Science.gov

Sample records for bituminous coal

  1. NAFTA opportunities: Bituminous coal and lignite mining

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) secures and improves market access in Mexico and Canada for the United States bituminous coal and lignite mining sector. Canada is one of the United States' largest export markets for bituminous coal and lignite, with exports of $486.7 million in 1992. Conversely, the Mexican market is one of the smallest export markets for U.S. producers with exports of $1.8 million in 1992. Together, however, Canada and Mexico represent approximately 15 percent of total U.S. coal exports. The report presents a sectoral analysis.

  2. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  3. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  4. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  5. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  6. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  7. Liquefaction of sub-bituminous coal

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1986-01-01

    Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.

  8. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  9. Oxidative decomposition of formaldehyde catalyzed by a bituminous coal

    SciTech Connect

    Haim Cohen; Uri Green

    2009-05-15

    It has been observed that molecular hydrogen is formed during long-term storage of bituminous coals via oxidative decomposition of formaldehyde by coal surface peroxides. This study has investigated the effects of coal quantity, temperature, and water content on the molecular hydrogen formation with a typical American coal (Pittsburgh No. 6). The results indicate that the coal's surface serves as a catalyst in the formation processes of molecular hydrogen. Furthermore, the results also indicate that low temperature emission of molecular hydrogen may possibly be the cause of unexplained explosions in confined spaces containing bituminous coals, for example, underground mines or ship holds. 20 refs., 4 figs., 6 tabs.

  10. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  11. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  12. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  14. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  15. Process for removing pyritic sulfur from bituminous coals

    DOEpatents

    Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  16. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  17. Performance of PAHs emission from bituminous coal combustion.

    PubMed

    Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa

    2004-12-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  18. Industry Wage Survey: Bituminous Coal, January 1976-March 1981.

    ERIC Educational Resources Information Center

    Bush, Joseph C.

    Production and related workers in the nation's bituminous coal mines averaged $6.94 an hour in January 1976, which represents an increase of 110% since the Bureau of Labor Statistics' 1967 survey in the industry. Over the same period, the Hourly Earnings Index rose by 84% for private nonagricultural workers. Earnings for most of the 128,390…

  19. Co-pyrolysis characteristic of biomass and bituminous coal.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal.

  20. Combustion characteristics of blended coal of bituminous and anthracite

    SciTech Connect

    Shon, E.K.; Choi, S.I.; Lee, S.H.; Hyun, J.S.; Park, C.S.

    1997-12-31

    Blending coals as a means of meeting air emission standards and controlling coal quality is receiving increased attention as both the demand for and the cost of suitable fuels increases. In some countries, the objectives of blending coals are to reduce SO{sub 2} emission, to decrease slagging and fouling problems, to control coal quality, and to reduce the cost of fuels. Comprehensive research on ignition, burnout and slagging characteristics of 2 kinds of Korean anthracite coal (Dongwon, Jangsung) and 1 imported bituminous coal (Ulan) and their blended coals with different blended ratios have been performed with thermogravimetry analysis technique, a drop-tube furnace and a P/C test furnace. The optimum blended ratios have been determined by means of a case by case experiment of 10%, 20% and 30% blending ratio, which provides an engineering basis for the design and operation of power station using the blended coal.

  1. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  2. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  3. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  4. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  5. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    SciTech Connect

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties of the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.

  6. Treatment of aqueous streams containing strong oxidants using bituminous coal

    SciTech Connect

    Doyle, F.M.; Bodine, D.L.

    1995-12-31

    Certain oxidizing contaminants, notably Cr(VI) and Mn(VII), are attenuated by reduction and sorption on organic matter in soils. Coals have some chemical similarity with this organic matter, and might be used on an industrial scale to treat effluents. We have studied the ability of acidic KMnO{sub 4} to oxidize Upper Freeport, bituminous coal with concurrent sorption of the resulting Mn(IV) and Mn(II). The oxidizing ability of Cr(VI) was briefly investigated. The ability of the oxidized coal to sorb Cu{sup 2+} and Cd{sup 2+} was then studied, and compared with coal oxidized by hydrogen peroxide. The effect of oxidation treatment, metal ion concentration, and solution pH on metal uptake kinetics and coal loading was investigated. Potential applications for treating effluents containing oxidizing ions are discussed.

  7. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect

    1981-01-01

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  8. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  9. Organic geochemical evaluations of bituminous rock and coals in Miocene Himmetoglu basin (Bolu, Turkey)

    SciTech Connect

    Sari, A.; Geze, Y.

    2008-07-01

    The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount of organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.

  10. Fuel properties of bituminous coal and pyrolytic oil mixture

    NASA Astrophysics Data System (ADS)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  11. Preparation of activated carbons from bituminous coal pitches

    NASA Astrophysics Data System (ADS)

    Gañan, J.; González-García, C. M.; González, J. F.; Sabio, E.; Macías-García, A.; Díaz-Díez, M. A.

    2004-11-01

    High-porosity carbons were prepared from bituminous coal pitches by combining chemical and physical activation. The chemical activation process consisted of potassium hydroxide impregnation followed by carbonization in nitrogen atmosphere. The effect of the KOH impregnation ratio on the surface area and pore volumes evolution of the carbons derived from mesophase pitch was studied. The optimum KOH:pitch ratio was fixed to realize a physical activation process in order to increase the textural parameters of the KOH-activated carbons. Physical activation was performed by carbonizing the KOH-activated carbons followed by gasifying with air. The influence of the carbonization temperature and the residence time of the gasification with air were explored to optimize those preparation parameters.

  12. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  13. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    SciTech Connect

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  14. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  15. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous surface coal mining and reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND...

  16. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  17. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  18. Application of laser microprobe (LAMMA 1000) to "fingerprinting" of coal constituents in bituminous coal

    USGS Publications Warehouse

    Lyons, P.C.; Hercules, D.M.; Morelli, J.J.; Sellers, G.A.; Mattern, D.; Thompson-Rizer, C. L.; Brown, F.W.; Millay, M.A.

    1987-01-01

    A laser microprobe (LAMMA-1000) microchemical analysis of vitrinites of different morphologies but similar reflectances within the same bituminous coal bed indicates distinct "fingerprint" spectra. The banded form of vitrinite contains Li, Ti, Ba, Sr, F, and Cl which were not detected in the nonbanded vitrinite. These differences may indicate a different plant source or the introduction of these elements from fluids mobilized during diagenesis. The nonbanded vitrinite (called corpocollinite), which was contained in a pyrite coal-ball seed fern permineralization of Myeloxylon, may have been protected from influx of these elements due to entrapment by pyrite during an early peat stage. An ion at M/Z 65, which is characteristic of the banded vitrinite, may indicate C5H5+ and, perhaps a difference in the chemical structure of the two vitrinites. These results demonstrate that "fingerprint" spectra can be obtained from vitrinite macerals by LAMMA and that these "fingerprints" have genetic implications. ?? 1987.

  19. Provincial variation of carbon emissions from bituminous coal: Influence of inertinite and other factors

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.

    2002-01-01

    We observe a 1.3 kg C/net GJ variation of carbon emissions due to inertinite abundance in some commercially available bituminous coal. An additional 0.9 kg C/net GJ variation of carbon emissions is expected due to the extent of coalification through the bituminous rank stages. Each percentage of sulfur in bituminous coal reduces carbon emissions by about 0.08 kg C/net GJ. Other factors, such as mineral content, liptinite abundance and individual macerals, also influence carbon emissions, but their quantitative effect is less certain. The large range of carbon emissions within the bituminous rank class suggests that rank- specific carbon emission factors are provincial rather than global. Although carbon emission factors that better account for this provincial variation might be calculated, we show that the data used for this calculation may vary according to the methods used to sample and analyze coal. Provincial variation of carbon emissions and the use of different coal sampling and analytical methods complicate the verification of national greenhouse gas inventories. Published by Elsevier Science B.V.

  20. Combustion characteristics of blends of lignite and bituminous coal with different binder materials

    SciTech Connect

    Haykiri-Acma, H.; Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    2000-05-01

    In this study, the combustion characteristics of blends of a Turkish lignite and a Siberian bituminous coal with and without binder materials were investigated. Sunflower shell, sawdust, and molasses were used as binder materials. The combustion curves of the coal and binder material samples and of the blends were obtained using differential thermal analysis (DTA). The differences observed in the DTA curves of the samples are discussed in detail.

  1. Modeling and experimental studies on devolatilization yields from a bituminous coal

    SciTech Connect

    Parikh, R.S.; Mahalingam, R.

    1987-11-01

    A laboratory-scale fixed bed reactor was set up to simulate conditions existing in the devolatilization zone of an air-blow, Lurgi-type, fixed bed coal gasifier. The effects of temperature (350-550/sup 0/C) and particle size (1-9 mm) on the devolatilization behavior of a bituminous coal in such a reactor were studied. The feed gas composition was chosen to approximate that entering the devolatilization zone from the gasification zone below in a commercial-scale fixed bed reactor. Similar studies were also carried out on a thermogravimetric analysis (TGA) reactor, for purposes of comparison. A semitheoretical model, describing the transport of the tar and gas species to the surface of the particle, and the subsequent evolution of these, is developed. The model takes into account the softening characteristics of bituminous coals upon heating. The volatiles yield predicted by the model is next compared with the experimental results, and the agreement appears quite good.

  2. Chemistry of thermally altered high volatile bituminous coals from southern Indiana

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.

    2007-01-01

    The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.

  3. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  4. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  5. Predictors of plasticity in bituminous coals. Final technical report

    SciTech Connect

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

    1984-02-01

    A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

  6. Upgrading the solvent used for the thermal extraction of sub-bituminous coal

    SciTech Connect

    Nao Kashimura; Toshimasa Takanohashi; Ikuo Saito

    2006-10-15

    HyperCoal is an ash-free coal produced by extraction with an industrial solvent at temperatures around 360{sup o}C, which can be fed directly to gas turbines. We searched for more powerful solvents to extract low-rank coals, such as sub-bituminous coal. Polar materials were successfully concentrated from a polar industrial solvent, crude methylnaphthalene oil (CMNO), by extraction with a mixture of methanol and water or aqueous HCl. The soluble fraction obtained using the former (MW-S) extracted 73 wt % (daf) of Wyodak Anderson sub-bituminous coal at 360{sup o}C, while that obtained using the latter (AC-S) extracted 63 wt %. These extraction yields were much higher than those with CMNO (43 wt %), indicating that fractionation concentrated the materials that dissolve the constituents of coal. MW-S contained more indole than AC-S. The results of addition tests suggested that indole had a greater ability to extract coal constituents than quinoline. In addition, the addition of 5 wt % methanol to a mixture of 1-methylnaphthalene, indole, and quinoline (30/20/50 wt %) increased the extraction yield from 58 to 69%, which was close to the yield of MW-S (73%). Therefore, the high extraction yield of MW-S can be explained by not only the composition of the nitrogen-containing polar materials in MW-S but also the presence of methanol. 20 refs., 6 figs.

  7. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  8. SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,

    1983-01-01

    An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.

  9. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  10. Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2007-07-15

    The principal aim of this work is to investigate the mechanism of basic dye (methylene blue (MB) and basic red (BR)) adsorption onto activated carbons produced from steam-activated bituminous coal. The rate of adsorption onto various activated carbons, produced in small laboratory-scale and pilot-industrial-scale processes, was investigated under a variety of conditions. The kinetic data from these investigations were correlated to a number of adsorption models in an attempt to elucidate the mechanism of the adsorption processes. The adsorption mechanism was found to follow pseudo-second-order and intraparticle-diffusion models, with external mass transfer predominating in the first 5 min of the experiment. Filtrasorb 400 (Chemviron Carbon) exhibited the highest adsorption rate for the removal of basic dyes followed by activated carbons produced by our research group: PAC1 (activated carbon produced from Venezuelan bituminous coal in small laboratory scale using physical activation technique) and PAC2 (activated carbon produced by the steam activation of New Zealand bituminous coal on a pilot-industrial scale).

  11. Mercury in Bituminous Coal Used in Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Burmistrz, Piotr; Kogut, Krzysztof

    2016-09-01

    Poland is a country with the highest anthropogenic mercury emission in the European Union. According to the National Centre for Emissions Management (NCEM) estimation yearly emission exceeds 10 Mg. Within that approximately 56% is a result of energetic coal combustion. In 121 studied coal samples from 30 coal mines an average mercury content was 112.9 ppb with variation between 30 and 321 ppb. These coals have relatively large contents of chlorine and bromine. Such chemical composition is benefitial to formation of oxidized mercury Hg2+, which is easier to remove in Air Pollution Control Devices. The Hgr/Qir (mercury content to net calorific value in working state) ratio varied between 1.187 and 13.758 g Hg · TJ-1, and arithmetic mean was 4.713 g Hg · TJ-1. Obtained results are close to the most recent NCEM mercury emission factor of 1.498 g Hg · TJ-1. Value obtained by us is more reliable that emission factor from 2011 (6.4 g Hg · TJ-1), which caused overestimation of mercury emission from energetic coal combustion.

  12. Identification and significance of accessory minerals from a bituminous coal

    USGS Publications Warehouse

    Finkelman, R.B.; Stanton, R.W.

    1978-01-01

    A scanning electron microscope (SEM) has been used to study the in situ accessory minerals in polished blocks and pellets of petrographically analysed samples of the Waynesburg coal (hvb). Individual grains from the low-temperature ash (LTA) of the same coal were also studied. The visual resolution of the SEM permitted the detection of submicron mineral grains, which could then be analysed by the attached energy-dispersive system. Emphasis was placed on the highly reflective grains in the carbominerite bands. Among the most abundant accessory minerals observed were rutile, zircon, and rare-earth-bearing minerals. Small (1-5 ??m) particles of what may be authigenic iron-rich chromite and a nickel silicate form rims on quartz grains. The SEM also permits the observation of grain morphology and mineral intergrowths. These data are useful in determining authigenicity and diagenic alteration. Substances in density splits of LTA include authigenic, detrital, extraterrestrial magnetite, tourmaline, and evaporite (?) minerals, and a fluorine-bearing amphibole. This analytical approach allows the determination of specific sites for many of the trace elements in coals. In the Waynesburg coal, most of the chromium is in the iron-chromium rims, the fluorine is in the amphibole, and the rare-earth elements are in rare-earth-bearing minerals. The ability to relate trace-element data to specific minerals will aid in predicting the behaviour of elements in coal during combustion, liquefaction, gasification, weathering, and leaching processes. This ability also permits insight into the degree of mobility of these elements in coal and provides clues to sedimentological and diagenetic conditions. ?? 1978.

  13. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu

    2014-10-01

    Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.

  14. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    NASA Astrophysics Data System (ADS)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  15. Thin layer chromatography study of heavy liquefaction products derived from two Chinese bituminous coals

    SciTech Connect

    Li, Y.; Yan, R.; Yang, J.; Liu, Z.

    1997-12-31

    Two Chinese bituminous coals, Yanzhou and Fenxi, were liquefied in the temperature range of 375--450 C and under a cold H{sub 2} pressure of 7 MPa without the presence of a solvent. An iron sulfide catalyst, prepared by in-situ precipitation, was used in the study. Heavy liquefaction products, a portion of toluene and trichloroethylene (TCE) solubles, were studied by thin layer chromatography (TLC) technique. Under most conditions, the conversions of catalytic liquefaction are about twice as much as that of thermal liquefaction. The yields to toluene solubles are similar to that of TCE solubles. The TLC results of the heavy liquefaction products are compared with petroleum derived highway asphalts and with a coal tar pitch. The results show that the liquefaction products of Yanzhou coal, under certain conditions, have similar composition as that of petroleum derived highway asphalts, but significantly different from that of coal tar pitch, paraffinic petroleum residue and building asphalt.

  16. Bituminous coal production in the Appalachian Basin; past, present, and future

    USGS Publications Warehouse

    Milici, R.C.

    1999-01-01

    This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.

  17. Combustion of anthracite-bituminous coal blends in a spreader stoker boiler at Holston Army Ammunition Plant. Final report

    SciTech Connect

    Harmon, J.A.; Davidson, J.E.; Hartsock, D.K.

    1988-11-01

    A test program was conducted at the Holston Army Ammunition Plant near Kingsport, TN to evaluate the combustion of an anthracite-bituminous coal blend in a spreader stoker boiler designed for bituminous coal only. The test program was structured to evaluate different percentages of anthracite and bituminous in the blend at different operating loads on the boiler. Blends of 15, 22, 30, and 42% anthracite were combusted at loads of 62.5, 50, and 37.5% of the maximum continuous rating (MCR) boiler capacity. Stack testing and ash sampling were performed to monitor combustion performance, in addition to visually inspecting the ash bed. The testing disclosed no technical reasons why anthracite-bituminous blending could not be performed on a long-term basis to meet targeted Army anthracite consumption tonnages.

  18. Numerical study of bituminous coal combustion in a boiler furnace with bottom blowing

    NASA Astrophysics Data System (ADS)

    Zroychikov, N. A.; Kaverin, A. A.

    2016-11-01

    Results obtained by the numerical study of a solid fuel combustion scheme with bottom blowing using Ekibastuz and Kuznetsk bituminous coals of different fractional makeup are presented. Furnace chambers with bottom blowing provide high-efficiency combustion of coarse-grain coals with low emissions of nitrogen oxides. Studying such a combustion scheme, identification of its technological capabilities, and its further improvement are topical issues. As the initial object of study, we selected P-57-R boiler plant designed for burning of Ekibastuz bituminous coal in a prismatic furnace with dry-ash (solid slag) removal. The proposed modernization of the furnace involves a staged air inflow under the staggered arrangement of directflow burners (angled down) and bottom blowing. The calculation results revealed the specific aerodynamics of the flue gases, the trajectories of solid particles in the furnace chamber, and the peculiarities of the fuel combustion depending on the grinding fineness. It is shown that, for coal grinding on the mill, the overall residue on the screen plate of 90 µm ( R 90 ≤ 27% for Ekibastuz coal and R 90 ≤ 15% for Kuznetsk coal) represents admissible values for fuel grind coarsening in terms of economic efficiency and functional reliability of a boiler. The increase in these values leads to the excess of regulatory heat losses and unburned combustible losses. It has been established that the change in the grade of the burned coal does not significantly affect the flow pattern of the flue gases, and the particles trajectory is essentially determined by the elemental composition of the fuel.

  19. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention.

  20. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier. Final report

    SciTech Connect

    de Souza, M.D.; Tart, K.R.; Eales, D.F.; Turna, O.

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas` Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  1. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier

    SciTech Connect

    de Souza, M.D.; Tart, K.R.; Eales, D.F. ); Turna, O. )

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas' Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  2. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

  3. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  4. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  5. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  6. Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report, [October 1, 1988--December 31, 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported herein are the details and results of Laboratory and Bench-Scale experiments using bituminous coal concluded at Hydrocarbon Research, Inc., under DOE contract during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with the application of coal cleaning methods and solids separation methods to the Catalytic Two-Stage Liquefaction (CTSL) Process. Additionally a predispersed catalyst was evaluated in a thermal/catalytic configuration, and an alternative nickel molybdenum catalyst was evaluated for the CTSL process. Three coals were evaluated in this program: Bituminous Illinois No. 6 Burning Star and Sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The tests involving the Illinois coal are reported herein, and the tests involving the Wyoming and New Mexico coals are described in Topical Report No. 1. On the laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects are reported in Topical Report No. 3. Other microautoclave tests, such as tests on rejuvenated catalyst, coker liquids, and cleaned coals, are described in the Bench Run sections to which they refer. The microautoclave tests conducted for modelling the CTSL process are described in the CTSL Modelling section of Topical Report No. 3 under this contract.

  7. Surface properties of photo-oxidized bituminous coals. Technical progress report, July--September 1995

    SciTech Connect

    Mitchell, G.; Polat, H.; Davis, A.; Chander, S.

    1995-11-01

    During this report period, a new whole-seam channel sample (Ohio {number_sign}4a) was collected and analyzed, together with the Upper Banner and Splash Dam samples obtained last quarter. These additions bring to seven the number of coals obtained for this project and that range in rank from hvCb to mvb. Polished blocks of each coal containing 3-4 mm wide vitrain bands were prepared for contact angle measurements of fresh and photo-oxidized surfaces. An advancing-drop technique was used to measure contact angle. In this test a droplet of distilled water is grown initially on fresh surfaces and then moved across those irradiated in blue-light for 1, 5, and 10 minutes. The sequence of growth was recorded on video tape, and the change in contact angle measured relative to position at the air/water/surface interface. Contact angles were measured on five of the coals collected for this study, namely the Illinois {number_sign}6, Ohio {number_sign}4a, Lower Kittanning (PSOC-1563), Pittsburgh and Splash Dam seams. Preliminary results show that both coal rank and irradiation time influence surface wettability as measured by contact angle. With one exception, contact angle values decreased and remained low when the droplet advanced into an irradiated area. In most cases, one minute of irradiation resulted in only a slight decrease in contact angle, whereas after 5 and 10 minutes a more significant decrease was observed. The magnitude of change in contact angle values with degree of photo-oxidation decreased as rank increased, such that lower rank bituminous coals show the greatest change and medium volatile coal the least.

  8. Ventilatory function of progressive massive fibrosis among bituminous coal miners in Taiwan.

    PubMed

    Yang, Shieh-Ching; Yang, Sze-Piao

    2003-05-01

    Geographic and ethnic differences exist for the effects of respirable coal-mine dust on the lung function of miners. In this study, the authors compared 177 coal workers who had radiological evidence of progressive massive fibrosis (PMF) with 87 healthy male control subjects. The authors performed maximal expiratory flow volume measurements, single-breath carbon monoxide diffusing capacity (DLco) measurements, and arterial blood gas analysis on each subject. The data revealed that miners with early PMF (category A) had significantly reduced, but well-preserved, vital capacity (VC) and forced expiratory volume in 1 sec (FEV1.0), whereas FEV1.0/VC and DLco were decreased in both nonsmokers and smokers. Abnormally low (i.e., < 80% of predicted values) VC and FEV1.0, and further decreases in DLco, were observed in miners with late PMF (categories B and C). The predominant impairment patterns for workers in categories A, B, and C were obstructive, obstructive and mixed, and mixed and restrictive, respectively. Smoking increased the magnitude of airway obstruction. The authors concluded that diversity in functional impairment was present among bituminous coal miners, even among those with PMF.

  9. Mapping and prediction of coal workers' pneumoconiosis with bioavailable iron content in the bituminous coals

    SciTech Connect

    Huang, X.; Li, W.H.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-08-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CXXT in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p {lt} 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p {lt} 0.0048) or total iron (r = 0.85, p {lt} 0.016) but not with coal rank (r = 0.59, p {lt} 0.16) or silica (r = 0.28, p {lt} 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailability. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scale mining.

  10. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    USGS Publications Warehouse

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  11. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    PubMed

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.

  12. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively.

  13. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Osipov, P. V.; Ryzhkov, A. F.

    2016-10-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air.

  14. Impact of arterial blood gas analysis in disability evaluation of the bituminous coal miner with simple pneumoconiosis

    SciTech Connect

    Fields, C.L.; Roy, T.M.; Dow, F.T.; Anderson, W.H. )

    1992-04-01

    The Department of Labor has set guidelines for the use of resting arterial blood gas analysis in determination of total and permanent disability for coal workers' pneumoconiosis. To determine the prevalence with which bituminous coal miners fall below the arterial tensions of both oxygen and carbon dioxide published in the Federal Register, we studied 1012 miners who had both reproducible spirometry and arterial blood gas analysis as part of their disability evaluation. Eighty-seven percent of impaired miners could be identified by the spirometric criteria. Thirteen percent of impaired bituminous coal miners had acceptable pulmonary function but were eligible for black lung benefits by the blood gas guidelines. This population would have been missed if blood gas analysis were excluded from the evaluation process. On the other hand, approximately 25% of the blood gas analyses that were performed could be eliminated if a policy was adopted to do this test only on miners with spirometry that exceed the federal guidelines.

  15. Non-catalytic co-gasification of sub-bituminous coal and biomass

    NASA Astrophysics Data System (ADS)

    Nyendu, Guevara Che

    Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor. In fluidization experiments, pressure drop (Delta P) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity ( Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content. Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as co-gasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C). Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yields. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.

  16. Aqueous leaching on high sulfur sub-bituminous coals, in Assam, India

    SciTech Connect

    Bimala P. Baruah; Binoy K. Saikia; Prabhat Kotoky; P. Gangadhar Rao

    2006-08-15

    Aqueous leaching of high sulfur sub-bituminous coals from Ledo and Baragolai collieries of Makum coal fields, in Assam, India, has been investigated with respect to time at different temperatures. Leaching at 25{sup o}C up to 120 h showed that the physicochemical characteristics viz., conductivity, acidity, TDS, and SO{sub 4}-2 ions, increase with the increase in time of leaching. The generation of highly acidic leachates at 1-1.5 h (pH 2.5) and 2 h (pH 3.1) for Ledo and Baragolai coals was observed, respectively. However, it remains stable up to 120 h. The concentration of major, minor, and trace elements and their mobility along with the loss of pyritic sulfur or depyritization were also reported. The release of metals (Fe, Mg, Bi, Al, V, Cu, Cd, Ni, Pb, and Mn) above the regulatory levels during leaching was evidenced. Depyritization was found to be 79.8, 82.9, 84.7, and 89.7% for Ledo and 70.49, 73.77, 75.41, and 77.05% for Baragolai coal at 15, 25, 35, and 45 {sup o}C, respectively. A pseudo-first-order kinetic relationship with activation energies (E) of 8.1477 and 5.2378 kJ mol{sup -1} with frequency factors (A) of 8.8405 x 10{sup -4} and 2.6494 x 10{sup -4} dm{sup 3} mol{sup -1} s{sup -1} was attributed to aqueous oxidation of pyrites in Ledo and Baragolai coals, respectively. The X-ray diffraction analysis and Fourier transform infrared spectroscopy patterns indicate the presence of illite, {alpha}-quartz, hematite, chlorite, rutile, calcite, and albite as mineral phases. This investigation justifies the formation of acid mine drainage by weathering of pyrites from coal during the mining of high sulfur Makum coal fields, in Assam, India, and demonstrates one of the possible routes for its formation. 39 refs., 3 figs. 9 tabs.

  17. The production of activated carbon from high-ash sub-bituminous and bituminous South African coals

    SciTech Connect

    Prinsloo, F.F.; Opperman, D.P.J.; Budeli, C.; Hauman, D.

    1999-07-01

    This paper describes a process for the production of activated carbon in a pilot rotary kiln. The first step comprises crushing and/or sieving and beneficiation of the different ROM coal precursors. The coal precursors used in this investigation are part of Sasol's resources and although they show high reactivity towards steam and CO{sub 2} they unfortunately contains high ash contents. Consequently it is necessary to beneficiate the ROM coal in a second step, to be a suitable feedstock for the production of activated carbon. The final step in the process entails devolatilization and activation of the beneficiated precursors in one continuous step in the kiln. The product characterization results demonstrate that the adsorption features of the activated carbons produced by Sasol compare favorably with that of commercial products.

  18. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal.

    PubMed

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-03-07

    The aim of this work was to study the thermal properties and interactions during co-combustion of rape straw (RS) before and after water-washing with bituminous coal. A series of experiments was conducted to investigate the properties and interactions during co-combustion of RS with bituminous coal (at 10, 20, 40 and 60% RS). The feasibility and potential of water-washing as an RS pre-treatment was also explored. Reactivity and the amount of heat released followed a quadratic trend, while changes to the degree of interactions between the fuels conformed to a cosine curve. Water-washing increased the ignition and burn-out temperatures and slightly decreased reactivity. Demineralization negatively affected the previously synergistic co-firing relationship, nevertheless, the amount of heat released increased by 10.28% and the average activation energy (146kJ/mol) was lower than that of the unwashed blend (186kJ/mol). Overall, water-washing of RS could prove a useful pre-treatment before co-combustion with bituminous coal.

  19. The effect of unionization and firm structure on health and safety in the bituminous coal industry

    SciTech Connect

    Reardon, J.E.

    1991-01-01

    The increase in the number of conglomerate mergers during the 1980's has prompted renewed debate on the effects of such mergers. This study investigates the effect of the conglomerate firm on the ability of the labor union to achieve safe working conditions in the bituminous coal industry. An index of union strength is constructed to replace the dummy union variable, traditionally included in econometric models to indicate whether or not the work place is unionized. The index is able to differentiate between situations in which the union has the ability to achieve a desired result from situations in which it does not. The principal data set constructed consists of 2,748 injuries in 270 mines from the states of: West Virginia, Pennsylvania, Virginia, Illinois, Kentucky, and Colorado for the year 1988. One finding was that the index of union strength has a negative but insignificant effect on the injury rate and the severity of the injury. Another principal finding was that conglomerate firms reduce the severity of the injury, but not the injury frequency rate. It was also found that conglomerate firms have a higher incidence of occupational illness than independent firms.

  20. Chemical leaching of an Indian bituminous coal and characterization of the products by vibrational spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Manoj, B.; Kunjomana, A. G.

    2012-04-01

    High volatile bituminous coal was demineralized by a chemical method. The vibrations of the "aromatics" structure of graphite, crystalline or non-crystalline, were observed in the spectra at the 1600 cm-1 region. The band at 1477 cm-1 is assigned as VR band, the band at 1392 cm-1 as VL band and the band at 1540 cm-1 as GR band. Graphite structure remains after chemical leaching liberates oxygenated functional groups and mineral groups. The silicate bands between 1010 and 1100 cm-1 are active in the infrared (IR) spectrum but inactive in the Raman spectrum. Absorption arising from C-H stretching in alkenes occurs in the region of 3000 to 2840 cm-1. Raman bands because of symmetric stretch of water molecules were also observed in the spectrum at 3250 cm-1 and 3450 cm-1. Scanning electron microscopy analysis revealed the presence of a graphite layer on the surface. Leaching of the sample with hydrofluoric acid decreases the mineral phase and increases the carbon content. The ash content is reduced by 84.5wt% with leaching from its initial value by mainly removing aluminum and silicate containing minerals.

  1. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    PubMed

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  2. Factors associated with disabling injuries in underground coal mines. [USA; bituminous mines

    SciTech Connect

    Not Available

    1982-06-01

    This study compared conditions, practices, and attitudes at underground bituminous coal mines having low injury incidence rates with those found at mines having high injury incidence rates. Several characteristics common to many of the low incidence rate mines that differentiate them from those having high incidence rates were identified. (1) Training programs: adequate and relevant training materials; qualified instructors; restricted classroom size to encourage student participation; and tailored to meet individual miner needs. (2) Management/labor relations tend to have a positive impact upon a mine's accident and injury experience when: both management and labor have a positive attitude toward safety and health; open lines of communication permit management and labor to jointly reconcile problems affecting safety and health; representatives of labor become actively involved in issues concerning safety, health and production; and management and labor identify and accept their joint responsibility for correcting unsafe conditions and practices. (3) Safety and health conditions are improved when: standard operating procedures are established, understood, and implemented; management equitably enforces established policies concerning absenteeism, job assignments, and standard operating procedures; formal safety and health programs are communicated to all employees and subsequently implemented by management and labor; safety department has top management support in terms of funds, manpower, and the authority necessary to implement the safety and health program; mine plans are thoroughly reviewed by management, labor, and MSHA to insure that such plans incorporate measures to adequately control the physical environment of a coal mine; and MSHA inspection activity is most effective when the inspectors encourage increased cooperative interaction between themselves, mine management, and labor.

  3. The influence of thermal annealing on oxygen uptake and combustion rates of a bituminous coal char

    SciTech Connect

    Osvalda Senneca; Piero Salatino; Daniela Menghini

    2007-07-01

    The effect of thermal annealing on the combustion reactivity of a bituminous coal char has been investigated with a focus on the role of the formation of surface oxides by oxygen chemisorption. The combined use of thermogravimetric analysis and of analysis of the off-gas during isothermal combustion of char samples enabled the determination of the rate and extent of oxygen uptake along burn-off. Combustion was carried out at temperatures between 350 and 510{sup o}C. Char samples were prepared by controlled isothermal heat treatment of coal for different times (in the range between 1 s and 30 min) at different temperatures (in the range 900-2000{sup o}C). Results indicate that oxygen uptake is extensive along burn-off of chars prepared under mild heat treatment conditions. The maximum oxygen uptake is barely affected by the combustion temperature within the range of combustion conditions investigated. The severity of heat treatment has a pronounced effect on char combustion rate as well as on the extent and rate at which surface oxides are built up by oxygen chemisorption. Chars prepared under severe heat treatment conditions show negligible oxygen uptake and strongly reduced combustion rates. Altogether it appears that a close correlation can be established between the extent and the accessibility of active sites on the carbon surface and the combustion rate. Despite the investigation has been carried out at temperatures well below those of practical interest, results provide useful insight into the relationship existing between thermal annealing, formation of surface oxide and combustion reactivity which is relevant to the proper formulation of detailed kinetic models of char combustion. 31 refs., 6 figs., 1 tab.

  4. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-07-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculant prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  5. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-04-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculent prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  6. Coalification of cuticle and compressed leaf tissue of the Carboniferous seed fern, Macroneuropteris (Neuropteris) scheuchzeri--Implications for coalification to the bituminous coal stage

    SciTech Connect

    Lyons, P.C.; Orem, W.H. . National Center); Zodrow, E.L. )

    1992-01-01

    C-13 NMR analyses of leaf cuticle and the compressed and coalified leaf tissues of the late Carboniferous seed fern Macroneuropteris (Neuropteris) scheuchzeri from shale from the Sydney Mines Formation, Sydney Coalfield, Nova Scotia, Canada, indicate a variable degree of coalification. In preliminary NMR spectra the cuticle shows a dominantly aliphatic region and a subdued aromatic region, whereas the compressed leaf tissues show two subequal aromatic and aliphatic regions, which are typical of high volatile bituminous coals. The spectrum of the cuticle shows some indication of resonance in the 60- to 80-ppm region, possibly indicating the presence of residual cellulose that is found in lignite and subbituminous coal, but not in bituminous coal. The compressed tissues show an indication of a shoulder in the 150- to 160-ppm region, possibly phenolic moieties from lignin, which is found in high volatile bituminous coals. Leaf tissue is thought to be rich in cellulose and poor in lignin, so it is surprising that the C-13 NMR spectrum of the compressed leaf tissue appears identical to spectra from vitrinite-rich, high volatile bituminous coal. These results indicate that the nature of plant precursors plays a significant role in coalification and also that the selective loss of cellulosic components and the attendant enrichment in lignin are not necessarily a precondition for the generation of the macromolecular structure of bituminous coal. The authors suggest that dominantly cellulose-based molecules from leaf tissue coalify in much the same way as lignin-based molecules from woody tissue.

  7. Effects of particle size and air flow rates on the runaway temperature of bituminous coal at 290K < T < 700K

    SciTech Connect

    Malhotro, V.M.; Crelling, J.C.

    1987-01-01

    Spontaneous ignition and combustion of coal are major problems not only for actual mining of coal but also for its transportation and for industrial users. Most coals are prone to spontaneous combustion, but their susceptibility to ignition increases as the coal rank decreases. However, there are many anomalies to this straight rank order susceptibility. Chamberlain and Hall have in fact, pointed out that some higher rank coals may be more susceptible to spontaneous ignition than lower rank coals. The causes and mechanisms of spontaneous ignition are enigmatic because exceptions exist for every previously-suggested, single cause. Several models have been advanced to describe spontaneous heating, however. Among these are coal rank, electrostatic effects, geological factors, temperature, microbial ignition, the reduction in reactivity due to deterioration, air flow rates, particle size, pyrite content, porosity and water wetting of coal. The purpose of this research was to examine the factors which may contribute to spontaneous ignition of ultrafine (particle size < 250 /mu/m) bituminous coals and maceral enriched fractions under storage, air flow and/or dense phase pneumatic conditions and to understand physical interactions and chemical reactions pathways which may lead to spontaneous ignition of bituminous coals. We have initiated spontaneous ignition, FTIR, DSC, TGA and EPR measurements to accumulate data which can be used to propose mathematical models for spontaneous ignition of stored and pneumatically conveyed coals. In this report, we present our preliminary results on a high-volatile bituminous coal subjected to ignition temperature and FTIR measurements.

  8. Effect of structural alteration on the macromolecular properties of brown and bituminous coals, quantitative relationships to the hydrogenation reactivity with tetralin

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Bimer, J.; Salbut, P.D.; Gruber, R.

    1996-12-31

    The mobility of macromolecular network has been found to be the fundamental property of both brown and bituminous coals governing the reactivity for hydrogenation with tetralin. In Kansk-Achinsk brown coal, this was primarily affected by carboxylate cross-linking via polyvalent cations like Ca.

  9. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado

    USGS Publications Warehouse

    Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N.

    1998-01-01

    Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions of the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resources potential for coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the

  10. Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Mao, Xianglei; Wang, Zhe; Richard, E. Russo

    2015-11-01

    The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor based PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. supported by National Natural Science Foundation of China (No. 51276100) and the National Basic Research Program of China (973 Program) (No. 2013CB228501). The authors also thank the financial funding from the U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory (No. 2013CB228501)

  11. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  12. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion.

  13. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: Controls on coking

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria

    2004-01-01

    The individual maceral chemistries of two Pennsylvanian, high volatile bituminous coals, the Danville Coal Member (Dugger Formation, R o=0.55%) and the Lower Block Coal Member (Brazil Formation, R o=0.56%) of Indiana, were investigated using electron microprobe and Fourier Transform Infrared Spectrometry (FTIR) techniques, with the purpose of understanding differences in their coking behavior. Microprobe results reveal that carbon contents are highest in inertinite and sporinite, followed by desmocollinite and telocollinite. Oxygen and organic nitrogen are most abundant in telocollinite and desmocollinite; sporinite and inertinite contain lesser amounts of these two elements. Organic sulfur contents are highest in sporinite, lowest in inertinite, and intermediate in desmocollinite and telocollinite. Vitrinites within the Danville and Lower Block coals are very similar in elemental composition, while Lower Block inertinites and sporinites have higher carbon, lower oxygen, and sulfur contents which, when combined with the inertinite-and sporinite-rich composition of the Lower Block seam, strongly influences its whole coal chemistry. Fourier transform infrared spectrometry revealed greater aromatic hydrogen in the Lower Block coal, along with higher CH2/CH3 ratios, which suggest that liptinites contribute considerable amounts of long-chain, unbranched aliphatics to the overall kerogen composition of the Lower Block coal. Long-chain, unbranched aliphatics crack at higher temperatures, producing tar and oily byproducts during coking; these may help increase Lower Block plasticity. Electron microprobe and FTIR results indicate that individual maceral chemistries, combined with the maceral composition of the seam, are the primary control of better coking properties of the Lower Block coal. ?? 2003 Elsevier B.V. All rights reserved.

  14. Chemistry and origin of minor and trace elements in selected vitrinite concentrates from bituminous and anthracitic coals

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1990-01-01

    Twelve hand-picked vitrinite concentrates and companion whole-coal samples were analyzed for trace and minor elements by instrumental neutron activation analysis (INAA) and direct-current-arc spectrographic techniques (DCAS). The vitrinite concentrates contained 94 to nearly 100 vol.% vitrinite compared to 71-95 vol.% in the companion whole coals. The ash contents of the vitrinite concentrates were 2 to more than 190 times less than the ash contents of the companion whole coals. Organic and inorganic affinities were determined by comparing the elemental concentrations in the vitrinite concentrates to the concentrations in the companion whole coals. The ratios of these concentrations for 33 selected elements are shown in Figure 1. Ratios greater than 1 indicate organic affinity, and ratios less than 1 indicate inorganic affinity. Br and W generally showed organic affinity in all samples in this study. In the nine samples from the eastern United States (Fig. 1A-C) less than one-fourth of the trace elements show organic affinity compared to nearly one-half for the three English and Australian samples (Fig. 1D). The elements that generally show organic affinity in the non-U.S.A. samples studied include As, Cs, Hf, and Ni, which have generally inorganic affinities in the U.S.A. samples, and Cr, Sb, Se, and U, which have mixed (both organic and inorganic) affinities, in the U.S.A. coals studied, has an inorganic affinity in the English coals studied. B shows organic affinity in the samples from the Illinois basin (Fig. 1C). For the samples studied, Ba shows organic affinity in the Appalachian basin bituminous coals (Fig. 1B), inorganic affinity in the Illinois basin coals, and overall mixed affinities. In all the samples studied, Cu, Mn, Na, Sr, Ta, V, and Zn show mixed affinities, and A1, Co, Eu, Fe, Ga, K, La, Mg, Sc, Si, Th, Ti, and Ub have generally inorganic affinity. ?? 1990.

  15. A structural investigation of the effect of catalysis on the liquefaction products of a brown and a bituminous Australian Coal

    SciTech Connect

    Strachan, M.G.; Johns, R.B.; Vassallo, A.M.

    1983-01-01

    The paper reports a study comparing the effects of a single catalyst, Co/Mo, on two Australian coals of different rank at their uncatalyzed optimal oil yield temperatures under donor solvent conditions. It was considered more appropriate to compare the products from the two coals at their respective optimal oil yield temperatures rather than at the same temperature. The former accounts and compensates for differing thermal reactivities with rank, thereby allowing a direct comparison of product qualities to be made. The coals used for the study were a Victorian brown coal, LY1277, from the Loy Yang Field, a medium-light lithotype, and a N.S.W. high volatile bituminous coal from the Liddell Field. They were chosen because of their known liquefaction potential. They were reacted at 375/sup 0/C and 425/sup 0/C respectively, in batch autoclaves using a solvent (tetralin) coal ratio of 2:1, a catalyst concentration of 10% w/w coal and were reacted for 2 hours at temperature. The total liquid product (TLP) (defined as CH/sub 2/Cl/sub 2/ solubles) was fractionated by a separation method designed specifically to separate by functionality into chemically defined classes viz. acids, bases and neutrals. This method utilizes a sequence of ion-exchange resins and silica adsorption chromatography. A feature of the method is that it does not remove the donor solvent until all the polar material is absent, hence alleviating the risk of thermal alteration of the samples as may occur with an initial dissolution step. The method is very effective in class separation.

  16. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and Powder River Basin Coal

    SciTech Connect

    Yan Cao; Quanhai Wang; Chien-wei Chen; Bobby Chen; Martin Cohron; Yi-chuan Tseng; Cheng-chung Chiu; Paul Chu; Wei-Ping Pan

    2007-09-15

    An investigation of speciated mercury transformation with the addition of hydrogen bromide (HBr) at elevated temperatures was conducted in a slipstream reactor with real flue gas atmospheres. Test results indicated that adding HBr into the flue gas at several parts per million strongly impacted the mercury oxidation and adsorption, which were dependent upon temperature ranges. Higher temperatures (in the range of 300-350 C) promoted mercury oxidation by HBr addition but did not promote mercury adsorption. Lower temperatures (in a range of 150-200 C) enhanced mercury adsorption on the fly ash by adding HBr. Test results also verified effects of flue gas atmospheres on the mercury oxidation by the addition of HBr, which included concentrations of chlorine and sulfur in the flue gas. Chlorine species seemed to be involved in the competition with bromine species in the mercury oxidation process. With the addition of HBr at 3 ppm at a temperature of about 330 C, the additional mercury oxidation could be reached by about 55% in a flue gas atmosphere by burning PRB coal in the flue gas and by about 20% in a flue gas by burning bituminous coal. These are both greater than the maximum gaseous HgBr2 percentage in the flue gas (35% for PRB coal and 5% for bituminous coal) by thermodynamic equilibrium analysis predictions under the same conditions. This disagreement may indicate a greater complexity of mercury oxidation mechanisms by the addition of HBr. It is possible that bromine species promote activated chlorine species generation in the flue gas, where the kinetics of elemental mercury oxidation were enhanced. However, SO{sub 2} in the flue gas may involve the consumption of the available activated chlorine species. Thus, the higher mercury oxidation rate by adding bromine under the flue gas by burning PRB coal may be associated with its lower SO{sub 2} concentration in the flue gas. 39 refs., 8 figs., 4 tabs.

  17. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition.

  18. Secretinite-Reflectance and chemical data from two high volatile bituminous coals (Upper Carboniferous) of North America

    USGS Publications Warehouse

    Lyons, P.C.; Mastalerz, Maria

    2001-01-01

    Secretinite - a maceral of the inertinite group as recognized by the ICCP in 1996- is a noncellular maceral of seed fern origin. New reflectance data indicate that this maceral has primary anisotropy with bireflectances of 0.4% to 0.9% in high-volatile B bituminous (Ro = 0.6%) Carboniferous coal of North America. The highest reflectance is in cross-section as opposed to longitudinal section. Characteristic feature of secretinite is the virtual absence of Si and Al, unlike that in associated vitrinite. This indicates the absence of submicron aluminosilicates in secretinite and their presence in vitrinites. Secretinite is highly aromatic as indicated by low O/C ratios and high contribution of aromatic hydrogen bands detected by FTIR analysis. ?? 2001 Elsevier Science B.V. All rights reserved.

  19. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  20. Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions

    SciTech Connect

    Lewis, Aaron D.; Holland, Troy M.; Marchant, Nathaniel R.; Fletcher, Emmett G.; Henley, Daniel J.; Fuller, Eric G.; Fletcher, Thomas H.

    2015-02-26

    Three bituminous coal chars (Illinois #6, Utah Skyline, and Pittsburgh #8) were gasified separately at total pressures of 10 and 15 atm in an entrained-flow reactor using gas temperatures up to 1830 K and particle residence times <240 ms. The experiments were performed at conditions where the majority of particle mass release was due to H2O gasification, although select experiments were performed at conditions where significant mass release was due to gasification by both H2O and CO2. The measured coal data we recorded were fit to three char gasification models including a simple first-order global model, as well as the CCKNand CCK models that stem from the CBK model. The optimal kinetic parameters for each of the three models are reported, and the steam reactivity of the coal chars at the studied conditions is as follows: Pittsburgh #8 > Utah Skyline > Illinois #6.

  1. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    PubMed

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending.

  2. Predictors of plasticity in bituminous coals. Technical progress report No. 2, March 1, 1982

    SciTech Connect

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Jones, T. M.; Sturgeon, L. P.; Whitt, J. M.

    1982-03-01

    The approach of this study is to secure three dozen (or more) coals of varying rank, composition and plasticity, and to analyze these coals carefully by standard chemical and petrographic techniques. The bitumen fractions will be determined, both by THF (asphaltenes but not preasphaltenes) and DMF (everything). Pyrolysis gas chromatography on both whole coals and extracted residues will compare capacities to generate metaplast. Extracts from coals with plasticities differing by at least four orders of magnitude will be examined for identifiable differences; extraction residues will be subjected to differential FTIR analysis. All of the data will be combined and subjected to systematic statistical analysis with the objective of identifying predictors of coal plasticity. This report describes the work in the first six months of the study. During this period equipment and instrumentation has been obtained, 24 coal samples have been obtained, the nonclassical methods have been developed and checked out, and an appreciable amount of experimentl data has been obtained.

  3. Progressive Oxidation of Pyrite in Five Bituminous Coal Samples: An As XANES and 57Fe Mossbauer Spectroscopic Study

    SciTech Connect

    Kolker,A.; Huggins, F.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less

  4. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    USGS Publications Warehouse

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  5. Prevalence of pneumoconiosis and its relationship to dust exposure in a cohort of U.S. bituminous coal miners and ex-miners.

    PubMed

    Attfield, M D; Seixas, N S

    1995-01-01

    Information on radiographic evidence of coal workers' pneumoconiosis (CWP) is presented for a group of 3,194 underground bituminous coal miners and ex-miners examined between 1985 and 1988. Prevalence of CWP was related to estimated cumulative dust exposure, age, and rank of coal. On the basis of these data, miners of medium to low rank coal, who work for 40 years at the current federal dust limit of 2 mg/m3, are predicted to have a 1.4% risk of having progressive massive fibrosis on retirement. Higher prevalences are predicted for less severe categories of CWP. Miners in high rank coal areas appear to be at greater risk than those mining medium and low rank coals. Ex-miners who said that they left mining for health-related reasons had higher levels of abnormality compared to current miners.

  6. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  7. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA

    USGS Publications Warehouse

    Mastalerz, Maria; Gluskoter, H.; Rupp, J.

    2004-01-01

    Samples of coals from several coalbeds in Indiana were analyzed for CO2 and CH4 sorption capacity using a high-pressure adsorption isotherm technique. Coal quality and petrographic composition of the coals were determined to study their relationships to the volume of CO2 and CH4 that could be sorbed into the coal. At the temperature of 17 ??C and 400 psi (??? 2.8 MPa), the coals can sorb (on dry ash-free basis) from 4 to 6.3 m3/ton (128-202 scf/ton) of CH4 and 19.5-24.6 m3/ton4 (624 to 788 scf/ton) of CO2. The ratio of CO2/CH4 at these conditions ranges from 3.5 to 5.3 and decreases with an increasing pressure for all coals. The coals studied are of a very similar coal rank (Ro from 0.48 to 0.62%) but of varying petrographic composition, and CO2 sorption volumes appear to be positively correlated to the content of maceral telocollinite. ?? 2004 Elsevier B.V. All rights reserved.

  8. Selected annotated bibliography of the geology of uraniferous and radioactive native bituminous substances, exclusive of coals, in the United States

    USGS Publications Warehouse

    Jones, Harriet Nell

    1956-01-01

    Native bituminous substances are divided into two groups, 1) bitumens and, 2) pyrobitumens. Bitumens are composed principally of hydrocarbons substantially free from oxygenated bodies, are fusible, and are soluble in carbon disulfide. Native bitumens occur in liquid and solid forms. The native liquid bitumens include all petroleums or crude oils. Native solid bitumens include native waxes such as ozocerite, asphalts or petroleum tars, and asphaltites such as gilsonite and grahamite. Pyrobitumens are composed principally of hydrocarbons which may contain oxygenated bodies. They are infusible and are insoluble, or nearly insoluble, in carbon disulfide. Native pyrobitumens are divided into an oxygen-containing group including peats, lignites, and coals, and an essentially oxygen-free, asphaltic group including such substances as wurtzilite, albertite, impsonite, and ingramite. Thucholites, which are carbonaceous substances that may contain uranium, thorium, and rare earths, commonly are considered to be pyrobitumens. Their compositions are variable and may fall into either the oxygen-containing or oxygen-free group. All varieties of native bituminous substances may be associated with mineral matter. The nomenclature of bitumens and pyrobitumens is used very loosely in the literature. This circumstance arises from the difficulty in recognizing many of these substances by visual examination, and because many of them can be identified accurately only by chemical methods. Inasmuch as some of the chemical procedures are time-consuming and satisfactory analytical methods have not been devised for all these substances, geologists generally have not obtained precise identifications but rather have used names that appeared most appropriate to the circumstances. It is expected that future research will show many substances called "asphaltite," "thucholite," etc., to be incorrectly identified. The nomenclature used by the authors of the various references of this bibliography is

  9. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating

    USGS Publications Warehouse

    Schimmelmann, A.; Mastalerz, Maria; Gao, L.; Sauer, P.E.; Topalov, K.

    2009-01-01

    Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., {single bond}OH, {single bond}COOH, {single bond}NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ???2.5 to ???3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong ??13Ckerogen vs. ??15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back

  10. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Mastalerz, Maria; Gao, Ling; Sauer, Peter E.; Topalov, Katarina

    2009-10-01

    Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/ 1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., sbnd OH, sbnd COOH, sbnd NH 2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ˜2.5 to ˜3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong δ13C kerogen vs. δ15N kerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back-reactions between mobile

  11. The influence of seam height on lost-time injury and fatality rates at small underground bituminous coal mines.

    PubMed

    Peters, R H; Fotta, B; Mallett, L G

    2001-11-01

    Due to variations in the thickness of U.S. coal seams, there is great variability in the height of the roof where underground miners work. Restrictions imposed by low seam heights have important safety consequences. As the height of their workplace decreases, miners must stoop, duck walk, or crawl, and their vision, posture, and mobility become increasingly restricted. Low seam height also places important restrictions on the design of mobile equipment and other mining machinery. Using the employment and injury data reported to the Mine Safety and Health Administration (MSHA) from 1990 to 1996, small underground bituminous coal mines with less than 50 employees were stratified by average coal seam height according to the following categories: low (< or =42"), medium (43"-60"), and high (> or =61"). Injury rates for both nonfatal days lost and fatality cases were examined by seam height and leading type of injury incidents. The leading types of incidents associated with fatalities were roof falls and powered haulage equipment. In comparison to high-seam mines, miners working in low or medium seams are at higher risk of being killed by powered haulage equipment, roof bolting machines, and falls of unsupported roof. The leading types of incidents associated with nonfatal injuries were handling materials and powered haulage. As mining height decreases, miners are at increasingly higher risk of having a nonfatal injury from incidents involving roof bolting machines, load-haul-dump equipment, personnel carriers, and powered haulage conveyors. As mining height increases, miners are at increasingly higher risk of having a nonfatal injury from slips and falls and incidents involving shuttle cars and roof and rib falls. Knee injuries are a particularly severe problem in low-seam mines. The rate of injuries to miners while crawling or kneeling is 10 times higher in low seams than in high seams.

  12. Effects of preoxidation on the swelling and softening of bituminous coals

    SciTech Connect

    Maloney, D. J.; Jenkins, R. G.; Walker, Jr., P. L.

    1980-04-01

    A study was conducted to evaluate the applicability of a DuPont 942-TMA (Thermomechanical Analyzer) dilatometer system for the characterization of the swelling and softening properties of caking coals. The results of this investigation demonstrate the utility of this dilatometer system. Several parameters clearly defined with this unit are characteristic of the plastic transitions occurring upon carbonization. These include softening, dilation and resolidification temperature and volume contraction, expansion and total dilation values. The transition parameters measured with the 942-TMA unit are influenced significantly by coal particle size, dilatometer load, and heating rate. All transition temperatures exhibit marked increases with increasing heating rate. Softening temperatures decrease with increasing load and particle size. Dilation temperatures are essentially independent of dilatometer load effects and resolidification temperatures are independent of load and particle size over the range of conditions used in this study. Volume contraction and expansion values show an increase with decreasing coal particle size. Volume expansion values also exhibit strong heating rate and load dependencies. The results point up the great difficulty involved in obtaining truly fresh unoxidized coal samples. Storage of fine coal particles for extended periods of time in atmospheres with even slight oxygen concentrations show signs of weathering. Exposure of an HVA coal to dry air at ambient temperature has much less effect on subsequent swelling and softening properties than does exposure to moist air.

  13. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.

    2003-01-01

    Biological marker and carbon isotopic compositions of coals and carbonaceous shales from the Upper Carboniferous strata of the Upper Silesian (USCB), Lower Silesian (LSCB), and Lublin (LCB) coal basins were determined to assess depositional conditions and sources of the organic matter. n-Alkane, sterane, and isoprenoid distribution, and carbon isotope ratios are consistent with an origin from higher plants. In some cases, pristane/phytane (Pr/Ph) ratios of carbonaceous shales (roof and floor shales) are < 1.0, while the associated coals have high ratios (??? 1.0). This suggests that reducing conditions prevailed during deposition of the shales, but a period of oxidizing conditions accompanied deposition of the coals. Steranes present in coal extracts are dominated by the 14??(H)17??(H)20R C29 stereoisomers, typical, but not conclusive, of higher plant origin. Carbonaceous shales exhibit a wider range of sterane composition, suggesting local, significant input of algal organic matter. Significant amounts of benzohopanes and gammacerane are present in some coals. Although benzohopanes are present at least in small amounts in samples from many different environments, they have been reported to occur most commonly in marine environments. The present study seems to provide the first example where benzohopanes have been reported in significant amounts in terrestrial organic matter. Gammacerane is abundant in rocks or sediments deposited in carbonate or highly saline marine environments. The finding of high gammacerane concentrations in the coals expands the depositional settings in which it has been observed and questions its utility as an independent indicator of hypersaline carbonate environments. Stable carbon isotope composition of coals, and type III kerogen in carbonaceous shales as well as correlation of stable carbon isotope composition of saturated and aromatic hydrocarbons in carbonaceous shales from both the USCB and the LSCB indicate terrigenous origin

  14. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    SciTech Connect

    Tran, Phuoc

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  15. Recommended procedures and techniques for the petrographic description of bituminous coals

    USGS Publications Warehouse

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal

  16. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.

    PubMed

    Buratti, C; Barbanera, M; Bartocci, P; Fantozzi, F

    2015-06-01

    The influence of the addition of cellulosic ethanol residue (CER) on the combustion of Indonesian sub-bituminous coal was analyzed by non isothermal thermo-gravimetric analysis (TGA). The effect of blends ratio (5%, 10%, 15% and 20%), interaction mechanism, and heating rate (5°C/min, 10°C/min, 15°C/min, 20°C/min) on the combustion process was studied. The results show that the increase of the blending ratio allows to achieve the increase of the combustibility index from 7.49E-08 to 5.26E-07 at the blending ratio of 20%. Two types of non-isothermal kinetic analysis methods (Ozawa-Flynn-Wall and Vyazovkin) were also applied. Results indicate that the activation energy of the blends decreases with increasing the conversion rate. In particular, the blending ratio of 20% confirms to have the better combustion performance, with the average value of the activation energy equal to 41.10 kJ/mol obtained by Ozawa-Flynn-Wall model and 31.17 kJ/mol obtained by Vyazovkin model.

  17. JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD

    SciTech Connect

    Dennis Laudal

    2008-05-01

    The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

  18. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  19. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  20. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of pretreatment before liquefaction

    SciTech Connect

    Not Available

    1992-07-01

    The main task of this quarter was to install reactors to conduct preconversion and liquefaction of coal. Coal and coal liquids were collected. The anaerobic chamber (Model 855-AC; Plas Labs, inc.) was procured and set up to store coal samples under an inert gas. Equipment to treat products was assembled, including Soxhlet extraction units, fractionation columns, a distillation column, and a rotary evaporator. Two gas chromatographs for analysis of gases and liquid were adjusted. Two reactor systems were installed for the experimental apparatus. One was Model 4576 high-temperature and high-pressure autoclave (Parr Instrument, 500{degrees}C and 5000 psi) (see Figure 1); the other was a 27 ml of microreactors. The autoclave was obtained from the manufacturer and assembled. The experimental set-up of microreactors are shown in Figure 2.

  1. Sorption capacity and sorption kinetic measurements of CO{sub 2} and CH{sub 4} in confined and unconfined bituminous coal

    SciTech Connect

    J. Denis N. Pone; Phillip M. Halleck; Jonathan P. Mathews

    2009-09-15

    Carbon dioxide injection into coal formations provides an opportunity to sequester carbon while simultaneously enhancing methane recovery. Although powdered coal samples provide a quick indication of the gas sorption capacity, underground storage takes place within compact coal monoliths, and therefore, it may be necessary to account for in situ conditions, specifically confining stress, for meaningful estimates. This study presents the sorption rates and sorption capacities of CO{sub 2} and CH{sub 4} for a bituminous coal sample in a whole sample and in pulverized form. The impact of confining stress on these sorption capacities of coal cores is evaluated with a multiple-point isotherm over a prolonged time period. The kinetics of the complex, heterogeneous processes occurring in a bituminous coal sample are quantified while under confining stress. Sorption capacities for a powdered sample are 1.17 and 0.66 mmol/g for CO{sub 2} and CH{sub 4}, respectively. The application of 6.9 and 13.8 MPa of confining stress contributed to 39 and 64% CO{sub 2} sorption capacity reduction. Similarly, 85 and 91% CH{sub 4} uptake capacity reduction is observed at those confining stresses. The time-dependent gas diffusion parameters are quantified using the volumetric method with a mathematical analysis of the pressure-decay data. Carbon dioxide diffused through the coal faster than CH{sub 4}. Initial exposure over a few days showed a rapid reduction in diffusion presumably as the macro- and mesopores filled. With longer exposure, 10 additional days, a steady slower diffusion is observed for CO{sub 2}. The steady-state slower diffusion is achieved within a few days for CH{sub 4}. It was found that the overall gas movement, specifically diffusion, is hindered by confining stresses and takes place at rates significantly less than in unconfined powder coal.

  2. Surface properties of photo-oxidized bituminous coals. Technical progress report, January--March 1996

    SciTech Connect

    Mitchell, G.; Davis, A.; Chander, S.

    1996-12-31

    During this report period, a vitrinite concentrate from the mvb Splash Dam seam (DECS-30) was prepared and analyzed. Results show that the concentrate was 91 vol % vitrinite and that the sample has been adequately protected from oxidation under refrigerated storage in argon. The 9% level of contamination within the vitrinite resulted from the extreme friability of the coal and to the dispersion of fine grains of semifusinite and micrinite. Polished blocks containing vitrain bands that were prepared, irradiated in blue-light and employed in contact angle measurements were evaluated using specular reflectance-mode FT-IR for changes in functional group chemistry. Infrared spectra from unexposed areas of vitrinite and those irradiated for 1, 5 and 10 min for six coals ranging in rank from hvCb to mvb were obtained using a FTS 175 spectrometer with a Bio-Rad UMA 500 microscope accessory. Preliminary results demonstrate that photo-oxidation occurred during irradiation, becoming progressively more intense with increasing irradiation time; however, the magnitude of this change diminished with increasing rank. A relatively steady increase in the carbonyl region (1,800--1,650 cm{sup {minus}1}) and a decrease in the aliphatic region (2,950--2,850 cm{sup {minus}1}) of the spectra supports this observation and is similar to observations made in the past for natural weathering and laboratory oxidation of coals. A series of tests was initiated to photo-oxidize powdered vitrains using the BLAK-RAY ultraviolet lamp evaluated last quarter. Samples of four vitrinite concentrates were exposed to UV light for 10 mins per side. These and the corresponding whole-seam channel samples and raw vitrinite concentrates were submitted for initial microflotation tests which have not been completed at this time.

  3. Development and evaluation of an automated reflectance microscope system for the petrographic characterization of bituminous coals

    SciTech Connect

    Hoover, D. S.; Davis, A.

    1980-10-01

    The development of automated coal petrographic techniques will lessen the demands on skilled personnel to do routine work. This project is concerned with the development and successful testing of an instrument which will meet these needs. The fundamental differences in reflectance of the three primary maceral groups should enable their differentiation in an automated-reflectance frequency histogram (reflectogram). Consequently, reflected light photometry was chosen as the method for automating coal petrographic analysis. Three generations of an automated system (called Rapid Scan Versions I, II and III) were developed and evaluated for petrographic analysis. Their basic design was that of a reflected-light microscope photometer with an automatic stage, interfaced with a minicomputer. The hardware elements used in the Rapid Scan Version I limited the system's flexibility and presented problems with signal digitization and measurement precision. Rapid Scan Version II was designed to incorporate a new microscope photometer and computer system. A digital stepping stage was incorporated into the Rapid Scan Version III system. The precision of reflectance determination of this system was found to be +- 0.02 percent reflectance. The limiting factor in quantitative interpretation of Rapid Scan reflectograms is the resolution of reflectance populations of the individual maceral groups. Statistical testing indicated that reflectograms were highly reproducible, and a new computer program, PETAN, was written to interpret the curves for vitrinite reflectance parameters ad petrographic.

  4. Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge

    SciTech Connect

    Cenni, R.; Gerhardt, T.; Spliethoff, H.; Hein, K.R.G.; Frandsen, F.

    1998-12-31

    In Germany, the feasibility of co-combustion of sewage sludge in power plants is under evaluation. A study of the influence of co-firing of dry municipal sewage sludge on the behavior of the metals Cr, Hg, Mn, Ni, Pb, zn during pulverized coal combustion is presented. Sewage sludge contains higher concentrations of the metals listed above than the reference coal, but a lower concentration of Cl, that enhances the volatility of many metals. Experiments were performed in a semi-industrial scale pulverized fuel combustion chamber. Ash was collected at four locations: bottom hopper, air preheater, cyclone, and bag filter. From the bottom hopper to the filter, the particle size decreased and ash particles were progressively enriched in volatile elements. Mass balances of the metals were performed and the enrichment trends on the ash collected at the different locations were calculated. Increasing the sewage sludge share in the blend caused a significant increase in the recovery rate in the solid phase. In spite of that, the calculated concentrations in the flue gas of Hg and zn increased. Sewage sludge co-firing influences the combustion process and the post-combustion environment in many ways. This study focuses on the effect of the different flue gas composition on the condensation temperature of metal species. The system was modeled by assuming thermodynamic equilibrium. The results indicated that the increasing recovery of Zn might be caused by enhanced condensation and the increasing recovery of Hg by adsorption on ash particles. The increasing recovery of the other metals seemed referable to failure in vaporization and it cannot be studied with an equilibrium approach.

  5. Effects of Steam and CO2 in the Fluidizing Gas when Using Bituminous Coal in Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Leion, H.; Lyngfelt, A.; Mattisson, T.

    Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel in order to avoid direct contact between air and fuel. Thus, the CO2 is inherently separated from the flue gases with a potential for considerably lower energy penalty and cost compared to other techniques for CO2 separation. The oxygen carrier is circulated between two reactors, a fuel and an air reactor, where the flue gas from the air reactor contains oxygen depleted air and the flue gas from the fuel reactor contains mainly CO2 and H2O. The water can easily be condensed and the remaining CO2 can be transported for underground storage. Most of the prior work with CLC has focused on using natural gas and syngas as fuel and oxygen carrying material normally produced from pure chemicals. However, recent work on adapting the CLC process for solid fuels with ores and natural minerals as oxygen carrier shows promising results. This paper will present results from reactivity investigations in a laboratory fluidized-bed reactor system using previously investigated natural mineral ilmenite as oxygen carrier and a bituminous Colombian coal as fuel. Experiments were conducted at a temperature of 970°C with N2, steam, and/or CO2 in the fluidizing gas. Synergy effects between steam and CO2 on fuel conversion was noted. The results show that the fuel conversion was a roughly a factor 5 faster with steam as compared to CO2 in the fluidizing gas.

  6. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Schimmelmann, A.

    2009-01-01

    Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5??m from the larger dike, and from 0.63% to 3.71% within 3.3??m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417??cm3/g in coal situated 4.7??m from the intrusive contact to 0.0126??cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility. ?? 2008 Elsevier B.V. All rights reserved.

  7. Removal of Cu{sup 2+}, Cd{sup 2+} and Mn(VII) from dilute, aqueous solutions by oxidized bituminous coal

    SciTech Connect

    Bodine, D.L.; Doyle, F.M.

    1995-07-01

    The ability of oxidized Upper Freeport bituminous coal to adsorb Cu{sup 2+}, Cd{sup 2+} and MN(VII) from very dilute aqueous solutions has been studied. Low-rank coal is known to adsorb heavy metal ions from dilute, aqueous solutions, probably by ion exchange and/or chelation by acidic functional groups on the coal surface. However, it would be advantageous to use higher rank coals for water treatment. Coal samples were oxidized thermally or by 30% H{sub 2}O{sub 2} to increase the surface concentration of phenolic and carboxylic groups, then portions were shaken with Cu{sup 2+} and Cd{sup 2+} solutions. Acidic KMnO{sub 4} was also used to oxidize coal, with concurrent sorption of the resulting MN(IV) and Mn(II). The effect of oxidation treatment, metal ion concentration, and solution pH on metal uptake kinetics was investigated. Potential applications for treating effluents, especially those containing oxidizing ions, are discussed, along with possible flowsheet options.

  8. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  9. Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR

    SciTech Connect

    Tom Campbell

    2008-12-31

    This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

  10. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  11. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  12. Change in the magnetic properties of bituminous coal intruded by an igneous dike, Dutch Creek Mine, Pitkin County, Colorado

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Finkelman, R.B.; Dulong, F.T.; Bostick, N.H.

    1998-01-01

    Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (~400-525??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.Magnetization measurements have been made on natural coke-coal samples collected at various distances from a felsic porphyry dike in a coal seam in Dutch Creek Mine, Colorado to help characterize the nature and distribution of the iron-bearing phases. The magnetization passes through a maximum at the coke-to-coal transition about 31 cm from the dike contact. The magnetic measurements support the geochemical data indicating that magmatic fluids along with a high-temperature gas pulse moved into the coal bed. Interaction of the magmatic fluids with the coal diminished the reducing power of the thermal gas pulse from the dike to a point about 24 cm into the coal. The hot reducing gas penetrated further and produced a high temperature (approximately 400-525 ??C) zone (at about 31 cm) just ahead of the magmatic fluids. Metallic iron found in this zone is the principal cause of the observed high magnetization. Beyond this zone, the temperature was too low to alter the coal significantly.

  13. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP

  14. The big ban on bituminous coal sales revisited: Serious epidemics and pronounced trends feign excess mortality previously attributed to heavy black-smoke exposure

    SciTech Connect

    Wittmaack, K.

    2007-07-01

    The effect of banning bituminous coal sales on the black-smoke concentration and the mortality rates in Dublin, Ireland, has been analyzed recently. Based on the application of standard epidemiological procedures, the authors concluded that, as a result of the ban, the total nontrauma death rate was reduced strongly (-8.0% unadjusted, -5.7% adjusted). The purpose of this study was to reanalyze the original data with the aim of clarifying the three most important aspects of the study, (a) the effect of epidemics, (b) the trends in mortality rates due to advances in public health care, and (c) the correlation between mortality rates and black-smoke concentrations. Particular attention has been devoted to a detailed evaluation of the time dependence of mortality rates, stratified by season. Death rates were found to be strongly enhanced during three severe pre-ban winter-spring epidemics. The cardiovascular mortality rates exhibited a continuous decrease over the whole study period, in general accordance with trends in the rest of Ireland. These two effects can fully account for the previously identified apparent correlation between reduced mortality and the very pronounced ban-related lowering of the black-smoke concentration. The third important finding was that in nonepidemic pre-ban seasons even large changes in the concentration of black smoke had no detectable effect on mortality rates. The reanalysis suggests that epidemiological studies exploring the effect of ambient particulate matter on mortality require improved tools allowing proper adjustment for epidemics and trends.

  15. Liquefaction of bituminous coals using disposable ore catalysts and hydrogen. Final report, February 7, 1982-July 31, 1982

    SciTech Connect

    Mathur, V.K.

    1982-09-01

    There are a number of problems associated with the production of liquid fuels from coal. The most complex is the use of commercial catalysts which are expensive, with short life, and cannot be recovered or regenerated. The objective of this study was to conduct experiments on coal hydrogenation using low cost mineral ores as disposable catalysts. Coal samples from Blacksville Mine, Pittsburgh Bed were hydrogenated using a number of ores, ore concentrates and industrial waste products as catalysts. Experiments were also conducted using a commercial catalyst (Harshaw Chemicals, 0402T) and no catalyst at all to compare the results. Since iron pyrite has been reported to be a good disposable catalyst, experiments were also conducted using pyrite individually as well as in admixture with other ores or concentrates. The liquefaction was conducted at 425/sup 0/C under 2000 psig (13,790 kPa) hydrogen pressure for a reaction time of 30 minutes using SRC-II heavy distillate as a vehicle oil. The conclusions of this study are as follows: (a) Results of liquefaction using two cycle technique showed that the catalytic activity of iron pyrite could be enhanced by adding materials like limonite, laterite or red mud. Iron pyrite in admixture with limonite ore or molybdenum oxide concentrate gave the best results among all the binary mixtures studied. (b) Iron pyrite with molybdenum oxide concentrate and cobaltic hydroxide cake (metal loading in each case the same as in Harshaw catalyst) gave results which compared favorably with those obtained using the Harshaw catalyst. It is recommended that work on this project should be continued exploring other ores and their mixtures for their catalytic activity for coal liquefaction.

  16. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  17. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, September 20, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1992-07-01

    The main task of this quarter was to install reactors to conduct preconversion and liquefaction of coal. Coal and coal liquids were collected. The anaerobic chamber (Model 855-AC; Plas Labs, inc.) was procured and set up to store coal samples under an inert gas. Equipment to treat products was assembled, including Soxhlet extraction units, fractionation columns, a distillation column, and a rotary evaporator. Two gas chromatographs for analysis of gases and liquid were adjusted. Two reactor systems were installed for the experimental apparatus. One was Model 4576 high-temperature and high-pressure autoclave (Parr Instrument, 500{degrees}C and 5000 psi) (see Figure 1); the other was a 27 ml of microreactors. The autoclave was obtained from the manufacturer and assembled. The experimental set-up of microreactors are shown in Figure 2.

  18. Effect of oxidation on the removal CU{sup 2+}, Cd{sup 2+} and Mn (VII) from dilute aqueous solutions by Upper Freeport bituminous coal. Quarterly report, June--August 1995

    SciTech Connect

    Bodine, D.L.

    1995-12-31

    Upper Freeport bituminous coal was able to remove Mn (VII) from dilute aqueous solution by concurrent adsorption and reduction of the manganese to lower valence, less toxic states. This type of reaction indicated the potential of using coal to remove oxidizing contaminants from effluents. Since oxidizing anions can degrade ion exchange resins and membranes, coal may be a viable alternative for detoxification. On analysis of the kinetics of copper and cadmium uptake from dilute aqueous solution, adsorption equilibria and functional groups analyses, it was apparent that the different oxidative pre-treatments affected both the surfaces and pore structure of Upper Freeport coal. The large amount of carboxyl and phenolic functional groups remaining after contact with copper and cadmium solutions, as determined by functional groups analyses, indicated the low affinity of the surface acid groups for these cations. Furthermore, there was almost no metal ion removal at low solution pH`s, which precludes the use of Upper Freeport for treating acidic wastes and effluents such as acid mine drainage. The coal surface functional groups are indeed able to exchange with cations, since the amount of these groups are measured by ion exchange with Na{sup +} and Ba{sup 2+}, however, it may be more difficult to displace the waters of hydration around Cu{sup 2+} and Cd{sup 2+}, to allow their uptake on the coal surface functional groups. Improved metal ion removal might be obtained using a lower rank coal, such as a subbituminous coal, which would be more susceptible to oxidation.

  19. Investigation of pyrite as a contributor to slagging in Eastern Bituminous coals. Quarterly progress report 10, January 1-March 30, 1984

    SciTech Connect

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Results of analysis of two coals, Illinois No. 5 Gallatin County, Illinois and Lower Kittaning Clarion County, Pennsylvania, are presented. Examination of the morphology of furnace slag deposited in the 100 lb/hr combustor, as well as industrial furnace, revealed reocurring crystals of iron of pyrite origin on the surface of the deposit. The cubic, octahedron and cubic/octahedron crystals are similar in size and structure to pyrite crystals occasionally found in coal. To characterize the morphology of pyrites within the coal samples of Illinois No. 5 and Lower Kittaning coals were examined using SEM and EDAX analysis. Results are presented of the types of minerals found. 10 figures, 3 tables.

  20. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  1. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    SciTech Connect

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  2. Comparison of mercury speciation results obtained with the US EPA Method 29 and the Ontario Hydro Technologies sampling methods at a sub-bituminous coal-fired power plant

    SciTech Connect

    Curtis, K.E.; Lucas, F.

    1997-12-31

    In 1993, Ontario Hydro Technologies (OHT) developed a number of modifications to the US EPA reference method for measuring total mercury emissions from stationary sources, Method 101A, that also allowed the chemical form (speciation) of the mercury to be determined. Since that time, the method has been used by OHT and several other research and stack testing organizations for numerous mercury speciation measurements, often as a comparison with other methods such as the US EPA Method 29. However, much of that work has been carried out at pilot plant combustion facilities and only very few comparative measurements have been performed at full scale power plants. Most recently, OHT participated in a collaborative study to determine both the mercury speciation and total mercury emissions from a sub-bituminous coal-fired power plant in Alberta, Canada. The stack emissions at that plant were sampled simultaneously with the OHT method and Method 29 over a three day test period, with one full test being completed each day. The results available at this time show that there was very poor agreement between the two methods for both the total mercury emissions and the measured speciation. This was surprising since earlier studies had shown that while differences in the speciation results were common, the total mercury results were generally found to be in reasonable agreement. The reasons for these findings are still being investigated.

  3. Bituminous coal production in the Appalachian basin: past, present, and future: Chapter D.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report on Appalachian basin coal production consists of four plates and associated graphs and tables that were used to construct the maps. Figure 1 shows the decade of greatest coal production by county. Figure 2 shows the amount of coal produced for each county (in thousands of short tons) during the year of greatest coal production. These data are sorted by decade. Figure 3 illustrates the cumulative coal production (in thousands of short tons) for each county since about the beginning of the 20th century. Figure 4 shows 2003 production by county in thousands of short tons.

  4. Fluid-dynamical and poro-elastic coupling of gas permeability of inert and sorbing gases on an Australian sub-bituminous coal

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Krooss, B. M.

    2013-12-01

    The interaction and the coupling of slip-flow, a fluid dynamic phenomenon, and the cleat volume compressibility which is a poroelastic phenomenon has been investigated on two samples from the Taroom coal measure, Surat Basin, Queensland Australia. Measurements were performed using inert (helium and argon) and sorbing gases (nitrogen, methane and carbon dioxide) at controlled effective stress. We observed the following regular sequence of permeability coefficients for the different gases: Helium >> argon => nitrogen > methane >> CO2 Even after slip-flow correction, different intrinsic permeability coefficients are obtained for the same sample if different gases are used in the tests. The permeability values determined with helium are largest while those measured with CO2 are lowest. Inert gases like helium and argon show higher apparent- and even slip flow-corrected permeability coefficients than sorbing gases like methane or carbon dioxide. This observation is contrary to the prediction that the slip-flow corrected permeability have to be the same for all gases. The cleat volume compressibility cf was evaluated using the 'matchstick approach' [1, 2]. The cleat volume compressibility coefficients cf are almost identical for the two samples taken from the same well. However, for one sample a strong dependence of the cf with the mean pore pressure was observed. This is attributed to a strong slip-flow effect caused by a narrow cleat system as compared to the sister sample. The cleat volume compressibility coefficient cf is almost the same for inert and sorbing gases. We conclude that the occurrence of slip-flow in coals is able to compensate the permeability reduction resulting from increasing effective stress. This should lead to a much higher productivity of coal bed methane reservoirs in the third production phase (pseudo-steady state phase; [3]). This conclusion appears to be also valid for shale gas and tight gas reservoirs, where the gas transport takes place in

  5. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    NASA Astrophysics Data System (ADS)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of

  6. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    SciTech Connect

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  7. Fundamentals of coal depolymerization under hydroliquefaction conditions: kinetic and structural analyses of a bituminous (Powhatan No. 5) coal and its liquefaction products. Quarterly report, July 1-September 30, 1981

    SciTech Connect

    Petrakis, L.; Grandy, D.W.; Gavalas, G.; Allen, D.T.; Oka, M.; Maciel, G.; Sullivan, M.

    1981-09-01

    This is one of the three volumes that constitute the final report for the title project. The objectives of the project included: (a) the use of /sup 13/C solid state NMR to assess the structural features of a given coal (Powhatan No. 5) and how its structure might change upon hydroliquefaction; (b) the petrographic assessment of the maceral make-up of the coal and the petrographic changes upon hydroliquefaction; (c) a better definition of the molecular profile of the products so that eventually reaction pathways of coal molecules upon hydroliquefaction might be delineated. This volume contains material that addresses these objectives. Under a subcontract to Colorado State University, solid state /sup 13/C NMR was used for a very detailed investigation of Powhatan No. 5 coal and to study certain macerals as well as the structural features of the coal under different hydroliquefaction conditions. For some of the macerals, important structural features are obtained other than the usual aromatic/nonaromatic carbon ratio. The petrographic changes under different hydroliquefaction conditions are shown. Some of the work entailed the development and utilization of methodology for the definition of the chemical structures of coal liquids. In addition, the pyrolytic behavior of a model system (tetralin) was pursued using thermochemical techniques. The overall implication and pertinence of these aspects of the work to the fundamentals of the depolymerization of Powhatan No. 5 coal are presented in the Executive Summary for this project (Report FE-14940-8).

  8. Coal desulfurization by low temperature chlorinolysis, phase 1

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.

    1977-01-01

    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.

  9. Coal (what your parents never taught you...)

    SciTech Connect

    Buecker, B.

    2006-11-15

    The article describes the process of the formation of coal. In the geochemical phase of coalification, the sequence of materials as coal matures is wood, peat, lignite, subbituminous coal, bituminous coal and anthracite. Carbon content increases from about 44% in wood to over 90% in anthracite. Two tables outline the common properties of several prominent coals (lignite, subbituminous, bituminous and lignite) found in the USA and describes each of these types, including peat. 3 refs., 1 fig., 2 tabs.

  10. Continuous extrusion of coal. [plastic fluidizing process

    NASA Technical Reports Server (NTRS)

    England, C.; Kushida, R.; Daksla, C.

    1978-01-01

    A feeding method for use with bituminous coals that exhibit plasticity at elevated temperatures is described and demonstrated on a small screw extruder previously used to extrude polyethylene. A metered feed of coal heated to a temperature just below that of incipient caking (approximately 450 C) is used. Modifications to the extruder consisting of ceramic band heaters, auxiliary cooling coils on the thrust bearing and special quick opening dies are detailed. Coals successfully extruded include high volatile A bituminous coals, high volatile B bituminous coals, a high volatile C bituminous coal and a coal with high ash content. The computer program, EXTRUD, used to simulate the extruder is described. Predicted power consumption exhibits 30% scatter, which is explained by the sensitivity of the coal friction coefficient to temperature profiles. Detailed analysis reveals some discrepancies in the program that need to be resolved.

  11. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  12. Nitric oxide emission from pulverized coal blend flames

    SciTech Connect

    Kopparthi, V.; Gollahalli, S.R.

    1995-09-01

    An experimental study of the nitric oxide emission from pulverized blended coal flames as a function of blending mass ratio is presented. Coals of three ranks (anthracite, bituminous, and lignite), and of the same rank (bituminous), but of different origin (Oklahoma and Wyoming mines), were used as fuels. Also, their blends (anthracite-bituminous, anthracite-lignite, lignite-bituminous, and Oklahoma-Wyoming coals) at mass ratios of 20:80, 40:60, 60:40, and 80:20 were studied. Correlations of nitric oxide emission index (mass/unit energy release) with blend mass ratio are presented.

  13. INVESTIGATION OF PRIMARY FINE PARTICULATE MATTER FROM COAL COMBUSTION BY COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...

  14. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  15. Microbial desulfurization of coal

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  16. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect

    Sutcu, H.; Toroglu, I.; Piskin, S.

    2009-07-01

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  17. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  18. The dissolution of an anthracite coal with perchloric acid

    SciTech Connect

    Hood, G.E.; Hyatt, A.G.; McGowan, C.W.

    1996-10-01

    Lignite coal, bituminous coal and several oil shales have previously been dissolved using perchloric acid of varying boiling point and subsequent oxidizing ability. These organic deposits generally dissolved between 150 and 160{degrees}C. This indicated that the aliphatic ether oxygen bond was being broken during the dissolution process. This dissolution process was performed on an anthracite coal because of the coal`s low oxygen content. The anthracite coal dissolved between 180 and 190{degrees}C making it similar to high-vol bituminous coal from New Zealand. Earlier work has indicated that carbon-carbon double bonds are being attacked during the dissolution process at the higher temperatures.

  19. Sustainable development with clean coal

    SciTech Connect

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  20. Formation and retention of methane in coal

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.

  2. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  3. Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil

    DOEpatents

    Rodgers, Billy R.; Edwards, Michael S.

    1977-01-01

    Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

  4. CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil

    SciTech Connect

    Romanov, V

    2012-10-23

    The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as 3 cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

  5. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank.

    PubMed

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Schwarzbauer, Jan; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-10-01

    Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.

  6. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  7. Characterization of biodegraded coals

    SciTech Connect

    Bean, R.M.; Franz, J.A.; Campbell, J.C.; Linehan, J.C.; Stewart, D.L.; Thomas, B.L.

    1988-04-01

    We have been able to accomplish the biodegradation of bituminous Illinois No. 6 coal after a pretreatment consisting of air oxidation, using a culture of the fungus Penicillium sp. We report in this paper results of chemical and spectrometric analyses of the starting materials and products from Illinois No. 6 coal biodegradation, and compare the results with those previously reported from the biodegradation of leonardite. 13 refs., 1 fig., 5 tabs.

  8. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  9. New method of feeding coal - Continuous extrusion of fully plastic coal

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; England, C.

    1978-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.

  10. Temperature field around a laser-heated coal particle

    SciTech Connect

    Feng, B.; Liu, Y.H.; Zhou, Y.B.; Liu, Z.H.; Zheng, C.G.

    1997-12-31

    Holography was used to measure the temperature field around a laser heated coal particle. A man-made coal particle (with the size of 5mm in diameter and 5mm in length) was ignited by a laser beam (with the maximum power of 15W). And then the temperature distribution around the particle was obtained from the holograph which was developed by the authors. A bituminous coal, an anthracite and a sub-bituminous coal were used. It was interesting to find that there exists a zone near the particle surface where the temperature is higher than that at the surface for the bituminous coal during the combustion of the coal although the phenomenon was not found for the other coals. A mathematical model taking into account the laser induced energy was developed to calculate the temperature field around the particle. The predicted results were compared with the experimental ones.

  11. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  12. The mechanism of the reaction of hard coal with oxygen

    SciTech Connect

    Kucher, R.V.; Saranchuk, V.I.; Opeida, I.A.; Dumbai, I.N.; Galushko, L.Ya.

    1982-01-01

    Chemi-luminescent methods, gas-liquid chromatography and microcolorimetric measurements have been used to elucidate the effects of initiators and inhibitors on the process of oxidation of bituminous coal with oxygen.

  13. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, October 1996--December 1996

    SciTech Connect

    Anderson, S.A.; Hatcher, P.G.; Radovic, L.R.

    1997-01-01

    Selective presaturation and saturation transfer {sup 129}Xe NMR experiments were performed on a high volatile C bituminous coal and an anthracite. The experiments detect the movement of xenon atoms among different regions of the internal surface, and to the external surface of the coal particles. The results indicate that adsorbed xenon atoms can move to the external surface of the bituminous coal significantly faster than in the anthracite. The results are interpreted in terms of the porous structure of the coals.

  14. Characterization of biodegraded coals

    SciTech Connect

    Bean, R.M.; Franz, J.A.; Campbell, J.A.; Linehan, J.C.; Stewart, D.L.; Thomas, B.L.

    1988-01-01

    Microbial degradation of coals to materials that are soluble in water has been a topic of intensive research for the last few years. The potential for economical recovery of low-grade coals, coupled with possibilities for further upgrading by microbial desulfurization or methanation has spurred intensive research at a number of laboratories. Until very recently, coal biodegradation has been accomplished using low-grade, naturally oxidized coals such as leonardiate, or coals subjected to pretreatment with oxidizing chemicals. The authors have been able to accomplish the biodegradation of bituminous Illinois 6 coal after a pretreatment consisting of air oxidation, using a culture of the fungus Penicillium sp. They report in this paper results of chemical and spectrometric analyses of the starting materials and products from Illinois 6 coal biodegradation, and compare the results with those previously reported from the biodegradation of leonardite.

  15. MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL

    EPA Science Inventory

    The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...

  16. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  17. Formation and retention of methane in coal. Final report

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  18. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  19. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  20. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China.

    PubMed

    Zhang, Ying; Liu, Guijian; Chou, Chen-Lin; Wang, Lei; Kang, Yu

    2007-12-20

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 microg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism.

  1. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zhang, Y.; Liu, Gaisheng; Chou, C.-L.; Wang, L.; Kang, Y.

    2007-01-01

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 ??g/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. ?? 2007 Zhang et al; licensee BioMed Central Ltd.

  2. Laser ignition of pulverized coals

    SciTech Connect

    Chen, J.C.; Taniguchi, Masayuki; Narato, Kiyoshi; Ito, Kazuyuki . Hitachi Research Lab.)

    1994-04-01

    The authors present a novel experiment to study the ignition of pulverized coal. A dilute stream of particles is dropped into a laminar, upward-flow wind tunnel with a quartz test section. The gas stream is not preheated. A single pulse from a Nd:YAG laser is focused through the tunnel and ignites the fuel. The transparent test section and cool walls allow for optical detection of the ignition process. In this article they describe the experiment and demonstrate its capabilities by observing the ignition behavior of spherical, amorphous-carbon particles and two coal: an anthracite and a high-volatile bituminous coal. The ignition behaviors of the carbon spheres and the anthracite are as expected for heterogeneous ignition, while the mechanism of the bituminous coal is uncertain. Calculations are also presented to describe the physical behavior of a laser-heated particle, and the heat transfer and chemistry of heterogeneous ignition.

  3. Apparatus for entrained coal pyrolysis

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  4. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect

    Orr, E.C.; Shi, Y.; Ji, Q.

    1995-12-31

    Coal liquefaction is highly dependent upon the type of coal liquefaction solvent used. The solvent must readily solubilize the coal and must act as an effective hydrogen donor or shuttler. Oil derived from the vacuum pyrolysis of used rubber tires has recently been used as a coal solvent with good conversion of coal to liquids in a hydrogen atmosphere. All experiments were completed in shaken tubing reactors at 450{degrees}C utilizing a bituminous coal. Results show the effectiveness of the pyrolyzed tire oil as a coal liquefaction solvent depends upon hydrogen pressure. Electron probe microanalysis data reveal good dispersion of the molybdenum catalyst in coal particles taken from liquefaction experiments.

  5. Combustion reactivity of low rank coal chars

    SciTech Connect

    Young, B.C.

    1983-08-01

    For many years the CSIRO has been involved in studies on the combustion kinetics of coal chars and related materials. Early work included studies on a char produced from a Victorian brown coal. More recently, the combustion kinetics of chars produced during the flash pyrolysis of sub-bituminous coals have been determined. Data are given for the combustion reactivities of four flash pyrolysis chars. Their reactivities are compared with the results for chars produced from low and high rank coals, and petroleum coke. Reactivity is expressed as the rate of combustion of carbon per unit external surface area of the particle, with due correction being made for the effect of the mass transfer of oxygen to the particle. It has been shown that the reactivities to oxygen of chars produced from Millmerran sub-bituminous coal decrease with increasing pyrolysis temperature but are similar in magnitude to the reactivities of chars derived from a brown and a bituminous coal and to the reactivities of anthracites and semi-anthracites. However, Wandoan char, also of sub-bituminous origin, exhibits about twice the reactivity of Millmerran char and about ten times the reactivity of petroleum coke. On the basis of observed activation energy values, particle size and particle density behaviour it is concluded that the combustion rates of Millmerran and Wandoan chars are controlled by the combined effects of pore diffusion and chemical reaction.

  6. Additives in Bituminous Materials and Fuel-Resistant Sealers

    DTIC Science & Technology

    1994-08-01

    AD-A285 748 D)OT/FAAICT-94/78 DOT/FAAtRD-93/30 Additives in Bituminous FA Tehnia Cer Materials and Fuel-Resistant Atlantic City International Airport...Subtitle Ro Dat August 1394 Additives in Bituminous Materials and Fuel-Resistant S •O..M0aMtioiCOd5 Sealers I Amdirw S Polwo ovwm ’n New, No Gary L...bituminous materials and fuel-resistant sealers. Included in this report is a brief hisLory of these types of additives, the results of an airport

  7. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  8. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  9. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    EPA Science Inventory

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  10. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  11. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  12. Microbial solubilization of coals

    SciTech Connect

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  13. Azeotropic dehydration process for treating bituminous froth

    SciTech Connect

    Filby, J. E.

    1985-04-30

    Bituminous froths, typically obtained from the known Hot Water Method of extraction treatment of oil sands, are processed to remove water and part of the coarse mineral solids contained in the froth. In the process, the froth feed stock from the Hot Water Method treatment is mixed with a naphtha diluent, preferably naphtha which is derived from upgrading or refining of separated bitumen, in preferably the minimum amount sufficient to effectively remove all water by azeotropic distillation, while providing a workable feed viscosity. The mixture of naphtha and froth is treated to remove coarse solids and part of the water in a settling device, heated to a temperature sufficient to cause vaporization of the naphtha and remaining water as an azeotrope and flashed to substantially separate all water and naphtha from the bitumen. The dry bitumen with remaining solids, is normally not suitable for passing to a refinery but rather is sent to upgrading at a typical oil sands mining upgrading complex. Naphtha is recovered and recycled. The naphtha, in addition to its azeotrope forming feature, makes the froth more homogenous, less viscous, easier to handle and less fouling in heat exchangers, facilitates separation of coarse solids, and eliminates severe foaming when the froth is heated.

  14. Influence of coal on coke properties and blast-furnace operation

    SciTech Connect

    G.R. Gainieva; L.D. Nikitin

    2007-07-01

    With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

  15. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  16. Variation in coal composition. A computational approach to study the mineral composition of individual coal particles

    SciTech Connect

    Charon, O.; Kang, S.G.; Graham, K.; Sarofim, A.F.; Beer, J.M. )

    1989-01-01

    Mineral matter transformations, and therefore fly ash evolution, during pulverized coal combustion depend on the amount, composition and spatial distribution of the inorganic matter within individual pulverized coal particles. Thus, it is necessary to have information on the mineral composition of individual particles, as well as that of the raw pulverized coal. A model has been developed to predict the variation of individual coal particle compositions. It uses CCSEM data for a given raw coal as input and randomly distributes the mineral inclusions in the coal volume. By random selection of monosize coal particles, it is possible to generate distributions of mineral content for any particle size distribution of coal. The model has been checked by comparing computed results with data on the composition variations of narrowly size and density classified fractions of an Upper Freeport bituminous coal. The results for individual coal particle compositions are used to generate information on the variability of the composition of the fly ash generated during combustion.

  17. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  18. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  19. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal.

  20. Hydrocarbon source potential and maturation in eocene New Zealand vitrinite-rich coals: Insights from traditional coal analyses, and Rock-Eval and biomarker studies

    USGS Publications Warehouse

    Newman, J.; Price, L.C.; Johnston, J.H.

    1997-01-01

    The results of traditional methods of coal characterisation (proximate, specific energy, and ultimate analyses) for 28 Eocene coal samples from the West Coast of New Zealand correspond well with biomarker ratios and Rock-Eval analyses. Isorank variations in vitrinite fluorescence and reflectance recorded for these samples are closely related to their volatile-matter content, and therefore indicate that the original vitrinite chemistry is a key controlling factor. By contrast, the mineral-matter content and the proportion of coal macerals present appear to have had only a minor influence on the coal samples' properties. Our analyses indicate that a number of triterpane biomarker ratios show peak maturities by high volatile bituminous A rank; apparent maturities are then reversed and decline at the higher medium volatile bituminous rank. The Rock-Eval S1 +S2 yield also maximizes by high volatile bituminous A rank, and then declines; however, this decline is retarded in samples with the most hydrogen-rich (perhydrous) vitrinites. These Rock-Eval and biomarker trends, as well as trends in traditional coal analyses, are used to define the rank at which expulsion of gas and oil occurs from the majority of the coals. This expulsion commences at high volatile A bituminous rank, and persists up to the threshold of medium volatile bituminous rank (c. 1.1% Ro ran. or 1.2% Ro max in this sample set), where marked hydrocarbon expulsion from perhydrous vitrinites begins to take place.

  1. The release of iron during coal combustion. Milestone report

    SciTech Connect

    Baxter, L.L.

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  2. Biochemically enhanced methane production from coal

    NASA Astrophysics Data System (ADS)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  3. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.; Jha, M.C.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  4. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  5. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  6. Induction of sister chromatid exchanges by coal dust and tobacco snuff extracts in human peripheral lymphocytes

    SciTech Connect

    Tucker, J.D.; Ong, T.

    1985-01-01

    The organic solvent extracts of sub-bituminous coal dust and tobacco snuff, both together and separately, were tested for the induction of sister chromatid exchanges (SCEs) in human peripheral lymphocytes. The results indicate that these extracts induced SCEs, and that when tested together synergistically induced SCEs in two of three donors. Studies with the organic solvent extracts of all five ranks of coal indicate that the extracts of bituminous, lignite, and peat, but not anthracite, induced SCEs. Similar experiments conducted with water extracts, induced SCEs, and that anthracite was equivocal. To determine whether individuals differed in their SCE responses to coal dust extracts, lymphocytes from five donors were tested with organic solvent extracts of bituminous and sub-bituminous coal. An analysis of variance indicates that the SCE response was significantly influenced by the donor and each of the two coal extracts. The findings presented here suggest that coal dust, with or without tobacco snuff, may play a role in the elevated incidence of gastric cancer in coal miners. Because water extracts of some ranks of coal induced SCEs, there exists the possibility of adverse environmental effects due to coal leachates.

  7. Alaska coal geology, resources, and coalbed methane potential

    SciTech Connect

    Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

    2005-11-15

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

  8. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  9. Applications of polymer extrusion technology to coal processing

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.

    1981-01-01

    Upon heating, many of the middle-aged bituminous coals exhibit a plasticity very similar to polyethylene for a few minutes. Plastic coal can be extruded, pelletized or molded using common plastics technology and equipment. Investigations concerning the plastic state of coals are conducted with the objective to develop techniques which will make useful commercial applications of this property possible. Experiments which show the characteristics of plastic-state coal are discussed, and problems related to a continuous extrusion of coal are considered. Probably the most significant difference between the continuous extrusion of coal and the extrusion of a thermoplastic polymer is that volatiles are continuously being released from the coal. Attention is given to aspects of dragflow, solids feeding, and melt pumping. Application potentials for plastic coal extrusion might be related to coal gasification, direct liquefaction, and coal combustion.

  10. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals

    NASA Astrophysics Data System (ADS)

    Yao, Yanbin; Liu, Dameng; Tang, Dazhen; Tang, Shuheng; Huang, Wenhui; Liu, Zhihua; Che, Yao

    2009-06-01

    To better understand the characteristics of seepage-pores (pore radius larger than 100 nanometers) and their influence on the permeability of coals, we have conducted fractal analyses for 34 fresh coal samples (mean maximum vitrinite reflectance Ro,max from 0.43% to 4.21%) from North, Northwest and Northeast China. Mercury porosimetry data indicate that the coals are fractal, with pore radius ranging from 0.1 to 50 μm. Calculated fractal dimensions of these coals range from 2.61 to 2.98, higher than those from other kinds of rocks such as sandstone, shale, and carbonate. The data suggest that the coals have more complicated and inhomogeneous pore structures than other rocks. The fractal dimension has a negative correlation with the petrologic permeability of coals, particularly for higher rank coals (with 1.47-4.21% Ro,max), from which a strong negative linear correlation ( R2=0.85) between fractal dimension and permeability is observed. A 'U-shaped' trend between fractal dimensions and coal ranks is observed, with the minimum fractal dimensions occurring at 1.1-1.3% Ro,max. The sub-bituminous, high volatile bituminous, semi-anthracite, and anthracite have higher fractal dimensions. The effects of coal rank upon fractal dimensions are mainly due to the variety of micropore contents and aromaticity of coals with coalification.

  11. Quality of Selected Hungarian Coals

    USGS Publications Warehouse

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.; Fodor, B.; Gombar, G.

    2007-01-01

    As part of a program conducted jointly by the U.S. Geological Survey and the Hungarian Geological Survey under the auspices of the United States-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for analysis. The mine areas sampled represent most of the coal mined recently in Hungary. Almost all the coal is used to generate electricity. Coals from the five mines (four underground, one surface) reflect differences in age, depositional setting, organic and inorganic components of the original sediments, and deformational history. Classified according to the ranking system of the American Society for Testing and Materials, the coals range in rank from lignite B (Pliocene[?] coals) to high volatile A bituminous (Jurassic coals). With respect to grade classification, based on seam-weighted averages of moisture, ash, and sulfur contents: (1) all contain high moisture (more than 10 percent), (2) all except the Eocene coals are high (more than 15 percent) in ash yield, and (3) two (Jurassic and Eocene coals) are high in sulfur (more than 3 percent) and three (Cretaceous, Miocene, and Pliocene coals) have medium sulfur contents (1 to 3 percent). Average heat values range from 4,000 to 8,650 British thermal units per pound.

  12. Appalachian coal assessment: Defining the coal systems of the Appalachian basin

    USGS Publications Warehouse

    Milici, R.C.

    2005-01-01

    The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.

  13. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  14. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Qmore » values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  15. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    SciTech Connect

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.

  16. Coal deposits of the United States

    USGS Publications Warehouse

    John, Nelson W.

    1987-01-01

    The coal fields of the Unites States can be divided into six major provinces. The Appalachian and Interior Provinces contain dominantly bituminous coal in strata of Pennsylvanian age. The coal seams are relatively thin and are mined both by surface and underground methods. Sulfyur content is low to moderate in the Appalachian Province, generally high in the Interior province. The Gulf Coastal Plain Province, in Texas and neighboring states, contains lignite of Eocene age. The seams are 3-25 ft (0.9-7.5 m) thick and are minded in large open pits. The Northern Great Plains Province has lignite and subbituminous coal of Cretaceous, Paleocene and Eocene age. The coal, largely very low in sulfur, occurs in beds up to 100 ft (30 m) thick and is strip-mined. The Rocky Mountain Province contains a great variety of coal deposits in numerous separate intermontane basins. Most of it is low-sulfur subbituminous to bituminous coal iof Creatceous and early Tertiary age. The seams range from a few feet to over 100 ft (30 m) thick. Strip-mining dominates but underground mines are important in Utah and Colorado. The Pacific Coast Province, which includes Alaska, contains enormous cola resources but has seen little mining. The coal is highly diverse in physical character and geologic setting. ?? 1987.

  17. Determination of the mineral distribution in pulverized coal using densitometry and laser particle sizing

    SciTech Connect

    Hong Zhang; Yan-xue Mo; Ming Sun; Xian-yong Wei

    2005-12-01

    Coal particle size and mineral matter content have important effects on coal combustion. The mineral content of five Chinese coals was determined by a method combining densitometry and particle-size analysis. The finer particles of pulverized samples were found to contain more mineral content. Rank also had a significant influence on the particle-size ash-content distribution of pulverized coal particles. The sharpest size-ash distribution was found in pulverized anthracite samples; a broader distribution was found with bituminous coal samples, while a uniform distribution was observed in pulverized lignite samples. Ash in higher ash anthracite or lower ash bituminous coal is more evenly distributed. It is a combined effect of size distribution, yield, and proximate analysis of their density separation fractions. Mineral matter tends to distribute more evenly in finer pulverized coals. This results from a relative increase of the low-density fraction in the finer particles. 13 refs., 10 figs., 10 tabs.

  18. Imaging techniques applied to characterize bitumen and bituminous emulsions.

    PubMed

    Rodríguez-Valverde, M A; Ramón-Torregrosa, P; Páez-Dueñas, A; Cabrerizo-Vílchez, M A; Hidalgo-Alvarez, R

    2008-01-15

    The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.

  19. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    USGS Publications Warehouse

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  20. Investigation of relationship between barometric pressure and coal and gas outburst events in underground coal mining

    NASA Astrophysics Data System (ADS)

    Yönet, Sinem; Esen, Olgun; Fişne, Abdullah

    2015-04-01

    Coal and gas outburst is a serious risk which occurs during the mine production. This accident results both ejection of high volumes of gas and high amount of coal into the mine production area, and death of mining workers for many years in Turkey. Outburst of gas, coal and rock can be defined as sudden release of coal and rock accompanied by large quantities of gas into the working face or other mine workings. It is a phenomena that influenced by geological structure such as folds, joints of rocks or coal seams, is also still investigated for many years. Zonguldak Coal Basin is the main part of the Upper Carboniferous bituminous coal basin of Turkey. Much of the bituminous coal mining has thus been concentrated in the Zonguldak Basin which is located on the Black Sea coast. The coal field has been disturbed by tectonic activity, first by Hercynian and later by Alpine orogenesis resulting in folding and faulting of strata. This formation has a complex structural geology which consists mostly fault zones, anticlinal and syncline strata and because of this a large amount of methane gases are adsorbed or accumulated in strata or in coal fractures, pores and micropores. There are 5 Collieries exists in Zonguldak Coalfield and coal and gas outbursts were occurred only in two collieries such as Karadon and Kozlu Mines. In addition at a number of 90 coal and gas outburst events were experienced in these collieries. Based on the analysis of data, oscillation at barometric pressure and temperature values at the location of Kozlu and Karadon Mines were seen when coal and gas outburst events were occurred. In this study, barometric pressure and temperature changes are investigated at Kozlu and Karadon Mines. Also the relationship between the variation at temperature with barometric pressure and coal and gas outbursts are evaluated. It can be understand that this investigation depends to field observations and macroscopic considerations and on the purpose of predicting the

  1. The influence of wetting heat in water to coals` slurryability

    SciTech Connect

    Zhu Shoquan; Fu Xiaoheng; Liu yun; Wang Zuna; Cheng Chogli

    1997-07-01

    Wetting Heat of varied-rank coals in water was measured by using SETARAM C80D Calorimeter. The data were correlated to the coals` slurryability which is characterized by the solid load at the viscosity of 1000 mPa.s and 25{degrees}C. The results showed that the heat of wetting by water decreases as coal rank increases in the range of brawn coal to bituminous coal with Carbon content of 89-90%(daf), and then, increase a little for the anthracite. This trend fitted well to the relationship of slurryability to coal rank. The heat of wetting was also correlated to the inherent moisture content and the oxygen content of coal, which are commonly considered as slurryability indication parameters. Hence, the wetting heat is another measure of coal`s slurryability.

  2. Mode of occurrence of arsenic in four US coals

    USGS Publications Warehouse

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  3. Hybrid coal gasification

    SciTech Connect

    Moore, K.

    2007-01-15

    Retrofitting gas, oil and coal-fired boilers can reduce operating costs and meet EPA's Clean Air Interstate Rules (CAIR) when firing most Eastern and Midwest bituminous coals. The trademarked Clean Combustion System (CCS) concept, conceived at Rockwell International, evolved from a confluence of advanced combustion modelling know-how, experience in coal gasification and wet-bottom boiler operation and design. The CCS is a high temperature air-feed entrained flow gasifier that replaces a boiler's existing burners. It fires pulverized coal with some limestone added to provide calcium to capture sulfur and provide a clean hot fuel-rich gas to the boiler furnace. Subsequent over-fire air (OFA) staging completes the combustion. A 'sulfur bearing glass' waste product results from the coal ash and the calcium sulfide. The CCS process prevents formation of NOx from fuel-bound nitrogen. The initial commercialisation of CCS is the update and retrofit an industrial stoker design boiler. Steps for the retrofit are described in the article. 2 figs., 1 photo.

  4. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-04-03

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer) . An additional objective is to study the kinetics of direct coal liquefaction particularly at short reaction times. Both of these objectives have been nearly achieved, however this work has shown the great importance of the liquefaction solvent characteristics and the solvent-catalyst interaction on the liquefaction process. This has prompted us to do a preliminary investigation of solvents and the solvent-catalyst systems in coal liquefaction. SUMMARY AND CONCLUSIONS 1) Conversion vs time data have been extended to 5 coals of ranks from lignite to low volatile bituminous coal. A broad range of reaction rates have been observed with a maximum in the high volatile bituminous range. 2) A series of direct coal liquefaction runs have been made using a range of nitrogen containing solvents that given high liquefaction conversions of coal. These runs are now being analyzed. 3) The coalification process has been shown by TGA to go through an intermediate stage which may account for the greater reactivity of bituminous coals in the direct coal liquefaction process. 4) It was shown that coal rank can be accurately determined by thermogravimetric analysis

  5. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect

    Hower, J.C.

    1983-12-01

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  6. Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals

    NASA Astrophysics Data System (ADS)

    Xiong, R.; Dong, L.; Xu, G. W.

    Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.

  7. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  8. Emissions mitigation of blended coals through systems optimization

    SciTech Connect

    Don Labbe

    2009-10-15

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  9. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  10. Alkaloid-derived molecules in low rank Argonne premium coals.

    SciTech Connect

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  11. Rapid and medium setting high float bituminous emulsions

    SciTech Connect

    Schilling, P.; Schreuders, H.G.

    1987-06-30

    This patent describes a rapid set high float aqueous bituminous emulsion-comprising bitumen, water, and from about 0.4% to about 0.6%, based on the weight of the emulsion, of an anionic emulsifier comprised of an alkaline solution of a combination of (1) 20% to 80% fatty acids selected from the group consisting of tall oil fatty acids, tallow fatty acids, and mixtures. (2) 20% to 80% of a product of the reaction of the fatty acids with a member of the group consists of acrylic acid, methacrylic acid, fumaric acid, and maleic anhydride.

  12. Fine coal washability of Alaskan coals

    SciTech Connect

    Rao, P.D.

    1984-01-25

    Technical problems involving sample pulverization and dispersion of solids during centrifugal float sink process have been solved. Work has been completed on seven samples. The seven represent five coal fields ranging in rank from subbituminous C to high volatile B bituminous. We are confident the system developed will work for all 50 samples needed to be processed under the grant. Results presented in the attached tables show washability analysis of samples crushed to 65 mesh, 200 mesh and 325 mesh sizes. Proximate and Ultimate analysis of 1.6 Float and Sink products of samples crushed to 325 mesh are also presented. With the exception of major oxide analysis of 1.6 float and sink products work on the seven samples is complete. We are awaiting installation of our newly purchased Spectraspan V ICP/DCP system for completion of this phase of the program. 11 tables.

  13. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Anisotropy of bituminous mixture in the linear viscoelastic domain

    NASA Astrophysics Data System (ADS)

    Di Benedetto, Hervé; Sauzéat, Cédric; Clec'h, Pauline

    2016-08-01

    Some anisotropic properties in the linear viscoelastic domain of bituminous mixtures compacted with a French LPC wheel compactor are highlighted in this paper. Bituminous mixture is generally considered as isotropic even if the compaction process on road or in laboratory induces anisotropic properties. Tension-compression complex modulus tests have been performed on parallelepipedic specimens in two directions: (i) direction of compactor wheel movement (direction I, which is horizontal) and (ii) direction of compaction (direction II, which is vertical). These tests consist in measuring sinusoidal axial and lateral strains as well as sinusoidal axial stress, when sinusoidal axial loading is applied on the specimen. Different loading frequencies and temperatures are applied. Two complex moduli, EI ^{*} and E_{II}^{*}, and four complex Poisson's ratios, ν_{{II-I}}^{*}, ν_{{III-I}}^{*}, ν_{{I-II}}^{*} and ν_{{III-II}}^{*}, were obtained. The vertical direction appears softer than the other ones for the highest frequencies. There are very few differences between the two directions I and II for parameters concerning viscous effects (phase angles φ(EI) and φ(E_{II}), and shift factors). The four Poisson's ratios reveal anisotropic properties but rheological tensor can be considered as symmetric when considering very similar values obtained for the two measured parameters (I-II and II-I)

  15. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 6, October 1, 1991--December 31, 1991

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  16. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 5, July 1, 1991--September 30, 1991

    SciTech Connect

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.; Jha, M.C.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  17. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 οC and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  18. Kinetics of coal pyrolysis

    SciTech Connect

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  19. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  20. Regulation of coal polymer degradation by fungi. Tenth Quartery report, October 1996--December 1996

    SciTech Connect

    Irvine, R.L.; Bumpus, J.A.

    1997-01-28

    It has long been known that low rank coal such as leonardite can be solubilized by strong base (>pH 12). Recent discoveries have also shown that leonardite is solubilized by Lewis bases at considerably lower pH values and by fungi that secrete certain Lewis bases (i.e., oxalate ion). During the current reporting period we have studied the ability of a strong base (sodium hydroxide, pH 12), and two fungi, Phanerochaete chrysosporium and Trametes versicolor, to solubilize Argonne Premium Coals. In general, Argonne Premium Coals were relatively resistant to base mediated solubilization. However, when these coals were preoxidized (150{degrees}C for seven days), substantial amounts of several coals were solubilized. Most affected were the Lewiston-Stockton bituminous coal, the Beulah-Zap lignite, the Wyodak-Anderson subbituminous coal and the Blind Canyon bituminous coal. Argonne Premium Coals were previously shown by us to be relatively resistant to solubilization by sodium oxalate. When preoxidized coals were treated with sodium oxalate, only the Beulah-Zap lignite was substantially solubilized. Although very small amounts of the other preoxidized coals were solubilized by treatment with oxalate, the small amount of solubilization that did take place was generally increased relative to that observed for coals that were not preoxidized. None of the Argonne Premium Coals were solubilized by P. chrysosporium or T. versicolor. Of considerable interest, however, is the observation that P. chrysosporium and T. versicolor mediated extensive solubilization of Lewiston-Stockton bituminous coal, the Beulah-Zap lignite and the Wyodak-Anderson subbituminous coal.

  1. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  2. Coking coals of Mongolia: Distribution and resources

    NASA Astrophysics Data System (ADS)

    Erdenetsogt, Bat-Orshikh; Jargal, Luvsanchultem

    2016-04-01

    The coal deposits of Mongolia tend to become younger from west to east and can be subdivided into two provinces, twelve basins, and three areas. Main controlling factor of coal rank is the age of coal bearing sequences. Western Mongolian coal-bearing province contains mostly high rank bituminous coal in strata from Late Carboniferous. The basins in southern Mongolia and the western part of central Mongolia have low rank bituminous coal in strata from the Permian. The northern and central Mongolian basins contain mainly Jurassic subbituminous coal, whereas the Eastern Mongolian province has Lower Cretaceous lignite. Mongolian known coking coal reserves are located in western, southern and northern Mongolia and related to Carboniferous, Permian and Jurassic sequences, respectively. Pennsylvanian Nuurstkhotgor coal deposit is located in northwestern Mongolia (in Western Mongolian coal-bearing province). The coals have 1-7.5 crucible swelling number (CSN) and 0-86 G-index. Vitrinite reflectance value (Rmax in oil) varies from 0.7% to 1.2% and sulfur content is low, ranging from 0.3% to 0.6% with an average of 0.4%. Coal reserve is estimated to be 1.0 billion ton, of which half is coking coal. Upper Permian Khurengol deposit is situated in western Mongolia (in Western Mongolian coal-bearing province). CSN and G-index of coal are 8-9 and 54-99, respectively. The coals have Rmax of 1.1 to 1.7% (average 1.4%) and sulfur content of 0.2 to 0.6% (average 0.4%). Coking coal reserve of the deposit is estimated to be 340 million ton. Upper Permian Tavantolgoi, the largest coking coal deposit, lies in southern Mongolia (in South Gobi coal-bearing basin). The coals have CSN of 1 to 7.5 and Rmax of 0.7% to 1.2%. Sulfur content is low, ranging from 0.5% to 0.9%. Coal reserve is estimated to be 6.0 billion ton, of which 2.0 billion ton is accounted as coking coal. Lower-Middle Jurassic Ovoot coal is located in northern Mongolia (in Orkhon-Selenge coal-bearing area). This is one of

  3. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  4. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  5. Ignition characteristics of pulverized coal under high oxygen concentrations

    SciTech Connect

    Yue-sheng Fan; Zheng Zou; Zidong Cao; Yingchao Xu; Xiaoke Jiang

    2008-03-15

    In order to reduce overall fuel consumption, or partially substitute a 'valuable' fuel with a poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very effective. Combustion characteristics of three Chinese pulverized coals, Shenmu bituminous, Tianhushan anthracite, and Duolun lignite, and three different particle sizes, under high oxygen concentrations more than 21%, have been investigated using thermogravimetric/differential scanning calorimetry analysis (TG/DSC) and a drop-tube furnace. Results showed that the ignitability, the combustion property, and the burnout were largely improved when added oxygen was used, especially for small particles, the influence of oxygen on the bituminous coal was greater than the lignite and the anthracite, and the suitable O{sub 2} concentration for the ignition of pulverized coal flow should be controlled below 40%. 38 refs., 12 figs., 3 tabs.

  6. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  7. Determination of Sectional Constancy of Organic Coal-Water Fuel Compositions

    NASA Astrophysics Data System (ADS)

    Dmitrienko, Margarita A.; Nyashina, Galina S.; Strizhak, Pavel A.

    2016-02-01

    To use widespreadly the waste of coals and oils processing in the great and the small-scale power generation, the key parameter, which is sectional constancy of promising organic coal-water fuels (OCWF), was studied. The compo-sitions of OCWF from brown and bituminous coals, filter cakes, used motor, turbine and dielectrical oils, water-oil emul-sion and special wetting agent (plasticizer) were investigated. Two modes of preparation were considered. They are with homogenizer and cavitator. It was established that the constancy did not exceed 5-7 days for the compositions of OCWF with brown coals, and 12-15 days for that compositions with bituminous coals and filter cakes. The injection of used oils in a composition of OCWF led to increase in viscosity of fuel compositions and their sectional constancy.

  8. Mechanisms of frother interactions with coal

    SciTech Connect

    Osoka, A.S.K.

    1983-01-01

    Frother molecules adsorb on coals and exhibit some collector action in that they affect wettability and flotation response even though their primary role is to create a froth capable of holding the mineral-laden bubbles until they can be removed from the flotation machine. For several decades, these frothing agents have been used in coal flotation without a clear understanding of the mechanisms by which they interact with the coal. Consequently, the main thrust of this study was to determine the wetting and flotation behavior of coals in the presence of typical frothing agents. The frothers used include phenol, o-cresol, ..cap alpha..-terpineol, and MIBC. Investigations were also carried out to delineate the mechanisms of frother adsorption through equilibrium and kinetic studies. The wettability and flotability results are correlated with adsorption behavior. A Pennsylvania low volatile bituminous coal (BMC-B) was selected for this study together with other solids for comparative reasons. The BMC-B coal was characterized through chemical analysis, surface area, and pore size distribution. The frothing agents were characterized by their hydrophile-lipophile balance (HLB) and distribution coefficients. Adsorption of the frothing agents on coal revealed that as much as 9 days were needed for equilibrium which is related to the pore size distribution of the coal. The frothing agents studied adsorb on coal and interact with the soluble components from coal. Their use in the presence of a collector, like kerosene, may continue for a long time.

  9. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  10. Application of coal petrography to the evaluation of magnetically separated dry crushed coals

    SciTech Connect

    Harris, L.A.; Hise, E.C.

    1981-01-01

    In the present study the open gradient magnetic separation method has been used to beneficiate the -30 + 100 mesh fraction of two high volatile bituminous coals. The evaluation of the effectiveness of the magnetic separation for cleaning these coals is the subject of this paper. Coal petrography in combination with scanning electron microscopy and x-ray diffractometry were used to characterize the magnetically separated coal fractions. These analyses revealed that the majority of the pyrite and non-pyrite minerals were concentrated in the positive magnetic susceptibility fractions. The bulk of the starting samples (approx. 80 weight percent) were located in the negative magnetic susceptibility fractions and showed significant reductions in pyrite and non-pyritic minerals. The magnetic separation appears to effectively split the samples into relatively clean coal and refuse.

  11. Mercury concentration in coal - Unraveling the puzzle

    USGS Publications Warehouse

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  12. Surface modified coals for enhanced catalyst dispersion and liquefaction. Semiannual progress report, September 1, 1995--February 29, 1996

    SciTech Connect

    Abotsi, G.M.K.

    1996-10-01

    The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal liquefaction have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum uptake from solution. The results show that DDAB created positively charged sites on the coal and increased molybdenum loading compared to the original coal. In contrast, SDS rendered the coal surface negative and reduced molybdenum uptake. The results show that efficient loading of molybdenum catalyst onto coal can be achieved by pretreatment of the coal with dodecyl dimethyl ethyl ammonium bromide.

  13. Upgrading selected Czech coals for home and industrial heating

    SciTech Connect

    Musich, M.A.; Young, B.C.

    1995-12-31

    The Czech Republic has large coal reserves, particularly brown coal and lignite, and to a lesser extent, bituminous coal. Concurrent with the recent political changes, there has been a reassessment of the role of coal for electrical and heating energy in the future economy, owing to the large dependence on brown coal and lignite and the implementation of more stringent environmental regulations. These coals have a relatively high sulfur content, typically 1-3 wt%, and ash content, leading to significant SO{sub 2} and other gaseous and particulate emissions. Some of the bituminous coals also exhibit high ash content. Against this background, the Energy & Environmental Research Center, on behalf of the U.S. Agency for International Development and the U.S. Department of Energy Office of Fossil Energy, undertook a project on upgrading Czech coals to achieve desired fuel properties. The purpose of the project was to assist the city of Usti nad Labem in Northern Bohemia in developing cost-effective alternatives for reducing environmental emissions from district and home heating systems.

  14. Mode of occurrence of chromium in four US coals

    USGS Publications Warehouse

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  15. CO2 sequestration potential of Charqueadas coal field in Brazil

    SciTech Connect

    Romanov, V; Santarosa, C; Crandall, D; Haljasmaa, I; Hur, T -B; Fazio, J; Warzinski, R; Heemann, R; Ketzer, J M

    2013-02-01

    Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study. The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.

  16. Brown coal preparation machines

    SciTech Connect

    Bleckmann, H.; Sitte, W.; Kellerwessel, H.

    1981-05-01

    Lignite usually requires comminuting and screening before being used as a fuel in power plants. Reduction machines normally used for coarse crushing bituminous coal, such as jaw crushers, roll crushers, and impact crushers, are not generally suitable for lignite as they require a brittle feed and large grain size. In contrast to these requirements, lignite can be easily compressed and has a small grain size. Therefore, special crusher types have been developed for the coarse reduction of lignite. These machines resemble roll crushers but subject the feed to shearing and tearing forces rather than to compressive stress. It is often necessary to screen the lignite to remove the undersize or to limit the maximum particle size before the next comminution process. Screening the lignite is a particularly difficult operation due to the high water content and the presence of clay minerals which tend to clog the screening machines. These problems can be overcome with multi-roll sizers.

  17. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  18. Oxidation of pyrite in coal to magnetite

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Alexander, C.C.; Dulong, F.T.

    1984-01-01

    When bituminous coal is heated in an inert atmosphere (He) containing small amounts of oxygen at 393-455 ??C, pyrite (FeS2) in coal is partially converted to magnetite (Fe304). The maximum amount of Fe304 formed during the time of heating corresponds to 5-20% of the total pyrite present, depending on the coal sample. The magnetite forms as an outer crust on the pyrite grains. The fact that the magnetic properties of the pyrite grains are substantially increased by the magnetite crust suggests that pyrite can be separated from coal by use of a low magnetic field. In a laboratory test, 75% removal is obtained by means of a 500 Oe magnet on three samples, and 60% on a fourth sample. ?? 1984.

  19. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1990-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, subbituminous, and bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the co-adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. 8 refs., 6 figs.

  20. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  1. Direct liquefaction of low-rank coals

    SciTech Connect

    Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1988-04-01

    Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.

  2. Enhancement of pulverized coal combustion by plasma technology

    SciTech Connect

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  3. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  4. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  5. An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2003-01-01

    Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.

  6. Losses due to weather phenomena in the bituminous concrete construction industry in Wisconsin

    NASA Technical Reports Server (NTRS)

    Kuhn, H. A. J.

    1973-01-01

    The losses (costs) due to weather phenomena as they affect the bituminous concrete industry in Wisconsin were studied. The bituminous concrete industry's response to precipitation, in the form of rain, is identified through the use of a model, albeit crude, which identifies a typical industry decision-response mechanism. Using this mechanism, historical weather data and 1969 construction activity, dollar losses resulting from rain occurrences were developed.

  7. PULMONARY TOXICITY OF SIZE-CLASSIFIED COAL FLY ASH PARTICLES OF VARYING CARBON CONTENT

    EPA Science Inventory

    Epidemiological studies have shown that morbidity and mortality increase along with concentration of particulate matter (PM) in many different countries and regions despite great variations in the chemical makeup of the PM. In this study, Illinois bituminous coal with high sulfur...

  8. VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE

    EPA Science Inventory

    The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...

  9. Coal plasticity at high heating rates and temperatures

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1992-09-01

    Effects of pressure, temperature, and coal type on coal plasticity were investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, were studied. Elevated pressures, up to 10 atm of helium, did not affect coal plasticity, but reducing pressure from atmosphere to vacuum resulted in diminished plasticity, i.e. a shorter plastic period and a higher minimum apparent viscosity. It is hypothesized that high pressure inhibits mass transport of metaplast to tar vapors, but also favors metaplast repolymerization into coke and char. Higher holding temperature decreased the coal plastic period. It is hypothesized that higher temperature increases mass transport of liquid metaplast to tar vapors and metaplast repolymerization to coke and char. Heating rate had essentially no effect on the individual softening temperatures of five different plastic coals. Possible explanations are that, depending on coal type, metaplast generation, by chemical bond breaking or physical melting, or both, is not strongly affected by heating rate. In particular, for medium and low volatile bituminous cools, there is evidence that generation of the metaplast responsible for initial softening involves largely chemical bond breaking as opposed to physical melting.

  10. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    SciTech Connect

    Proscia, W.M.; Freihaut, J.D.; Rastogi, S.; Klinzing, G.E.

    1994-07-01

    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  11. Interpolation and Sampling Errors of the Ash and Sulphur Contents in Selected Polish Bituminous Coal Deposit (Upper Silesian Coal Basin - USCB) / Błędy Interpolacji I Opróbowania Zawartości Popiołu I Siarki W Wytypowanych Polskich Złożach Węgla Kamiennego (Górnośląskie Zagłębie Węglowe)

    NASA Astrophysics Data System (ADS)

    Mucha, Jacek; Wasilewska-Błaszczyk, Monika

    2015-09-01

    The basic sources of information on the parameters characterizing the quality of coal (i.e. its ash and sulphur contents) in the deposits of The Upper Silesian Coal Basin (Poland) are drill core sampling (the first stage of exploration) and channel sampling in mine workings (the second stage of exploration). Boreholes are irregularly spaced but provide relatively uniform coverage over an entire deposit area. Channel samples are taken regularly in mine workings, but only in the developed parts of the deposit. The present study considers selected seams of two mines. The methodology used is based on detailed geostatistical analysis, point kriging procedure and P. Gy's theory of sampling. Its purpose is: • defining and comparing geostatistical models for variability of the ash and sulphur contents for data originating from boreholes and mine workings, • predicting by means of point kriging the values of the parameters and errors of interpolation using data from boreholes at grid points where underground mine workings were later channel-sampled, • assessing the accuracy of interpolation by comparison of predicted values of parameters with real values (found by channel sampling), • evaluating the variances of total secondary sampling error (error of preparation of assay samples) and analytical error introduced by assaying of sulphur and ash, • assessing the contribution of sampling and analytical errors (global estimation error) to the interpolation errors. The authors found that the interpolation errors for ash or sulphur content are very large, with mean relative values of 35%-60%, mainly caused by the considerable natural variability, a significant role of random component of variability, and heterogeneity of spatial distribution of these characteristics. The sampling and analytical errors play a negligible role. Their values are smaller than 11% of interpolation error values. Presenting estimates of the spatial distribution of ash and sulphur contents in

  12. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    SciTech Connect

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  13. Influence of Coal Particle Size on Coal Adsorption and Desorption Characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Aziz, Naj; Ren, Ting; Nemcik, Jan; Tu, Shihao

    2014-10-01

    Accurate testing coal isotherm can play a significant role in the areas of coal seam gas drainage, outburst control, CO2 geo-sequestration, coalbed methane (CBM) and enhanced coalbed methane recovery (ECBM) etc. The effect of particle size on the CO2 and CH4 sorption capacity of bituminous coal from Illawarra, Australia was investigated at 35°C and at pressure up to 4 MPa. A unique indirect gravimetric apparatus was used to measure the gas adsorption and desorption isotherms of coal of different particle sizes ranging from around 150 urn to 16 mm. Langmuir model was used to analysis the experimental results of all gases. Coal particle size was found to have an apparent effect on the coal ash content and helium density results. Coal with larger particle size had higher ash content and higher helium density. The sorption isotherm was found to be highly sensitive with helium density of coal which was determined in the procedure of testing the void volume of sample cell. Hence, coal particle size had a significant influence on the coal sorption characteristics including sorption capacity and desorption hysteresis for CO2 and CH4, especially calculated with dry basis of coal. In this study, the 150-212 um (150 um) coal samples achieved higher sorption capacity and followed by 2.36-3.35 mm (2.4 mm), 8-9.5 mm (8 mm) and 16-19 mm (16 mm) particle size samples. However, the differences between different coal particles were getting smaller when the sorption isotherms are calculated with dry ash free basis. Test with 150 um coal samples were also found to have relatively smaller desorption hysteresis compared with the other larger particle size samples. The different results including adsorption/desorption isotherm, Langmuir parameters and coal hysteresis were all analysed with the CO2 and CH4 gases.

  14. Polygenic formation model of the planet's bituminous belts

    NASA Astrophysics Data System (ADS)

    Dmitrievsky, A. N.; Balanyuk, I. E.

    2011-05-01

    In recent years, much attention has been paid to nontraditional hydrocarbon sources. Today the portion of nontraditional gas in the world extraction is 15% or 450 billion cubic meters, which hat makes up the volume of total gas exports from Russia. As is known, the easy-prospecting oil has been already found. The innovative technologies in geophysics, drilling, and excavation and the increased extraction coefficient expect further development and industrial compliance with these requirements. Based on calculations, the world oil reserves are now one trillion of stock tank barrels and one trillion barrels have been already extracted. The evergrowing demand for energy gives rise to the necessity of searching for and extracting more oil resources, and both these aspects are unique problems. The search for profitable petroleum deposits has become more and more difficult even in the leading companies. The increment of the world resources is a key vital question; therefore, the elaboration of criteria for the discovery of nontraditional deposits take on special significance in the economic respect. The authors are working out a conception that will be a guideline for future finding of the richest oil deposits in active geodynamic zones. For the first time, we suggest the polygenic formation model of the planet's bituminous belts.

  15. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres

    SciTech Connect

    Angeles G. Borrego; Diego Alvarez

    2007-12-15

    In this study, two coals of different rank (a high volatile and a low volatile bituminous) have been burned in a drop tube reactor using O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures with increasing oxygen content from 0 to 21%. Various oxygen concentrations have been selected for each set of experiments in order to follow both the progress of combustion and the influence of oxygen content in the devolatilization behavior of coal. Results show that a higher amount of O{sub 2} in CO{sub 2} than in N{sub 2} is needed to achieve similar burnout levels. Significant differences were found in the influence of oxygen content on the devolatilization behavior of the lower and higher rank coal. The limited amount of oxygen in the reacting atmosphere resulted in volatile release inhibition for the high volatile bituminous coal, whereas the more plastic low volatile coal was hardly affected. The presence of variable amounts of oxygen in CO{sub 2} had a small influence on the char particle appearance. The chars from both the combustion series (O{sub 2}/N{sub 2}) and the oxy-fuel series (O{sub 2}/CO{sub 2}) were similar for each parent coal in terms of reactivity and micropore surface area measured by CO{sub 2} adsorption. The main difference between both series of chars relied on the surface area determined by N{sub 2} adsorption (SBET) and on the size distribution of pores which was shifted to a larger size for the oxy-fuel series. The difference between both series of chars was larger for the high volatile bituminous coal chars than for the low volatile bituminous coal chars. This might have important implications for combustion under the diffusion-controlled regime. 29 refs., 13 figs., 1 tab.

  16. Multiple zone coal degasification potential in the Warrior coal field of Alabama

    SciTech Connect

    Graves, S.L.; Patton, A.F.; Beavers, W.M.

    1983-01-01

    The upper Pottsville Formation in the Warrior coal field of Alabama has 7 recognized groups of bituminous coal seams. Three of these groups, the Pratt, Mary Lee, and Black Creek, consist of seams containing commercially significant quantities of methane. Each group has several seams within a vertical interval that, in many areas, can be collectively stimulated. In parts of the Warrior coal field, where all 3 groups can be penetrated in one vertical borehole, the potential production from multiple zone completion wells can result in commercially profitable wells. Various open hole and through-the-casing completion procedures are being applied, resulting in successful methane production from these multiple-zone-coal-gas wells.

  17. Multiple zone coal degasification potential in Warrior coal field of Alabama

    SciTech Connect

    Graves, S.L.; Patton, A.F.; Beavers, W.M.

    1983-09-01

    The upper Pottsville Formation in the Warrior coal field of Alabama has seven recognized groups of bituminous coal seams. Three of these groups, the Pratt, Mary Lee, and Black Creek, consist of seams containing commercially significant quantities of methane. Each group has several seams within a vertical interval that, in many areas, can be stimulated collectively. In parts of the Warrior coal field, where all three groups can be penetrated in one vertical borehole, the potential production from multiple zone completion wells can result in commerically profitable wells. Various open-hole and through-the-casing completion procedures are being applied, resulting in successful methane production from these multiple zone coal gas wells.

  18. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions

    USGS Publications Warehouse

    Orem, W.H.; Voytek, M.A.; Jones, E.J.; Lerch, H.E.; Bates, A.L.; Corum, M.D.; Warwick, P.D.; Clark, A.C.

    2010-01-01

    Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19-C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane. ?? 2010.

  19. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  20. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  1. Coking properties of coal under pressure and their influence on moving-bed gasification. Final report

    SciTech Connect

    Lancet, M.S.; Curran, G.P.; Sim, F.A.

    1982-08-01

    The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated under pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.

  2. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals.

    PubMed

    Collins, L; Tselev, A; Jesse, S; Okatan, M B; Proksch, R; Mathews, J P; Mitchell, G D; Rodriguez, B J; Kalinin, S V; Ivanov, I N

    2014-10-31

    The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and for the development of rheological models of coal to coke transformations. Here, we explore the relationship between the local structural, chemical composition, and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size, the bond-bending disorder of sp(2) aromatic double bonds, and the defect density. This methodology allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modeling and optimization of coal utilization processes.

  3. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view.

    PubMed

    Kronbauer, Marcio A; Izquierdo, Maria; Dai, Shifeng; Waanders, Frans B; Wagner, Nicola J; Mastalerz, Maria; Hower, James C; Oliveira, Marcos L S; Taffarel, Silvio R; Bizani, Delmar; Silva, Luis F O

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO₃ versus Al₂O₃ determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates.

  4. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  5. Microbially Mediated Leaching of Low-Sulfur Coal in Experimental Coal Columns †

    PubMed Central

    Radway, JoAnn C.; Tuttle, Jon H.; Fendinger, Nicholas J.; Means, Jay C.

    1987-01-01

    The leaching of a low-sulfur bituminous coal was investigated with experimental coal columns subjected to simulated rainfall events. Leachates from the columns became dominated by iron-oxidizing bacteria as evidenced by specific enrichment cultures and measurements of CO2 assimilation. Heterotrophic microorganisms were also present in the coal leachates, but their numbers and activity decreased with decreasing pH. This pattern could be reversed by increasing the pH of the coal with lime. Organosulfur-utilizing bacteria made up a substantial portion of the heterotrophic community. Measurements of microbial activity in coal cores indicated that although much of the microbial community remained associated with coal particles, the relative abundance of heterotrophs and autotrophs in leachate seemed to reflect that in coal cores. When bacterial growth was delayed by autoclaving coal samples, acid production and leaching of iron and sulfur were also delayed. Rapid leaching of materials from coal thus appears to be strongly dependent on the presence of the natural bacterial microflora. PMID:16347336

  6. Combustion characterization of coals for industrial applications. Final technical report, January 1, 1981-May 29, 1985

    SciTech Connect

    Nsakala, N.; Patel, R.L.; Lao, T.C.

    1985-03-01

    In-depth fundamental information was obtained from a two-inch inner diameter laminar flow reactor referred to as the Drop Tube Furnace System (DTFS). This information consists of the following: (1) pyrolysis kinetic characteristics of four coals of various rank (Texas lignite, Montana subbituminous, Alabama high volatile bituminous, and Pennsylvania anthracite); and (2) combustion kinetic studies of chars produced from the foregoing parent coals. A number of standard ASTM and special in-house bench scale tests were also performed on the coals and chars prepared therefrom to characterize their physicochemical properties. The pilot scale (500,000 Btu/hr) Controlled Mixing History Furnace (CMHF) was used to determine the effect of staged combustion on NO/sub x/ emissions control from an overall combustion performance of the Alabama high volatile bituminous coal. The quantitative fundamental data developed from this study indicate significant differences in coal/char chemical, physical, and reactivity characteristics, which should be useful to those interested in modeling coal combustion and pyrolysis processes. These results underscore the fact that coal selection is one of the keys governing a successful coal conversion/utilization process. The combustion kinetic information obtained on the high volatile bituminous coal has been used in conjunction with combustion engineering's proprietary mathematical models to predict the combustion performance of this coal in the Controlled Mixing History Furnace. Comparison of the predicted data with the experimental results shows a virtually one-to-one scale-up from the DTFS to the CMHF. These data should provide vital information to designers in the area of carbon burnout and NO/sub x/ reduction for large scale coal utilization applications. 31 refs., 28 figs., 17 tabs.

  7. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  8. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  9. Leachability of elements from sub-bituminous coal fly ash from India.

    PubMed

    Praharaj, T; Powell, M A; Hart, B R; Tripathy, S

    2002-03-01

    Environmental concerns regarding the potential contamination of soil, surface and ground water due to the presence of soluble metal species in the ash pond leachate is of great importance. Serial batch leaching was carried out simulating the rainwater condition of the study area to understand the behaviour of elements during leaching. The leachates were analysed for the elements Al, Ca, K, Mg, Na, P, S, Si, As, Ba, Fe, Mn, Mo, Ti, V, Pb, Zn, Co, Cr, Cu, Ni and Cd by inductively coupled plasma optical emission spectrometer (ICP-OES). It was found that Cd, Co, Cr and Ni did not leach from the ash while Cu and Pb concentrations were insignificant in the leachate regardless of liquid to solid (L/S) ratio. Most of the elements showed maximum concentrations at lower L/S ratio and then decreased with increasing L/S. The total cumulative concentrations of As, Mn and Mo were found to be higher than the World Health Organization (WHO) recommended values for drinking water while the concentrations of Fe, Mn and As exceeded the maximum allowable concentrations prescribed by the United States Environmental Protection Agency (USEPA). The pre and the post leached ash samples were analysed for morphology, specific surface area and mineralogical changes. Analysis of post-leached fly ash indicated changes in the specific surface area and morphology but no change in mineralogy.

  10. Standard for fire prevention and control in underground bituminous coal mines. 1999 ed.

    SciTech Connect

    1999-07-01

    NFPA 123 provides standard procedures for fire prevention and protection, including storage, transportation, and use of flammable and combustible liquids (except diesel fuel); cutting and welding; and fire protection.

  11. Injury experience in coal mining, 1990

    SciTech Connect

    1991-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  12. Injury experience in coal mining, 1992

    SciTech Connect

    Reich, R.B.; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  13. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  14. Composition and trace element content of coal in Taiwan

    USGS Publications Warehouse

    Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.

    2005-01-01

    To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.

  15. Resource targets for advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.

    1982-01-01

    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.

  16. The effecting factors of sulfur evolution during coal combustion

    SciTech Connect

    Liu Zechang; Yu Hongguan; Wang Li

    1997-12-31

    Three kinds of bituminous coal and one kind of anthracite have been used to investigate the factors affecting sulfur evolution during coal combustion by means of improved automatic sulfur analyzer. In this paper the sulfur evolution index, that is, the relative quantity of sulfur evolution (Vs), the final quantity of sulfur evolution (Va), the rate of sulfur evolution and delay time, are selected to describe the sulfur evolution. The results show that the rate and quantity of sulfur evolution is affected by the temperature, retention time, type of coal, sulfur forms, calcium-based content in coal, oxygen concentration and flow velocity of air. The study can provide some knowledge for selecting sorbent for coal combustion.

  17. Wabash River coal gasification repowering project -- first year operation experience

    SciTech Connect

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  18. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  19. Coal desulfurization by low temperature chlorinolysis, phase 2

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Grohmann, K.; Rohatgi, N.; Ernest, J.; Feller, D.

    1980-01-01

    An engineering scale reactor system was constructed and operated for the evaluation of five high sulfur bituminous coals obtained from Kentucky, Ohio, and Illinois. Forty-four test runs were conducted under conditions of 100 by 200 mesh coal,solvents - methlychloroform and water, 60 to 130 C, 0 to 60 psig, 45 to 90 minutes, and gaseous chlorine flow rate of up to 24 SCFH. Sulfur removals demonstrated for the five coals were: maximum total sulfur removal of 46 to 89% (4 of 5 coals with methylchloroform) and 0 to 24% with water. In addition, an integrated continuous flow mini-pilot plant was designed and constructed for a nominal coal rate of 2 kilograms/hour which will be operated as part of the follow-on program. Equipment flow sheets and design drawings are included for both the batch and continuous flow mini-pilot plants.

  20. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  1. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  2. Coal combustion by wet oxidation

    SciTech Connect

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  3. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  4. Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988

    SciTech Connect

    Schulz, J.G.; Porowski, E.N.; Straub, A.M.

    1988-05-01

    We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

  5. Investigation of coal properties and airborne respirable dust generation. Report of investigations/1998

    SciTech Connect

    Organiscak, J.A.; Page, S.J.

    1998-10-01

    Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated with ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.

  6. Characterization and Classification of Coals and Rocks Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hu, Ke-xiang; Zhang, Lei; Yu, Xiao; Ding, En-jie

    2017-02-01

    Being the key unaddressed problem in unmanned mining condition, a new method for the coal-rock interface recognition was proposed in the study. Firstly, terahertz time-domain spectroscopy (THz-TDS) was employed to measure 10 kinds of coals/rocks which were common in China. Secondly, the physical properties of coals/rocks such as absorption coefficient spectra, refractive index, and dielectric properties in THz band were studied. The different responses in THz range caused by diverse components in coals/rocks were discussed, and the dielectric property of coals/rocks in THz band was well fitted by the Lorentz model. Finally, by the means of principal component analysis (PCA), support vector machine (SVM), and THz spectral data, the recognition rate of coals/rocks reaches to 100 % and the recognition rate of different bituminous coals reaches to 97.5 %. The experimental results show that the proposed method is fast, stable, and accurate for the detection of coal-rock interface and could be a promising tool for the classification of different bituminous coals.

  7. Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station

    SciTech Connect

    Padgett, P.L.; Hower, J.C.

    1996-12-31

    Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

  8. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  9. Carbon foams from different coals

    SciTech Connect

    Montserrat Calvo; Roberto Garcia; Sabino R. Moinelo

    2008-09-15

    Carbon foams were obtained from several bituminous coals with different plasticity and volatile matter content by a two-stage thermal process. The first stage, a controlled carbonization treatment under pressure at 450-500 {sup o}C, is responsible for the final textural properties of the foam. In the second stage, the carbonization product was baked at 1100{sup o}C. The foams produced display a macroporous texture with fluidity, volatile matter content, and maceral composition of the precursor coals, having an influence on the apparent density and the pore size of the resultant porous products. Coals with low fluidity, volatile matter content, and liptinite content give rise to foams with lower pore size and lower apparent density. In the case of high fluidity coals, their foams display an increase of flexural strength with the increasing relative density. In general, the carbon foams obtained in this study display good electrical properties (electrical resistivity comparable to that of commercial foams). 27 refs., 7 figs., 4 tabs.

  10. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  11. Application of model-free methods for analysis of combustion kinetics of coals with different ranks

    SciTech Connect

    Sis, H

    2009-07-01

    Model-free kinetic approaches were employed to investigate the combustion kinetics of coals with different ranks, namely, lignite, bituminous coal, and anthracite. The experimental data were provided under non-isothermal conditions at different heating rates in the range of 2-25C min{sup -1}. The activation energy values were estimated by two model-free methods, that is, Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose methods. Slightly higher activation energy values were obtained by Ozawa-Flynn-Wall method at a wide range of conversion extent. Variation of activation energy was found to be comparably more significant for lower rank lignite (between 44.82 and 287.56 kJ mol{sup -1}) while less significant for higher rank bituminous coal (between 101.97 and 155.64 kJ mol{sup -1}) and anthracite (between 106.04 and 160.31 kJ mol{sup -1}).

  12. Historical U.S. Residential Coal Use and Female Lung Cancer Mortality

    SciTech Connect

    Cullen, Jennifer; Bogen, Kenneth T.

    2001-03-01

    Recent ecological and case-control studies have indicated elevated lung cancer mortality (LCM) associated with bituminous "smoky" coal use in China, but no similar study has been conducted using U.S. populations. Early 20th century U.S. home cooking and heating fuels were examined in relation to age-specific female LCM, focusing on county-level mortality during 1950-54 to reduce potential inter-county confounding due to cigarette smoking among women aged 40* vs. 60* years (among whom 11% vs. 5% ever smoked, respectively). Overall, a significant relationship was found between female LCM and county-level average per capita bituminous coal use with and without adjustment for numerous covariates in counties where ~75% of homes used coal for heating. This positive association was similar in each female age group after adjustment of 190 combinations of variates considered in addition t

  13. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan Coalfield, Hebei, China

    SciTech Connect

    Shifeng Dai; Deyi Ren

    2007-06-15

    This paper describes the effects of magmatic intrusions on petrology, mineralogy, and geochemistry of the late Palaeozoic coals from the Fengfeng-Handan coalfield, Hebei, China. The narrowly zoned coals of variable ranks, from high-volatile A bituminous (hvAb), through medium-volatile bituminous (mvb), low-volatile bituminous (lvb), semianthracite (sa), and anthracite (an), to meta-anthracite (ma) in the coalfield, were found to be best explained by magmatic inputs. The minerals derived from magmatic thermal alteration consist of pyrite, calcite, and ankerite, which mainly occur as fracture or vesicle fillings in the thermally altered high-rank coals. The variation in element concentrations with coal ranks (enrichment, depletion, and no variation) and mineralogical affinity were used to classify elements in coals into six groups, groups A-F. Elements in group A (B, F, Cl, Br, and Hg), group B (As, Co, Cu, Ni, and Pb), group C (Sr, Mg, Ca, Mn, and Zn), and Group D (U) were enriched in the altered coals, indicating that the magmatic inputs are the source of these elements. Group A elements are volatile elements that probably came from the hydrothermal solutions, then deposited or were driven off from an organic component in coal by magmatic heat, and then redeposited in the coal. Group B elements mainly distribute in the fracture or vesicle fillings of pyrites. The dominant carriers of group C elements are thermally altered calcite and ankerite. Uranium in group D occurs in organic-bonded and silicate associations. Group E elements, including Sb, Sc, and V, have a depletion trend in the altered coals, and the remaining elements in group F do not clearly vary in the unaltered, slightly altered, or altered coals. The element concentrations independent of coal ranks in groups E and F may suggest that these elements are inherent to the coal. 44 refs., 15 figs., 5 tabs.

  14. Coalification of organic matter in coal balls of the Pennsylvanian (upper Carboniferous) of the Illinois Basin, United States

    USGS Publications Warehouse

    Lyons, P.C.; Thompson, C.L.; Hatcher, P.G.; Brown, F.W.; Millay, M.A.; Szeverenyi, N.; Maciel, G.E.

    1984-01-01

    An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal. The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal. A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1-2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays. ?? 1984.

  15. Conceptual design and assessment of a coal-gasification commercial demonstration plant. Volume 1. Koppers-Totzek gasifier. Final report

    SciTech Connect

    Not Available

    1980-09-01

    Objective is to demonstrate the operation of a commercial-scale coal gasification facility producing clean medium-Btu gas (MPB). The facility will convert approx. 20,000 tons/d of bituminous coal into approx. 300 billion Btu/d of MBG. The process choice was narrowed down to the Texaco and Koppers-Totzek processes. This report presents the results of Bechtel's conceptual design and techno-economic assessment of the Koppers-Totzek process. (DLC)

  16. Conceptual design and assessment of a coal-gasification commercial demonstration plant. Volume 3. Summary. [Texaco; Koppers-Totzek

    SciTech Connect

    Not Available

    1980-09-01

    Objective is a commercial-scale coal gasification facility producing clean medium-Btu gas (300 billion Btu/day) from 20,000 tons/day of bituminous coal. The process was narrowed down to either the Texaco process, the Koppers-Totzek process, or a combination of those two. This document is a summary description of the plants for both processes. Brief summary tables are presented for comparison. (DLC)

  17. Quality of selected coal seams from Indiana: Implications for carbonization

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Padgett, P.

    2001-01-01

    The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  18. Pressurized pyrolysis and gasification of Chinese typical coal samples

    SciTech Connect

    Hanping Chen; Zhiwu Luo; Haiping Yang; Fudong Ju; Shihong Zhang

    2008-03-15

    This paper aims to understand the pyrolysis and gasification behavior of different Chinese coal samples at different pressures. First, the pyrolysis of four typical Chinese coals samples (Xiaolongtan brown coal, Shenfu bituminous coal, Pingzhai anthracite coal, and Heshan lean coal) were carried out using a pressurized thermogravimetric analyzer at ambient pressure and 3 MPa, respectively. The surface structure and elemental component of the resultant char were measured with an automated gas adsorption apparatus and element analyzer. It was observed that higher pressure suppressed the primary pyrolysis, while the secondary pyrolysis of coal particles was promoted. With respect to the resultant solid char, the carbon content increased while H content decreased; however, the pore structure varied greatly with increasing pressure for different coal samples. For Xiaolongtan brown coal (XLT) char, it decreased greatly, while it increased obviously for the other three char types. Then, the isothermal gasification behavior of solid char particles was investigated using an ambient thermal analyzer with CO{sub 2} as the gasifying agent at 1000{sup o}C. The gasification reactivity of solid char was decreased greatly with increasing pyrolysis pressure. However, the extent of change displayed a vital relation with the characteristics of the original coal sample. 26 refs., 5 figs., 5 tabs.

  19. Release of inorganic material during coal devolatilization. Milestone report

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    Experimental results presented in this paper indicate that coal devolatilization products convectively remove a fraction of the nonvolatile components of inorganic material atomically dispersed in the coal matrix. Results from three facilities burning six different coals illustrate this mechanism of ash transformation and release from coal particles. Titanium is chosen to illustrate this type of mass release from coal particles on the basis of its low volatility and mode of occurrence in the coal. During moderate rates of devolatilization (10{sup 4} K/s heating rate), no significant loss of titanium is noted. At more rapid rates of heating/devolatilization (10{sup 5} K/s) a consistent but minor (3-4 %) loss of titanium is noted. During rapid devolatilization (5xl0{sup 5} K/s and higher), significant (10-20 %) amounts of titanium leave the coal. The loss of titanium monitored in coals ranging in rank from subbituminous to high-volatile bituminous coals and under conditions typical of pulverized-coal combustion. The amount of titanium lost during devolatilization exhibits a complex rank dependence. These results imply that other atomically dispersed material (alkali and alkaline earth elements) may undergo similar mechanisms of transformation and release.

  20. Effect of pretreatment with carbonic acid on 'Hypercoal' (ash-free coal) production from low-rank coals

    SciTech Connect

    Kensuke Masaki; Nao Kashimura; Toshimasa Takanohashi; Shinya Sato; Akimitsu Matsumura; Ikuo Saito

    2005-10-01

    The use of 'HyperCoal' (ash-free coal) as feedstock for gas turbines results in higher net power output with lower CO{sub 2} emissions. HyperCoal can be produced by thermal extraction from low-rank coals with industrial organic solvents in an inert atmosphere, providing raw materials. The pretreatment of low-rank coals with carbonic acid (CO{sub 2} dissolved in water - CO{sub 2}/H{sub 2}O) produced a strong increase in HyperCoal yields at relatively lower CO{sub 2} pressures of 0.1-0.5 MPa; the thermal extraction yields at 360{sup o}C increased by 7%-15% with extraction yields of 52% and 45% obtained for Wyodak sub-bituminous coal and Beulah-Zap lignite, respectively. In the range of 320-360{sup o}C, crude methylnaphthalene oil (CMNO) extraction yields of pretreated Wyodak coal increased significantly (by 4%-11%) over those of raw coal. The enhanced extraction yields of these low-rank coals are attributed to disruption of cation-bridging crosslinks on acid pretreatment, and the release of the hydrogen bonds by CMNO extraction. 18 refs., 4 figs., 4 tabs.

  1. Low-rank-coal study national needs for resource development. Volume 1. Executive summary

    SciTech Connect

    Elliot, Dr., Martin A.; Hill, George R.; Jonakin, James; Crutchfield, Paul W.; Severson, Donald E.; White, David M.; Yeager, Kurt

    1980-11-01

    Low-rank coals - lignite and subbituminous - are those which have been subjected to the least amount of metamorphic change during the coal-forming process. As such, they retain greater fractions of moisture and volatile matter from the original peat material, and contain less fixed carbon, than the high-rank coals - bituminous and anthracite. The primary measure used to classify the lower ranks of coal is heating value. Other important characteristics which distinguish the low-rank coals from high-rank coals are discussed in this report. Low-rank coals represent a major, and largely untapped, energy resource for this country. Very extensive deposits of lignite and subbituminous coal exist in the western states, the Gulf coast, and Alaska. Major deposits of low-rank coal are also found in many other countries, most notably the USSR, Australia, Canada, and the central and eastern European nations. Worldwide coal statistics indicate that low-rank coals account for roughly one-third of the total resource and current production tonnages. This report recommends a comprehensive national research, development, and demonstration (RD and D) program to enhance the development of low-rank coals. The major conclusion of this study is that the unique properties of these coals affect the technologies for their extraction, preparation, direct use, and conversion and justify a separate focus on low-rank coals in the national RD and D efforts.

  2. The coal resources of Armenia

    SciTech Connect

    Pierce, B.; Martirossian, A.; Amazaspian, H.; Kochinian, G.

    1997-12-31

    The US Geological Survey (USGS) is conducting a program of coal exploration and resource assessment in Armenia. The project is funded by the US Agency for International Development (USAID) as part of USAID`s emphasis on energy resources in the former Soviet Union. Relatively little is known about the coal resources of Armenia because the Soviet Union had many other sources for fuel. As part of the Soviet Union, Armenia relied on nuclear power, hydropower, or imported power for their electricity and heating needs. Within the Soviet Union, there was a universal centralized system for providing electricity and thus there was little reason to explore for fuel in Armenia. However, with the breakup of the Soviet Union, emphasis has been placed on finding and utilizing indigenous, non-nuclear resources for power generation. The USGS program is conducting exploratory drilling to expand the areas of known resources, characterize the quality of those resources, and estimate the resources in each geographic locality. Armenia`s coal resources are quite variable in terms of age (ranging from Triassic to Oligocene/Miocene), rank (apparent rank ranging from lignite to high volatile A/B bituminous coal), quality, and resource tonnages. Past work previously carried out by the Soviet Ministry of Geology on coal exploration and some early work by the USGS during the current program on the coal resources of Armenia are contained in this report. It is well known that the Soviet system (developed by the USSR Ministry of Geology) and the American system (developed at the USGS) of classifying coal resources are quite similar. Throughout this report, both classifications will be used together. Within the Soviet system, only those coal beds deemed economically viable have official resource estimates (that is, resource estimates approved by the State Committee on Reserves). Only one coal field in Armenia, the Djadjur field, has official estimates. Resource estimates have been calculated for

  3. Pyrolysis of high sulfur Indian coals

    SciTech Connect

    B.P. Baruah; Puja Khare

    2007-12-15

    Pyrolysis experiments under laboratory conditions for five numbers of high sulfur coal samples from the states of Meghalaya and Nagaland, India, were carried out at temperatures of 450, 600, 850, and 1000{sup o}C, respectively. The yield of products and thermal release of sulfur from these coals are investigated. The distribution of sulfur in the pyrolyzed products, i.e., char/coke, gas, and tar, is also reported. Hydrocarbon and sulfurous gases released at different temperatures were analyzed by a gas chromatograph (GC) with an FID (flame ionized detector) and an FPD (flame photometric detector), respectively. H{sub 2}S evolution during coal pyrolysis was found to be a function of temperature up to 850{sup o}C. The low concentration of SO{sub 2} detected for some of the samples is due to decomposition of inorganic sulphates present. Evolution of methane for the coals tested increases with the increase of temperature. Maximum sulfur release was found in the range of 600-850{sup o}C and has a decreasing tendency from 850-1000{sup o}C, which might be due to the incorporation of sulfur released into the coal matrix. Activation energies for sulfur release were found in the range of 38-228 kJ mol{sup -1}, which were higher than the reported activation energies for lignites and bituminous coals mainly due to highly stable organic sulfur functionalities. 52 refs., 9 figs., 6 tabs.

  4. TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES

    SciTech Connect

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

    2002-05-30

    This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

  5. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  6. Coal reserves of the Pittsburgh (No.8) bed in Belmont County, Ohio

    USGS Publications Warehouse

    Berryhill, Henry L.

    1955-01-01

    Remaining coal reserves totaling 1,929 million tons have been appraised in the Pittsburgh (No. 8) coal bed in Belmont County, Ohio. Of these, 508 million tons are classified as measured and 1,421 million tons are classified as indicated. All the coal has less than 1,000 feet of overburden, and most of it is of high volatile A bituminous rank. This estimate is based on field work by the United States Geological Survey, supplemented by data from the fries of the Ohio Geological Survey and from mine and drill-hole records provided by mining companies.

  7. Porphyrin analysis and coal rank. A porphyrin index of coalification

    SciTech Connect

    Bonnett, R.; Hughes, P.S. )

    1989-03-01

    The stable aromatic nature of the porphyrin nucleus might be expected to make biomarkers containing it excellent bases for the study of the maturation of sedimentary deposits. Thus the porphyrin macroring can be thought of as an inert carrier of information contained in eight or nine peripheral substituents the increased cracking of which would reveal increased maturation. For non-migrating fossil fuels such as lignite and coal, a relationship between the distribution of porphyrin molecular mass and coal rank would result. This idea is examined for a series of well characterized bituminous coals from the British Carboniferous. Extraction of porphyrins and metalloporphyrins is carried out with methanolic sulfuric acid, and the gallium porphyrin concentrates are analyzed both by HPLC and by mass spectrometry. A Porphyrin Index of Coalification (PIC Number) is derived and related to other maturity indices. Within the range of examples chosen it appears to provide a useful scientifically-based indicator of coal maturity.

  8. Determination of the true density of pulverized coal samples

    USGS Publications Warehouse

    Stanton, R.W.

    1982-01-01

    A method using the gas-comparison pycnometer with helium gas as the penetrating medium measures precisely the true volume of a pulverized coal sample. The true density of a solid is calculated as the true unit volume of the solid exclusive of its pore space which is divided into the weight of the sample. The method is similar to that used to determine the density of refractory materials but the procedure is modified to yield precise density determinations of coal samples. These modifications diminish effects of trapped moisture and gases on the volume measurement. The helium gas-comparison pycnometer method is rapid, reliable, precise, and requires minimal analytical equipment and sample preparation, and also is non-destructive to the coal sample. Using this method, densities can be determined on coal samples of subbituminous to low-volatile bituminous rank and perhaps also on samples of lignite. The density of anthracite samples has not been determined by this method.

  9. AFBC co-firing of coal and hospital waste

    SciTech Connect

    Coulthard, E.J.; Roy, R.R.

    1992-05-29

    The unit to be installed at Lebanon Veteran's Affairs Medical Center will prove that circulating fluidized bed combustion can provide economically viable and efficient hospital waste destruction and steam generation. The State permitting process is proceeding. The air quality division of the Department of Environmental Resources has requested the use of anthracite coal only. Anthracite has a much lower sulfur content than bituminous coal. The use of the anthracite coal has been approved by the Department of Veteran's Affairs. The DER permit will specify the use of antrhacite coal. The State permitting approval is expected in the near future. Testing with the shredding system at the Donlee Pilot facility has been completed. The results predict the Lebanon VA facility will meet both NSPS regulations and the BAT guidelines proposed by the State of Pennsylvania. There have been no significant problems encountered to date.

  10. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  11. Distribution and occurrence of arsenic in two typical Chinese coals

    SciTech Connect

    Mi, J.; Ren, J.; Zhang, H.J.; Bao, W.R.; Xie, K.C.

    2008-07-01

    Two complementary methods, float-sink experience and sequential chemical leaching were used to probe into the occurrence of arsenic in two Chinese coals: Yima (YM) and Datong (DT). Flow injection-hydride generation atomic fluorescence spectrometry was employed to measure the arsenic content in parent coals as well as the size and density-fraction samples. Float-sink experiment indicated that the heavy density fractions were enriched mineral containing arsenic in two bituminous coals studied, as confirmed by the sequential chemical leaching method. Sequential chemical leaching revealed that sulfide arsenic was the primary mode of occurrence (>50%) stable from also abounded in coal with content between 30 and 40%, and a small amount of arsenic took the occurrence of arganic form.

  12. An evaluation of physical coal cleaning plus FGD for coal fired utility applications

    SciTech Connect

    Newman, J.; Kantesaria, P.; Huettenhain, H.

    1994-12-31

    The Clean Air Act Amendment of 1990 (CAAA) requires utilities to reduce SO{sub 2} emissions from coal-fired power plants in two phases. Phase I takes effect January 1, 1995, requiring utilities to reduce SO{sub 2} emissions to 2.5 lb SO{sub 2}/MMBtu. Phase II becomes effective on January 1, 2000, requiring all plants above 25 MWe in capacity not to exceed SO{sub 2} emissions above 1.2 lb SO{sub 2}/MMBtu. Electric utilities who burn moderately high ash and sulfur bituminous coal and must develop a strategy to comply with the CAAA can choose from numerous options besides simple fuel switching or complete flue gas scrubbing. Below 2% Run of Mine (ROM) coal sulfur Strategy 2, conventional cleaning, provides the lowest cost. Below 4% sulfur in the ROM coal conventional cleaning plus confined zone dispersion (CZD), Strategy 7, is the best choice. The higher cost of advanced coal cleaning, promising an additional 12% SO{sub 2} reduction over the approximately 45% reduction by conventional cleaning, can only be justified for coals between 4 and 6% sulfur in the ROM coal. Strategy 8, advanced cleaning plus CZD has the lowest cost for this sulfur range. Higher sulfur coals require full scrubbing combined with conventional coal cleaning to achieve the lowest compliance cost for Phase I. For Phase II compliance advanced coal cleaning has no advantage over conventional cleaning. Full scrubbing will be required for ROM coals with more than 2% sulfur. Full scrubbing combined with conventional cleaning can achieve the lowest compliance cost compared to the other strategies.

  13. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80????mol methane/g coal (56??scf/ton or 1.75??cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0-23????mol/g (up to 16??scf/ton or 0.5??cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  14. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction

  15. Reactions of coal and model coal compounds in room temperature molten salt mixtures

    SciTech Connect

    Newman, D.S.; Winans, R.E.; McBeth, R.L.

    1984-05-01

    A 2:1 AlCl/sub 3/-pyridinium chloride molten salt solution was used as the reaction medium for the alkylation of diphenylethane and a bituminous coal by 2-propanol. Probably accompanying the room temperature Friedel-Crafts alkylation is a reduction of C=O to -C-OH. Completely deuterated 2-propanol did not react at all with the pyridinium ring. The pyridinium chloride serves to lower the temperature at which the AlCl/sub 3/ is able to catalyze the reactions. The pyridinium chloride also catalyzes the Friedel-Crafts alkylation.

  16. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    SciTech Connect

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  17. Coal-transformation chemistry. Fourth quarterly progress report

    SciTech Connect

    Stock, Leon M.; Blain, D. A.; Handy, C. I.; Heimann, P.; Huang, C. B.; King, H. -H.; Landschulz, W.; Willis, R. S.

    1980-01-01

    Pyrene, perylene, anthracene, 9,10-diphenylanthracene, naphthalene and biphenyl have been employed as electron transfer agents in the reduction of Illinois No. 6 coal with potassium in tetrahydrofuran. These electron transfer agents are about equally effective for the reduction of this coal at short reaction times (3 hours). We conclude that the anions of biphenyl and naphthalene achieve a greater degree of electron transfer to the coal molecules and that the use of these anions enhances the fragmentation reactions of the coal. Illinois No. 6 bituminous coal and Colorado subbituminous coal were reacted with potassium dissolved in a mixture of monoglyme and triglyme at -50/sup 0/C. The reduction reaction proceeded via solvated electrons rather than by an electron transfer reaction. The coals were then alkylated with methyl iodide and their solubilities in tetrahydrofuran were determined. The Illinois coal reductively alkylated via solvated electrons was considerably less soluble in tetrahydrofuran than the same coal reductively alkylated with potassium and naphthalene in tetrahydrofuran. A sample of Illinois No. 6 coal which had been reductively butylated with n-butyl-1-/sup 13/C iodide was hydrolyzed. Carbon nmr spectroscopy of the hydrolyzed coal revealed that the resonances previously assigned either to the presence of n-butyl carboxylates or to n-butyl tertiary ethers were removed. This observation provides definite evidence that only carboxylates were present in the original alkylated product. Selective alkylation of the acidic hydroxyl groups in Illinois No. 6 coal was carried out using tetrabutylammonium hydroxide as a phase transfer catalyst and iodomethane or 1-iodobutane as alkylating agent as described by Liotta. The tetrahydrofuran solubility of the product was significantly improved in a reaction where reductively butylated coal was subsequently coal was subsequently methylated using Liotta's procedure.

  18. The status of coal briquetting technology in Korea

    SciTech Connect

    Choi, Woo-Zin

    1993-12-31

    Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

  19. Aerobic Biofilms Grown from Athabasca Watershed Sediments Are Inhibited by Increasing Concentrations of Bituminous Compounds

    PubMed Central

    Lawrence, John R.; Sanschagrin, Sylvie; Roy, Julie L.; Swerhone, George D. W.; Korber, Darren R.; Greer, Charles W.

    2013-01-01

    Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per μm2, 68% less cyanobacterial biomass per μm2, 64% less algal biomass per μm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds. PMID:24056457

  20. Sequential solvent extraction for forms of antimony in five selected coals

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  1. Sequential solvent extraction for forms of antimony in five selected coals

    SciTech Connect

    Qi, C.C.; Liu, G.J.; Kang, Y.; Chou, C.L.; Wang, R.W.

    2008-03-15

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 {mu} g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate-plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matter bound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism.

  2. Refining and end use study of coal liquids II - linear programming analysis

    SciTech Connect

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  3. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  4. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    USGS Publications Warehouse

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Geology, coal quality, and resources of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia

    USGS Publications Warehouse

    Pierce, B.S.; Martirosyan, A.; Malkhasian, G.; Harutunian, S.; Harutunian, G.

    2001-01-01

    The Antaramut-Kurta-Dzoragukh (AKD) coal deposit is a previously unrecognized coal field in north-central Armenia. Coal has been known to exist in the general vicinity since the turn of the century, but coal was thought to be restricted to a small (1 km2) area only near the village of Antaramut. However, through detailed field work and exploratory drilling, this coal deposit has been expanded to at least 20 km2, and thus renamed the Antaramut-Kurtan-Dzoragukh coal field, for the three villages that the coal field encompasses. The entire coal-bearing horizon, a series of tuffaceous sandstones, siltstones, and claystones, is approximately 50 m thick. The AKD coal field contains two coal beds, each greater than 1 m thick, and numerous small rider beds, with a total resource of approximately 31,000,000 metric tonnes. The coals are late Eocene in age, high volatile bituminous in rank, relatively high in ash yield (approximately 40%, as-determined basis) and moderate in sulfur content (approximately 3%, as-determined basis). The two coal beds (No. 1 and No. 2), on a moist, mineral-matter-free basis, have high calorific values of 32.6 MJ/kg (7796 cal/g) and 36.0 MJ/kg (8599 cal/g), respectively. Coal is one of the few indigenous fossil fuel resources occurring in Armenia and thus, the AKD coal field could potentially provide fuel for heating and possibly energy generation in the Armenian energy budget. Published by Elsevier Science B.V.

  6. Design Fuels Corporation (DFC)-Apache, Inc. coal reclamation system for the plant of the future for processing clean coal

    SciTech Connect

    Hoppe, J.; Karsnak, G.

    1998-12-31

    The mechanical washing processing and drying portion of the DFC process offers an efficient method for cleaning of pyritic sulfur bearing compounds which represents 25% sulfur reduction from original run-of-mine coal quality. This reduction can be augmented with the use of calcium and sodium based compounds to reduce the sulfur in many coals to produce compliance quality coal. The use of mechanical/physical methods for the removal of the pyritic material found in coal is used by the DFC process as a first step to the final application of a complete coal refuse clean-up technology based on site specific conditions of the parent coal. The paper discusses the use of the DFC process to remediate slurry ponds and tailings piles and to improve coal cleaning by gravity separation methods, flotation, hydrocyclones and spiral separators, dense media separation, water only cyclones, and oil/solvent agglomeration. A typical DFC Project is the Rosa Coal Reclamation Project which involves the development of a bituminous coal waste impoundment reclamation and washery system. The plant would be located adjacent to a coal fines pond or tailings pond and refuse pile or gob pile at a former coal strip mine in Oneonta, Alabama. Design Fuels would provide a development program by which coal waste at the Rosa Mine could be reclaimed, cleaned and sold profitably. This feedstock could be furnished from recovered coal for direct use in blast furnaces, or as feedstock for coke ovens at 250,000 tons per year at an attractive price on a 10-year contract basis. The site has an old coal washing facility on the property that will be dismantled. Some equipment salvage has been considered; and removal of the existing plant would be the responsibility of Design Fuels. The paper briefly discusses the market potential of the process.

  7. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  8. Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China.

    PubMed

    Geng, Chunmei; Chen, Jianhua; Yang, Xiaoyang; Ren, Lihong; Yin, Baohui; Liu, Xiaoyu; Bai, Zhipeng

    2014-01-01

    Domestic coal stove is widely used in China, especially for countryside during heating period of winter, and polycyclic aromatic hydrocarbons (PAHs) are important in flue gas of the stove. By using dilution tunnel system, samples of both gaseous and particulate phases from domestic coal combustion were collected and 18 PAH species were analyzed by GC-MS. The average emission factors of total 18 PAH species was 171.73 mg/kg, ranging from 140.75 to 229.11 mg/kg for bituminous coals, while was 93.98 mg/kg, ranging from 58.48 to 129.47 mg/kg for anthracite coals. PAHs in gaseous phases occupied 95% of the total of PAHs emission of coal combustion. In particulate phase, 3-ring and 4-ring PAHs were the main components, accounting for 80% of the total particulate PAHs. The total toxicity potency evaluated by benzo[a]pyrene-equivalent carcinogenic power, sum of 7 carcinogenic PAH components and 2,3,7,8-tetrachlorodibenzodioxin had a similar tendency. And as a result, the toxic potential of bituminous coal was higher than that of anthracite coal. Efficient emission control should be conducted to reduce PAH emissions in order to protect ecosystem and human health.

  9. A case study of PFBC for low rank coals

    SciTech Connect

    Jansson, S.A.

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  10. Comparative study of the influence of minerals in gas sorption isotherms of three coals of similar rank

    SciTech Connect

    Rodrigues, C.; Inheiro, H.J.; de Sousa, M.J.L.

    2008-07-15

    This investigation compares the gas adsorption behaviour and capacity of three bituminous coals from South Africa, of similar rank, by assessing the characteristics of the raw coal, as well as the resulting float and sink fractions (at 1.80 cm{sup 3}/g) obtained by density separation of crushed coal samples. Calculations were also made to obtain the raw coal gas storage capacity from the weighted contribution of both float and sink fractions results, thereby permitting comparison with the analysed results of the raw coal. The study demonstrated that the clean fraction of a coal has the highest capacity to retain gas in the sorbed state, followed by raw coal, and lastly the sink fraction, and re-confirmed previous investigations that showed minerals to be inhibitors of gas adsorption and retention.

  11. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  12. Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1992-01-01

    The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

  13. Measurements of black and organic carbon emission factors for household coal combustion in China: implication for emission reduction.

    PubMed

    Chen, Yingjun; Zhi, Guorui; Feng, Yanli; Liu, Dongyan; Zhang, Gan; Li, Jun; Sheng, Guoying; Fu, Jiamo

    2009-12-15

    Household coal combustion is considered as the greatest emission source for black carbon (BC) and an important source for organic carbon (OC) in China. However, measurements on BC and OC emission factors (EF(BC) and EF(OC)) are still scarce, which result in large uncertainties in emission estimates. In this study, a detailed data set of EF(BC) and EF(OC) for household coal burning was presented on the basis of 38 coal/stove combination experiments. These experiments included 13 coals with a wide coverage of geological maturity which were tested in honeycomb-coal-briquette and raw-coal-chunk forms in three typical coal stoves. Averaged values of EF(BC) are 0.004 and 0.007 g/kg for anthracite in briquette and chunk forms and 0.09 and 3.05 g/kg for bituminous coal, respectively; EF(OC) are 0.06 and 0.10 g/kg for anthracite and 3.74 and 5.50 g/kg for bituminous coal in both forms, respectively. Coal maturity was found to be the most important influencing factor relative to coal's burning forms and the stove's burning efficiency, and when medium-volatile bituminous coals (MVB) are excluded from use, averaged EF(BC) and EF(OC) for bituminous coal decrease by 50% and 30%, respectively. According to these EFs, China's BC and OC emissions from the household sector in 2000 were 94 and 244 gigagrams (Gg), respectively. Compared with previous BC emission estimates for this sector (e.g., 465 Gg by Ohara et al., Atmos. Chem. Phys. 2007, 7, 4419-4444), a dramatic decrease was observed and was mainly attributed to the update of EFs. As suggested by this study, if MVB is prohibited as household fuel together with further promotion of briquettes, BC and OC emissions in this sector will be reduced by 80% and 34%, respectively, and then carbonaceous emissions can be controlled to a large extent in China.

  14. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  15. Geology and coal resources of the Foidel Creek EMRIA site and surrounding area, Routt County, Colorado

    USGS Publications Warehouse

    Ryer, Thomas A.

    1977-01-01

    Terrigenous clastic sediments of the Upper Cretaceous Mesaverde Group (Campanian) in the southeastern part of the Yampa coal field in Routt County, northwestern Colorado, contain many beds of bituminous coal. Lower, middle, and upper coal groups are recognized. The middle coal group, in the lower coal-bearing member of the Williams Fork Formation, contains two thick, persistent coal beds in the Foidel Creek area. The Wadge coal bed, stratigraphically the higher of the two, reaches thicknesses of 3.7 meters, and is strippable beneath large areas on the south slope of Eckman Park. Coal resources of the Wadge bed in the Foidel Creek area--an area of 134 square kilometers, as defined in this study--are estimated to be 317 million metric tons. The Foidel Creek EMRIA reclamation study site--an area of 10.9 square kilometers--contains about 36.1 million metric tons of Wadge coal, as much as 28.1 million metric tons of which occur beneath overburden 61 meters or less in thickness. About 52 meters lower in the section, the Wolf Creek coal bed locally exceeds 6.1 meters in thickness. Coal resources of the Wolf Creek bed in the Foidel Creek area are estimated to be 434 million metric tons. The Foidel Creek EMRIA reclamation study site contains an estimated 49.7 million metric tons of Wolf Creek coal.

  16. Flotation of fine coal with different volatility in China

    SciTech Connect

    Guo, M.X.; Hui, W.D.; An, Z.; Ren, Z.M.; Wang, Q.F.; Dai, Z.; Xiao, Z.Q.; Cui, Y.B.; Zhang, X.J.

    1997-12-31

    This paper contains three parts. The first part interprets the surface hydrophobicity and theoretical floatability of different rank coals from the organic molecular component point of view. The theoretical floatability between bituminous and anthracite is solved by the molecular theory. The second part describes a study of the interactive energy between hydrocarbon oil and coal particle using DLVO theory showing that the controlling factor in determining the repulsive energy barrier preventing oil from wetting and spreading on the coal surface is the same sign charge and Zeta potential. Some surfactants to promote the interaction of hydrocarbon oil and coal surface were investigated. The batch tests show a new flotation promoter having a higher efficiency and performance. A discussion is centered on the relationship between the floatabilities of coals with different volatile matter and the character of the new reagent. A molecular theory for the explanation of the interaction mechanism of the flotation reagent on coal surface was summarized. A survey of four coal preparation plants (Xiqu, Malan, Taiyuan and Tianzhuang) in Shanxi and Henan provinces was introduced. The flotation performance of coal with different volatility using commercial flotation cells in the above mentioned plants was tested.

  17. Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment

    SciTech Connect

    Shams, K.G.; Miller, R.L.; Baldwin, R.M.

    1992-07-13

    In this paper, we describe results from a study in which mild chemical pretreatment of coal has been used to enhance low severity liquefaction reactivity. We have found that ambient pretreatment of eight Argonne coals using methanol and a trace amount of hydrochloric acid improves THF-soluble conversions 24.5 wt% (maf basis) for Wyodak subbituminous coal and 28.4 wt% for Beulah-Zap lignite with an average increase of 14.9 wt% for liquefaction of the eight coals at 623 K (350{degree}C) reaction temperature and 30 min. reaction time. Similar enhancement results occurred using, hexane or acetone in place of methanol. Pretreatment with methanol and HCI separately indicated that both reagents were necessary to achieve maximum liquefaction improvement. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol%. No appreciable effect on reactivity was observed at higher acid concentrations. Although vapor phase alcohol/HCI mixtures have been shown to partially alkylate bituminous coals, analysis of Wyodak and Illinois {number sign}6 coal samples indicated that no organic phase alteration occurred during pretreatment; however, over 90 wt% of the calcium was removed from each coal. Calcium is thought to catalyze retrogressive reactions during coal pyrolysis, and thus calcium removal prior to low severity liquefaction minimizes the rate of THF-insoluble product formation.

  18. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  19. Devolatilization of coal particles in a flat flame -- Experimental and modeling study

    SciTech Connect

    Therssen, E.; Gourichon, L.; Delfosse, L.

    1995-10-01

    Pulverized coals have been tested under the conditions of industrial flames, with high heating rate and high temperatures. The chars were collected after different pyrolysis times. For eight coals, the devolatilized fraction of coal has been measured, as well as those of carbon, hydrogen and nitrogen. During pyrolysis, the evolution of the texture of the grains has been studied by measurement of their microporous surface area, which undergoes a large increase, depending on coal rank. The composition of the volatiles, as deduced from the ultimate and proximate analysis of chars, showed high volatile bituminous coals to essentially produce tars with an aromatic structure. Low and medium volatile bituminous coals produced light hydrocarbons on devolatilization and the char`s surface area continued increasing slowly during the whole of devolatilization, according to the slow increase of the fraction of hydrogen devolatilized. The char`s reactivity with oxygen was followed by measurements of Active Surface Area (ASA). It was shown that the ASA continuously decreases during devolatilization. Five models of devolatilization in the literature were tested and compared to the experimental results, assuming first-order reactions with respect to the remaining volatile matter. Badzioch`s model correctly fitted the experimental results and values of the rate constant obtained by computer trial and error adjustment were higher for lower ranks of the four bituminous coals. Anthony`s model also fits the measurements, provided an adjustment of the preexponential factor of activation energy for which it is shown that an infinite number of such pairs is suitable. If the model is run isothermally at the flame`s peak temperature, it also correctly fits the experimental results.

  20. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  1. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  2. Transformism in Alberta: The Environmental Political Economy of the Bituminous Sands

    NASA Astrophysics Data System (ADS)

    Katz-Rosene, Ryan

    This thesis attempts to help establish environmental political economy as a viable academic field while providing an example of work in the discipline. It offers an analysis of societal processes resulting in the co-optation and/or neutralization of critical environmentalist ideas. Using Alberta's bituminous sands as a case study, and a Gramsci-influenced eco-Marxist theory as a foundation, the thesis argues that the term 'environmental transformism' (inspired by the Gramscian term trasformismo) is helpful in describing and framing such processes. Accordingly, the ensuing chapters provide an analysis of why environmental transformism is happening in Alberta, and demonstrate how this mechanism works at protecting the status quo from threatening ideologies, thereby consolidating neoliberal capitalism. A concluding argument discusses the inherent dangers posed to society by the transformism of certain environmental subjectivities. The thesis begins by introducing the contentious social and environmental issues surrounding the development of the bituminous sands.

  3. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    SciTech Connect

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  4. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  5. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  6. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-10-04

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  7. A fiber-reinforced composite structure for the repair of thermally cracked bituminous pavements

    NASA Astrophysics Data System (ADS)

    Frantzen, Jeffrey Alan

    1998-10-01

    The apparatus under development in this project is a structural component or beam fabricated from a fiber reinforced plastic composite (FRPC). The FRPC beam is a structural repair component intended to bridge a deteriorated thermal crack in full depth bituminous pavements or partial depth bituminous pavements over portland cement concrete. The bridging action provided by the FRPC beam is intended to minimize roughness through the repaired area for up to five years, eliminate reappearance of the deteriorated crack, and provide a controlled expansion crack that can be treated with standard sealing techniques. This apparatus is designed for maintenance use as a field expedient, semi-permanent repair using tools that are commonly available at the Area Maintenance level. Three FRPC beams were constructed for field trial in a thermally cracked, full depth bituminous pavement on US-36 east of Hiawatha, Kansas. Each of the beams were instrumented with bonded metal foil strain gages and field installation by KDOT Maintenance forces was done in August and September of 1997. The FRPC beams have been evaluated since installation and this evaluation will continue for up to five years. Evaluation of the beams has been accomplished through static load tests using the strain gage instrumentation and Falling Weight Deflectometer measurements. The FRPC beams have performed satisfactorily as of the date of writing.

  8. Perception of Exterior Noise from Traffic Running on Concrete and Bituminous Road Surfacings

    NASA Astrophysics Data System (ADS)

    Watts, G. R.

    1996-04-01

    There is considerable public concern about the noise produced by traffic running on concrete road surfaces. This is considered by some to be both louder and harsher than that produced under similar conditions by traffic travelling on bituminous road surfaces. The Highways Agency of the Department of Transport commissioned research to investigate the nature and size of this problem. The primary object of the initial research described in this paper was to determine whether, under controlled laboratory listening conditions, there are significant differences in the perception of noise from traffic running on selected examples of existing concrete and bituminous road surfaces. A total of 40 listeners from the general public took part in the trials, and this enabled unbiased assessments to be made of the comparative noisiness of the noise generated by traffic running on the two surface types. The results lend support to the contention that some concrete roads are genuinely subjectively nosier than bituminous roads. However, the data also shows that provided the surfaces are designed to produce similar levels of loudness than there is unlikely to be a clear distinction in terms of perceived noisiness.

  9. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    SciTech Connect

    Huang, Lili; Schobert, Harold H.; Song, Chunshan

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  10. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  11. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  12. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.

    PubMed

    Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen

    2011-11-01

    Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite.

  13. Fluid migration and coal-rank development in foreland basins

    SciTech Connect

    Gayer, R.; Rickard, D.; Garven, G.

    1998-08-01

    Mathematical modeling of regional fluid flow in the South Wales foreland basis shows that heat was transferred from internal to peripheral parts of the basin, where very high geothermal gradients and surface heat flow would have developed. In the fluid-discharge areas, temperatures are modeled to have reached 300 C within the coal measures section and would have generated anthracite, while more internal parts of the basin were cooled by descending fluid flow, and temperatures of only 220 C resulted, sufficient to form bituminous coal. The modeled thermal regime appears to match the pattern of coal rank observed in the basin. The regional flow probably continued for 1 to 2 m.y. before erosion diminished the topographic gradient driving brine migration in the late Paleozoic.

  14. Hydrology of area 25, Eastern Region, Interior Coal Province, Illinois

    USGS Publications Warehouse

    Zuehls, E.E.; Ryan, G.L.; Peart, D.B.; Fitzgerald, K.K.

    1981-01-01

    The eastern region of the Interior Coal Province has been divided into 11 hydrologic study areas. Area 25, located in west-central Illinois, includes the Spoon River and small tributaries to the Illinois River. Pennsylvanian age rocks underlie most of the study area. Illinois, with the largest reserves of bituminous coal, is second only to Montana in total coal reserves. Loess soils cover most of the study area. Agriculture is the dominant land use. Surface water provides 97% of all the water used. Precipitation averages 34 to 35 inches. Water-quality data has been collected at over 31 sites. Analysis for specific conductance, pH, alkalinity, iron, manganese, sulfate and many trace elements and other water-quality constituents have been completed. These data are available from computer storage through the National Water Data Storage and Retrieval System (WATSTORE). (USGS)

  15. Comparison of coal reactivityduring conversion into different oxidizing medium

    NASA Astrophysics Data System (ADS)

    Korotkikh, A. G.; Slyusarskiy, K. V.; Larionov, K. B.; Osipov, V. I.

    2016-10-01

    Acoal conversion process of different coal samples into three different types of oxidizing medium (argon, air and steam) were studied by means of thermogravimetry. Two coal types with different metamorphism degree (lignite and bituminous coal) were used. The experimental procedure was carried out in non-isothermal conditions in temperature range from 373 K to 1273 K with 20 K/min heating rate. Purge gas consisted of argon and oxidizer with volumetric ratio 1:24 and had 250 ml/min flow rate.The ignition and burnout indexes were calculated to evaluate sample reactivity at different oxidizing mediums. The highest reactivity coefficient values in same atmosphere were obtained for lignite. It was caused by higher particle special surface area and volatile matter content.

  16. Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams

    SciTech Connect

    Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

    2007-01-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  17. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  18. [Emission factors of polycyclic aromatic hydrocarbons (PAHs) in residential coal combustion and its influence factors].

    PubMed

    Hai, Ting-Ting; Chen, Ying-Jun; Wang, Yan; Tian, Chong-Guo; Lin, Tian

    2013-07-01

    As the emission source of polycyclic aromatic hydrocarbons (PAHs), domestic coal combustion has attracted increasing attention in China. According to the coal maturity, combustion form and stove type associated with domestic coal combustion, a large-size, full-flow dilution tunnel and fractional sampling system was employed to collect the emissions from five coals with various maturities, which were burned in the form of raw-coal-chunk (RCC)/honeycomb-coal-briquettes (HCB) in different residential stoves, and then the emission factors of PAHs (EF(PAHs)) were achieved. The results indicate that the EF(PAHs) of bituminous coal ranged from 1.1 mg x kg(-1) to 3.9 mg x kg(-1) for RCC and 2.5 mg x kg(-1) to 21. 1 mg x kg(-1) for HCB, and the anthracite EF(PAH8) were 0.2 mg x kg(-1) for RCC and 0.6 mg x kg(-1) for HCB, respectively. Among all the influence factors of emission factors of PAHs from domestic coal combustion, the maturity of coal played a major role, the range of variance reaching 1 to 2 orders of magnitude in coals with different maturity. Followed by the form of combustion (RCC/HCB), the EF(PAHs) of HCB was 2-6 times higher than that of RCC for the same geological maturity of the coal. The type of stove had little influence on EF(PAHs).

  19. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    USGS Publications Warehouse

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  20. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification.

  1. Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica

    USGS Publications Warehouse

    Holdgate, G.R.; McLoughlin, S.; Drinnan, A.N.; Finkelman, R.B.; Willett, J.C.; Chiehowsky, L.A.

    2005-01-01

    Sampled outcrops of Permian coal seams of the Bainmedart Coal Measures in the Lambert Graben, eastern Antarctica, have been analysed for their proximates, ultimates, ash constituents and trace elements. A similar series of samples has been analysed for their principle maceral and microlithotype components and vitrinite reflectance. The coals are sub-bituminous to high volatile bituminous in rank; maturity increases markedly in southern exposures around Radok Lake where the oldest part of the succession is exposed and some strata have been intruded by mafic dykes and ultramafic sills. The coal ash is mostly silica and aluminium oxides, indicating that the mineral ash component is mostly quartz and various clay minerals. The ratio of silica to aluminium oxides appears to increase in an upward stratigraphic direction. The coal macerals include a relatively high liptinite content (mainly sporinite) that is significantly higher than for typical Gondwana coals. Greater degrees of weathering within the floodbasin/peat mire environments associated with climatic drying towards the end of the Permian might account for both preferential sporopollenin preservation and increased silica:aluminium oxide ratios up-section. Correlation of the coal maceral components to adjacent peninsula India coals indicates the closest comparative coals of similar age and rank occur within the Godavari Basin, rather then the Mahanadi Basin, which is traditionally interpreted to have been contiguous with the Lambert Graben before Gondwanan breakup. The petrological characteristics suggest that either previous interpretations of Palaeozoic basin alignments between Antarctica and India are incorrect, or that environmental settings and post-Permian burial histories of these basins were strongly independent of their tectonic juxtaposition. A permineralized peat bed within the succession reveals that the coals predominantly comprise wood- and leaf-rich debris derived from low-diversity forest

  2. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    SciTech Connect

    Kamshad, Kourosh

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  3. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components

    USGS Publications Warehouse

    Kolker, A.; Finkelman, R.B.

    1998-01-01

    Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  4. Fate of forms of arsenic in Yima coal during pyrolysis

    SciTech Connect

    Ruiqing Liu; Jianli Yang; Yong Xiao; Zhenyu Liu

    2009-04-15

    Forms of arsenic in a Chinese bituminous coal, Yima, and their transformation behaviors during coal pyrolysis were investigated. The chemical leaching method was used to characterize the forms of arsenic in the raw coal and the chars. The effect of minerals on arsenic release was also studied. It was found that about 72% arsenic in YM coal is bound to sulfide species; 16% to sulfates, phosphates, or oxides; 10% to organic species; and 2% to aluminosilicates. The organic-bound arsenic is the most releasable, while the aluminosilicates-bound arsenic is the least releasable. Aluminosilicates inhibit arsenic release due to the formation of aluminosilicates-bound arsenic during pyrolysis. Sulfides, sulfates, phosphates, or oxides may also restrain arsenic release. Carbonates and ion exchangeable minerals in Yima coal do not show any significant influence on the release of arsenic during coal pyrolysis. Secondary reactions between arsenic and the coal matrix should exist, as evidenced by significant increase in organic-bound arsenic in chars obtained from pyrolysis in a temperature range of 300-700{sup o}C. 18 refs., 5 figs., 5 tabs.

  5. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  6. Co-pyrolysis of coal with organic solids

    SciTech Connect

    Straka, P.; Buchtele, J.

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  7. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  8. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  9. The development and manufacture of coal briquettes

    SciTech Connect

    Li Xinshen; Wei Tingfu; Hao Aimin; Ning Weiyun; Liu Fuhua

    1997-12-31

    Three different kinds of coal briquettes, i.e., gasification briquette, boiler briquette and easy ignition roast briquette, have been developed and produced with the authors` patent binder. The gasification briquette is made from fines of anthracite or coke, hot stability agent and patent binder. It has been used as a substitute of anthracite lump in gasifiers to produce fuel gas and syngas. The three year`s performance of this briquettes in the TG-3MI gasifier has given good economic benefits. The boiler briquette is made from bituminous coal fines, sulphur-fixing agent, combustion-supporting agent, waterproofing agent and patent binder. It can keep its original shape in water for one month. The combustion results of the boiler briquette in a 4t/h coal-fired boiler have shown that heat efficiency increased by 20%, the total suspended particles decreased by 80%, and emission of both SO{sub 2} and Hap were reduced as compared with the raw coal. The easy ignition roast briquette is made from fines of charcoal, anthracite or coke, oxidant and binder. It is convenient and safe to use in that it can be lit with a match or a piece of paper easily and burn continuously for 90 minutes without smoke and odor. It can be used as a fuel for roasting food for a picnic.

  10. Site clean up of coal gasification residues

    SciTech Connect

    Wilson, J.W.; Ding, Y.

    1995-12-31

    The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

  11. Injury experience in coal mining, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

  12. Effects of Surface Chemistry on the Porous Structure of Coal

    SciTech Connect

    Radovic, Ljubisa R; Hatcher, Patrick G

    1997-05-01

    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  13. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  14. Washability data base of very fine western coals

    SciTech Connect

    Brown, D.J.; Dockter, B.A.; Mitchell, M.J.

    1985-02-01

    Coal cleaning traditionally has been associated with reducing pyrite and other mineral matter from high-rank eastern coals. To date, insignificant quantities of western coals have been cleaned before utilization and limited data on their washability characteristics exist. Because of this lack of data, it is difficult to predict how these coals will react to standard washing techniques. To develop a data base on cleaning western coals, the Department of Energy initiated a washability study for both conventional and fine-size ranges. The study involves float-sink analyses of 156 samples from many regions of the western United States and includes coals from major producing fields of economic importance. Most of the coals studied are low-rank but a few high-rank samples from the west are also included. Figure 2 shows the location and number of samples collected from each state. The work was performed at both the Pittsburgh Energy Technology Center (PETC) and the University of North Dakota Energy Research Center (UNDERC). PETC performed the testing on coal crushed to 1-1/2 in. x 0, 3/8 in. x 0, and 14 mesh x 0. UNDERC is gathering data on the fractions sized to 65 mesh x 0, 200 mesh x 0, and 325 mesh x 0. To date, UNDERC has tested 48 samples and selected results of the study on some of those fine-sized samples are presented in this paper. Preliminary results indicate that low-rank western coals benefit from the float-sink technique, but float yields at the lower specific gravities may be small. Bituminous western coals can be reduced in ash while producing excellent recoveries at intermediate specific gravities. Certain Oklahoma coals can be de-ashed by float-sink methods to levels that show promise for production of a special-purpose fuel for advanced combustion systems. 1 reference, 6 figures, 4 tables.

  15. Coal Rank and Stratigraphy of Pennsylvanian Coal and Coaly Shale Samples, Young County, North-Central Texas

    USGS Publications Warehouse

    Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.

    2007-01-01

    Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.

  16. Coal plasticity at high heating rates and temperatures. Ninth technical progress report second quarter, April 1, 1992--June 30, 1992

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1992-09-01

    Effects of pressure, temperature, and coal type on coal plasticity were investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, were studied. Elevated pressures, up to 10 atm of helium, did not affect coal plasticity, but reducing pressure from atmosphere to vacuum resulted in diminished plasticity, i.e. a shorter plastic period and a higher minimum apparent viscosity. It is hypothesized that high pressure inhibits mass transport of metaplast to tar vapors, but also favors metaplast repolymerization into coke and char. Higher holding temperature decreased the coal plastic period. It is hypothesized that higher temperature increases mass transport of liquid metaplast to tar vapors and metaplast repolymerization to coke and char. Heating rate had essentially no effect on the individual softening temperatures of five different plastic coals. Possible explanations are that, depending on coal type, metaplast generation, by chemical bond breaking or physical melting, or both, is not strongly affected by heating rate. In particular, for medium and low volatile bituminous cools, there is evidence that generation of the metaplast responsible for initial softening involves largely chemical bond breaking as opposed to physical melting.

  17. Geology and coal resources of Zonguldak basin (Northwest Turkey) as a potential source for coal bed methane

    SciTech Connect

    Yalcin, M.N. )

    1991-03-01

    The Carboniferous clastic sequence of Zonguldak basin contains several coal seams that have been mined since 1848 by underground methods. Coal seams are located in a Namurian to Westfalian D progradational delta and fluid plain sequence that is approximately 3,500 m thick. These units are affected by Hercynian orogenic movements. Related tectonism and uplift led to a widespread erosion. Consequently, younger units, mainly Cretaceous shallow-marine carbonates, rest unconformably on different sections of the Carboniferous strata. There exist up to 8 coal seams in Namurian, 20 to 26 in Westfalian A, and up to 8 coal seams in Westfalian B, C, and D. The average combined thickness values are 8 m, 34 m, and 7 m, respectively. However, due to the lateral changes in seam thickness and due to the erosion, both the number and combined thickness of coal seams may change remarkably. Majority of the coals in the exploitation area are of highly volatile C to A bituminous rank. Vitrinite reflectance values range from 0.6 to 1.2% (R{sub 0} mean). Methane content of some coal seams is determined by desorption data which indicate a methane content of 5 to 16 m{sup 3} per ton of coal. In addition to classical methods, data from some deep wells have been used to determine the thermal history by the method of basin modeling. Amount of gas generated in coals is then computed with the help of a kinetic approach. Furthermore, timing of gas generation has also been determined, which enabled consideration of migrational and diffusional gas losses. Data from coal geology, geochemistry, and modeling are combined to evaluate the coal bed methane potential of the basin in an integrated and quantitative manner.

  18. Pathologic changes associated with experimental exposure of rats to coal dust

    SciTech Connect

    Busch, R.H.; Filipy, R.E.; Karagianes, M.T.; Palmer, R.F.

    1981-02-01

    Male Wistar rats were exposed to bituminous coal dust considered to have high potential for induction of coal workers' pneumoconiosis. They developed lesions similar to simple CWP as described in human subjects. Comparable lesions observed were macules which were of increased size, altered shape, and increased density in animals experiencing chronic exposures. More advanced lesion types, i.e., micronodule, macronodule, silicotic nodule, Caplan's lesion, and infective granuloma, were not observed in the experimental animals. Focal bronchiolization occurred in animals receiving at least 20 months' exposure. In the literature reviewed, this pathologic change is not described as a component of CWP.

  19. SL/RN coal-based direct reduction - the state of the art

    SciTech Connect

    Schnabel, W.; Schlebusch, D.; Elsenheimer, G.

    1983-01-01

    Production of direct reduced iron from indigenous raw materials is an attractive alternative to the use of scrap for electric steelmaking or for a DR-based integrated steel plant. The SL/RN process is a proven coal-based direct reduction technology, its versatility being characterised by flexibility in the use of raw materials (lump ores, pellets, iron-bearing sands, mill scale, lignite, subbituminous and bituminous coal and anthracite) and plant capacities (from single units of 30,000 - 250,000 tpy to multi-kiln plants with production of 1,000,000 tpy).

  20. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1989-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

  1. A novel approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, M.K.; Bota, K.B.

    1990-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. Zeta potential studies show that the surfaces of the lignite are negatively charged between about pH2 to 11, the negative charge density increasing with increase in pH. Highly alkaline media promoted calcium adsorption due to high negative charge on the coal, while calcium uptake was inhibited in strongly acidic solutions.

  2. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  3. Geologic parameters controlling natural gas production from single, deeply buried coal reservoir

    SciTech Connect

    Decker, D.

    1986-05-01

    Methane occluded in coal reservoirs is being commercially produced in the Appalachian, Warrior, San Juan, and Piceance basins. Of these, the Piceance basin, with an estimated 100 tcf of coal-bed methane, represents the largest coal-bed methane resource in the US. Exploration efforts applied to this vast resource have been hampered by lack of appropriate exploration, drilling, completion, stimulation, and production methods. The Deep Coal Seam project sponsored by the Gas Research Institute and operated by Resource Enterprises, Inc., at the Red Mountain site, Mesa County, Colorado, was established to develop, improve, evaluate, and communicate the technology required to produce gas from deeply buried coal reservoirs. Regional geologic studies have established the Red Mountain site as representing most of the coal-bed methane resource within the Piceance basin. The project is focused on the D coal seam, belonging to the Cameo coal group of the Williams Fork formation, Upper Cretaceous Mesaverde Group. The D coal seam thickness ranges from 16 to 20 ft (5 to 6 m) throughout the site, with an average drilling depth of 5500 ft (1700 m). This coal seam is medium-volatile bituminous in rank, with an average gas content of 250 standard ft/sup 3//ton (8 standard cm/sup 3//g).

  4. Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China.

    PubMed

    Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan

    2016-05-01

    To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant.

  5. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  6. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    NASA Astrophysics Data System (ADS)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  7. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions.

  8. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    SciTech Connect

    K. Ladwig; B. Hensel; D. Wallschlager; L. Lee; I Murarka

    2005-10-19

    Field leachate samples are being collected from coal combustion product (CCP) management sites from several geographic locations in the United States to provide broad characterization of major and trace constituents in the leachate. In addition, speciation of arsenic, selenium, chromium, and mercury in the leachates is being determined. Through 2003, 35 samples were collected at 14 sites representing a variety of CCP types, management approaches, and source coals. Samples have been collected from leachate wells, leachate collection systems, drive-point piezometers, lysimeters, the ash/water interface at impoundments, impoundment outfalls and inlets, and seeps. Additional sampling at 23 sites has been conducted in 2004 or is planned for 2005. First-year results suggest distinct differences in the chemical composition of leachate from landfills and impoundments, and from bituminous and subbituminous coals. Concentrations of most constituents were generally higher in landfill leachate than in impoundment leachate. Sulfate, sodium, aluminum, molybdenum, vanadium, cadmium, mercury and selenium concentrations were higher in leachates for ash from subbituminous source coal. Calcium, boron, lithium, strontium, arsenic, antimony, and nickel were higher for ash from bituminous source coal. These variations will be explored in more detail when additional data from the 2004 and 2005 samples become available.

  9. Temperature Trends in Coal Char Combustion under Oxy-fuel Conditions for the Determination of Kinetics

    SciTech Connect

    Iqbal, Samira; Hecht, Ethan

    2014-08-01

    Oxy-fuel combustion technology with carbon capture and storage could significantly reduce global CO2 emissions, a greenhouse gas. Implementation can be aided by computational fluid dynamics (CFD) simulations, which require an accurate understanding of coal particle kinetics as they go through combustion in a range of environments. To understand the kinetics of pulverized coal char combustion, a heated flow reactor was operated under a wide range of experimental conditions. We varied the environment for combustion by modifying the diluent gas, oxygen concentration, gas flow rate, and temperature of the reactor/reacting gases. Measurements of reacting particle temperatures were made for a sub-bituminous and bituminous coal char, in environments with CO2 or N2 as the diluent gas, with 12, 24, and 36 vol-% oxygen concentration, at 50, 80, 100, and 200 standard liters per minute flowing through the reactor, reactor temperatures of 1200, 1400 K, at pressures slightly above atmospheric. The data shows consistent increasing particle temperature with increased oxygen concentration, reactor temperature and higher particle temperatures for N2 diluent than CO2. We also see the effects of CO2 gasification when different ranks of coal are used, and how the reduction in the temperature due to the CO2 diluent is greater for the coal char that has higher reactivity. Quantitative measurements for temperature are not yet complete due to ongoing calibration of detection systems.

  10. Small boiler uses waste coal

    SciTech Connect

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  11. Experimental and Numerical Study on Combustion of Secondary Pyrolysis Products from Various Coals.

    NASA Astrophysics Data System (ADS)

    Cho, Sunghwan

    In burning coal suspensions, non-uniform mixing and particle dispersion promote secondary pyrolysis and soot formation. The changes in volatile compositions affect volatiles combustion, which is responsible for flame propagation and pollutant formation during pulverized coal combustion. The lack of kinetic data on volatiles combustion is attributed to the complexity of fuel compositions and its close association with devolatilization and char oxidation, which cause difficulties in the isolation of volatiles combustion. This work attempts to determine global combustion rates of noncondensible volatiles by measuring laminar burning velocities. A radiant coal flow reactor generates combustible mixtures of noncondensibles, which are combusted in a constant volume combustion bomb to generate laminar burning velocities for the noncondensibles from Pit. #8 bituminous and Low. Kit. lv bituminous coals. The laminar burning velocities of noncondensible volatiles increase with the extent of secondary pyrolysis for both coals because the molar yields of H_2 and C_2H_2 increase during the conversion of tar into soot. For noncondensibles from Pit. #8 coal, the burning velocity at a fuel equivalence ratio of 1.2 and (N_2 + CO_2 + H_2 O):O_2 = 6.8, is quadrupled from 55 to 215 cm/s as the extent of sooting increases from 0.66 to 1.0. The combustion in air shows a similar variation. A correlation is developed using the equivalent concentrations of H_2 and CO with the adjustment of O_2 concentrations to convert hydrocarbons into CO: rm S_{u}^2 = Cxi_{O _2}(xi_{H_2} - alphaxi_{CO})exp({- }{Eover RT_{f}}) A single set of parameters describes the variation of burning velocities on the extent of sooting and coal types for four coals including Ill. #6 bituminous and Dietz subbituminous coals. Correlation parameters are C = 13.2 times 10^8 cm^2/s^2 , alpha = 1.0, and E = 27.4 kcal/mole. Numerical predictions of burning velocities with sensitivity analyses are performed using a detailed C

  12. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  13. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    USGS Publications Warehouse

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    Coal beds are considered to be a major source of nonassociated gas in the Rocky Mountain basins of the United States. In the San Juan basin of northwestern New Mexico and southwestern Colorado, significant quantities of natural gas are being produced from coal beds of the Upper Cretaceous Fruitland Formation and from adjacent sandstone reservoirs. Analysis of gas samples from the various gas-producing intervals provided a means of determining their origin and of evaluating coal beds as source rocks. The rank of coal beds in the Fruitland Formation in the central part of the San Juan basin, where major gas production occurs, increases to the northeast and ranges from high-volatile B bituminous coal to medium-volatile bituminous coal (Rm values range from 0.70 to 1.45%). On the basis of chemical, isotopic and coal-rank data, the gases are interpreted to be thermogenic. Gases from the coal beds show little isotopic variation (??13C1 values range -43.6 to -40.5 ppt), are chemically dry (C1/C1-5 values are > 0.99), and contain significant amounts of CO2 (as much as 6%). These gases are interpreted to have resulted from devolatilization of the humic-type bituminous coal that is composed mainly of vitrinite. The primary products of this process are CH4, CO2 and H2O. The coal-generated, methane-rich gas is usually contained in the coal beds of the Fruitland Formation, and has not been expelled and has not migrated into the adjacent sandstone reservoirs. In addition, the coal-bed reservoirs produce a distinctive bicarbonate-type connate water and have higher reservoir pressures than adjacent sandstones. The combination of these factors indicates that coal beds are a closed reservoir system created by the gases, waters, and associated pressures in the micropore coal structure. In contrast, gases produced from overlying sandstones in the Fruitland Formation and underlying Pictured Cliffs Sandstone have a wider range of isotopic values (??13C1 values range from -43.5 to -38

  14. The Lurgi-Ruhrgas (LR) process applied to tar sands and other bituminous materials

    SciTech Connect

    Schmalfeld, J.

    1982-08-01

    The Lurgi-Rurhgas (LR) process has been applied to various substrates for over thirty years. Application of the LR-process to tar sands and other bituminous materials to produce a syncrude is only now being demonstrated at the pilot plant stage. In essence the LR-process encompasses the use of recirculated, reheated residue to act as a heat carrier to pyrolyze and retort the fresh feed. The paper details the key elements of the process and the current status of pilot plant developments.

  15. Development of the chemical and electrochemical coal cleaning (CECC) process

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  16. Caking of medium rank, low vitrinite coal types and their blends during pyrolysis under pressure

    SciTech Connect

    Greeff, S.C.; Ooms, A.; Slaghuis, J.H.

    1997-12-31

    Bituminous coals of medium rank (RoV 0.6--0.7) with a low vitrinite content show, as a rule, no propensities to caking when heated at atmospheric pressure. It was found, however, that this property of coal changes when heated under elevated pressures. Standard caking tests (e.g., ASTM D 720-91) were found inadequate to assess caking propensities under pressure. Caking of coal at pressures up to 26 bar under different dynamic gas atmospheres was investigated. Argon, carbon dioxide, syngas (H{sub 2} + CO) and steam were used. It was found that, independent of gas type, mild to extensive caking of these coals occurred. A series of experiments at 26 bar Argon pressure was conducted on several coals from the Mpumalanga Province of South Africa. The caking propensity of each individual coal was assessed as well as that of various blends. Depending on the type of coal and the blending ratio, it was found that caking was not necessarily proportional to that of the individual coals in the blends. Attenuation or synergism occurred in certain blends. The caking of coal depends mainly on the rank and vitrinite content. Ash content, oxidation and devolatilized coal (due to dolerite intrusions) contribute to lower caking propensities. It is known that caking of coal can seriously influence the operation of a fixed bed coal reactor such as a Lurgi gasifier. Even mild caking of coal will change the particle size distribution in the reactor. This in turn will affect the permeability and gas flow distribution through such a reactor. With the knowledge of the caking propensity of individual coal types, blends of coals can be optimized to reduce caking and subsequently enhance gasifier operation.

  17. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA

    SciTech Connect

    Chou, C.L.

    1997-12-31

    Abundances of sulfur, chlorine and 52 trace elements in 220 channel and drill-core samples of high volatile bituminous coals (Pennsylvanian age) from the Illinois Basin, USA, are evaluated for the purpose of better understanding geologic processes affecting trace element variation in the coal seams. Mean elemental abundances in Illinois Basin coals are listed in a table. Most Illinois Basin coals are high-sulfur (> 3% total sulfur). Peat was influenced by seawater during early diagenesis. However, low-medium sulfur coal (<3% total sulfur) occurs in restricted areas along the Walshville Channel, which is a contemporaneous river in the peat swamp. A comparison of trace element abundances between high-sulfur and low-medium sulfur coals showed that only seven elements (boron, sulfur, iron, molybdenum, mercury, thallium, and uranium) are clearly more abundant in high-sulfur coal than in low-medium sulfur coal. Apparently, boron, sulfur, molybdenum, and uranium in high-sulfur coals were derived from seawater that inundated the peat swamp and terminated peat accumulation. Iron, mercury, and thallium had a terrestrial source and were incorporated in pyrite during diagenesis. Their enrichment in high-sulfur coal is related to pyrite formation in a reducing environment. The chlorine content in Illinois Basin coals, including channel and drill core samples, varies from 0.01% to 0.8% (on a dry basis). Coal samples from surface mines (< 50 meter depth) are usually low in chlorine content (<0.1%). Samples from underground mines (> 50 meter depth) have a chlorine content ranging between 0.1% to 0.5%. Variation of chlorine content in each of the two coal seams shows that chlorine content increases with depth because the chloride in coal is in equilibrium with the chloride in the groundwater, which is also depth dependent. A low chlorine content in shallow regions of a coal seam is a result of leaching by fresh groundwater.

  18. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    NASA Astrophysics Data System (ADS)

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.

  19. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    PubMed Central

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059

  20. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  1. CWM production from upgraded young low rank coals

    SciTech Connect

    Tsurui, Masao; Katagiri, Tsutomu; Yanagimachik, Harumitsu; Tokuda, Shinichi; Hashimoto, Noboru; Yui, Masayuki; Sugiyama, Takeshi

    1997-12-31

    CWM is a mixture of pulverized coal (60 to 70%) and water (30 to 40%) with a very small quantity of dispersant. It is stable under storage conditions and is sufficiently fluid to be transported by means of long-distance pipelines, and ocean going tankers. In order to overcome the economic difficulties of CWM, the authors started the development of a new type of CWM based on abundant non-utilized young low grade coal. This R and D aims at developing and demonstrating an economical clean coal fuel manufacturing technology to ensure safe transportation and storage. To this end, it is necessary to develop a technology to irreversibly dewater coals while maintaining volatility as far as possible, and to convert dewatered coals to high-concentration coal water mixtures (CWM). Japan COM Company Limited and JGC Corporation have been jointly conducting research and development of low rank coals upgrading technology to establish CWM production and utilization technologies from upgraded coals at lower cost and higher quality. In the first phase, the authors investigated available low rank coals upgrading technologies and selected the hot water drying (HWD) process as suited for the conversion of coals to CWM. In the second phase, they conducted HWD upgrading tests using an autoclave and a continuous type bench plant for laboratory-scale tests to convert upgraded coals to CWM, and thus confirmed upgrading effects. In the third phase, they constructed an upgrading pilot plant of 8.4 t/d (dry coal) processing capacity and have conducted upgrading tests. They have also conducted CWM production tests using a CWM production facility of 500 kg/h, and assessed the combustibility of upgraded coal CWM. The operation is carried out using three coals, two Indonesian sub-bituminous coals and one Australian brown coal, which were selected through the bench-scale testing. The following tests were carried out from Dec. of 1994 to March 1996: (1) Continuous upgrading tests by newly

  2. Developing anthracite coal water slurry fuel. Final report

    SciTech Connect

    Simmon, F.J.; Keller, D.V.; Marino, J.; Keller, D.S.; Ask, T.E.

    1993-09-01

    Public law has directed the Department of Defense (DOD) to increase the use of coal, particularly anthracite, at steam generating facilities. This study evaluates the feasibility of producing slurry fuel from anthracite coal and examines the combustion characteristics of the anthracite/water fuel slurry. The T-Process, a proprietary process developed by Otisca Industries, Ltd., Syracuse, NY, was used to produce anthracite-based coal water slurries for testing and combustion. Although it is feasible to manufacture anthracite water fuel, the slurries used in this research would not burn well without substantial amounts of natural gas cofiring. Stable combustion with reduced support fuel can probably be achieved by chemically or physically modifying the factors that affect combustion. Additional research to determine the differences between anthracite and bituminous slurries, to increase the residence time for anthracite slurries, and to manufacture slurries with oil rather than water needs to be conducted to help the DOD meet anthracite purchase/consumption targets. Coal, Combustion, Coal water fuel, Anthracite coal.

  3. Trace Elements in Coal - Modes of Ocurrence Analysis.

    SciTech Connect

    Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Mroozkowski, S.J.; Crowley, S.S.; Belkin, H.E.; Bullock, J.H., Jr.; Motooka, J.M.

    1997-07-24

    The objective is to provide modes of occurrence information for the CQ Inc. (CQ) effort being performed under DOE Contract entitled HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors. This work attempts to provide semi-quantative date on modes of occurrence of 15 elements. Coals investigated include as-mined coals and cleaned fines from the Northern Appalachian and Southern Application, and Eastern Interior regions, and as-mined and natural fines from the Powder River Basin. Study techniques include scanning electron microscopy, electron micropole analysis, and leaching procedures. Microprobe data analysis indicate that pyrite grains in Northern Appalachian and Eastern Interior, and Powder River Basin coals and most of the pyrite grains of the Southern Appalachian coal contain low As concentrations, generally in the 100-500 ppm range. However, the Southern Appalachian coal contains some pyrite grains with much higher As contents, in excess of 4.0 wt. percent As. Micropole analyses and data from leaching experiments indicate that arsenic is primarily associated with pyrite in the bituminous coals. These techniques also indicate that Cr is primarily associated with illite. Other HAP`s elements have multiple associations.

  4. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  5. Low severity coal conversion by ionic hydrogenation

    SciTech Connect

    Larsen, J.W.; Maioriello, J.; Cheng, J.C.

    1990-08-17

    The work accomplished in this project will be reported in two parts. Part one will focus on the development of catalytic ionic hydrogenation reactions utilizing a transition metal-H{sub 2} complex as the hydride donor and BF{sub 3}:H{sub 2}O as proton donor. This part reports the results of prelimiary work leading to the development of a new catalytic ionic hydrogenation system (MeCN){sub 2}PtCl{sub 2}/H{sub 2}/BF{sub 3}: H{sub 2}O. The results from some of this work have been published and the paper is included as the appendix. The second part focuses on the newly developed catalytic and other well characterized ionic hydrogenation reactions applied to lignites (Beulah-Zap), sub-bitumiuous (Wyodak), and bituminous coals (Pittsburgh {number sign}8). 19 refs., 10 tabs.

  6. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  7. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  8. Characterization of air toxics from a laboratory coal-fired combustor

    SciTech Connect

    1995-04-03

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  9. AFBC co-firing of coal and hospital waste. Progress report, [February--April 1992

    SciTech Connect

    Coulthard, E.J.; Roy, R.R.

    1992-05-29

    The unit to be installed at Lebanon Veteran`s Affairs Medical Center will prove that circulating fluidized bed combustion can provide economically viable and efficient hospital waste destruction and steam generation. The State permitting process is proceeding. The air quality division of the Department of Environmental Resources has requested the use of anthracite coal only. Anthracite has a much lower sulfur content than bituminous coal. The use of the anthracite coal has been approved by the Department of Veteran`s Affairs. The DER permit will specify the use of antrhacite coal. The State permitting approval is expected in the near future. Testing with the shredding system at the Donlee Pilot facility has been completed. The results predict the Lebanon VA facility will meet both NSPS regulations and the BAT guidelines proposed by the State of Pennsylvania. There have been no significant problems encountered to date.

  10. Co-firing of asphalt fired dust in pulverized coal fired boiler

    SciTech Connect

    Kiga, Takashi; Watanabe, Shinjl

    1999-07-01

    In order to make clear whether the dust collected at the electrostatic precipitator (EP) of asphalt fired boilers can be co-fired in pulverized coal fired boilers, laboratory-scale and bench-scale tests have been conducted. Test results showed that although dust from asphalt firing had as only a little amount of volatile matter as semi-anthracite or anthracite had, it revealed burn-out properties like bituminous. When it was co-fired with pulverized coal by 2% by that input, a considerable increase in SO{sub 2} emission was noted, while NOx emission was somewhat decreased compared with coal firing. From these verifications, it was confirmed that the co-firing of dust from asphalt firing in pulverized coal fired boiler was applicable to actual plants so far as the De-SOx system permitted.

  11. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  12. Hydrology of area 51, northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Peterson, David A.; Mora, K.L.; Lowry, Marlin E.; Rankl, James G.; Wilson, James F.; Lowham, H.W.; Ringen, Bruce H.

    1987-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 51 (in the Rocky Mountain Coal Province) includes all or part of the Shoshone, Bighorn, Greybull, Wind, and Popo Agie River drainage basins - a total of 11,800 sq mi. Area 51 contains more than 18 million tons of strippable bituminous coal and extensive deposits of subbituminous coal, in the arid and semiarid basins. The report represents a summary of results of water resources investigations of the U.S. Geological Survey, some of which were conducted in cooperation with State and other Federal agencies. More than 30 individual topics are discussed in brief texts that are accompanied by maps, graphs, photographs , and illustrations. Primary topics in the reports are physiography, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  13. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    SciTech Connect

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  14. Experimental Study of the Influence of the Concentration of Organic Water-Coal Fuel Components on the Integral Ignition Characteristics

    NASA Astrophysics Data System (ADS)

    Vershinina, K. Yu.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-01-01

    To enlarge the power raw material base, the processes of stable initiation of combustion of drops of organic watercoal fuels have been investigated. For the main components, we used filter cakes (coal processing waste), anthracite, bituminous and brown coals of brands D and B2, water, and spent machine, turbine, and transformer oils. We have established the influence of concentrations of components on the minimum (limiting) ignition temperatures of organic water-coal fuels and the ignition delay times of drops of fuel components with initial sizes of 0.25-1.5 mm. Investigations were carried out for oxidizer temperatures of 600-1100 K and its velocities of 0.5-5 m/s characteristic of units, aggregates, and large and small power plants. We have determined the characteristic differences of organic water-coal fuel from water-coal fuel and the close laws of the investigated processes for these fuels.

  15. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-04-24

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  16. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  17. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  18. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  20. Chemistry and reactivity of micronized coals. Technical progress report No. 3

    SciTech Connect

    Lloyd, W.G.; Riley, J.T.; Kuehn, K.W.

    1986-05-15

    This project examines the effect of reduction of the mean particle size of bituminous coals (to less than 10 microns) upon the coals' physical and chemical properties. The second part of a survey of the Hardgrove Grindability Index (HGI) is presented. Forty-two coals from the WKU/DOT base, for which HGI data have been obtained, were examined petrographically. Regression analyses show little correlation with HGI. The ambient apparent viscosities of four aqueous slurries of micronized coals are found to show sharply pseudoplastic character. Over the range of shear rates studied, all four show good power law conformity. Slurry attrition is very fast down to mean sizes of the order of 10 microns, then much slower in approaching the 2 to 4 micron range. A micronized high-ash coal shows anomalously strong retention of moisture and (from extractions) of dimethylformamide, both polar solvents. Classification of pulverized coals by size fraction continues to show sharp variations in mineral matter distribution. Our best preliminary demineralizations are attained with lightly milled coals. Optimal deep cleaning may involve alternate cycles of milling and separation steps. At 350/sup 0/C a 20-minute hydroliquefaction of a hvBb coal affords the expected low conversion (7% daf by toluene). Parallel runs with the micronized coal essentially double this conversion. 15 refs., 12 figs., 10 tabs.

  1. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  2. Variation in lung cancer risk by smoky coal subtype in Xuanwei, China

    SciTech Connect

    Lan, Q.; He, X.Z.; Shen, M.; Tian, L.W.; Liu, L.Z.; Lai, H.; Chen, W.; Berndt, S.I.; Hosgood, H.D.; Lee, K.M.; Zheng, T.Z.; Blair, A.; Chapman, R.S.

    2008-11-01

    Lung cancer rates in Xuanwei County have been among the highest in China for both males and females and have been causally associated with exposure to indoor smoky (bituminous) coal emissions that contain very high levels of polycyclic aromatic hydrocarbons. There are numerous coal mines across the County. Although lung cancer risk is strongly associated with the use of smoky coal as a whole, variation in risk by smoky coal subtype has not been characterized as yet. We conducted a population-based case-control study of 498 lung cancer cases and 498 controls, individually matched to case subjects on age and sex to examine risk by coal subtype. Odds ratios (ORs) and 95% confidence intervals (CIs) for coal subtype were calculated by conditional logistic regression, adjusting for potential confounders. Overall, smoky coal use was positively and statistically significantly associated with lung cancer risk, when compared with the use of smokeless coal or wood (OR = 7.7, 95% CI = 4.5-13.3). Furthermore, there was a marked heterogeneity in risk estimates for specific subtypes of smoky coal (test for heterogeneity: p = 5.17 x 10{sup -10}). Estimates were highest for coal of the Laibin (OR = 24.8, 95 % CI = 12.4-49.6) and Longtan (OR = 11.6, 95 % CI = 5.0-27.2) coal types and lower for coal from other subtypes. These findings strongly suggest that in Xuanwei and elsewhere, the carcinogenic potential of coal combustion products can exhibit substantial local variation by specific coal source.

  3. Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995

    SciTech Connect

    Young, B.C.; Musich, M.A.

    1995-10-01

    Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metric tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.

  4. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    PubMed

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres.

  5. Biomarker geochemistry of bituminous shale sequence and crude oil in the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kara-Gulbay, Reyhan; Erdogan, Mert; Korkmaz, Sadettin; Kadinkiz, Gökhan

    2016-04-01

    In the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, bituminous shale sequence with thickness ranging between 72 and 160 m occurs in lacustrine deposits of Upper Miocene-Pliocene age. The live oil has also been observed in this bituminous shale sequence. Rock-Eval/TOC, GC and GC-MS analyses were conducted on selected bituminous shale samples from four borehole (key-12/1, key-12/2, key-12/3 key-12/4) and one crude oil sample from a borehole (key-12/2) in the basin. In this study, organic matter type, maturity and depositional environment of bituminous shale are evaluated and the origin of crude oil is determined by the bituminous shale-crude oil correlation. The total organic carbon (TOC) values of the bituminous shale samples range from 1.21-13.98 wt% with an average TOC value of 4.75wt%. The bituminous shale sequence is characterized by high HI (127-662 mg HC/g TOC) and low OI (7-50 mgCO2/TOC). Tmax varies from 332-419ᵒC. Very low Pr/Ph ratios of bituminous shale (0.09-0.22) are indicative of anoxic depositional conditions. C27 is dominate sterane for bituminous shale and crude oil samples with C27>C29>C28. Normal steranes are more dominant compare to iso- and diasteranes. Ouite high sterane/hopane ratios (1.14-2.70) indicate dominant algal organic matter input for bituminous shale and source rock of crude oil. C31R/hopane ratio for bituminous shale and crude oil samples are very low (0.09-0.13) and these ratio show a lacustrine depositional envirronment for bituminous shale and source rock of crude oil. Sterane and terpane distributions of bituminous shale and crude oil are very similar. A very good correlation in terms of biomarker between bituminous shale and crude oil samples indicate that source rock of crude oil is bituminous shale. The 22S/(22R + 22S) C32 homohopane ratios of bituminous shale and crude oil samples are found to be 0.56 and 0.61, indicating that homohopane isomerization has attained equilibrium and bituminous shale and crude oil are

  6. Telemagmatic metamorphism superimposed on regional metamorphism: Evidence from coals in central China

    SciTech Connect

    Tang, Y. . Dept. of Geological Sciences)

    1993-02-01

    Coal (Lower Permian No. 1) in north-central Henan province, central China, exhibits a zoned rank distribution. The rank varies between high-volatile bituminous and anthracite. Highest rank coal occurs in a northwest-southeast trending zone that cuts across the center of the study area. Coal rank decreases from this central zone towards both the northeast and southwest. Core data indicate that the anthracite is currently overlain by over 4,600 m of sedimentary cover, which represents more or less continuous sedimentation during the Permian and Triassic. In the lower rank area to the southwest, erosion has removed all but approximately 1,000 m of strata. The rank distribution in this area has been attributed to regional metamorphism by previous workers as the higher coal rank coincides with the thicker strata. However, this study reveals that anthracite in the area has a much higher vitrinite reflectance, between 3--6% (Ro max, in oil), with some locations exhibiting reflectances greater than 6%. Petrographically, the anthracite is characterized by well developed pores (5--10 [mu]m in diameter) and mosaic structure. It is suggested that the higher heat flow is due to the presence of deep-seated plutons. It is proposed that coal metamorphism in this area involved three stages: (1) Pre-orogenic (early Permian-late Triassic). Regional metamorphism produced coals of subbituminous to high-volatile bituminous rank; (2) Orogenic (early Jurassic-late Cretaceous). Telemagmatic metamorphism resulted in zones of higher rank coal (medium volatile through anthracite rank); (3) Post-orogenic (Tertiary-Quaternary). Shallow burial depth due to the tectonic uplift followed by erosion had a negligible effect on coal rank. It is suggested, therefore, that coalification in this area is the result of regional metamorphism overprinted by telemagmatic metamorphism.

  7. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  8. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  9. Mild coal gasification screw pyrolyzer development and design

    SciTech Connect

    Camp, D.W.

    1990-08-01

    Our objective is to produce information and design recommendations needed for the development of an efficient continuous process for the mild gasification of caking bituminous coals. We have focused on the development of an externally heated pyrolyzer in which the sticky, reacting coal is conveyed by one or more screws. We have taken a multifaceted approach to forwarding the development of the externally-heated screw pyrolyzer. Small scale process experiments on a 38-mm single screw pyrolyzer have been a major part of our effort. Engineering analyses aimed at producing design and scaleup equations have also been important. Process design recommendations follow from these. We critically review our experimental data and experience, and information from the literature and equipment manufactures for the purpose of making qualitative recommendations for improving practical pyrolyzer design and operation. Benchscale experiments are used to supply needed data and test some preliminary concepts. 6 refs., 4 figs., 1 tab.

  10. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  11. Numerical simulation of low NOx combustion technology in a 100 MWe bituminous coal-fired wall boiler

    SciTech Connect

    Li, Z.Q.; Jing, J.P.; Ge, Z.H.; Liu, G.K.; Chen, Z.C.; Ren, F.

    2009-07-01

    Computational fluid dynamics (CFD) has been applied to evaluate two NOx reducing schemes in a 100 MWe per hour (p/h) boiler that uses double volute burners without over-fire-air (OFA). The new schemes involve: a) changing the double volute burners for centrally fuel rich (CFR) burners, and b) using the OFA system in conjunction with a). In analyzing the results of these two schemes, various conclusions were drawn: 1) gas temperatures and related rise rates in the central zone of burners were higher, O{sub 2} and NOx concentrations were lower; and 2) cross-sectional gas temperature distributions through the burner centers in scheme employing b) is higher than that of original furnace set-up, and lower than that of scheme employing a). Comparing the b) scheme with those of the a) scheme and the original set-up, which is 277 mg/m{sup 3} (at 6% O{sub 2}) at the furnace outlet, the peak value of NOx concentration has decreased 571 mg/m{sup 3} (67.4%) and 436 mg/m{sup 3} (61.2%), respectively.

  12. [Study of the Changes on Tree Shrew Bronchial Epithelium 
Induced by Xuanwei Bituminous Coal Dust].

    PubMed

    Chen, Xiaobo; He, Meng; Li, Guangjian; Zhou, Yongchun; Zhao, Guangqiang; Lei, Yujie; Yang, Kaiyun; Tian, Linwei; Huang, Yunchao

    2015-08-01

    背景与目的 肺癌在许多国家和地区已成为发病率和死亡率最高的恶性肿瘤,建立科学合适的肺癌动物模型,用以模拟出与人类肺癌的病因、发病机制、发展过程相似的动物模型是亟待解决的问题。通过宣威烟煤粉尘PM10(particulate matter with diameters of 10 μm or less, PM10)对树鼩支气管上皮的影响,探索建立宣威烟煤粉尘致肺癌模型的可行性。方法 健康成年树鼩,切开颈部皮肤,充分暴露甲状软骨,于甲状软骨上方薄弱处,采用特制灌注针行穿刺的方法进行气管内试剂灌注。定期行X线检查,观察肺部影像学改变,处死动物行肺组织病理检查,观察灌注后支气管上皮改变情况。结果 烟尘处理组树鼩灌注药物后1周内开始死亡,空白对照组、溶剂对照组树鼩灌注后至实验结束无异常死亡。定期处死树鼩行肺组织HE染色切片病理检查,空白对照组及溶剂对照组无明显病理改变,烟尘处理组树鼩肺组织可见支气管粘膜上皮过度增生-鳞状化生-不典型增生-早期浸润癌的病理变化过程。结论 宣威烟煤粉尘可以导致树鼩支气管上皮出现支气管粘膜上皮过度增生-鳞状化生-不典型增生-早期浸润癌的病理变化,应用宣威烟煤粉尘PM10行气管内灌注可以诱发树鼩肺癌。可以建立肺癌模型。.

  13. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function.

    PubMed

    Bott, Thomas L; Jackson, John K; McTammany, Matthew E; Newbold, J Denis; Rier, Steven T; Sweeney, Bernard W; Battle, Juliann M

    2012-12-01

    The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and > 10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogen-acquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous

  14. Osmosis-induced swelling of Eurobitum bituminized radioactive waste in constant total stress conditions

    NASA Astrophysics Data System (ADS)

    Valcke, E.; Marien, A.; Smets, S.; Li, X.; Mokni, N.; Olivella, S.; Sillen, X.

    2010-11-01

    In geological disposal conditions, contact of Eurobitum bituminized radioactive waste, which contains high amounts of the hygroscopic and highly soluble NaNO 3, with groundwater will result in water uptake and swelling of the waste, and in subsequent leaching of the embedded NaNO 3 and radionuclides. The swelling of and the NaNO 3 leaching from non-radioactive Eurobitum samples, comprised between two stainless steel filters and in contact with 0.1 M KOH, was studied in restricted (semi-confined) swelling conditions, i.e. under a constant total stress, or counterpressure, of 2.2, 3.3, or 4.4 MPa ( i.e. oedometer conditions). Four tests were stopped after hydration times between 800 and 1500 days, and the samples were analyzed by micro-focus X-ray Computer Tomography (μCT) and by Environmental Scanning Electron Microscopy (ESEM). The complete set of data enabled a consistent interpretation of the observations and lead to an improved understanding of the phenomenology of the water uptake, swelling, and NaNO 3 leaching in restricted swelling conditions. Under the studied conditions, the bituminous matrix surrounding the NaNO 3 crystals and pores with NaNO 3 solution behaved as a highly efficient semi-permeable membrane, i.e. osmotic processes occurred. In the main part of the leached layers, a high average NaNO 3 concentration and related to this a high osmotic pressure prevailed, explaining why in the studied range the swelling was not measurably affected by the counterpressure. At the interface with the stainless steel filters, a low permeable re-compressed bitumen layer was formed, contributing to the slow release of NaNO 3 compared to the water uptake rate. A fully coupled Chemo-Hydro-Mechanical (CHM) constitutive model has been developed that integrates the key processes involved and that reproduces satisfactorily the results; this is presented in another work. Combination of the experimental and the modelling study allow to conclude that under semi

  15. Development prospects for Bazhenov formation bituminous claystones in the southeast of the West Siberian Plate (Tomsk Region)

    NASA Astrophysics Data System (ADS)

    Belozerov, V. B.; Baranov, V. E.; Dmitriev, A. Y.

    2015-02-01

    The article considers the use of time-tested bituminous shale development technologies in the southeast of the West Siberian Plate (Tomsk Region). A research target is the bituminous claystones of the Bazhenov formation. The Bazhenov formation was divided into stratigraphic units, and the sequence of forming these units within the territory under study was restored on the basis of the peculiarities of the Bazhenov formation section structure with gamma-ray logging data. The joint analysis of logs (gamma-ray logging, resistivity logging, SP logging, neutron gamma-ray logging, induction logging) and core data revealed the wide development of carbonatization processes in the lower stratigraphic units of the Bazhenov formation, whereas the upper, most bituminous units do not have the signs of carbonatization. It is a favorable factor for using the existing technologies of producing hydrocarbons from analogous sedimentary deposits. Considering the degree of lithological disconnection of an oilbearing object from adjacent reservoir formations allows making a conclusion that the application of the existing technologies for developing bituminous claystones can be implemented only in the insignificant territory of the area under study where the Bazhenov formation overlies Georgiev formation claystones being over 8 meters thick. To develop the oil and gas potential of the Bazhenov formation in other territories, there will be a need for new technologies that allow forming a fracture-cavernous matrix in a carbonate rock.

  16. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.

    2015-11-01

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-12-31

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

  18. Retrogradational fluvio-paralic coal-forming environments, South Island, New Zealand

    SciTech Connect

    Flores, R.M. ); Sykes, R. )

    1990-06-01

    The West Coast Region of South Island, New Zealand, records Paleogene history of peneplanation, fluvio-paralic aggradation, and marine transgression. At Buller coalfield, Eocene Brunner coal measures rest unconformably on Paleozoic to Cretaceous basement rocks and interfinger upward with Eocene, marine Kaiata Formation. During Eocene, rising sea level controlled the architecture of fluvio-paralic deposits and strongly influenced the origin and properties of Brunner coals. The Brunner coal measures contain as much as 40-ft thick, high to low volatile bituminous coal beds with 0.5-16% ash and 1-9% sulfur that is greatest in the upper coal beds. The Brunner can be divided informally into lower and upper coal measures. The lower coal measures are dominated by pebble conglomerates and multierosional, trough-crossbedded conglomeratic sandstones; the upper coal measures by stacked, multilateral, trough crossbedded, granular sandstones with subordinate siltstones and mudstones. Bioturbated sandstones with brackish-marine Ophiomorpha-like trace fossils are common in the upper coal measures. The lower coal measures were deposited in exhumed paleovalleys of the peneplain surface. These valleys, as deep as 50 ft, were initially aggraded by gravelly braided streams. Raised bogs formed in abandoned braid valleys and extended onto surrounding basement highs. The upper coal measures were deposited in sandy bedload, meandering streams with paralic wave-reworked deltas, and attached barriers. Peat bogs in the paralic environments accumulated thin coals, whereas bogs that developed on abandoned meander ridges formed thick, lenticular coals. Sea-level rise resulted in inundation introducing sulfur into the peat and resulted in high sinuosity fluvial architecture. Gradual incursion of brackish-marine waters favored bioturbation of paralic sediments along retrograding coastlines.

  19. Final safety assessment of Coal Tar as used in cosmetics.

    PubMed

    2008-01-01

    Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant--antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. Coal Tar is a nearly black, viscous liquid, heavier than water, with a naphthalene-like odor and a sharp burning taste, produced in cooking ovens as a by-product in the manufacture of coke. Crude Coal Tar is composed of 48% hydrocarbons, 42% carbon, and 10% water. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. In short-term studies, mice fed a diet containing Coal Tar found it unpalatable, but no adverse effects were reported other than weight loss; rats injected with Coal Tar experienced malaise in one study and decreased water intake and increased liver weights in another; rabbits injected with Coal Tar residue experienced eating avoidance, respiratory difficulty, sneezing, and weight loss. In a subchronic neurotoxicity study using mice, a mixture of phenols, cresols, and xylenols at concentrations approximately equal to those expected in Coal Tar extracts produced regionally selective effects, with a rank order of corpus striatum > cerebellum > cerebral cortex. Coal Tar applied to the backs of guinea pigs increases epidermal thickness. Painting female rabbits with tar decreases the absolute and relative weights of the ovaries and decreased the number of interstitial cells in the ovary. Four therapeutic Coal Tar preparations used in the treatment of psoriasis were mutagenic in the Ames assay. Urine and blood from patients treated with Coal Tar

  20. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    SciTech Connect

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-09-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  1. Experimental laboratory measurement of thermophysical properties of selected coal types

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1979-01-01

    A number of bituminous coals of moderate to high plasticity were examined, along with portions of their extrudates from the JPL 1.5-inch 850 F screw extruder. Portions of the condensed pyrolysis liquids released during extrusion, and of the gaseous products formed during extrusion were also analyzed. In addition to the traditional determinations, the coals and extrudates were examined in terms of microstructure (especially extractable fractions), thermal analysis (especially that associated with the plastic state), and reactivity towards thermal and catalyzed hydroliquefaction. The process of extrusion increases the fixed carbon content of coals by about 5% and tends to increase the surface area. Coals contaning 25% or more DMF-extractable material show an increase in extractables as a result of extrusion; those initially containing less than 20% extractables show a decrease as a result of extrusion. Both the raw and extruded samples of Kentucky #9 coal are highly reactive towards hydroliquefaction, undergoing conversions of 75 to 80% in 15 min and 85-94% in 60 min in a stirred clave.

  2. Did the Middlesboro, Kentucky, bolide impact event influence coal rank?

    USGS Publications Warehouse

    Hower, J.C.; Greb, S.F.; Kuehn, K.W.; Eble, C.F.

    2009-01-01

    The Middlesboro Basin, southeastern Kentucky, occurs on the Cumberland Overthrust Sheet and includes a ca. 5.5-km diameter impact structure. The Lower and Middle Pennsylvanian coal-bearing strata are faulted, with some evidence for shock metamorphism. The event post-dated the latest-Pennsylvanian-early-Permian thrusting and was likely prior to late-Mesozoic entrenchment of drainages. The impact of a 0.5-km meteor traveling at ca. 60,000??km/h would release about 1??EJ, the approximate equivalent of the instantaneous combustion of 30??Mt of coal. The coal rank, while increased slightly above the regional level, still is within the upper portion of the high volatile A bituminous rank range. This helps to constrain the depth of burial at the time of the impact. The coal would have had to have been at a depth of a few kilometers to have avoided a more substantial rank increase. In addition, it is possible that some of the coal rank increase might be attributable to movements along the cross-cutting Rocky Face fault, unrelated to the impact. ?? 2009 Elsevier B.V. All rights reserved.

  3. The genotoxic risk of underground coal miners from Turkey.

    PubMed

    Donbak, Lale; Rencuzogullari, Eyyup; Yavuz, Ayse; Topaktas, Mehmet

    2005-12-30

    A cytogenetic monitoring study was carried out on a group of workers from a bituminous coal mine in Zonguldak province of Turkey, to investigate the genotoxic risk of occupational exposure to coal mine dust. Cytogenetic analysis, namely sister chromatid exchanges (SCEs), chromosomal aberrations (CAs) and micronucleus (MN) tests were performed on a strictly selected group of 39 workers and compared to 34 controls matched for gender, age, and habit. Smoking and age were considered as modulating factors. Both SCE and CA frequencies in coal miners appeared significantly higher than in controls. Similarly, there was a significant increase in the frequency of total micronuclei in exposed group as compared to control group. The effect of smoking on the level of SCE and MN was significant in the control group. A positive correlation between the age and the level of SCE was also found in controls. The frequencies of both SCE and CA were significantly enhanced with the years of exposure. The results of this study demonstrated that occupational exposure to coal mine dust leads to a significant induction of cytogenetic damage in peripheral lymphocytes of workers engaged in underground coal mining.

  4. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  5. Coal liquefaction process streams characterization and evaluation: The preliminary evaluation of the kinetics of coal liquefaction distillation resid conversion

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1994-02-01

    This study evaluated the use of a novel laboratory-scale batch reactor, designed by the University of Delaware, to study the kinetics of coal liquefaction resid reactivity. The short time batch reactor (STBR) is capable of conducting reactions at temperatures up to 450{degrees}C and pressures up to 2500 psi at well-defined reaction times from a few seconds to 30 min or longer. Sixty experiments were conducted with the STBR in this project. The products of the resid/tetralin/hydrogen reaction were separated by solubility, and several analytical procedures were used to evaluate the reaction products, including thermogravimetric analysis (TGA), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Changes were monitored in the boiling ranges of the products, as a function of process conditions (time, temperature, and tetralin donor solvent-to-resid ratio), with and without catalysts. Two distillation resid samples were studied; Sample 1 is the resid of the second stage product stream from Wilsonville Run 259 which used Pittsburgh seam coal (Ireland mine) bituminous coal, and Sample 2 is the resid of the same streak from Wilsonville Run 260 which used Wyodak and Anderson (Black Thunder Mine) subbituminous coal. It was determined that the resid reactivity was different for the two samples studied. The results demonstrate that further development of this experimental method is warranted to empirically assess resid reactivity and to provide data for use in the construction of an empirical model of coal conversion in the direct liquefaction process.

  6. Occupational and traning requirements for expanded coal production (as of October 1980). [Forecasting to 1995

    SciTech Connect

    Not Available

    1982-04-01

    This study was initiated because of the anticipated rapid growth in trained personnel requirements in bituminous coal mining, and because the industry had already experienced significant problems in recruiting skilled manpower in the course of its employment expansion during the 1970's. Employment in bituminous coal mining is projected to nearly double, from 234,000 in 1977 to 456,000 in 1995, as the net result of a projected threefold increase in coal output to nearly 2.0 billion in 1995 and of an expected significant improvement in overall productivity. A large proportion of current coal mining employees are in occupations which require significant amounts of training for effective work performance. Employment growth to 1955 will be most rapid in those occupations requiring the greatest training or educational preparation. The new training infrastructure which has emerged to meet these needs includes both internal, company-operated training programs and those offered by various external providers. Among the latter are: Vocational schools, community colleges, and university extension departments; public agencies, such as MSHA and state mining departments; coal industry trade associations; and vendors or training consultant groups. The Conference Board survey of coal industry training programs, conducted in late 1979, was designed to provide comprehensive data on the scope of the coal industry's own training activities and on related training issues, based on a mail questionnaire survey addressed to all companies producing 300,000 or more tons per year. The training programs are described with emphasis on time changes, regional effects and implications for a coordinated plan.

  7. Advanced coal-fueled gas turbine systems. Final report

    SciTech Connect

    Not Available

    1993-08-01

    The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

  8. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  9. Preparation of organic sulfur adsorbent from coal for adsorption of dibenzothiophene-type compounds in diesel fuel

    SciTech Connect

    Cigdem Shalaby; Xiaoliang Ma; Anning Zhou; Chunshan Song

    2009-05-15

    High-performance organic sulfur adsorbents (OSA) have been prepared from coal by chemical activation for selective adsorption of the refractory sulfur compounds, such as 4-methyl dibenzothiophene and 4,6-dimethyldibenzothiophene, in diesel fuel. The performance of the prepared OSAs for adsorptive desulfurization (ADS) was evaluated in batch and flow adsorption systems at room temperature using a model diesel fuel. It was found that coal rank and preparation conditions, including activation agents (NaOH, KOH, and NaOH + KOH) and their ratio to coal, activation temperature, and time have significant impacts on the yield and ADS performance of the OSAs. The high-performance OSAs can be prepared from different ranks of coal by using NaOH + KOH as an activation agent with an activating-agent-to-coal ratio of 3.5. The yield of OSA increased in the order of lignite < high volatile bituminous coal < medium volatile bituminous coal < anthracite. The OSA-A, which was derived from an anthracite with the highest yield (68 wt %) by the activation at 650{sup o}C for 1 h, gave the best ADS performance among the OSAs from all coal samples tested. The sulfur adsorption capacity of OSA-A reached 0.281 mmol-S/g-A at an equilibrium sulfur concentration of 50 ppmw in the model diesel fuel, which was 155% higher than a commercial coal-derived activated carbon and 35% higher than the best commercial activated carbon among all commercial activated carbons examined in our laboratory. The higher ADS capacity of OSA-A can be attributed to its significantly higher density (2.77 {mu}mol/m{sup 2}) of the adsorption sites on the surface as determined by Langmuir adsorption isotherm, which is related to its oxygen-containing functional groups on the carbonaceous surface as revealed by temperature-programmed desorption analysis. 57 refs., 10 figs., 6 tabs.

  10. Variations in coal characteristics and their possible implications for CO2 sequestration: Tanquary injection site, southeastern Illinois, USA

    USGS Publications Warehouse

    Morse, D.G.; Mastalerz, Maria; Drobniak, A.; Rupp, J.A.; Harpalani, S.

    2010-01-01

    As part of the U.S. Department of Energy's Regional Sequestration Partnership program, the potential for sequestering CO2 in the largest bituminous coal reserve in United States - the Illinois Basin - is being assessed at the Tanquary site in Wabash County, southeastern Illinois. To accomplish the main project objectives, which are to determine CO2 injection rates and storage capacity, we developed a detailed coal characterization program. The targeted Springfield Coal occurs at 274m (900ft) depth, is 2.1m (7ft) thick, and is of high volatile B bituminous rank, having an average vitrinite reflectance (Ro) of 0.63%. Desorbed Springfield Coal gas content in cores from four wells ~15 to ~30m (50 to 100ft) apart varies from 4.7-6.6cm3/g (150 to 210scf/ton, dmmf) and consists, generally, of >92% CH4 with lesser amounts of N2 and then CO2. Adsorption isotherms indicate that at least three molecules of CO2 can be stored for each displaced CH4 molecule. Whole seam petrographic composition, which affects sequestration potential, averages 76.5% vitrinite, 4.2% liptinite, 11.6% inertinite, and 7.7% mineral matter. Sulfur content averages 1.59%. Well-developed coal cleats with 1 to 2cm spacing contain partial calcite and/or kaolinite fillings that may decrease coal permeability. The shallow geophysical induction log curves show much higher resistivity in the lower part of the Springfield Coal than the medium or deep curves because of invasion by freshwater drilling fluid, possibly indicating higher permeability. Gamma-ray and bulk density vary, reflecting differences in maceral, ash, and pyrite content. Because coal properties vary across the basin, it is critical to characterize injection site coals to best predict the potential for CO2 injection and storage capacity. ?? 2010 Elsevier B.V.

  11. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  12. Lignin-assisted coal depolymerization. [Final] technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won

    1992-12-31

    Liquefaction of an Illinois bituminous and a caustic lignin was studied in an initial hydrogen pressure of 140 psig. Experiments were conducted in the temperature range of 325-375{degree}C in tetralin. The addition of lignin to coal was found to be synergistic in that it significantly improves the quality and yield of the liquid products obtained. Kinetic data for coal conversion enhancement due to lignin addition were obtained. A mathematical model describing the reaction chemistry, using lignin, has been proposed and developed. The analysis of the results indicates that the intermediates produced from lignin were responsible for enhancement in coal depolymerization rate, however, the intermediates are short-lived as compared to the time needed for a significant coal conversion yield. Coal depolymerization rate was found to be a function of time; compared to processing coal alone, it doubled upon reacting coal with lignin at 375{degree}C and after 67 minutes from the beginning of the experiment. Overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained. A careful statistical analysis of the data shows that coal depolymerization yield is enhanced by 11.9% due to the lignin addition. The liquids obtained were examined for their elemental composition, and molecular weight determination by size exclusion chromatography. The stability of liquid products was characterized by determining their solubility in pentane and benzene, and by evaluating the molecular weight.

  13. Coal-oil coprocessing at HTI - development and improvement of the technology

    SciTech Connect

    Stalzer, R.H.; Lee, L.K.; Hu, J.; Comolli, A.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and a natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.

  14. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  15. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    SciTech Connect

    Croft, Gregory D.; Patzek, Tad W.

    2009-09-15

    By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.

  16. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Richards, George

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  17. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, September--November 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number_sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal`s inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  18. Trace metals in the coals of the East Siberia: Distribution, utilization and environmental aspects

    SciTech Connect

    Pashkov, G.L.; Kuznetsov, P.N.; Kuzmin, V.I.; Boiko, Y.V.; Kontsevoi, A.A.

    1998-12-31

    Three coal basins in East Siberia, the Russia Lena, Kansk-Achinsk and South-Yakutsk basins, are huge coal basins which contain various sorts of both brown and high quality subbituminous and bituminous coals with low ash and sulfur content. The coals have great industrial significance for the production of energy, coke and chemicals. However, these coals are less characterized in terms of the content and distribution of trace metals, some of which are of industrial significance, other metals are toxic and radioactive. The data on the distribution of trace metals in these three coal basins, their geochemical occurrence and the behavior in chemical treatment and burning are presented in the paper. Separate coals were found to contain a large amount of valuable metals such as Ge (up to 1,400 g/ton of ash), V (up to 1,400 g/t), Sc (up to 220 g/t), Nb (up to 280 g/t), Cr (up to 1,300 g/t), Co (up to 320 g/t), Ni (580 g/t) and thus could be an industrial source of metal production. The methods for the extraction of Ge, Sc, Y, Nb and other metals prior or after combustion are described. The aspects of coal characterization in terms of toxic and radioactive impact on the environment are discussed.

  19. Direct comparison of XAFS spectroscopy and sequential extraction for arsenic speciation in coal

    USGS Publications Warehouse

    Huggins, Frank E.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The speciation of arsenic in an Ohio bituminous coal and a North Dakota lignite has been examined by the complementary methods of arsenic XAFS spectroscopy and sequential extraction by aqueous solutions of ammonium acetate, HCl, HF, and HNO3. In order to facilitate a more direct comparison of the two methods, the arsenic XAFS spectra were obtained from aliquots of the coal prepared after each stage of the leaching procedure. For the aliquots, approximately linear correlations (r2 > 0.98 for the Ohio coal, > 0.90 for the ND lignite) were observed between the height of the edge-step in the XAFS analysis and the concentration of arsenic measured by instrumental neutron activation analysis. Results from the leaching sequence indicate that there are two major arsenic forms present in both coals; one is removed by leaching with HCl and the other by HNO3. Whereas the XAFS spectral signatures of the arsenic leached by HCl are compatible with arsenate for both coals, the arsenic leached by HNO3 is identified as arsenic associated with pyrite for the Ohio coal and as an As3+ species for the North Dakota lignite. Minor arsenate forms persist in both coals after the final leaching with nitric acid. The arsenate forms extracted in HCl are believed to be oxidation products derived from the other major arsenic forms upon exposure of the pulverized coals to air.

  20. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  1. A comparison study of ash formation during pilot-scale combustion of pulverized coal and coal-water slurry fuels

    SciTech Connect

    Miller, S.F.

    1992-01-01

    The objective of this study was to investigate the effect of fuel form. specifically pulverized coal and coal-water slurry fuel (CWSF), on the particle size distribution (PSD) and inorganic composition of the ash formed during combustion. Three areas of primary interest were fuel particle and droplet size distribution, mineral matter PSD, and the composition and occurrence of inorganics in the fuel. The reactions of pyrite, silicates, aluminosilicates, and alkali and alkaline earth elements during combustion are traced. Two coals, a West Virginia Elk Creek high volatile A bituminous coal and the North Dakota Beulah lignite, were fired as a standard utility grind pulverized fuel and a CWSF at 316.2 MJ/h at 20% excess air in the Penn State Combustion Laboratory down-fired combustor. Fuel PSD and droplet size distribution of the pulverized coal and CWSF are important in determining the PSD of the respective ash when the PSD of the mineral matter and the composition and occurrence of the inorganics in the two fuels are similar, as in the case of the Elk Creek fuels. The mechanism for ash formation in both Elk Creek fuels was coalescence and agglomeration of the inorganics in the coal. The Elk Creek CWSF ash was coarser than the pulverized coal ash due to the larger CWSF char size formed during atomization. The average diameter of the inorganic particles identified in the pulverized coal ash was 2.6 times smaller than those identified in the fuel. The mechanism for ash formation in the Beulah CWSF was coalescence and agglomeration of inherent mineral matter. The average diameter of the inorganic particles identified in the CWSF ash was 3.3 times larger than those identified in the fuel.

  2. Occurrence of inorganic elements in condensed volatile matter emitted from coal pyrolysis and their contributions to the formation of ultrafine particulates during coal combustion

    SciTech Connect

    Lian Zhang; Yoshihiko Ninomiya; Toru Yamashita

    2006-08-15

    Coal pyrolysis is the first step during coal combustion, when the injected coal particles swell to release the volatile matter (VM) at a very short residence time. Simultaneously, the organically bound fraction of inherent metals is likely emitted out too. To prove the presence of organically bound metals in coals, five bituminous coals and one anthracite coal from China were pyrolyzed in N{sub 2} in a lab-scale drop tube furnace. The gas temperature in furnace was about 900-1400 K so that almost all the inorganic elements except those containing Na hardly vaporized. The emitted VM was collected by a low-pressure impactor. The results indicate that the condensed VM (CVM) smaller than 1.0 {mu}m has an amorphous carbon structure, which contains the inorganic elements too. Sulfur is the most prevalent, followed by sodium, silicon, chlorine, calcium, and others in the decreasing order. Apart from a portion of sodium in form of NaCl, all the inorganic elements are organically bound with CVM as determined by both TEM-EDS and XPS. These elements disperse highly in CVM; their oxidation and coagulation during VM combustion likely contribute to the majority of ultrafine particulates (PM0.1 smaller than 0.1 m) formed during coal combustion at a relatively low temperature, 1473 K. 30 refs., 13 figs., 3 tabs.

  3. Influence of phase transformations and heat and mass exchange on the course of the processes of pyrolysis of single high-ash-coal particles at elevated pressures

    SciTech Connect

    V.P. Patskov

    2007-03-15

    A comparative analysis of equilibrium and nonequilibrium models for calculation of the rates of phase transitions (evaporation and condensation) of pyrolysis products and the influence of convective heat and mass exchange with inert ash particles and the gas flow in pyrolysis of single particles of high-ash bituminous coals in the operation of technological units with a circulating fluidized bed under pressure is made.

  4. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    SciTech Connect

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity toward