy, V B; Miller, I J

    1994-12-01

    Taste worlds of humans vary because of taste blindness to phenylthiocarbamide (PTC) and its chemical relative, 6-n-propylthiouracil (PROP). We review early PTC studies and apply modern statistical analyses to show that a higher frequency of women tasted PTC crystals, and were tasters (threshold classification). In our laboratory, scaling of PROP bitterness led to the identification of a subset of tasters (supertasters) who rate PROP as intensely bitter. Supertasters also perceive stronger tastes from a variety of bitter and sweet substances, and perceive more burn from oral irritants (alcohol and capsaicin). The density of taste receptors on the anterior tongue (fungiform papillae, taste buds) correlate significantly with perceived bitterness of PROP and support the supertaster concept. Psychophysical data from studies in our laboratory also show a sex effect; women are supertasters more frequently. The anatomical data also support the sex difference; women have more fungiform papillae and more taste buds. Future investigations of PTC/PROP tasting and food behaviors should include scaling to identify supertasters and separate sex effects.

  17. Functional analyses on antioxidant, anti-inflammatory, and antiproliferative effects of extracts and compounds from Ilex latifolia Thunb., a Chinese bitter tea.

    PubMed

    Hu, Ting; He, Xiao-Wei; Jiang, Jian-Guo

    2014-08-27

    Ilex latifolia Thunb., widely distributed in China, has been used as a functional food and drunk for a long time. This study was aimed to identify the bioactive constituents with antioxidant, antitumor, and anti-inflammatory properties. I. latifolia was extracted with 95% ethanol and then partitioned into four fractions: petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and water fraction. Results showed that the ethyl acetate fraction was found to have significant ferric reducing antioxidant power activity, DPPH radical scavenging activity, and oxygen radical absorbance capacity, cytotoxicity against human cervix carcinoma HeLa cells, and inhibitory effect on NO production in macrophage RAW 264.7 cells. Five compounds were isolated from the ethyl acetate fraction, and they were identified as ethyl caffeate (1), ursolic acid (2), chlorogenic acid (3), 3,4-di-O-caffeoylquinic acid methyl ester (4), and 3,5-di-O-caffeoylquinic acid methyl ester (5), the last two of which were isolated for the first time from I. latifolia. Compounds 4 and 5 exhibited cytotoxicity actions against tumor cell line. Compound 3 showed the strongest anti-inflammatory activity of all the compounds. The results obtained in this work might contribute to the understanding of biological activities of I. latifolia and further investigation on its potential application values for food and drug.

  18. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  19. Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavoured virgin olive oils.

    PubMed

    Caponio, Francesco; Durante, Viviana; Varva, Gabriella; Silletti, Roccangelo; Previtali, Maria Assunta; Viggiani, Ilaria; Squeo, Giacomo; Summo, Carmine; Pasqualone, Antonella; Gomes, Tommaso; Baiano, Antonietta

    2016-07-01

    Olive oil flavouring with aromatic plants and spices is a traditional practice in Mediterranean gastronomy. The aim of this work was to compare the influence of two different flavouring techniques (infusion of spices into the oil vs. combined malaxation of olives paste and spices) on chemical and sensory quality of flavoured olive oil. In particular, oxidative and hydrolytic degradation (by routine and non-conventional analyses), phenolic profiles (by HPLC), volatile compounds (by SPME-GC/MS), antioxidant activity, and sensory properties (by a trained panel and by consumers) of the oils were evaluated. The obtained results evidenced that the malaxation method was more effective in extracting the phenolic compounds, with a significantly lower level of hydrolysis of secoiridoids. As a consequence, antioxidant activity was significantly lower in the oils obtained by infusion, which were characterized by a higher extent of the oxidative degradation. The volatile compounds were not significantly influenced by changing the flavouring method, apart for sulfur compounds that were more abundant in the oils obtained by the combined malaxation method. From a sensory point of view, more intense bitter and pungent tastes were perceived when the infusion method was adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Oxidative stress response in canine in vitro liver, kidney and intestinal models with seven potential dietary ingredients.

    PubMed

    Choi, Kyoungju; Ortega, Maria T; Jeffery, Brett; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2016-01-22

    In vitro cell culture systems are a useful tool to rapidly assess the potential safety or toxicity of chemical constituents of food. Here, we investigated oxidative stress and organ-specific antioxidant responses by 7 potential dietary ingredients using canine in vitro culture of hepatocytes, proximal tubule cells (CPTC), bone marrow-derived mesenchymal stem cells (BMSC) and enterocyte-like cells (ELC). Cellular production of free radical species by denatonium benzoate (DB), epigallocatechin gallate (EPI), eucalyptol (EUC), green tea catechin extract (GTE) and sodium copper chlorophyllin (SCC), tetrahydroisohumulone (TRA) as well as xylitol (XYL) were continuously measured for reactive oxygen/nitrogen species (ROS/RNS) and superoxide (SO) for up to 24h. DB and TRA showed strong prooxidant activities in hepatocytes and to a lesser degree in ELC. DB was a weak prooxidant in BMSC. In contrast DB and TRA were antioxidants in CPTC. EPI was prooxidant in hepatocytes and BMSC but showed prooxidant and antioxidant activity in CPTC. SCC in hepatocytes (12.5mg/mL) and CPTC (0.78mg/mL) showed strong prooxidant and antioxidant activity in a concentration-dependent manner. GTE was effective antioxidant only in ELC. EUC and XYL did not induce ROS/RNS in all 4 cell types. SO production by EPI and TRA increased in hepatocytes but decreased by SCC in hepatocytes and ELC. These results suggest that organ-specific responses to oxidative stress by these potential prooxidant compounds may implicate a mechanism of their toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge

    USDA-ARS?s Scientific Manuscript database

    Minor cucurbits include bitter gourd, bottle gourd, wax gourd, snake gourd, and sponge and ridge gourd, which are significant dietary sources of nutrients such as vitamin A and C, iron and calcium. These cucurbits are cultivated and marketed by smallholder farmers and remain important components of ...

  2. The effect of barium on perceptions of taste intensity and palatability.

    PubMed

    Dietsch, Angela M; Solomon, Nancy Pearl; Steele, Catriona M; Pelletier, Cathy A

    2014-02-01

    Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, nontaster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40 % w/v barium: noncarbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter), and sucrose (sweet). Mixed-model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than nontasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions.

  3. Genetic taste markers and preferences for vegetables and fruit of female breast care patients.

    PubMed

    Drewnowski, A; Henderson, S A; Hann, C S; Berg, W A; Ruffin, M T

    2000-02-01

    To explore links between genetic responsiveness to the bitter taste of 6-n-propylthiouracil (PROP) and self-reported preferences for vegetables and fruit of female breast care patients. PROP tasting was defined by detection thresholds and by perceived bitterness and hedonic ratings for PROP solutions. Nontasters, medium tasters, and supertasters were identified by their PROP thresholds and by the ratio of perceived bitterness of PROP to the perceived saltiness of sodium chloride solutions. Subjects rated preferences for vegetables and fruit using 9-point category scales. A clinical sample of 170 patients with newly diagnosed breast cancer and 156 cancer-free control subjects were recruited from the University of Michigan Breast Care Center. Principal components factor analysis, one-way analyses of variance, and Pearson correlations and chi 2 tests were used to analyze taste and food preference data. Genetic responsiveness to PROP was associated with lower acceptance of cruciferous and selected green and raw vegetables (P < .05). Women who reported disliking such foods were medium tasters or supertasters of PROP. Preference ratings for fruit were unrelated to PROP taster status. Women who are PROP tasters may be less likely to comply with dietary strategies for cancer prevention that emphasize consumption of cruciferous vegetables and bitter salad greens. Alternatively, PROP-sensitive women may seek to reduce bitter taste by adding fat, sugar, or salt.

  4. Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats.

    PubMed

    Torregrossa, A-M; Loney, G C; Smith, J C; Eckel, L A

    2015-03-01

    Sucralose avoiding rats detect a bitter-like taste quality in concentrations of sucralose that are strongly preferred over water by sucralose preferring rats. Here, we investigated whether sucralose preferrers (SP) also detect a bitter-like quality in sucralose that may be masked by an increased perception of sucralose's sweet-like quality. A microstructural analysis of sucralose intake revealed that, at concentrations they avoided in preference tests, sucralose avoiders (SA) consumed smaller and fewer bouts of sucralose than SP. Interestingly, the concentration-dependent increase in sucralose preference in SP was not associated with larger bouts or increased lick rate, two measures that are expected to increase with increasing perceived sweetness. This suggests that SP can detect an aversive quality in sucralose, but this perception of a presumably bitter-like quality may be masked by increased salience of a sweet-like quality that sustains high levels of intake in SP. Further evidence for increased sweet-taste perception in SP, relative to SA, was obtained in a second study in which SP consumed more of a palatable sweet-milk diet than SA. These are the first data to suggest that SP are not blind to the bitter-like quality in sucralose, and that there may be differences in sweet-taste perception between SP and SA. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle.

    PubMed

    Han, Xue; Jiang, Hong; Han, Li; Xiong, Xi; He, Yanan; Fu, Chaomei; Xu, Runchun; Zhang, Dingkun; Lin, Junzhi; Yang, Ming

    2018-03-01

    Traditional Chinese herbs (TCH) are currently gaining attention in disease prevention and health care plans. However, their general bitter taste hinders their use. Despite the development of a variety of taste evaluation methods, it is still a major challenge to establish a quantitative detection technique that is objective, authentic and sensitive. Based on the two-bottle preference test (TBP), we proposed a novel quantitative strategy using a standardized animal test and a unified quantitative benchmark. To reduce the difference of results, the methodology of TBP was optimized. The relationship between the concentration of quinine and animal preference index (PI) was obtained. Then the PI of TCH was measured through TBP, and bitterness results were converted into a unified numerical system using the relationship of concentration and PI. To verify the authenticity and sensitivity of quantified results, human sensory testing and electronic tongue testing were applied. The quantified results showed a good discrimination ability. For example, the bitterness of Coptidis Rhizoma was equal to 0.0579 mg/mL quinine, and Nelumbinis Folium was equal to 0.0001 mg/mL. The validation results proved that the new assessment method for TCH was objective and reliable. In conclusion, this study provides an option for the quantification of bitterness and the evaluation of taste masking effects.

  6. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    PubMed

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA.

    PubMed

    Sakamoto, K; Margolles, A; van Veen, H W; Konings, W N

    2001-09-01

    Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.

  8. New polymer for removal of wine phenolics: Poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA).

    PubMed

    Castro, Ricardo I; Forero-Doria, Oscar; Guzmán, Luis; Laurie, V Felipe; Valdés, Oscar; Ávila-Salas, Fabián; López-Cortés, Xaviera; Santos, Leonardo S

    2016-12-15

    The phenolic compounds of wine contribute to color and astringency, also are responsible for the oxidation state and bitterness. Due the importance of these molecules, different techniques have been used to modulate their concentration such as natural or synthetic polymeric agents. Among the polymeric agents, PVPP is one of the most used, but lacks of selectivity and has a limited pH range. Therefore, the aim of this study was the synthesis of a new polymer, poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA), for removal of phenolic compounds, as a potential agent for the fining of wine. The new polymer affinity was studied using HPLC-DAD for different polyphenols using PVPP as a control. The results showed that the new polymer has a similar removal as PVPP, but with lower affinity to resveratrol. The interactions established between polymers and polyphenols were studied using computational chemistry methods demonstrating a direct correlation with the experimental affinity data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics.

    PubMed

    Ribeiro, J S; Augusto, F; Salva, T J G; Ferreira, M M C

    2012-11-15

    In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Optimizing Oral Medications for Children

    PubMed Central

    Mennella, Julie A.; Beauchamp, Gary K.

    2009-01-01

    Background Active pharmaceutical ingredients that taste bitter and/or irritate the mouth and throat are aversive to children as well as many adults. Effective methods of avoiding unpleasant tastes for adults (eg, encapsulating the medicine in pill, capsule, or tablet form) are problematic because many children cannot or will not swallow these. The unpalatable flavor of the medicine can thwart the benefits of even the most powerful of drugs. Failure to consume medication may do the child harm and can even be life-threatening. Objectives This article provides an overview of the current knowledge of the sensory capabilities and preferences of children as it relates to flavor, defined here as the combined input of taste, smell, and chemical irritation. The methods used to evaluate flavor perception in children are reviewed. Recent scientific advances are summarized that shed light on why the bitter taste of oral pharmaceuticals is an ongoing formulation problem and how discoveries of novel flavor molecules and modulators of bitter tastes hold considerable promise for the future. Alternative methods for evaluation of the palatability of medicines are described. Methods The Eunice Kennedy Shriver National Institute of Child Health and Human Development sponsored a Pediatric Formulation Initiative workshop on December 6 and 7, 2005, in Bethesda, Maryland. Information for this article was gathered from literature reviews that were then discussed during this workshop as well as during several conference calls with the Taste and Flavor Working Group members. Terms for the MEDLINE search (1970-2007) included infant, children, taste, olfaction/smell, flavor, chemical senses, palatability, sensory testing, pharmaceutical, and medicines. Results Children have well-developed sensory systems for detecting tastes, smells, and chemical irritants, and their rejection of unpalatable medications is a reflection of their basic biology. Sugars, salt, and other substances reportedly reduce the bitterness of several pharmaceuticals. Adding pleasant flavor volatiles such as bubble gum may help induce children to consume a medicine, but such volatile compounds are not effective in suppressing the strong bitter tastes associated with some medications. Also, because individual experiences and culture mainly determine which odors are attractive, a universally appealing volatile flavoring agent may be difficult to identify. Sensory panelists who are sensitive to the pediatric palate, which is different from adults, and new techniques involving animal models, isolated parts of the receptor cells, and even electronic devices that detect taste and flavor are among the tools that may be used to evaluate the palatability of medications and predict compliance among pediatric populations. Conclusions Although there are no easy solutions to this dilemma, children’s acceptance of many medicines can be improved by applying the knowledge gleaned from basic research in the chemical senses. Further development and validation of sensory methods will provide a better understanding of the sensory world of the child. This understanding, combined with new technologies and results of animal model studies, will enhance drug acceptance and compliance in pediatric populations. A better understanding of the scientific basis for distaste and how to ameliorate it is a public health priority. PMID:19108800

  11. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2017-02-01

    Glucosylated forms of tyramine and some of its N-methylated derivatives are here reported for the first time to occur in Citrus genus plants. The compounds tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and N,N-dimethyltyramine-O-β-d-glucoside were detected in juice and leaves of sweet orange, bitter orange, bergamot, citron, lemon, mandarin, and pomelo. The compounds were identified by mass spectrometric analysis, enzymatic synthesis, and comparison with extracts of Stapelia hirsuta L., a plant belonging to the Apocynaceae family in which N,N-dimethyltyramine-O-β-d-glucoside was identified by others. Interestingly, in Stapelia hirsuta we discovered also tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and the tyramine metabolite, N,N,N-trimethyltyramine-O-β-glucoside. However, the latter tyramine metabolite, never described before, was not detected in any of the Citrus plants included in this study. The presence of N-methylated tyramine derivatives and their glucosylated forms in Citrus plants, together with octopamine and synephrine, also deriving from tyramine, supports the hypothesis of specific biosynthetic pathways of adrenergic compounds aimed to defend against biotic stress.

  12. Encapsulation of Natural Polyphenolic Compounds; a Review

    PubMed Central

    Munin, Aude; Edwards-Lévy, Florence

    2011-01-01

    Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented. PMID:24309309

  13. A new concept in Bitter disk design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, B.J.; Schneider-Muntau, H.J.; Eyssa, Y.M.

    1996-07-01

    A new concept in cooling hole design in Bitter disks that allows for much higher power densities and results in considerably lower hoop stresses has been developed and successfully tested at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The new cooling hole shape allows for extreme power densities (up to 12 W.mm{sup 3}) at a moderate heat flux of only 5 W/mm{sup 2}. The new concept also reduces the hoop stress by about 30--50% by making a Bitter disk compliant in the radial direction through staggering small width and closely spaced elongated cooling holes. Finally, the designmore » is optimized for equal temperature.« less

  14. Magnetically Damped Furnace Bitter Magnet Coil 1

    NASA Technical Reports Server (NTRS)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  15. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd.

  16. Young women's food preferences and taste responsiveness to 6-n-propylthiouracil (PROP).

    PubMed

    Kaminski, L C; Henderson, S A; Drewnowski, A

    2000-03-01

    This study examined links between taste responsiveness to 6-n-propylthiouracil (PROP), a heritable trait, and sensory responses to six common foods. Sixty-three young women subjects were divided into PROP tasters (n = 25) and nontasters (n = 25), based on their responses to PROP-impregnated filter paper and mean bitterness intensity ratings for seven PROP solutions. Thirteen subjects were excluded as unclassifiable. The 50 subjects sampled Brussels sprouts, broccoli, spinach, black coffee, soy milk, and soybean tofu. Sensory ratings for bitter intensity; pleasantness of taste, odor, and texture, and overall food acceptability scores were obtained using nine-point category scales. All subjects completed a food-preference checklist and a modified food-frequency questionnaire. PROP tasters rated Brussels sprouts as more bitter than did nontasters (p<0.05). Subjects who perceived the foods as more bitter also rated them as less pleasant and less acceptable. Taste preferences and food preferences were linked. Self-reported food preferences and self-reported frequencies of consumption for the same foods were also linked. Taste factors and food preferences may impact dietary choices and the frequency of food consumption.

  17. The role of carbonic anhydrase VI in bitter taste perception: evidence from the Car6−/− mouse model

    PubMed Central

    2014-01-01

    Background Carbonic anhydrase VI (CA VI) is a secretory isozyme of the α-CA gene family. It is highly expressed in the salivary and mammary glands and secreted into saliva and milk. Although CA VI was first described as a gustatory protein, its exact functional roles have remained enigmatic. Interestingly, polymorphism of the CA6 gene was recently linked to bitter taste perception in humans. In this study, we compared the preference of Car6−/− and wild-type mice for different taste modalities in an IntelliCage monitoring environment. Morphologies of taste buds, tongue papillae, and von Ebner’s glands were evaluated by light microscopy. Cell proliferation and rate of apoptosis in tongue specimens were examined by Ki67 immunostaining and fluorescent DNA fragmentation staining, respectively. Results The behavioral follow up of the mice in an IntelliCage system revealed that Car6−/− mice preferred 3 μM quinine (bitter) solution, whereas wild type mice preferred water. When the quinine concentration increased, both groups preferentially selected water. Histological analysis, Ki67 immunostaining and detection of apoptosis did not reveal any significant changes between tongue specimens of the knockout and wild type mice. Conclusions Our knockout mouse model confirms that CA VI is involved in bitter taste perception. CA VI may be one of the factors which contribute to avoidance of bitter, potentially harmful, substances. PMID:25134447

  18. Earth Observation taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-10-02

    ISS020-E-045018 (2 Oct. 2009) --- Great Bitter Lake, Egypt is featured in this image photographed by an Expedition 20 crew member on the International Space Station. The Great Bitter Lake is one of several lakes located along the Suez Canal that connects the eastern Mediterranean and Red Seas. As the Canal is built only to allow ships to travel in a single lane, the Great Bitter Lake is a location where ships can change their position in line - much like a motor highway passing lane - before proceeding to either Port Said to the north, or the port of Suez to the south. The lake also provides an intermediate harborage for ships traversing the Canal ? a journey that typically takes 14 hours end-to-end. Several ships - some under power and some anchored ? are visible at right. Prior to the opening of the Suez Canal in 1869, Great Bitter Lake was a large salt flat, the typical geomorphic expression of basins in the arid Egyptian climate. Large expanses of white to tan sandy sediments at left and top attest to the desert conditions surrounding the Lake. Located at the approximate midpoint of the Suez Canal, Great Bitter Lake is now filled with water derived from both the Red and Mediterranean Seas and this steady influx of water balances the water lost to evaporation. The town of Fayid (also spelled as Fayed), visible along the western shore of the Lake (bottom) is a tourist destination frequented, particularly in the summer months, by residents of Cairo.

  19. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats.

    PubMed

    Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna

    2016-11-01

    Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying

    PubMed Central

    Guntur, Ananya R.; Gou, Bin; Gu, Pengyu; He, Ruo; Stern, Ulrich; Xiang, Yang; Yang, Chung-Hui

    2017-01-01

    The evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to H2O2 sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear. Here, we demonstrate that H2O2-sensitive dTRPA1 isoforms promote avoidance of UV when adult Drosophila females are selecting sites for egg-laying. First, we show that blind/visionless females are still capable of sensing and avoiding UV during egg-laying when intensity of UV is high yet within the range of natural sunlight. Second, we show that such vision-independent UV avoidance is mediated by a group of bitter-sensing neurons on the proboscis that express H2O2-sensitive dTRPA1 isoforms. We show that these bitter-sensing neurons exhibit dTRPA1-dependent UV sensitivity. Importantly, inhibiting activities of these bitter-sensing neurons, reducing their dTRPA1 expression, or reducing their H2O2-sensitivity all significantly reduced blind females’ UV avoidance, whereas selectively restoring a H2O2-sensitive isoform of dTRPA1 in these neurons restored UV avoidance. Lastly, we show that specifically expressing the red-shifted channelrhodopsin CsChrimson in these bitter-sensing neurons promotes egg-laying avoidance of red light, an otherwise neutral cue for egg-laying females. Together, these results demonstrate a physiological role of the UV-sensitive dTRPA1 isoforms, reveal that adult Drosophila possess at least two sensory systems for detecting UV, and uncover an unexpected role of bitter-sensing taste neurons in UV sensing. PMID:27932542

  1. Bitter tastants alter gastric-phase postprandial haemodynamics.

    PubMed

    McMullen, Michael K; Whitehouse, Julie M; Whitton, Peter A; Towell, Anthony

    2014-07-03

    Since Greco-Roman times bitter tastants have been used in Europe to treat digestive disorders, yet no pharmacological mechanism has been identified which can account for this practice. This study investigates whether the bitter tastants, gentian root (Gentian lutea L.) and wormwood herb (Artemisia absinthium L.), stimulate cephalic and/or gut receptors to alter postprandial haemodynamics during the gastric-phase of digestion. Normal participants ingested (1) 100 mL water plus capsules containing either cellulose (placebo-control) or 1000 mg of each tastant (n=14); or (2) 100mL of water flavoured with 500 or 1500 mg of each tastant (a) gentian (n=12) and (b) wormwood (n=12). A single beat-to-beat cardiovascular recording was obtained for the entire session. Pre/post-ingestion contrasts with the control were analysed for (1) the encapsulated tastants, in the "10 to 15" minute post-ingestion period, and (2) the flavoured water in the "5 to 10" minute post-ingestion period. Water, the placebo-control, increased cardiac contraction force and blood pressure notwithstanding heart rate decreases. Encapsulated tastants did not further alter postprandial haemodynamics. In contrast gentian (500 and 1500 mg) and wormwood (1500 mg) flavoured water elicited increased peripheral vascular resistance and decreased cardiac output, primarily by reducing stroke volume rather than heart rate. Drinking 100mL water elicits a pressor effect during the gastric-phase of digestion due to increased cardiac contraction force. The addition of bitter tastants to water elicits an additional and parallel pressor effect due to increased peripheral vascular resistance; yet the extent of the post-prandial blood pressure increases are unchanged, presumably due to baroreflex buffering. The vascular response elicited by bitter tastants can be categorised as a sympathetically-mediated cephalic-phase response. A possible mechanism by which bitter tastants could positively influence digestion is altering gastric-phase postprandial haemodynamics and supporting postprandial hyperaemia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying.

    PubMed

    Guntur, Ananya R; Gou, Bin; Gu, Pengyu; He, Ruo; Stern, Ulrich; Xiang, Yang; Yang, Chung-Hui

    2017-02-01

    The evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to H 2 O 2 sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear. Here, we demonstrate that H 2 O 2 -sensitive dTRPA1 isoforms promote avoidance of UV when adult Drosophila females are selecting sites for egg-laying. First, we show that blind/visionless females are still capable of sensing and avoiding UV during egg-laying when intensity of UV is high yet within the range of natural sunlight. Second, we show that such vision-independent UV avoidance is mediated by a group of bitter-sensing neurons on the proboscis that express H 2 O 2 -sensitive dTRPA1 isoforms. We show that these bitter-sensing neurons exhibit dTRPA1-dependent UV sensitivity. Importantly, inhibiting activities of these bitter-sensing neurons, reducing their dTRPA1 expression, or reducing their H 2 O 2 -sensitivity all significantly reduced blind females' UV avoidance, whereas selectively restoring a H 2 O 2 -sensitive isoform of dTRPA1 in these neurons restored UV avoidance. Lastly, we show that specifically expressing the red-shifted channelrhodopsin CsChrimson in these bitter-sensing neurons promotes egg-laying avoidance of red light, an otherwise neutral cue for egg-laying females. Together, these results demonstrate a physiological role of the UV-sensitive dTRPA1 isoforms, reveal that adult Drosophila possess at least two sensory systems for detecting UV, and uncover an unexpected role of bitter-sensing taste neurons in UV sensing. Copyright © 2017 by the Genetics Society of America.

  3. A Novel Strategy for Bitter Taste Masking of Gankeshuangqing Dispersible Tablets Based on Particle Coating Technology.

    PubMed

    Han, Xue; Zhang, Ding-Kun; Zhang, Fang; Lin, Jun-Zhi; Jiang, Hong; Lan, Yang; Xiong, Xi; Han, Li; Yang, Ming; Fu, Chao-Mei

    2017-01-01

    Currently, acute upper respiratory tract infections (AURTIs) are increasingly becoming a significant health burden. Gankeshuangqing dispersible tablets (GKSQDT) which have a good effect on treating AURTIs. GKSQDT is composed of baicalin and andrographolide. However, its severe bitterness limits application of patients. Due to the addition of plentiful accessories, common masking methods are unsuitable for GKSQDT. It is thus necessary to develop a new masking method. The Previous study showed that baicalin was less bitter than andrographolide. Thus, particle coating technology was adapted to prepare composite particles that baicalin coated on the surface of andrographolide to decrease bitterness. Initially, particle size of baicalin and coating time of composite was investigated to prepare composite. Then, scanning electron microscopy, wettability, and infrared (IR) spectrogram were used to characterize the microstructure of composite. Furthermore, electronic tongue test, animal preference experiment, and human sensory test were applied to evaluate the masking effect. To produce composite, baicalin should be ground in vibromill for 6 min. Then, andrographolide fine powder was added to grind together for 6 min. Contact angle of composite was smaller than mixture, and more similar to baicalin. Other physical characterization including microstructure, wettability, and IR also suggested that andrographolide was successfully coated by baicalin superfine. Furthermore, taste-masking test indicated taste-masked tablets was less bitter than original tablets. The study indicated that particle coating technology can be used for taste masking of GKSQDT without adding other substance. Moreover, it provides a new strategy of taste masking for national medicine. A new strategy to mask bitterness without adding any other substance based on coating technology was providedThe masking effect was confirmed by electronic tongue test, animal preference experiment and human sensory test. Abbreviations used: AURTIs: Acute Upper Respiratory Tract Infections; GSQDT: Gankeshuangqing Dispersible Tablets; IR: Infrared Spectrogram; LHPC: Low-substituted Hydroxypropyl Cellulose; CAs: Contact Angles; FTIR: Fourier Transform Infrared Spectra.

  4. Facial affective reactions to bitter-tasting foods and body mass index in adults.

    PubMed

    Garcia-Burgos, D; Zamora, M C

    2013-12-01

    Differences in food consumption among body-weight statuses (e.g., higher fruit intake linked with lower body mass index (BMI) and energy-dense products with higher BMI) has raised the question of why people who are overweight or are at risk of becoming overweight eat differently from thinner people. One explanation, in terms of sensitivity to affective properties of food, suggests that palatability-driven consumption is likely to be an important contributor to food intake, and therefore body weight. Extending this approach to unpalatable tastes, we examined the relationship between aversive reactions to foods and BMI. We hypothesized that people who have a high BMI will show more negative affective reactions to bitter-tasting stimuli, even after controlling for sensory perception differences. Given that hedonic reactions may influence consumption even without conscious feelings of pleasure/displeasure, the facial expressions were included in order to provide more direct access to affective systems than subjective reports. Forty adults (28 females, 12 males) participated voluntarily. Their ages ranged from 18 to 46 years (M=24.2, SD=5.8). On the basis of BMI, participants were classified as low BMI (BMI<20; n=20) and high BMI (BMI>23; n=20). The mean BMI was 19.1 for low BMI (SD=0.7) and 25.2 for high BMI participants (SD=1.8). Each subject tasted 5 mL of a grapefruit juice drink and a bitter chocolate drink. Subjects rated the drinks' hedonic and incentive value, familiarity and bitter intensity immediately after each stimulus presentation. The results indicated that high BMI participants reacted to bitter stimuli showing more profound changes from baseline in neutral and disgust facial expressions compared with low BMI. No differences between groups were detected for the subjective pleasantness and familiarity. The research here is the first to examine how affective facial reactions to bitter food, apart from taste responsiveness, can predict differences in BMI. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia.

    PubMed

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for research and debate concerning the origins, evolution, history and contemporary cultivation of bitter manioc in Amazonia and beyond.

  6. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    PubMed Central

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for research and debate concerning the origins, evolution, history and contemporary cultivation of bitter manioc in Amazonia and beyond. PMID:22952727

  7. Comparison of the effect of lavender and bitter orange on anxiety in postmenopausal women: A triple-blind, randomized, controlled clinical trial.

    PubMed

    Farshbaf-Khalili, Azizeh; Kamalifard, Mahin; Namadian, Mahsa

    2018-05-01

    This trial compared the effects of lavender and bitter orange on anxiety in postmenopausal women. This trial was conducted in 2015. Eligible postmenopausal women were allocated into one of two intervention groups or a control group (n = 52 per group) in a 1:1:1 ratio using a randomized block design. Intervention groups received 500 mg capsules containing only bitter orange or lavender flower powder, and the control group received 500 mg capsules containing starch. The Spielberger's State -Trait Anxiety Inventory (STAI) was used before and eight weeks after starting the intervention. Data analyses were based on intention to treat. A one-way ANOVA showed no significant difference in mean state anxiety (P = 0.254) and trait anxiety (p = 0.972) score among the three groups before the intervention. The general linear model, adjusted for baseline state and trait anxiety scores and confounding factors, showed significant differences among the groups in the mean state anxiety (P = 0.010) and trait anxiety (p = 0.041) score after eight weeks of treatment. Bitter orange significantly reduced the mean state-anxiety scores compared with the control group [Adjusted Mean Difference (aMD): -1.99 (95% Confidence Interval, -3.64 to -0.34)]. Lavender significantly reduced the mean state-anxiety scores compared with the control group as well [aMD: -2.45 (95% CI -4.13 to -0.77)] and Bitter orange significantly reduced the mean trait-anxiety scores compared with the control group [aMD: -1.76 (95% CI -3.45 to -0.06)]. Lavender significantly reduced the mean trait-anxiety scores compared with the control group as well [aMD: -2.05 (95% CI -3.76 to -0.33)]. There was no significant difference between bitter orange and lavender groups after intervention in the mean trait-anxiety (p = 0.731) or state-anxiety (p = 0.578) scores. The positive effect of bitter orange and lavender on anxiety in postmenopausal women suggests that they can be used to decrease anxiety in such women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The Potential and Challenges of Digital Well-Being Interventions: Positive Technology Research and Design in Light of the Bitter-Sweet Ambivalence of Change

    PubMed Central

    Diefenbach, Sarah

    2018-01-01

    Along with the dissemination of technical assistance in nearly every part of life, there has been growing interest in the potential of technology to support well-being and human flourishing. “Positive technology” thereby takes the responsible role of a “digital coach,” supporting people in achieving personal goals and behavior change. The design of such technology requires knowledge of different disciplines such as psychology, design and human-computer interaction. However, possible synergies are not yet used to full effect, and it needs common frameworks to support a more deliberate design of the “therapeutic interaction” mediated through technology. For positive technology design, positive psychology, and resource oriented approaches appear as particularly promising starting point. Besides a general fit of the basic theoretical conceptions of human change, many elements of established interventions could possibly be transferred to technology design. However, besides the power of focusing on the positive, another psychological aspect to consider are the bitter components inherent to change, such as the confrontation with a negative status quo, threat of self-esteem, and the effort required. The present research discusses the general potential and challenges within positive technology design from an interdisciplinary perspective with theoretical and practical contributions. Based on the bitter-sweet ambivalence of change as present in many psychological approaches of motivation and behavior change, the bitter-sweet continuum serves as a proxy for the mixed emotions and cognitions related to change. An empirical investigation of those factors among 177 users of self-improvement technologies provides initial support for the usefulness of the bitter-sweet perspective in understanding change dynamics. In a next step, the bitter-sweet concept is transformed into different design strategies to support positive change. The present article aims to deepen the discussion about the responsible role of technology as a well-being enhancement tool and to provide a fruitful frame for different disciplines involved in positive technology. Two aspects are highlighted: First, investigating well-being technology as a form of “therapeutic interaction,” focusing on the need for sensible design solutions in the emerging dialogue between technology and user. Second, a stronger consideration of the bitter-sweet ambivalence of change, utilizing (positive) psychology interventions to full effect. PMID:29593625

  9. The Potential and Challenges of Digital Well-Being Interventions: Positive Technology Research and Design in Light of the Bitter-Sweet Ambivalence of Change.

    PubMed

    Diefenbach, Sarah

    2018-01-01

    Along with the dissemination of technical assistance in nearly every part of life, there has been growing interest in the potential of technology to support well-being and human flourishing. "Positive technology" thereby takes the responsible role of a "digital coach," supporting people in achieving personal goals and behavior change. The design of such technology requires knowledge of different disciplines such as psychology, design and human-computer interaction. However, possible synergies are not yet used to full effect, and it needs common frameworks to support a more deliberate design of the "therapeutic interaction" mediated through technology. For positive technology design, positive psychology, and resource oriented approaches appear as particularly promising starting point. Besides a general fit of the basic theoretical conceptions of human change, many elements of established interventions could possibly be transferred to technology design. However, besides the power of focusing on the positive, another psychological aspect to consider are the bitter components inherent to change, such as the confrontation with a negative status quo, threat of self-esteem, and the effort required. The present research discusses the general potential and challenges within positive technology design from an interdisciplinary perspective with theoretical and practical contributions. Based on the bitter-sweet ambivalence of change as present in many psychological approaches of motivation and behavior change, the bitter-sweet continuum serves as a proxy for the mixed emotions and cognitions related to change. An empirical investigation of those factors among 177 users of self-improvement technologies provides initial support for the usefulness of the bitter-sweet perspective in understanding change dynamics. In a next step, the bitter-sweet concept is transformed into different design strategies to support positive change. The present article aims to deepen the discussion about the responsible role of technology as a well-being enhancement tool and to provide a fruitful frame for different disciplines involved in positive technology. Two aspects are highlighted: First, investigating well-being technology as a form of "therapeutic interaction," focusing on the need for sensible design solutions in the emerging dialogue between technology and user. Second, a stronger consideration of the bitter-sweet ambivalence of change, utilizing (positive) psychology interventions to full effect.

  10. Gustatory sensitivity and food acceptance in two phylogenetically closely related papilionid species: Papilio hospiton and Papilio machaon.

    PubMed

    Sollai, Giorgia; Tomassini Barbarossa, Iole; Masala, Carla; Solari, Paolo; Crnjar, Roberto

    2014-01-01

    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range.

  11. Taste and physiological responses to glucosinolates: seed predator versus seed disperser.

    PubMed

    Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M Denise; Karasov, William H; Trabelcy, Beny; Edwards, Thea M; Arad, Zeev

    2014-01-01

    In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.

  12. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype.

    PubMed

    Melis, Melania; Yousaf, Neeta Y; Mattes, Mitchell Z; Cabras, Tiziana; Messana, Irene; Crnjar, Roberto; Tomassini Barbarossa, Iole; Tepper, Beverly J

    2017-05-01

    Individual differences in astringency perception are poorly understood. Astringency from tannins stimulates the release of specific classes of salivary proteins. These proteins form complexes with tannins, altering their perceived astringency and reducing their bioavailability. We studied the bitter compound, 6-n-propylthioural (PROP), as a phenotypic marker for variation in astringency perception and salivary protein responses. Seventy-nine subjects classified by PROP taster status rated cranberry juice cocktail (CJC; with added sugar) supplemented with 0, 1.5 or 2.0g/L tannic acid (TA). Saliva for protein analyses was collected at rest, or after stimulation with TA or cranberry juice (CJ; without added sugar). CJC with 1.5g/L tannic acid was found to be less astringent, and was liked more by PROP non-taster males than PROP taster males, consistent with the expectation that non-tasters are less sensitive to astringency. Levels of acidic Proline Rich Proteins (aPRPs) and basic Proline Rich Proteins (bPRPs) decreased after TA, while levels of aPRPs, bPRPs and Cystatins unexpectedly rose after CJ. Increases in bPRPs and Cystatins were only observed in PROP tasters. The PROP phenotype plays a gender-specific, but somewhat limited role in the perceived astringency of tannic-acid supplemented, cranberry juice cocktail. The PROP phenotype (regardless of gender) may also be involved in the release of salivary proteins previously implicated in oral health. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gustatory Sensitivity and Food Acceptance in Two Phylogenetically Closely Related Papilionid Species: Papilio hospiton and Papilio machaon

    PubMed Central

    Sollai, Giorgia; Tomassini Barbarossa, Iole; Masala, Carla; Solari, Paolo; Crnjar, Roberto

    2014-01-01

    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range. PMID:24956387

  14. [Elimination of toxic compounds, biological evaluation and partial characterization of the protein from jojoba meal (Simmondsia chinensis [Link] Schneider].

    PubMed

    Medina Juárez, L A; Trejo González, A

    1989-12-01

    The purpose of this study was to establish a new methodology to remove the toxic compounds present in jojoba meal and flour. Also, to perform the biological evaluation of the detoxified products and to chemically characterize the protein fractions. Jojoba meal and seed without testa were deffated with hexane and detoxified with a 7:3 isopropanol-water mixture which removed 86% of total phenolic compounds and 100% of simmondsins originally present, the resulting products had reduced bitterness and caused no deaths on experimental animals. NPR values obtained for diets containing such products were significantly different from those obtained with the casein control (p less than 0.05). Total protein was made up of three different fractions: the water-soluble fraction was the most abundant (61.8%), followed by the salt-soluble (23.6%), and the alkaline soluble fraction (14.6%). The nitrogen solubility curves showed that the isoelectric point for the water-soluble and salt-soluble fractions was pH 3.0, while that of the alkaline fraction fell in the range of 4.5-5.0. All fractions had a maximum solubility at pH 7.0. The methodology reported here, offers a viable solution to eliminate toxic compounds from jojoba meal or seeds, and upgrades the potential use of products such as animal feed or raw material for the production of protein isolates.

  15. Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia.

    PubMed

    Alves-Pereira, Alessandro; Peroni, Nivaldo; Abreu, Aluana Gonçalves; Gribel, Rogério; Clement, Charles R

    2011-10-01

    Manioc is the most important food crop that originated in Amazonia. Many studies have increased our understanding of its evolutionary dynamics under cultivation. However, most of them focused on manioc cultivation in environments with low soil fertility, generally Oxisols. Recent ethnobotanical observations showed that bitter manioc also performs well in high fertility soils, such as Amazonian dark earths (ADE) and the floodplain. We used 10 microsatellite loci to investigate the genetic diversity and structure of bitter manioc varieties grown in different soil types in communities of smallholder farmers along the middle Madeira River in Central Amazonia. The genetic diversity of some sweet varieties and seedlings was also evaluated. Adult individuals showed higher levels of genetic diversity and smaller inbreeding coefficients (A ( R ) = 5.52, H ( O ) = 0.576, f = 0.086) than seedlings (A ( R ) = 4.39, H ( O ) = 0.421, f = 0.242). Bitter manioc varieties from the floodplain showed higher levels of genetic diversity (A ( R ) = 5.19, H ( O ) = 0.606) than those from ADE (A ( R ) = 4.45, H ( O ) = 0.538) and from Oxisols (A ( R ) = 4.15, H ( O ) = 0.559). The varieties grown in the floodplain were strongly differentiated from the varieties grown in Oxisols (F ( ST ) = 0.093) and ADE (F ( ST ) = 0.108), suggesting important genetic structuring among varieties grown in the floodplain and upland soils (ADE and Oxisols). This is the first time that genetic divergence of bitter manioc varieties in cultivation in different Amazonian soils in a small geographic area is reported.

  16. Low dietary cyanogen exposure from frequent consumption of potentially toxic cassava in Malawi.

    PubMed

    Chiwona-Karltun, L; Tylleskär, T; Mkumbira, J; Gebre-Medhin, M; Rosling, H

    2000-01-01

    In a cassava-growing area in Malawi, where roots are processed by soaking and water is available throughout the year, we interviewed 176 women farmers regarding their preferences for cassava cultivars and frequency of cassava consumption. Dietary cyanogen exposure was estimated from urinary levels of linamarin, the cyanogenic glycoside in cassava, and urinary thiocyanate, the main cyanide metabolite. Protection against unplanned harvest by family members, theft and animal spoilage were stated to be very important reasons for growing bitter cassava cultivars by 91%, 90% and 74% of the women, respectively. The mean (+/- SD) number of cultivars grown by each woman was 4.6 (+/- 2.4). The correlation between mean taste and mean danger scores for the 25 most grown cultivars was strong (r > 0.98). The scoring indicated that cultivars belonged to two distinct groups, eight to a group referred to as 'cool' and 17 to a group termed 'bitter'. The dumpling-like porridge (kondowole) made from cassava flour from bitter roots was eaten twice daily by 51% and at least weekly by 81%. The mean (+/- SEM) urinary linamarin was 14 (+/- 1) mumol/L and thiocyanate was 50 (+/- 4) mumol/L, less than a tenth of levels reported from populations eating insufficiently processed bitter cassava roots, and in the same range as in a non-smoking Swedish reference population. We conclude that cyanogenesis is a preferred characteristic of cassava by the studied farmers because it enhances food security. The availability of water and their knowledge about toxicity and processing enables these women farmers to provide a safe staple food from bitter cassava roots.

  17. Immunohistochemical Detection of TAS2R38 Protein in Human Taste Cells

    PubMed Central

    Behrens, Maik; Born, Stephan; Redel, Ulrike; Voigt, Nadine; Schuh, Vanessa; Raguse, Jan-Dirk; Meyerhof, Wolfgang

    2012-01-01

    The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body. PMID:22792271

  18. The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...

  19. Thermal and mechanical stress analysis for a Bitter-type toroidal field magnet for Zephyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brossmann, U.B.; Mukherjee, S.; Soell, M.

    1981-09-01

    ZEPHYR, a high-density, high-magnetic-field tokamak concept, has been worked out. The aim of this experiment is to achieved ignition of a D-T plasma. A maximum magnetic induction value of about 17 T is proposed. As an alternative to a tape-wound magnet a Bitter-type toroidal field magnet is investigated. 9 refs.

  20. Impacts of 1-Methylcyclopropene and controlled atmosphere established during conditioning on development of bitter pit in ‘Honeycrisp’ apples

    USDA-ARS?s Scientific Manuscript database

    ‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but pre-harvest lesion development can also occur. ‘Honeycrisp’ is also chilling sensitive and fruit is typically held at 10-20 oC after harvest for up to 7d to re...

  1. Bitters: Time for a New Paradigm.

    PubMed

    McMullen, Michael K; Whitehouse, Julie M; Towell, Anthony

    2015-01-01

    In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm.

  2. Bitters: Time for a New Paradigm

    PubMed Central

    McMullen, Michael K.; Whitehouse, Julie M.; Towell, Anthony

    2015-01-01

    In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm. PMID:26074998

  3. Development and Evaluation of Taste Masked Granular Formulation of Satranidazole by Melt Granulation Technique

    PubMed Central

    Pawar, Harshal Ashok; Joshi, Pooja Rasiklal

    2014-01-01

    Drugs from nitroimidazole category are generally bitter in taste. Oral formulation with bitter taste is not palatable. Geriatrics and pediatrics patients usually suffer from swallowing difficulties. Many other patients in some disease conditions avoid swallowing tablets. Satranidazole is a new nitro-imidazole derivative with bitter taste and is available in market as film coated tablet. The purpose of this research was to mask the bitter taste of Satranidazole by coating complexation with low melting point wax and Eudragit EPO. Different types of wax (glyceryl monostearate, stearic acid and cetyl alcohol) were tried for taste masking. The drug to stearic acid ratio 1 : 2 was found to be optimum on the basis of taste evaluation and in vitro release. The formulated granules were found to possess good flow property. FTIR studies confirmed that there was no interaction between drug and excipients. Scanning Electron Microscopy of drug and the optimized batch of granules was performed. The in vitro release of drug from granules was compared with marketed tablet formulation. The taste masked granules of optimized batch showed 87.65% release of drug in 1 hr which is comparable to that of marketed tablet formulation. PMID:26556200

  4. PROP (6-n-Propylthiouracil) tasting and sensory responses to caffeine,sucrose, neohesperidin dihydrochalcone and chocolate.

    PubMed

    Ly, A; Drewnowski, A

    2001-01-01

    The genetically determined ability to taste 6-n-propylthiouracil (PROP) has been linked with lowered acceptance of some bitter foods. Fifty-four women, aged 18-30 years, tasted and rated PROP-impregnated filter paper and seven solutions of PROP. Summed bitterness intensity ratings for PROP solutions determined PROP taster status. Respondents also tasted five sucrose and seven caffeine solutions, as well as seven solutions each of caffeine and PROP that had been sweetened with 0.3 mmol/l neohesperidin dihydrochalcone (NHDC). Respondents also rated three kinds of chocolate using 9-point category scales. PROP tasters rated caffeine solutions as more bitter than did non-tasters and liked them less. PROP tasters did not rate either sucrose or NHDC as more sweet. The addition of NHDC to PROP and caffeine solutions suppressed bitterness intensity more effectively for tasters than for non-tasters and improved hedonic ratings among both groups. PROP tasters and non-tasters showed the same hedonic response to sweetened caffeine solutions and did not differ in their sensory responses to chocolate. Genetic taste markers may have only a minor impact on the consumption of such foods as sweetened coffee or chocolate.

  5. Optimising the Encapsulation of an Aqueous Bitter Melon Extract by Spray-Drying

    PubMed Central

    Tan, Sing Pei; Kha, Tuyen Chan; Parks, Sophie; Stathopoulos, Costas; Roach, Paul D.

    2015-01-01

    Our aim was to optimise the encapsulation of an aqueous bitter melon extract by spray-drying with maltodextrin (MD) and gum Arabic (GA). The response surface methodology models accurately predicted the process yield and retentions of bioactive concentrations and activity (R2 > 0.87). The optimal formulation was predicted and validated as 35% (w/w) stock solution (MD:GA, 1:1) and a ratio of 1.5:1 g/g of the extract to the stock solution. The spray-dried powder had a high process yield (66.2% ± 9.4%) and high retention (>79.5% ± 8.4%) and the quality of the powder was high. Therefore, the bitter melon extract was well encapsulated into a powder using MD/GA and spray-drying. PMID:28231214

  6. Direct observation of vortex structure in a high-{Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} thin film by Bitter decoration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Akira; Yamaguchi, Tetsuji; Iguchi, Ienari

    1999-12-01

    The Bitter decoration technique is one of the most powerful techniques to study the vortex structure of superconductor. The authors report the observation of vortex structure in a high {Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (YBCO) thin film by Bitter decoration method. The image of vortex structure was monitored by SEM, AFM and high resolution optical microscope. For magnetic field about 4--6mT, a vortex structure is seen. The vortex image varied with changing magnetic field. As compared with the vortex image of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal, the observed image appeared to be more randomly distributed.

  7. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    NASA Astrophysics Data System (ADS)

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-03-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.

  8. Headspace gas chromatography based methodology for the analysis of aromatic substituted quaternary ammonium salts.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Palacín, Marta Guillén; Van Schepdael, Ann; Adams, Erwin

    2016-12-09

    The analysis of quaternary ammonium salts (QAS) using GC is often performed by "in injector" pyrolysis to create volatile degradation products for quantification purposes. Besides the risk of severe system contamination, the application of this approach on aqueous samples is problematic. In this work, the sample is treated in a vial with 2,2-dimethoxypropane (DMP) under acidic catalysis. In addition to the removal of water and sample enrichment, the QAS are decomposed. As HS transfers only volatile compounds to the GC system, contamination is avoided. It was found that depending on the presence of benzyl, phenyl or methyl groups on the quaternary nitrogen; benzyl chloride, N,N-dimethylaniline or chloromethane are formed respectively in the sealed vial. All these can be used as an analytical target. A calibration curve for benzyl chloride could be derived from the pure compound. Chloromethane was generated from pure benzyldimethyldecylammonium chloride (BEDIDE), a pure QAS with benzyl and methyl groups, to construct a secondary calibration curve using a back analysis approach. It has been proven that by quantifying the formed analytical targets, the mass balance for the QAS under investigation was close to 100%. The presented procedure allows the quantification of any aromatic substituted QAS without the need for a matching reference, which is a major advantage over existing CE and LC methods The proposed methodology was validated for mouth sprays containing benzethonium chloride (BZTCl) or benzoxonium chloride (BZOCl) and for denatonium benzoate (DB) in ethylene glycol (EG) based cooling liquids. Results showed that the approach provided excellent linearity (R 2 ≥0.999) and limits of detection around 0.01μg/vial for benzyl chloride. It was found that the reaction product of DMP and glycerol which was also present in the mouthspray and some cooling liquids, caused chromatographic interference with benzyl chloride. Treating those samples in the vial with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) after the enrichment step removes the interference and leaves a possible pathway for the simultaneous determination of glycerol in those samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Downsizing--remember to do it right.

    PubMed

    Sampson, D

    1998-01-01

    Downsizing is always difficult even in the best of circumstances. The key to downsizing is treating people the way you would expect to be treated, and offering some understanding and compassion. The end result can be employees who adjust quickly to this momentary crisis in their lives verses angry, bitter, employees who voice their anger and bitterness against your agency publicly and perhaps even in a court of law.

  10. Hybrid magnet program at the Francis Bitter National Magnet Laboratory MIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leupold, M.J.; Weggel, R.J.

    1992-01-01

    Resistive water-cooled magnets can generate field according to how much power is available. The authors have developed the hybrid concept for generating fields beyond a power limit, up to 45 T. Along the way the authors have progressed through five successively more adventurous designs. This paper chronicles the evolution of hybrid magnets built at the Francis Bitter National Magnet Laboratory.

  11. Sugar Cane: A Bitter-Sweet Legacy. A Study of the Disappearing African-American Worker on the Sugar Cane Plantations in Southern Louisiana.

    ERIC Educational Resources Information Center

    Jones, John A., Jr.; And Others

    This resource/study guide is designed to accompany the instructional video, "Sugar Cane: A Bitter-Sweet Legacy," which explores the significance of cultivating, harvesting, and refining sugar cane. It is also a brief study of the disappearing African-American workers on the sugar cane plantations in southern Louisiana. Seven main ideas…

  12. Cultural Resources Survey of Fourteen Mississippi River Levee and Revetment Items.

    DTIC Science & Technology

    1982-04-14

    floodplain forest of hackberry, cottonwood, pecan , bitter pecan , water oak, ash, elm and boxelder is characteristic. The understory in these areas is...contained the greatest diversity of resources such as acorns from live oak (Quercus virginiana) and willow oak (Quercus phellos), nuts from bitter pecan ...Carya aquatica) and pecan (Carya illinoensis), fruits from persimmon (Diospyros virginiana) and mulberry (Morus rubra) and edible roots from

  13. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks.

    PubMed

    Hosu, Anamaria; Cristea, Vasile-Mircea; Cimpoiu, Claudia

    2014-05-01

    Wine is one of the most consumed beverages over the world containing large quantities of polyphenolic compounds. These compounds are responsible for quality of red wines, influencing the antioxidant activity, astringency, bitterness and colour, their composition in wine being influenced by the varieties, the vintage and the wineries. The aim of the present work is to build software instruments intended to work as data-mining tools for predicting valuable properties of wine and for revealing different wine classes. The developed ANNs are able to reveal the relationships between the concentration of total phenolic, flavonoids, anthocyanins, and tannins content, associated to the antioxidant activity, and the wine distinctive classes determined by the wine variety, harvesting year or winery. The presented ANNs proved to be reliable software tools for assessment or validation of the wine essential characteristics and authenticity and may be further used to establish a database of analytical characteristics of wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dermocosmetics for dry skin: a new role for botanical extracts.

    PubMed

    Casetti, F; Wölfle, U; Gehring, W; Schempp, C M

    2011-01-01

    Dry skin is associated with a disturbed skin barrier and reduced formation of epidermal proteins and lipids. During recent years, skin-barrier-reinforcing properties of some botanical compounds have been described. Searching the PubMed database revealed 9 botanical extracts that specifically improve skin barrier and/or promote keratinocyte differentiation in vivo after topical application. The topical application of Aloe vera (leaf gel), Betula alba (birch bark extract), Helianthus annuus (sunflower oleodistillate), Hypericum perforatum (St. John's wort extract), Lithospermum erythrorhizon (root extract), Piptadenia colubrina (angico-branco extract) and Simarouba amara (bitter wood extract) increased skin hydration, reduced the transepidermal water loss, or promoted keratinocyte differentiation in humans in vivo. The topical application of Rubia cordifolia root extract and rose oil obtained from Rosa spp. flowers stimulated keratinocyte differentiation in mouse models. The underlying mechanisms of these effects are discussed. It is concluded that some botanical compounds display skin-barrier-reinforcing properties that may be used in dermocosmetics for dry skin. However, more investigations on the mode of action and more vehicle-controlled studies are required. Copyright © 2011 S. Karger AG, Basel.

  15. [Microbiological and physicochemical evaluation of pasteurized beverages fortified with orange deodorized residues extracts].

    PubMed

    Moreno Alvarez, Mario José; Machado, Alexandra; Padrón, Arelis; García, David; Belén Camacho, Douglas Rafael

    2004-09-01

    Microbiological and physicochemical parameters of pasteurized beverages conditioned with aqueous extracts from orange deodorized residues were evaluated. The fruits used were selected according to following criterion: homogenous maturity, without physical damage and absence of apparent chlorophyll. Orange peels were dried and transformed to flour. The juice was evaluated by means of these parameters: pH 3.90, degrees Brix 10, titrable acidity 0.33 g of citric acid/100 mL and total carotenoids 0.0078 mg/mL. Volatil compounds of the flour that may to cause bitterness were separated by means of two methods of deodorization: distillation in current of vapor and in autoclave to 121 degrees C; then, the flour was extracted with water (relation 1:50 p/v). Pasteurized citric beverages (orange juice) were elaborated adding the deodorized extracts. pH, degrees Brix, titrable acidity and total carotenoids showed no significant differences (P>0.05). Microbiological results were according to pasteurized products. Sensorial analysis by untrained panel showed no signiificant differences. In conclusion, the deodorant processes were effectives and permitted the inclusion of aquasoluble compounds as flavonoids with antioxidant activity.

  16. Alkylpyridiniums. 2. Isolation and quantification in roasted and ground coffees.

    PubMed

    Stadler, Richard H; Varga, Natalia; Milo, Christian; Schilter, Benoit; Vera, Francia Arce; Welti, Dieter H

    2002-02-27

    Recent model studies on trigonelline decomposition have identified nonvolatile alkylpyridiniums as major reaction products under certain physicochemical conditions. The quaternary base 1-methylpyridinium was isolated from roasted and ground coffee and purified by ion exchange and thin-layer chromatography. The compound was characterized by nuclear magnetic resonance spectroscopy ((1)H, (13)C) and mass spectrometry techniques. A liquid chromatography-electrospray ionization tandem mass spectrometry method was developed to quantify the alkaloid in coffee by isotope dilution mass spectrometry. The formation of alkylpyridiniums is positively correlated to the roasting degree in arabica coffee, and highest levels of 1-methylpyridinium, reaching up to 0.25% on a per weight basis, were found in dark roasted coffee beans. Analyses of coffee extracts also showed the presence of dimethylpyridinium, at concentrations ranging from 5 to 25 mg/kg. This is the first report on the isolation and quantification of alkylpyridiniums in coffee. These compounds, described here in detail for the first time, may have an impact on the flavor/aroma profile of coffee directly (e.g., bitterness), or indirectly as precursors, and potentially open new avenues in the flavor/aroma modulation of coffee.

  17. TAS2R38 bitter taste genetics, dietary vitamin C, and both natural and synthetic dietary folic acid predict folate status, a key micronutrient in the pathoaetiology of adenomatous polyps.

    PubMed

    Lucock, Mark; Ng, Xiaowei; Boyd, Lyndell; Skinner, Virginia; Wai, Ron; Tang, Sa; Naylor, Charlotte; Yates, Zoë; Choi, Jeong-Hwa; Roach, Paul; Veysey, Martin

    2011-08-01

    Taste perception may influence dietary preferences and nutrient intakes contributing to diet-related disease susceptibility. This study examined bitter taste genetics and whether variation in the TAS2R38 gene at three polymorphic loci (A49P, V262A and I296V) could alter dietary and systemic folate levels and dietary vitamin C intake, and whether a nutrigenetic circuit existed that might link bitter taste, folate/antioxidant status and risk for a colonic adenomatous polyp. TAS2R38 diplotype predicted bitter taste (PROP) phenotype (p value <0.00001) and red cell folate status (p=0.0179) consistent with the diplotype that has the broadest range of bitter perception (AVI/PAV) also possessing the highest average red cell folate value. However, TAS2R38 diplotype did not predict dietary intake of methylfolic acid, pteroylmonoglutamic acid or total folic acid. Neither did it predict dietary intake of vitamin C. Despite this, intake of dietary folate predicts red cell folate with analysis pointing to a key nutrient-nutrient interaction between vitamin C intake and systemic folate status. Analysis of 38 patients with an adenomatous polyp and 164 controls showed that individually, dietary nutrient intake, nutrient status and taste diplotype did not influence polyp risk. However, red cell folate status (in individuals below the population median value) did interact with bitter taste diplotype (AVI/PAV) to predict polyp risk (p=0.0145). Furthermore, synthetic folic acid (below median intake) was statistically associated with adenoma occurrence (p=0.0215); individuals with adenomatous polyps had a 1.77× higher intake than controls. Additionally, stepwise regression taking account of all dietary nutrients showed a tight relationship between methylfolic acid (but not pteroylmonoglutamic acid) intake and red cell folate level in those with a low folate status and occurrence of an adenomatous polyp (p=0.0039). These findings point to a role for folate in the pathoaetiology of adenomatous polyps, with the natural and synthetic vitamers not necessarily having the same biological effect. This journal is © The Royal Society of Chemistry 2011

  18. Comparison between self-formulation and compounded-formulation dexamethasone mouth rinse for oral lichen planus: a pilot, randomized, cross-over trial.

    PubMed

    Hambly, Jessica L; Haywood, Alison; Hattingh, Laetitia; Nair, Raj G

    2017-08-01

    There is a lack of appropriate, commercially-available topical corticosteroid formulations for use in oral lichen planus (OLP) and oral lichenoid reaction. Current therapy includes crushing a dexamethasone tablet and mixing it with water for use as a mouth rinse. This formulation is unpleasant esthetically and to use in the mouth, as it is a bitter and gritty suspension, resulting in poor compliance. Thus, the present study was designed to formulate and pilot an effective, esthetically-pleasing formulation. A single-blinded, cross-over trial was designed with two treatment arms. Patients were monitored for 7 weeks. Quantitative and qualitative data was assessed using VAS, numeric pain scales, the Treatment Satisfaction Questionnaire for Medication-9, and thematic analysis to determine primary patient-reported outcomes, including satisfaction, compliance, quality of life, and symptom relief. Nine patients completed the pilot trial. Data analysis revealed the new compounded formulation to be superior to existing therapy due to its convenience, positive contribution to compliance, patient-perceived faster onset of action, and improved symptom relief. Topical dexamethasone is useful in the treatment of OLP. When carefully formulated into a compounded mouth rinse, it improves patient outcomes. © 2016 John Wiley & Sons Australia, Ltd.

  19. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  20. Biochemical studies of some non-conventional sources of proteins. Part 7. Effect of detoxification treatments on the nutritional quality of apricot kernels.

    PubMed

    el-Adawy, T A; Rahma, E H; el-Badawey, A A; Gomaa, M A; Lásztity, R; Sarkadi, L

    1994-01-01

    Detoxification of apricot kernels by soaking in distilled water and ammonium hydroxide for 30 h at 47 degrees C decreased the total protein, non-protein nitrogen, total ash, glucose, sucrose, minerals, non-essential amino acids, polar amino acids, acidic amino acids, aromatic amino acids, antinutritional factors, hydrocyanic acid, tannins and phytic acid. On the other hand, removal of toxic and bitter compounds from apricot kernels increased the relative content of crude fibre, starch, total essential amino acids. Higher in-vitro protein digestibility and biological value was also observed. Generally, the detoxified apricot kernels were nutritionally well balanced. Utilization and incorporation of detoxified apricot kernel flours in food products is completely safe from the toxicity point of view.

  1. Bitter taste receptors as targets for tocolytics in preterm labor therapy.

    PubMed

    Zheng, Kaizhi; Lu, Ping; Delpapa, Ellen; Bellve, Karl; Deng, Ruitang; Condon, Jennifer C; Fogarty, Kevin; Lifshitz, Lawrence M; Simas, Tiffany A Moore; Shi, Fangxiong; ZhuGe, Ronghua

    2017-09-01

    Preterm birth (PTB) is the leading cause of neonatal mortality and morbidity, with few prevention and treatment options. Uterine contraction is a central feature of PTB, so gaining new insights into the mechanisms of this contraction and consequently identifying novel targets for tocolytics are essential for more successful management of PTB. Here we report that myometrial cells from human and mouse express bitter taste receptors (TAS2Rs) and their canonical signaling components ( i.e., G-protein gustducin and phospholipase C β2). Bitter tastants can completely relax myometrium precontracted by different uterotonics. In isolated single mouse myometrial cells, a phenotypical bitter tastant (chloroquine, ChQ) reverses the rise in intracellular Ca 2+ concentration ([Ca 2+ ] i ) and cell shortening induced by uterotonics, and this reversal effect is inhibited by pertussis toxin and by genetic deletion of α-gustducin. In human myometrial cells, knockdown of TAS2R14 but not TAS2R10 inhibits ChQ's reversal effect on an oxytocin-induced rise in [Ca 2+ ] i Finally, ChQ prevents mouse PTBs induced by bacterial endotoxin LPS or progesterone receptor antagonist mifepristone more often than current commonly used tocolytics, and this prevention is largely lost in α-gustducin-knockout mice. Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myometrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for PTB management.-Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz, L. M., Simas, T. A. M., Shi, F., ZhuGe, R. Bitter taste receptors as targets for tocolytics in preterm labor therapy. © FASEB.

  2. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade.

    PubMed

    Yung, Mingo M H; Ross, Fiona A; Hardie, D Grahame; Leung, Thomas H Y; Zhan, Jinbiao; Ngan, Hextan Y S; Chan, David W

    2016-09-01

    Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer. © The Author(s) 2015.

  3. Evolution of the taste of a bitter Camembert cheese during ripening: characterization of a matrix effect.

    PubMed

    Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic.

  4. Association between the number of fungiform papillae on the tip of the tongue and sensory taste perception in children.

    PubMed

    Jilani, Hannah; Ahrens, Wohlfgang; Buchecker, Kirsten; Russo, Paola; Hebestreit, Antje

    2017-01-01

    Background : To measure sensory taste perception in children with an accurate and reproducible method is challenging and objective measurement methods are scarce. Objective : Aim was to characterize sensory taste perception, by measuring the number of fungiform papillae (FP) and to investigate whether the number of FP is associated with sensitivity for bitter taste and with taste preferences for sweet, salty, fatty or umami in children between 8 and 11 years of age. Design : Number of FP was measured with a digital camera in 83 children in a German subsample of the IDEFICS study. Among those 56 children performed a taste threshold test for bitter and taste preference tests for sweet, salty, fatty and umami. The association between the number of FP and sensory taste perception was analysed. Results : There is a tendency towards a lower number of FP in children with a higher fat preference (30 vs. 25 papillae, p=0.06). Results show no association between the number of FP and neither the bitter taste thresholds nor taste preferences for sweet, salty and umami. Conclusion : Bitter taste threshold might be independent of the number of FP, while the perception of fat was associated with the number of FP.

  5. Protodioscin, Isolated from the Rhizome of Dioscorea tokoro Collected in Northern Japan is the Major Antiproliferative Compound to HL-60 
Leukemic Cells

    PubMed Central

    Oyama, Manami; Tokiwano, Tetsuo; Kawaii, Satoru; Yoshida, Yasunori; Mizuno, Kouichi; Oh, Keimei; Yoshizawa, Yuko

    2017-01-01

    Abstract: Background: The rhizome of Oni-dokoro (a wild yam, Dioscorea tokoro) has extremely bitter taste and is not generally regarded edible;, however, in northern part of Japan, such as Iwate and a part of Aomori, it is used as health promoting food. To clarify the reason, we examined the biologically active compounds in the rhizome collected at Iwate and compared them from the other area in literature. Methods: The acetonitrile extract from northern part of Japan was purified by bioassay-guided separation using antiproliferative activity to human leukemia HL-60 cell, and protodioscin (PD) was isolated and identified by instrumental analyses as the major active compound. Results: PD known as a saponin with four sugar moieties, an inhibitor for platelet aggregation, and a low density lipoprotein (LPL) lowering agent, displayed strong growth inhibitory effect to HL-60. The literature search suggested that the rhizome from other area contained dioscin and other saponins with three sugar moieties as their major component. We assume that the edible and health promoting effect of the rhizome in the particular area is partially derived from these different components. Conclusion: We were interested in the differences of utilization in the rhizome of wild yam Dioscorea tokoro, and examined the chemical composition in the rhizome to find protodioscin as antiproliferative compound to HL-60. In the report from other area, the rhizome exhibited dioscin as the major compound. Our study indicated that the protodioscin/dioscin composition varied regionally, although the reason is still needs to be investigated. PMID:28579930

  6. Protodioscin, Isolated from the Rhizome of Dioscorea tokoro Collected in Northern Japan is the Major Antiproliferative Compound to HL-60 
Leukemic Cells.

    PubMed

    Oyama, Manami; Tokiwano, Tetsuo; Kawaii, Satoru; Yoshida, Yasunori; Mizuno, Kouichi; Oh, Keimei; Yoshizawa, Yuko

    2017-06-01

    The rhizome of Oni-dokoro (a wild yam, Dioscorea tokoro) has extremely bitter taste and is not generally regarded edible;, however, in northern part of Japan, such as Iwate and a part of Aomori, it is used as health promoting food. To clarify the reason, we examined the biologically active compounds in the rhizome collected at Iwate and compared them from the other area in literature. The acetonitrile extract from northern part of Japan was purified by bioassay-guided separation using antiproliferative activity to human leukemia HL-60 cell, and protodioscin (PD) was isolated and identified by instrumental analyses as the major active compound. PD known as a saponin with four sugar moieties, an inhibitor for platelet aggregation, and a low density lipoprotein (LPL) lowering agent, displayed strong growth inhibitory effect to HL-60. The literature search suggested that the rhizome from other area contained dioscin and other saponins with three sugar moieties as their major component. We assume that the edible and health promoting effect of the rhizome in the particular area is partially derived from these different components. We were interested in the differences of utilization in the rhizome of wild yam Dioscorea tokoro, and examined the chemical composition in the rhizome to find protodioscin as antiproliferative compound to HL-60. In the report from other area, the rhizome exhibited dioscin as the major compound. Our study indicated that the protodioscin/dioscin composition varied regionally, although the reason is still needs to be investigated.

  7. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat.

    PubMed

    Byrne, D V; Bredie, W L P; Mottram, D S; Martens, M

    2002-06-01

    Descriptive sensory profiling was carried out to evaluate the effect of oven-cooking temperature (160, 170, 180, 190 °C) on warmed-over flavour (WOF) development in cooked, chill-stored (at 4 °C for 0, 1, 2 and 4 days) and reheated chicken patties, derived from M. pectoralis major. In addition, gas chromatography-mass spectrometry (GC-MS) was carried out on a representative sub-set (160, 180, 190(o)C, stored at 4 °C for 0, 1, 4 days) of the meat samples used in sensory profiling. The effects of cooking and WOF in the sensory and chemical data were analysed using multivariate ANOVA-Partial Least Squares Regression (APLSR). Descriptive profiling indicated that WOF development was described by an increase of 'rancid' and 'sulphur/rubber' sensory notes and a concurrent decrease of chicken 'meaty' characteristics. Increasing cooking temperature resulted in meat samples with a more 'roasted', 'toasted' and 'bitter' sensory nature. Moreover, the 'roasted' character of the meat samples was also related to WOF development. Analysis of the volatile compounds from the chicken patties showed a rapid development of lipid oxidation derived compounds with chill-storage. Such compounds most likely contributed to the 'rancid' aspect of WOF development. Moreover, changes in sulphur-containing compounds were also related to WOF development and were proposed as additional participants in the lipid oxidation reactions. The sensory effects of these compounds were mainly described by the 'sulphur/rubber' note associated with WOF development. Overall, cooking temperature was found to increase the formation of Maillard-derived compounds, however, these did not appear to inhibit WOF development in the chicken patties.

  8. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease*

    PubMed Central

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-01-01

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia (p < 0.05) and in microglial phagocytosis in the brain. In Alzheimer's model 5xFAD mice, oral administration of iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex (p < 0.05) and a significant improvement in a novel object recognition test (p < 0.05), as compared with control-fed 5xFAD mice. The differences in iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. PMID:28087694

  9. Reduced neophobia: a potential mechanism explaining the emergence of self-medicative behavior in sheep.

    PubMed

    Egea, A Vanina; Hall, Jeffery O; Miller, James; Spackman, Casey; Villalba, Juan J

    2014-08-01

    Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. For instance, emerging behavioral evidence suggests that ruminants self-select medicinal compounds and foods that reduce parasitic burdens. However, the mechanism/s leading to self-medicative behaviors in sick animals is still unknown. We hypothesized that when homeostasis is disturbed by a parasitic infection, consumers should respond by increasing the acceptability of novel foods relative to healthy individuals. Three groups of lambs (N=10) were dosed with 0 (Control-C), 5000 (Medium-M) and 15000 (High-H) L3 stage larvae of Haemonchus contortus. When parasites had reached the adult stage, all animals were offered novel foods and flavors in pens and then novel forages at pasture. Ingestive responses by parasitized lambs were different from non-parasitized Control animals and they varied with the type of food and flavor on offer. Parasitized lambs consumed initially more novel beet pulp and less novel beet pulp mixed with tannins than Control lambs, but the pattern reversed after 9d of exposure to these foods. Parasitized lambs ingested more novel umami-flavored food and less novel bitter-flavored food than Control lambs. When offered choices of novel unflavored and bitter-flavored foods or different forage species to graze, parasitized lambs selected a more diverse array of foods than Control lambs. Reductions in food neophobia or selection of a more diverse diet may enhance the likelihood of sick herbivores encountering novel medicinal plants and nutritious forages that contribute to restore health. Published by Elsevier Inc.

  10. Neural Coding Mechanisms in Gustation.

    DTIC Science & Technology

    1980-09-15

    world is composed of four primary tastes ( sweet , sour, salty , and bitter), and that each of these is carried by a separate and private neural line, thus...ted sweet -sour- salty -bitter types. The mathematical method of analysis was hierarchical cluster analysis based on the responses of many neurons (20 to...block number) Taste Neural coding Neural organization Stimulus organization Olfaction AB TRACT M~ea -i .rvm~ .1* N necffas and idmatity by block mmnbwc

  11. Diterpenoid glycosides from the bitter fern Gleichenia quadripartita.

    PubMed

    Socolsky, Cecilia; Asakawa, Yoshinori; Bardón, Alicia

    2007-12-01

    Fifteen new diterpenoid glycosides (1a-n, 2) were isolated from an Argentine collection of the bitter fern Gleichenia quadripartita along with the known flavonoid glycoside afzelin. Structure elucidation was accomplished by 1D and 2D NMR spectroscopy and by high-resolution MS analyses. In addition, X-ray crystallographic analysis of a monocrystal of 1a as well as chemical derivatization of 1h and 1m were performed to confirm their structures.

  12. The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity

    PubMed Central

    Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.

    2016-01-01

    Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878

  13. Beneficial Role of Bitter Melon Supplementation in Obesity and Related Complications in Metabolic Syndrome

    PubMed Central

    Subhan, Nusrat; Rahman, Md Mahbubur; Jain, Preeti; Reza, Hasan Mahmud

    2015-01-01

    Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition both in vivo and in vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect of Momordica charantia extracts on metabolic syndrome and discuss its potential mechanism of actions. PMID:25650336

  14. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds.

    PubMed

    Parkash, A; Ng, T B; Tso, W W

    2002-05-01

    A peptide designated charantin, with a molecular mass of 9.7 kDa, was isolated from bitter gourd seeds. The procedure comprised affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Mono S and gel filtration on Superdex 75. The N-terminal sequence of charantin exhibited marked similarity to that of the 7.8-kDa napin-like peptide previously isolated from bitter gourd seeds. Charantin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC50 of 400 nm, a potency lower than that of the previously reported small ribosome-inactivating protein gamma-momorcharin (IC50 = 55 nm) which also exhibited an abundance of arginine and glutamate/glutamine residues. Charantin reacted positively in the N-glycosidase assay, yielding a band similar to that formed by the small ribosome-inactivating proteins gamma-momorcharin and luffin S.

  15. A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a Bitter magnet at up to 34 T.

    PubMed

    Tao, W; Singh, S; Rossi, L; Gerritsen, J W; Hendriksen, B L M; Khajetoorians, A A; Christianen, P C M; Maan, J C; Zeitler, U; Bryant, B

    2017-09-01

    We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magnet cooling water, a uniquely designed STM and a vibration damping system are required. The STM scan head is designed to be as compact and rigid as possible, to minimize the effect of vibrational noise as well as fit the size constraints of the Bitter magnet. The STM uses a differential screw mechanism for coarse tip-sample approach, and operates in helium exchange gas at cryogenic temperatures. The reliability and performance of the STM are demonstrated through topographic imaging and scanning tunneling spectroscopy on highly oriented pyrolytic graphite at T = 4.2 K and in magnetic fields up to 34 T.

  16. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  17. Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes

    PubMed Central

    Efird, Jimmy T.; Choi, Yuk Ming; Davies, Stephen W.; Mehra, Sanjay; Anderson, Ethan J.; Katunga, Lalage A.

    2014-01-01

    Bitter Melon (Momordica charantia) is a widely used traditional remedy for hyperglycemia. While the medicinal properties of this plant have been studied extensively using in vitro and animal models, the clinical efficacy and safety in humans is largely unknown. This review discusses the benefits and limitations of bitter melon supplementation in the context of epidemic levels of insulin resistance and pre-diabetes throughout the world. PMID:24566057

  18. A new extension to the Taste Strips test.

    PubMed

    Wolf, Axel; Illini, Oliver; Uy, Daniel; Renner, Bertold; Mueller, Christian A

    2016-03-01

    Assessment of gustatory function in human subjects using the 'taste strips' test is an easy and validated procedure. The aim of this study was to extend this test in order to detect subjects with superior gustatory sensitivity. The investigation included 134 subjects (29.5±12.6 years, range 18-84 years) with normal gustatory function. Four concentrations of sweet, sour, salty, and bitter were augmented with additional low concentrations (sweet: 25/12.5 mg/ml sucrose; sour: 27/15 mg/ml citric acid; salty: 6.4/2.6 mg/ml sodium chloride, bitter: 0.15/0.06 mg/ml quinine hydrochloride), resulting in a maximum extended taste score (ETS) of 24. The mean ETS was 14.5 ± 3.2. Specifically, it was 4.5 ± 1.2 for sweet, 2.8 ± 1.0 for sour, 4.0 ± 1.3 for salty, and 3.2 ± 1.2 for bitter. In contrast to the original version of the taste strips test, no ceiling effect was observed. Cluster analysis separated three groups of subjects by ETS, whereas test scores derived from the original four concentrations were insufficient to discriminate the subgroup with higher gustatory sensitivity. The extended taste strips test seems to be a useful tool for the detection of patients with low gustatory thresholds for sweet, sour, salty, or bitter taste.

  19. Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and De novo Transcriptome Assembly of Stem-Chicory (Cichorium intybus Cultigroup “Catalogna”)

    PubMed Central

    Testone, Giulio; Mele, Giovanni; Di Giacomo, Elisabetta; Gonnella, Maria; Renna, Massimiliano; Tenore, Gian Carlo; Nicolodi, Chiara; Frugis, Giovanna; Iannelli, Maria Adelaide; Arnesi, Giuseppe; Schiappa, Alessandro; Giannino, Donato

    2016-01-01

    Stem-chicory of the “Catalogna” group is a vegetable consumed for bitter-flavored stems. Type and levels of bitter sesquiterpene lactones (STLs) participate in conferring bitterness in vegetables. The content of lactucin—and lactucopocrin-like STLs was higher in “Molfettese” than “Galatina” landrace stalks, regardless of the cultivation sites, consistently with bitterness scores and gustative differences. The “Galatina” transcriptome assembly resulted in 58,872 unigenes, 77% of which were annotated, paving the way to molecular investigation of the STL pathway. Comparative transcriptome analysis allowed the identification of 69,352 SNPs and of 1640 differentially expressed genes that maintained the pattern independently of the site. Enrichment analyses revealed that 4 out of 29 unigenes were up-regulated in “Molfettese” vs “Galatina” within the sesquiterpenoid pathway. The expression of two germacrene A -synthase (GAS) and one -oxidase (GAO) genes of the costunolide branch correlated positively with the contents of lactucin-like molecules, supporting that STL biosynthesis regulation occurs at the transcriptional level. Finally, 46 genes encoding transcription factors (TFs) maintained a differential expression pattern between the two varieties regardless of the growth site; correlation analyses among TFs, GAS, GAO gene expressions and STLs contents suggest that one MYB and one bHLH may act in the pathway. PMID:27877190

  20. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    PubMed

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

  1. Chemical composition and some anti-nutrient content of raw and processed bitter vetch (Vicia ervilia) seed for use as feeding stuff in poultry diet.

    PubMed

    Sadeghi, Gh; Pourreza, J; Samei, A; Rahmani, H

    2009-01-01

    An experiment was conducted to determine chemical composition of raw and treated bitter vetch seed for use in poultry diets. Processing methods were: soaked in water for 12 h, then autoclaved and dried (SA); coarsely ground, soaked in water for 24 h, autoclaved and dried (GSA); coarsely ground, soaked in water for 47 h with exchange of water every 12 h, cooked and dried (GSC); coarsely ground, soaked in solution of 1% acetic acid for 24 h at 60 degrees C and dried (GAA). Raw bitter vetch seed was contained 94.52, 26.56, 0.4, 58.86, 3.38, 5.32, 12.28 and 14.20 percent DM, CP, EE, NFE, Ash, CF, ADF and NDF, respectively. Its GE, AME, AMEn, TME and TMEn values were 18.10, 13.15, 14.38, 14.10 and 14.69 MJ/kg, respectively. Results indicated that bitter vetch is a good source of Fe (340 ppm) and Cu (46.7 ppm). It s amino acid profile was suitable and methionine was the first limiting amino acid when compared with broiler and layer chicks requirements. Its canavanine and tannin content were 0.78 and 6.7 mg/kgDM, respectively. Processing methods improved CP and in some cases AMEn. All processing methods especially GSC resulted in a significant (P < 0.05) reduction in canavanine and tannin.

  2. The gourmet ape: evolution and human food preferences.

    PubMed

    Krebs, John R

    2009-09-01

    This review explores the relation between evolution, ecology, and culture in determining human food preferences. The basic physiology and morphology of Homo sapiens sets boundaries to our eating habits, but within these boundaries human food preferences are remarkably varied, both within and between populations. This does not mean that variation is entirely cultural or learned, because genes and culture may coevolve to determine variation in dietary habits. This coevolution has been well elucidated in some cases, such as lactose tolerance (lactase persistence) in adults, but is less well understood in others, such as in favism in the Mediterranean and other regions. Genetic variation in bitter taste sensitivity has been well documented, and it affects food preferences (eg, avoidance of cruciferous vegetables). The selective advantage of this variation is not clear. In African populations, there is an association between insensitivity to bitter taste and the prevalence of malaria, which suggests that insensitivity may have been selected for in regions in which eating bitter plants would confer some protection against malaria. Another, more general, hypothesis is that variation in bitter taste sensitivity has coevolved with the use of spices in cooking, which, in turn, is thought to be a cultural tradition that reduces the dangers of microbial contamination of food. Our evolutionary heritage of food preferences and eating habits leaves us mismatched with the food environments we have created, which leads to problems such as obesity and type 2 diabetes.

  3. Evaluation of the Bitterness of Traditional Chinese Medicines using an E-Tongue Coupled with a Robust Partial Least Squares Regression Method.

    PubMed

    Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin

    2016-01-25

    To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.

  4. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data.

    PubMed

    Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M

    2014-08-01

    Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Expression of bitter taste receptor Tas2r105 in mouse kidney.

    PubMed

    Liu, Xin; Gu, Fu; Jiang, Li; Chen, Fuxue; Li, Feng

    2015-03-20

    The kidney is the most important excretory organ in the body and plays an essential role in maintaining homeostasis in vivo by conserving body fluid and electrolytes and removing metabolic waste. In this study, three types of transgenic system were used to investigate the expression of the bitter taste receptor Tas2r105 in mouse renal tissue (Tas2r105-GFP/Cre, Tas2r105-GFP/Cre-DTA and Tas2r105-GFP/Cre-LacZ). The results suggest that bitter taste receptors Tas2r105 and Tas2r106 are expressed in the renal corpuscle and the renal tubule, including the proximal tubule and distal tubule. Expression of α-gustducin, an important component of taste signal transduction, was also detected in mouse kidney. Meanwhile, conditional diphtheria toxin (DTA) expression in Tas2r105+ cells caused an increase in size of the glomerulus and renal tubule, accompanied by a decrease in cell density in the glomerulus. This indicates that Tas2r105+ cells play an important role in maintaining the structure of the glomerulus and renal tubules. Overall, the current study collectively demonstrates that cells labeled by bitter taste receptor expression may play a critical role in controlling human health, and have properties far beyond the original concept of taste perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Perinatal administration of a bitter tastant influences gene expression in chicken palate and duodenum.

    PubMed

    Cheled-Shoval, Shira L; Behrens, Maik; Meyerhof, Wolfgang; Niv, Masha Y; Uni, Zehava

    2014-12-31

    Bitter taste receptors (Tas2rs) and downstream effectors are responsible for mediating bitterness perception and regulation of food choice in mammals. Using RT-PCR, we demonstrated the expression of three Tas2rs and taste signal transduction molecules, α-gustducin, PLCβ2, and TRPM5, in the palate, tongue, and gastrointestinal tract sections in chicken. The bitter tastant quinine activates all three chicken Tas2rs in vitro as shown using calcium-imaging assays of transfected cells. Administration of quinine postnatally or perinatally (both pre- and posthatch) to chickens increased the expression of Tas2r genes in the palate by 6.45-fold (ggTas2r1 postnatal treatment), 4.86-fold (ggTas2r1 perinatal treatment), and 4.48-fold (ggTas2r7 postnatal treatment) compared to the genes' expression in the naı̈ve group respectively, and affected taste related gene expression in the duodenum. Whereas no-choice intake of quinine solution was not significantly lower than that of water in naı̈ve chicks, the treatment groups postnatal, prenatal, and perinatal showed significantly lower intake of quinine by 56.1, 47.7, and 50.2%, respectively, suggesting a possible trend toward sensitization. These results open new venues toward unraveling the formative stages shaping food intake and nutrition in chicken.

  7. Hop bitter acids exhibit anti-fibrogenic effects on hepatic stellate cells in vitro.

    PubMed

    Saugspier, Michael; Dorn, Christoph; Thasler, Wolfgang E; Gehrig, Manfred; Heilmann, Jörg; Hellerbrand, Claus

    2012-04-01

    Female inflorescences of the hop plant Humulus lupulus L. contain a variety of secondary metabolites with bitter acids (BA) as quantitatively dominating secondary metabolites. The use of hops in beer brewing has a long history due to the antibacterial effects of the BA and their typical bitter taste. Furthermore, hop cones are used in traditional medicine and for pharmaceutical purposes. Recent studies indicate that BA may affect activity of the transcription factor NFκB. NFκB plays a key role in the activation process of hepatic stellate cells (HSC), which is the key event of hepatic fibrosis. The aim of this study was to investigate the effect of BA on HSC (activation) and their potential to inhibit molecular processes involved in the pathogenesis of hepatic fibrosis. HSC were isolated from murine and human liver tissue and incubated with a characterized fraction of bitter acids purified from a CO(2) hop extract. At a concentration of 25μg/ml BA started to induce LDH leakage. Already at lower concentrations BA lead to a dose dependent inhibition of HSC proliferation and inhibited IκB-α-phosphorylation, nuclear p65 translocation and binding activity in a dose dependent way (up to 10μg/ml). Accordingly, the same BA-doses inhibited the expression of pro-inflammatory and NFκB regulated genes as MCP-1 and RANTES, but did not affect expression of genes not related to NFκB signaling. In addition to the effect on activated HSC, BA inhibited the in vitro activation process of freshly isolated HSC as evidenced by delayed expression of collagen I and α-SMA mRNA and protein. Together, these findings indicate that BA inhibit NFκB activation, and herewith the activation and development of profibrogenic phenotype of HSC. Thus, bitter acids appear as potential functional nutrients for the prevention or treatment hepatic fibrosis in chronic liver disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Formulation and biopharmaceutical evaluation of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets.

    PubMed

    Tung, Nguyen-Thach; Tran, Cao-Son; Nguyen, Tran-Linh; Hoang, Tung; Trinh, Thanh-Dat; Nguyen, Thi-Ngan

    2018-05-01

    The objective of this study was to prepare and evaluate some physiochemical and biopharmaceutical properties of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets. In the first stage of the study, the bitter taste masking microparticles were prepared by solvent evaporation and spray drying method. When compared to the bitter threshold (32.43µg/ml) of azithromycin (AZI), the microparticles using AZI:Eudragit L100=1:4 and having a size distribution of 45-212µm did significantly mask the bitter taste of AZI. Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy ( 1 H NMR) proved that the taste masking of microparticles resulted from the intermolecular interaction of the amine group in AZI and the carbonyl group in Eudragit L100. Differential scanning calorimeter (DSC) analysis was used to display the amorphous state of AZI in microparticles. Images obtaining from optical microscopy and scanning electron microscopy (SEM) indicated the existence of microparticles in regular cube shape with many layers. In the second stage, dispersible tablets containing microparticles (DTs-MP) were prepared by direct compression technique. Stability study was conducted to screen pH modulators for DTs-MP, and a combination of alkali agents (CaCO 3 :NaH 2 PO 4 , 2:1) was added into DTs-MP to create microenvironment pH of 5.0-6.0 for the tablets. The disintegration time of optimum DTs-MP was 53±5.29s and strongly depended on the kinds of lubricant and diluent. The pharmacokinetic study in the rabbit model using liquid chromatography tandem mass spectrometry showed that the mean relative bioavailability (AUC) and mean maximum concentration (C max ) of DTs-MP were improved by 2.19 and 2.02 times, respectively, compared to the reference product (Zithromax®, Pfizer). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Polymorphisms in TRPV1 and TAS2Rs associate with sensations from sampled ethanol

    PubMed Central

    Allen, Alissa L.; McGeary, John E.; Hayes, John E.

    2014-01-01

    Background Genetic variation in chemosensory genes can explain variability in individual’s perception of and preference for many foods and beverages. To gain insight into variable preference and intake of alcoholic beverages, we explored individual variability in the responses to sampled ethanol. In humans, ethanol elicits sweet, bitter and burning sensations. Here, we explore the relationship between variation in ethanol sensations and polymorphisms in genes encoding bitter taste receptors (TAS2Rs) and a polymodal nociceptor (TRPV1). Methods Caucasian participants (n=93) were genotyped for 16 SNPs in TRPV1, 3 SNPs in TAS2R38 and 1 SNP in TAS2R13. Participants rated sampled ethanol on a generalized Labeled Magnitude Scale. Two stimuli were presented: a 16% ethanol whole mouth sip-and-spit solution with a single time-point rating of overall intensity, and a cotton swab saturated with 50% ethanol on the circumvallate papillae (CV) with repeated ratings made over 3 minutes. Area under the curve (AUC) was calculated for the time-intensity data. Results The ethanol whole mouth solution had overall intensity ratings near ‘very strong’. Burning/stinging had the highest mean AUC values, followed by bitterness and sweetness. Whole mouth intensity ratings were significantly associated with burning/stinging and bitterness AUC values on the CV. Three TRPV1 SNPs (rs224547, rs4780521, rs161364) were associated with ethanol sensations on the CV, with two (rs224547 and rs4780521) exhibiting strong linkage disequilibrium. Additionally, the TAS2R38 SNPs rs713598, rs1726866, and rs10246939 formed a haplotype, and were associated with bitterness on the CV. Lastly, overall intensity for whole mouth ethanol associated with the TAS2R13 SNP rs1015443. Conclusions These data suggest genetic variations in TRPV1 and TAS2Rs influence sensations from sampled ethanol and may potentially influence how individuals initially respond to alcoholic beverages. PMID:25257701

  10. Cycloheximide: No Ordinary Bitter Stimulus

    PubMed Central

    Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.

    2007-01-01

    Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304

  11. In Silico Analysis of the Association Relationship between Neuroprotection and Flavors of Traditional Chinese Medicine Based on the mGluRs

    PubMed Central

    Qiao, Liansheng; Chen, Yankun; Zhao, Bowen; Gu, Yu; Huo, Xiaoqian; Zhang, Yanling; Li, Gongyu

    2018-01-01

    The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People’s Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs. PMID:29320397

  12. Effect of teapot materials on the chemical composition of oolong tea infusions.

    PubMed

    Liao, Zih-Hui; Chen, Ying-Jie; Tzen, Jason Tze-Cheng; Kuo, Ping-Chung; Lee, Maw-Rong; Mai, Fu-Der; Rairat, Tirawat; Chou, Chi-Chung

    2018-01-01

    The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. The total alkaloid and anagyrine contents of some bitter and sweet selections of lupin species used as food.

    PubMed

    Keeler, R F; Gross, R

    1980-01-01

    The total alkaloid and anagyrine contents of bitter and sweet Lupinus luteus, Lupinus angustifolius, Lupinus albus, Lupinus mutabilis, Lupinus polyphyllus, and Lupinus perennis were analyzed by gas chromatography (GC) and mass spectrometry. No anagyrine was detected in any of the samples. The GC peak in some of the samples which corresponded to anagyrine in retention of time seems to be identical to 17-oxolupanine. The alkaloid content of samples ranged from 3.17 to 0.003 percent.

  14. The bitter taste of infection.

    PubMed

    Prince, Alice

    2012-11-01

    The human innate immune response to pathogens is complex, and it has been difficult to establish the contribution of epithelial signaling in the prevention of upper respiratory tract infection. The prevalence of chronic sinusitis in the absence of systemic immune defects indicates that there may be local defects in innate immunity associated with such mucosal infections. In this issue of the JCI, Cohen and colleagues investigate the role of the bitter taste receptors in airway epithelial cells, and find that these are critical to sensing the presence of invading pathogens.

  15. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Mohidin, Hasmah; Rafii, M Y; Azizi, Parisa; Idris, Abu Seman; Fariz, A; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm ( Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β -1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.

  16. Novel Scheme for Biosynthesis of Aryl Metabolites from l-Phenylalanine in the Fungus Bjerkandera adusta

    PubMed Central

    Lapadatescu, Carmen; Giniès, Christian; Le Quéré, Jean-Luc; Bonnarme, Pascal

    2000-01-01

    Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with l-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors (14C- and 13C-labelled l-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that l-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from l-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via β-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a β-oxidation degradation intermediate. To our knowledge, this is the first time that a β-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from l-phenylalanine is proposed. PMID:10742235

  17. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense

    PubMed Central

    Mohidin, Hasmah; Idris, Abu Seman; Fariz, A.; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease. PMID:29721500

  18. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    PubMed

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  19. Comparisons of contact chemoreception and food acceptance by larvae of polyphagous Helicoverpa armigera and oligophagous Bombyx mori.

    PubMed

    Zhang, Hui-Jie; Faucher, Cécile P; Anderson, Alisha; Berna, Amalia Z; Trowell, Stephen; Chen, Quan-Mei; Xia, Qing-You; Chyb, Sylwester

    2013-08-01

    We compared food choice and the initial response to deterrent treated diet between fifth instars of Helicoverpa armigera, a polyphagous generalist pest, and Bombyx mori, an oligophagous specialist beneficial. Bombyx mori was more behaviorally sensitive to salicin than to caffeine. The relative sensitivities were reversed for H. armigera, which was tolerant to the highest levels of salicin found in natural sources but sensitive to caffeine. A single gustatory receptor neuron (GRN) in the medial styloconic sensillum of B. mori was highly sensitive to salicin and caffeine. The styloconic sensilla of H. armigera did not respond consistently to either of the bitter compounds. Phagostimulants also were tested. Myo-inositol and sucrose were detected specifically by two GRNs located in B. mori lateral styloconic sensillum, whereas, in H. armigera, sucrose was sensed by a GRN in the lateral sensillum, and myo-inositol by a GRN in the medial sensillum. Myo-inositol responsiveness in both species occurred at or below 10(-3) mM, which is far below the naturally occurring concentration of 1 mM in plants. Larval responses to specific plant secondary compounds appear to have complex determinants that may include host range, metabolic capacity, and gustatory repertoire.

  20. The impact of fruit maturation on bioactive microconstituents, inhibition of serum oxidation and inflammatory markers in stimulated PBMCs and sensory characteristics of Koroneiki virgin olive oils from Messenia, Greece.

    PubMed

    Kaliora, Andriana C; Artemiou, Anna; Giogios, Ioannis; Kalogeropoulos, Nick

    2013-08-01

    Olive fruits from the Koroneiki cultivar (Olea europaea L.) grown in Messenia, Greece, were hand-picked from the same trees in progressive maturity stages, covering three months, and processed identically with a commercial olive mill and a three-phase decanter. Data on quality parameters, and antioxidant activity of the obtained oils were collected by employing the conventional analytical methods set by European Union Commission Regulation no. 61/2011. Additionally, the potential of oils' polar extract to inhibit total serum lipid oxidation and inflammatory markers in stimulated human mononuclear cells was assayed. The results showed that ripening caused an increase in monounsaturated and decrease in polyunsaturated fatty acids, as well as an increase in phenolic compounds - mainly hydroxytyrosol - and in squalene. The extracts' ferric reducing power was in line with the increase of phenolic compounds. In later stages of maturation, lipoprotein oxidation was less potent and the decrease of inflammatory markers in stimulated human mononuclear cells was more powerful. Sensory evaluation detected differences in oils' "bitter" attributes, while the analysis of oils' volatiles revealed quantitative differences.

Top