Sample records for bituminous ore characterization

  1. 40 CFR 61.143 - Standard for roadways.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  2. 40 CFR 61.143 - Standard for roadways.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  3. 40 CFR 61.143 - Standard for roadways.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  4. 40 CFR 61.143 - Standard for roadways.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  5. Reduction of phosphate ores by carbon: Part I. Process variables for design of rotary kiln system

    NASA Astrophysics Data System (ADS)

    Mu, Jacob; Leder, Frederic; Park, Won C.; Hard, Robert A.; Megy, Joseph; Reiss, Howard

    1986-12-01

    Feasibility is established for the reduction of phosphate ores in a rotary kiln, avoiding electric submerged arc furnace technology. This represents a totally new approach to phosphoric acid. Reduction rates of phosphate ore-silica mixtures by carbon in the temperature range of 1100 to 1500 °C under several CO partial pressures in nitrogen were measured in thermogravimetric analyzers. Parameters such as carbon and silica contents, particle and pellet sizes, and gas flow rate were also evaluated with various domestic and foreign phosphate ores. Furthermore, a variety of carbon sources such as subbituminous coals, bituminous coals, anthracite, petroleum coke, and metallurgical coke were tested as reducing agents. Thermodynamic considerations elucidate the temperature dependence of overall conversion as well as the role of excess silica in establishing equilibrium pressure. These findings provide the background for analysis of the kinetics of conversion in Part II of this work. These studies, in conjunction with a previously published work, indicate the importance of intergranular melt phases in the kinetics of otherwise solid state reactions.

  6. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    NASA Astrophysics Data System (ADS)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  7. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials.

    PubMed

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-08-26

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  8. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    PubMed Central

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-01-01

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181

  9. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  10. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  11. Reuse of steel slag in bituminous paving mixtures.

    PubMed

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Selected annotated bibliography of the geology of uraniferous and radioactive native bituminous substances, exclusive of coals, in the United States

    USGS Publications Warehouse

    Jones, Harriet Nell

    1956-01-01

    Native bituminous substances are divided into two groups, 1) bitumens and, 2) pyrobitumens. Bitumens are composed principally of hydrocarbons substantially free from oxygenated bodies, are fusible, and are soluble in carbon disulfide. Native bitumens occur in liquid and solid forms. The native liquid bitumens include all petroleums or crude oils. Native solid bitumens include native waxes such as ozocerite, asphalts or petroleum tars, and asphaltites such as gilsonite and grahamite. Pyrobitumens are composed principally of hydrocarbons which may contain oxygenated bodies. They are infusible and are insoluble, or nearly insoluble, in carbon disulfide. Native pyrobitumens are divided into an oxygen-containing group including peats, lignites, and coals, and an essentially oxygen-free, asphaltic group including such substances as wurtzilite, albertite, impsonite, and ingramite. Thucholites, which are carbonaceous substances that may contain uranium, thorium, and rare earths, commonly are considered to be pyrobitumens. Their compositions are variable and may fall into either the oxygen-containing or oxygen-free group. All varieties of native bituminous substances may be associated with mineral matter. The nomenclature of bitumens and pyrobitumens is used very loosely in the literature. This circumstance arises from the difficulty in recognizing many of these substances by visual examination, and because many of them can be identified accurately only by chemical methods. Inasmuch as some of the chemical procedures are time-consuming and satisfactory analytical methods have not been devised for all these substances, geologists generally have not obtained precise identifications but rather have used names that appeared most appropriate to the circumstances. It is expected that future research will show many substances called "asphaltite," "thucholite," etc., to be incorrectly identified. The nomenclature used by the authors of the various references of this bibliography is followed without deviation or further discussion. The stratigraphic nomenclature also is that used by the authors. In this bibliography emphasis is placed on reports dealing with the uranium contents and radioactivity of native bituminous substances rather than on mineralogical and chemical studies of these substances. The distribution of the substances described in the references is shown on the accompanying map. The indicated presence of these substances does not infer that they contain sufficient radioactive elements to constitute ores.

  13. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  14. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  15. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  16. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  17. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  18. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Residential Coal Combustion.

    PubMed

    Klein, Felix; Pieber, Simone M; Ni, Haiyan; Stefenelli, Giulia; Bertrand, Amelie; Kilic, Dogushan; Pospisilova, Veronika; Temime-Roussel, Brice; Marchand, Nicolas; El Haddad, Imad; Slowik, Jay G; Baltensperger, Urs; Cao, Junji; Huang, Ru-Jin; Prévôt, André S H

    2018-03-06

    Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kg coal for bituminous coals and are below 0.1 g/kg coal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.

  19. The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach.

    PubMed

    Sourty, E D; Tamminga, A Y; Michels, M A J; Vellinga, W-P; Meijer, H E H

    2011-02-01

    Selected carbon-rich refinery residues ('binders') mixed with mineral particles can form composite materials ('bituminous concrete') with bulk mechanical properties comparable to those of cement concrete. The microstructural mechanism underlying the remarkable composite properties has been related to the appearance of a rigid percolating network consisting of asphaltenes and mineral particles [Wilbrink M. et al. (2005) Rigidity percolation in dispersions with a structured visco-elastic matrix. Phys. Rev. E71, 031402]. In this paper, we explore the microstructure of thin binder films of varying thickness with a number of microscopic characterization techniques, and attempt to relate the observed microstructure to the distinctive mechanical behaviour. Two binders, only one of which has been proven to be suitable for bituminous concrete were investigated, and their microstructure compared. Both binders show the formation of asphaltene aggregates. The binder suitable for bituminous concrete is distinguished by the fact that the asphaltenes show a stronger tendency towards such aggregation, due to a higher concentration and less stabilization in the maltene phase. They also show a clear affinity to other species (such as waxes) and may act as nucleation sites for crystals and aggregates of those species. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  20. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  1. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  2. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  3. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  4. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  5. Proceedings: Fourteenth annual EPRI conference on fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-01

    EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less

  6. Investigation of hot mix asphalt mixtures at Mn/ROAD : final report

    DOT National Transportation Integrated Search

    1997-02-01

    This report presents the material characterization for the Minnesota Road Research Project (Mn/ROAD) bituminous materials. This effort will provide the historical base line information on properties needed for the validation of future pavement evalua...

  7. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Rui; Song, Min; Zhang, Shuai

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasifiedmore » with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)« less

  8. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  9. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  10. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari, A.; Geze, Y.

    The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount ofmore » organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.« less

  12. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    NASA Astrophysics Data System (ADS)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  13. Review of a bituminous concrete statistical specification : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    The statistically oriented specification for bituminous concrete production reviewed in this report was used as a basis for acceptance of more than one million tons of bituminous concrete in 1970. Data obtained from this system were analyzed for grad...

  14. Effect of baghouse fines on compaction of bituminous concrete.

    DOT National Transportation Integrated Search

    1981-01-01

    Four bituminous mixes were tested in the laboratory to determine the effect of variations in the concentration of baghouse fines on the density and tenderness of bituminous mixes. On the basis of results indicating that the gradation of baghouse fine...

  15. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    USGS Publications Warehouse

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  16. The effect of aggregate type and mix design on the wet skid resistance of bituminous pavement : recommendations for Virginia's Wet Accident Reduction Program.

    DOT National Transportation Integrated Search

    1995-01-01

    This report (1) identified and characterized Virginia's nonpolishing aggregates in terms of their wet skid resistance, (2) compared the standard ASTM E 274-90 skid test to the British Accelerated Polishing Machine (BAPM) and British PendulumTester (B...

  17. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  18. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  19. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  20. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  1. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  2. SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,

    1983-01-01

    An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.

  3. A reinterpretation of the δDH2O of inclusion fluids in contemporaneous quartz and sphalerite, Creede mining district, Colorodo: a generic problem for shallow orebodies?

    USGS Publications Warehouse

    Foley, Nora K.; Bethke, Philip M.; Rye, Robert O.

    1989-01-01

    The unusually high contrast between the salinities of the ore-depositing fluids and the ground water overlying the ore zone allowed recognition of this phenomenon at Creede. It is likely, however, that Creede is not unique. Similar phenomena may be common in shallow ore zones where rapid fluctuation of an interface between a deep, high-temperature thermal plume and an overlying, cooler ground water may be expected to occur. Careful study of the origins of fluid inclusions, particularly in quartz, is essential to characterize the primary ore fluids and to assess the role of ground water in the hydrology of shallow ore deposits.

  4. Cold in-place recycling characterization framework for single or multiple component binder systems

    NASA Astrophysics Data System (ADS)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated that cement SCBs yielded low cracking resistance, high rutting resistance, and lower costs. Emulsion SCBs yielded the opposite. MCBs demonstrated the ability to balance rutting, cracking, and economics. Overall, the universal framework presented appears promising as it could offer agencies flexibility and, in some cases, improved overall performance beyond that of current SCB design methods.

  5. Geological controls on refractory ore in an orogenic gold deposit, Macraes mine, New Zealand

    NASA Astrophysics Data System (ADS)

    Petrie, B. S.; Craw, D.; Ryan, C. G.

    2005-07-01

    The Macraes mine is hosted in an orogenic (mesothermal) gold deposit in metasedimentary rocks of the Otago Schist belt. Much gold occurs within altered schist with minimal silica-addition, and this study focuses on altered schist ore types. The unmineralized host schists are chemically and mineralogically uniform in composition, but include two end-member rock types: feldspathic schist and micaceous schist. Both rock types have undergone hydrothermal alteration along a shallow-dipping foliation-parallel shear zone, but their different rheological properties have affected the style of mineralisation. Micaceous schist has been extensively recrystallized and hydrothermally altered during ductile deformation, to form ores characterized by abundant, disseminated millimetre-scale pyrite cubes (typically 1 2 wt% S) and minor silicification. The earliest pyrite contained Ni and/or As in solid solution and no gold was imaged in these pyrites or later arsenopyrite grains. The ore type is refractory and gold recovery by cyanide leaching is less than 50%, with lowest recovery in rocks that have been less affected by later brittle deformation. In contrast, hydrothermally altered feldspathic schist is characterized by mineralised black microshears and veinlets formed during shear-zone related brittle deformation. Microsheared ore has relatively low sulphur content (<0.7 wt%) and muscovite has been illitised during hydrothermal alteration. Pyrite and arsenopyrite in microshears are fractured and deformed, and contain 1 10 μm blebs of gold. Later pyrite veinlets also contain micron- to submicron-scale inclusions of sphalerite, chalcopyrite, galena, and gold (≤10 microns). Gold in microsheared ore is more readily recoverable than in the refractory ore, although encapsulation of the fine gold grains inhibits cyanidation. Both microsheared ore and disseminated pyritic ore pass laterally into mineralised black shears, which contain hydrothermal graphite and late-stage cataclastic sulphides. This black, sheared ore releases gold readily, but the gold is then adsorbed on to gangue minerals (preg-robbed) and net cyanidation recovery can be less than 50%. Hence, low gold recovery during cyanidation results from (1) poor liberation of gold encapsulated in microcrystalline quartz and unfractured sulphide grains, and (2) preg-robbing of liberated gold during cyanidation. Introduction of pressure-oxidation of ore prior to cynidation has mitigated these issues.

  6. Experimental characterization of elastomeric O-rings as reusable seals for mass spectrometric measurements: Application to in situ K-Ar dating on Mars

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Kameda, Shingo; Okuno, Mamoru; Horiuchi, Misa; Shibasaki, Kazuo; Wagatsuma, Ryo; Aida, Yusuke; Miura, Yayoi N.; Yoshioka, Kazuo; Okazaki, Ryuji; Sugita, Seiji

    2017-10-01

    Mass spectrometry has been widely used in lander missions to characterize the volatiles in rocks and soils on planetary surfaces. A good vacuum seal is very important for introducing such solid samples to a vacuum chamber and ejecting them. However, multiple measurements require many metal gaskets, leading to extra weight and complexity for the instruments. In this study, we investigate the capability of three kinds of elastomeric O-rings (Viton, Nexus-SLT, and Nexus-FV) as vacuum seals for mass spectrometric measurements, particularly for in situ K-Ar dating on Mars. First, thermal cycle tests revealed that low-temperature-resistant O-rings can maintain pressure <10-5 Pa at -60 °C under 1 bar ambient pressure, whereas Viton O-rings leaked at -25 °C. Then, the amount of 40Ar due to outgassing from the O-rings and permeation under the ambient pressure of 650 Pa or 3 Pa was measured and compared with the amounts of 40Ar that a flight-equivalent laser would liberate from potential target Martian rocks. The measured amounts were <1% of that a target rock with 5000 ppm K2O and an age of 4.2 Ga would yield. These results suggest that a Viton O-ring can maintain the Ar blank low under the Mars atmospheric pressure when temperatures are higher than -25 °C. A double O-ring seal using the low-temperature-resistant elastomers would be an alternative approach at lower temperatures. The elastomeric O-rings would be useful for constructing a small and light-weighted mass spectrometric instrument for in situ K-Ar dating on Mars.

  7. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zhang, Y.; Liu, Gaisheng; Chou, C.-L.; Wang, L.; Kang, Y.

    2007-01-01

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 ??g/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. ?? 2007 Zhang et al; licensee BioMed Central Ltd.

  8. Benthic and Plankton Foraminifers in Hydrothermally Active Zones of the Mid-Atlantic Ridge (MAR)

    NASA Astrophysics Data System (ADS)

    Khusid, T. A.; Os'kina, N. S.; Lukashina, N. P.; Gablina, I. F.; Libina, N. V.; Matul, A. G.

    2018-01-01

    Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic-plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.

  9. Occurrence of silver minerals in a silver-rich pocket in the massive sulfide zinc-lead ores in the Edwards mine, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serviss, C.R.; Grout, C.M.; Hagni, R.D.

    1985-01-01

    Ore microscopic examination of uncommon silver-rich ores from the Edwards mine has detected three silver minerals, native silver, freibergite, and argentite, that were previously unreported in the literature from the Balmat-Edwards district. The zinc-lead ore deposits of the Balmat-Edwards District in northern New York are composed of very coarse-grained massive sulfides, principally sphalerite, galena, and pyrite. The typical ores contain small amounts of silver in solid solution galena. Galena concentrates produced from those ores have contained an average of 15 ounces of silver per ton of 60% lead concentrates. In contrast to the typical ore a silver-rich pocket, that measuredmore » three feet by three feet on the vertical mine face and was the subject of this study, contained nearly 1% silver in a zinc ore. Ore microscopic study shows that this ore is especially characterized by abundant, relatively fine-grained chalcopyrite with anhedral pyrite inclusions. Fine-grained sphalerite, native silver, argentite, freibergite and arsenopyrite occur in association with the chalcopyrite and as fracture-fillings in gangue minerals. Geochemically anomalous amounts of tin, barium, chromium, and nickel also are present in the silver-rich pocket. The silver-rich pocket may mark the locus of an early feeder vent or alternatively it may record a hydrothermal event that was superimposed upon the event responsible for the metamorphic ore textures.« less

  10. Losses due to weather phenomena in the bituminous concrete construction industry in Wisconsin

    NASA Technical Reports Server (NTRS)

    Kuhn, H. A. J.

    1973-01-01

    The losses (costs) due to weather phenomena as they affect the bituminous concrete industry in Wisconsin were studied. The bituminous concrete industry's response to precipitation, in the form of rain, is identified through the use of a model, albeit crude, which identifies a typical industry decision-response mechanism. Using this mechanism, historical weather data and 1969 construction activity, dollar losses resulting from rain occurrences were developed.

  11. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Wang; Jianmin Wang; Yulin Tang

    2009-05-15

    Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less

  12. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    NASA Astrophysics Data System (ADS)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  13. Beneficiation and leaching study of a muti-Au carrier and low grade refractory gold ore

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Song, Y. S.; Chen, Y.; Cai, L. L.; Zhou, G. Y.

    2017-09-01

    Detailed mineralogy and beneficiation and leaching study of a muti-Au carrier, low grade refractory gold ore from a beneficiation plant in Henan Province, China, was investigated. Mineral liberation analysis, scanning electron microscopy, element phase analysis and etc. by a mineral liberation analyser were used for mineralogical characterization study of this ore. The present work describes an experimental study on the effect of traditional parameters (such as grinding fineness and reagent regimes), middling processing method and flowsheet construction on the total recovery and the assay of the floatation concentrate. Two-step floatation and part of middling combined to the floatation tailing for gold leaching process resulted in high gold grade (g.t-1) and gold recovery (%) for this refractory gold ore. This process opens the possibilities of maximizing Au grade and recoveries in a muti-Au carrier and low grade refractory gold ore where low recoveries are common.

  14. Speciation of arsenic in pyrite by micro-X-ray absorption fine- structure spectroscopy (XAFS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paktunc, D.

    2008-09-30

    Pyrite (FeS2) often contains variable levels of arsenic, regardless of the environment of formation. Arsenian pyrite has been reported in coals, sediments and ore deposits. Arsenian pyrite having As concentrations of up to 10 wt % in sedimentary rocks (Kolker et al. 1997), about 10 wt% in gold deposits (Fleet et al. 1993), 12 wt % in a refractory gold ore (Paktunc et al. 2006) and 20 wt % in a Carlin-type gold deposit in Nevada (Reich et al. 2005) have been reported. Arsenian pyrite is the carrier of gold in hydrothermal Carlin-type gold deposits, and gold concentrations of upmore » to 0.9 wt % have been reported (Reich et al. 2005; Paktunc et al. 2006). In general, high Au concentrations correlate with As-rich zones in pyrite (Paktunc et al. 2006). Pyrite often ends up in mining and metallurgical wastes as an unwanted mineral and consititutes one of the primary sources of As in the wastes. Arsenic can be readily released to the environment due to rapid oxidative dissolution of host pyrite under atmospheric conditions. Pyrite is also the primary source of arsenic in emissions and dust resulting from combustion of bituminous coals. Despite the importance of arsenian pyrite as a primary source of anthropogenic arsenic in the environment and its economic significance as the primary carrier of gold in Carlin-type gold deposits, our understanding of the nature of arsenic in pyrite is limited. There are few papers dealing with the mode of occurrence of arsenic by bulk XAFS in a limited number of pyrite-bearing samples. The present study documents the analysis of pyrite particles displaying different morphologies and a range of arsenic and gold concentrations to determine the nature and speciation of arsenic.« less

  15. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties ofmore » the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.« less

  16. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement

    NASA Astrophysics Data System (ADS)

    Bańkowski, Wojciech; Król, Jan; Gałązka, Karol; Liphardt, Adam; Horodecka, Renata

    2018-05-01

    Recycling of bituminous pavements is an issue increasingly being discussed in Poland. The analysis of domestic and foreign experience indicates a need to develop this technology in our country, in particular the hot feeding and production technologies. Various steps are being taken in this direction, including research projects. One of them is the InnGA project entitled: “Reclaimed asphalt pavement: Innovative technology of bituminous mixtures using material from reclaimed asphalt pavement”. The paper presents the results of research involving the design of bituminous mixtures in accordance with the required properties and in excess of the content of reclaimed asphalt permitted by the technical guidelines. It presents selected bituminous mixtures with the content of RAP of up to 50% and the results of tests from verification of industrial production of those mixtures. The article discusses the details of the design process of mixtures with a high content of reclaimed asphalt, the carried out production tests and discusses the results of tests under the verification of industrial production. Testing included basic tests according to the Polish technical requirements of WT- 2 and the extended functional testing. The conducted tests and analyses helped to determine the usefulness of the developed bituminous mixtures for use in experimental sections and confirmed the possibility of using an increased amount of reclaimed asphalt up to 50% in mixtures intended for construction of national roads.

  17. Provincial variation of carbon emissions from bituminous coal: Influence of inertinite and other factors

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.

    2002-01-01

    We observe a 1.3 kg C/net GJ variation of carbon emissions due to inertinite abundance in some commercially available bituminous coal. An additional 0.9 kg C/net GJ variation of carbon emissions is expected due to the extent of coalification through the bituminous rank stages. Each percentage of sulfur in bituminous coal reduces carbon emissions by about 0.08 kg C/net GJ. Other factors, such as mineral content, liptinite abundance and individual macerals, also influence carbon emissions, but their quantitative effect is less certain. The large range of carbon emissions within the bituminous rank class suggests that rank- specific carbon emission factors are provincial rather than global. Although carbon emission factors that better account for this provincial variation might be calculated, we show that the data used for this calculation may vary according to the methods used to sample and analyze coal. Provincial variation of carbon emissions and the use of different coal sampling and analytical methods complicate the verification of national greenhouse gas inventories. Published by Elsevier Science B.V.

  18. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    Minerals and fluid-inclusion populations were examined using petrography, microthermometry, quadrupole mass-spectrometer gas analyses and stable-isotope studies to characterize fluids responsible for gold mineralization at the Getchell Carlin-type gold deposit. The gold-ore assemblage at Getchell is superimposed on quartz-pyrite vein mineralization associated with a Late-Cretaceous granodiorite stock that intruded Lower-Paleozoic sedimentary rocks. The ore assemblage, of mid-Tertiary age, consists of disseminated arsenian pyrite that contains submicrometer gold, jasperoid quartz, and later fluorite and orpiment that fill fractures and vugs. Late ore-stage realgar and calcite enclose ore-stage minerals. Pre-ore quartz trapped fluids with a wide range of salinities (1 to 21 wt.% NaCl equivalent), gas compositions (H2O, CO2, and CH4), and temperatures (120 to >360??C). Oxygen- and hydrogen-isotope ratios indicate that pre-ore fluids likely had a magmatic source, and were associated with intrusion of the granodiorite stock and related dikes. Ore-stage jasperoid contains moderate salinity, aqueous fluid inclusions trapped at 180 to 220??C. Ore fluids contain minor CO2 and trace H2S that allowed the fluid to react with limestone host rocks and transport gold, respectively. Aqueous inclusions in fluorite indicate that fluid temperatures declined to ~175??C by the end of ore-stage mineralization. As the hydrothermal system collapsed, fluid temperatures declined to 155 to 115??C and realgar and calcite precipitated. Inclusion fluids in ore-stage minerals have high ??D(H2O) and ??18O(H2O) values that indicate that the fluid had a deep source, and had a metamorphic or magmatic origin, or both. Late ore-stage fluids extend to lower ??D(H2O) values, and have a wider range of ??18O(H2O) values suggesting dilution by variably exchanged meteoric waters. Results show that deeply sourced ore fluids rose along the Getchell fault system, where they dissolved carbonate wall rocks and deposited gold-enriched pyrite and jasperoid quartz. Gold and pyrite precipitated together as H2S in the ore fluids reacted with iron in the host rocks. As ore fluids mixed with local aquifer fluids, ore fluids became cooler and more dilute. Cooling caused precipitation of ore-stage fluorite and orpiment, and late ore-stage realgar. Phase separation and/or neutralization of the ore fluid during the waning stages of the hydrothermal ore system led to deposition of late ore-stage calcite.

  19. Coal desulfurization by low temperature chlorinolysis, phase 1

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.

    1977-01-01

    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.

  20. The Other-Race Effect in Infancy: Evidence Using a Morphing Technique

    ERIC Educational Resources Information Center

    Hayden, Angela; Bhatt, Ramesh S.; Joseph, Jane E.; Tanaka, James W.

    2007-01-01

    Human adults are more accurate at discriminating faces from their own race than faces from another race. This "other-race effect" (ORE) has been characterized as a reflection of face processing specialization arising from differential experience with own-race faces. We examined whether 3.5-month-old infants exhibit ORE using morphed faces on which…

  1. The Role of Experience during Childhood in Shaping the Other-Race Effect

    ERIC Educational Resources Information Center

    de Heering, Adelaide; de Liedekerke, Claire; Deboni, Malorie; Rossion, Bruno

    2010-01-01

    It is well known that adults' face recognition is characterized by an "other-race effect" (ORE; see Meissner & Brigham, 2001), but few studies have investigated this ORE during the development of the face processing system. Here we examined the role of experience with other-race faces during childhood by testing a group of 6- to…

  2. Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco)

    NASA Astrophysics Data System (ADS)

    Hajjar, Zaineb; Gervilla, Fernando; Essaifi, Abderrahim; Wafik, Amina

    2017-08-01

    The Beni Bousera ultramafic massif (Internal Rif, Morocco) is characterized by the presence of two types of small-scale magmatic mineralizations (i) a mineralization consisting mainly of chromite and Ni arsenides associated to orthopyroxene and cordierite (Cr-Ni ores), and (ii) a mineralization mainly composed of magmatic Fe-Ni-Cu sulfides containing variable amounts of graphite and chromite associated to phlogopite, clinopyroxène and plagioclase (S-G ores). Theses ores underwent High-T (450-550 °C) and Low-T (150-300 °C) alteration processes. The High-T alteration processes are tentatively related to intrusion of leucogranite dykes. They are preserved in the Galaros Cr-Ni ore deposit where nickeline is partly dissolved and transformed to maucherite, and orthopyroxene alters to phlogopite. Ni and Co were mobilized to the fluid phase, rising up their availability and promoting their diffusion into chromite and phlogopite, which have significantly higher contents in Ni and Co in phlogopite-rich ores than in orthopyroxene- and nickeline-rich ones. The Low-T alteration processes are related to serpentinization/weathering spatially associated with a regional shear zone. They affected both the Cr-Ni and S-G ores. In the Cr-Ni ores, Ni-arsenides were completely leached out while chromite is fractured within a matrix of chlorite, vermiculite and Ni-rich serpentine. In S-G ores, the silicates were altered into amphibole, Fe-rich chlorite and pectolite in clinopyroxene- and plagioclase-bearing ores while sulfides were completely leached out in phlogopite-bearing ores where iron oxides and hydroxides, and Fe-rich vermiculite were deposited. Chromite composition is not affected by the Low-T alteration processes.

  3. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  4. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: An example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada

    USGS Publications Warehouse

    Mastalerz, Maria; Bustin, R.M.

    1996-01-01

    The applicability of the reflectance micro-Fourier Transform infra-red spectroscopy (FTIR) technique for analyzing the distribution of functional groups in coal macerals is discussed. High quality of spectra, comparable to those obtained using other FTIR techniques (KBr pellet and transmission micro-FTIR), indicate this technique can be applied to characterizing functional groups under most conditions. The ease of sample preparation, the potential to analyze large intact samples, and ability to characterize organic matter in areas as small as 20 ??m are the main advantages of reflectance micro-FTIR. The quantitative aspects of reflectance micro-FTIR require further study. The examples from the coal seams of the Mist Mountain Formation, British Columbia show that at high volatile bituminous rank, reflectance micro-FTIR provides valuable information on the character of aliphatic chains of vitrinite and liptinite macerals. Because the character of aliphatic chains influences bond disassociation energies, such information is useful from a hydrocarbon generation viewpoint. In medium volatile bituminous coal liptinite macerals are usually not detectable but this technique can be used to study the degree of oxidation and reactivity of vitrinite and semifusinite.

  5. Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Honghao, E-mail: honghaoyu@hotmail.com; College of Material Science and Engineering, Shenyang Ligong University, Shenyang, 110168; Xue Xiangxin

    2009-11-15

    Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.

  6. Design of bituminous mixes with high skid resistance.

    DOT National Transportation Integrated Search

    1979-01-01

    Certain highway locations need exceptionally high skid resistance because of the alignment, geometry, and drainage of the roadway and the complex turning maneuvers required. Several beam specimens made of bituminous mixes incorporating unconventional...

  7. Blended aggregate bituminous mixes.

    DOT National Transportation Integrated Search

    1975-01-01

    Virginia has provided skid resistant pavements in the limestone area of the state by placing thin overlays of sand mixes incorporating local materials, by sprinkling highly skid resistant aggregates on limestone bituminous mixes prior to rolling, and...

  8. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  9. Upgrading nickel content of limonite nickel ore through pelletization, selective reduction and magnetic separation

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Prasetyo, A. B.; Prasetiyo, Puguh

    2018-04-01

    Limonite nickel ore has potency to utilize as raw material for ferronickel or nickel matte, since it has low grade nickel content, thus process development is needed to find the acceptable process for upgrading nickel. The aim of this research is to determine upgrading of Ni content as result of selective reduction of limonite nickel pellet continued by magnetic separation as effect of temperature and time reduction as well as coal and CaSO4 addition. There are four steps to perform this research, such as preparation including characterization of raw ore and pelletization, selective reduction, magnetic separation and characterization of products by using AAS, XRD and SEM. Based on the result study, pellet form can upgrade 77.78% higher than powder form. Upgrading of Ni and Fe content was up to 3fold and 1.5fold respectively from raw ore used when reduced at 1100°C for 60 minutes with composition of coal and CaSO4, both 10%. The excess of CaSO4 addition caused fayalite formation. Moreover, S2 from CaSO4 also support to reach low melting point and enlardge particle size of metal formed.

  10. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    NASA Astrophysics Data System (ADS)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  11. Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska

    USGS Publications Warehouse

    Morelli, R.M.; Creaser, R.A.; Selby, D.; Kelley, K.D.; Leach, D.L.; King, A.R.

    2004-01-01

    The Red Dog sediment-hosted deposit in the De Long Mountains of northern Alaska is the largest Zn producer in the world. Main stage mineralization is characterized by massive sulfide ore and crosscutting subvertical veins. Although the vein mineralization is clearly younger than the massive ore, the exact temporal relationship between the two is unclear. Re-Os geochronology of pyrite is used to determine the absolute age of main stage ore at Red Dog. A 10-point isochron on both massive and vein pyrite yields an age of 338.3 ?? 5.8 Ma and is interpreted to represent the age of main stage ore. The Re-Os data indicate that both massive and vein ore types are coeval within the resolution of the technique. Formation of the Red Dog deposit was associated with extension along a passive continental margin, and therefore the Re-Os age of main stage ore constrains the timing of rifting as well as the age of the host sedimentary rocks. Sphalerite from both massive and vein ore yields imprecise ages and shows a high degree of scatter compared to pyrite. We suggest that the Re-Os systematics of sphalerite can be disturbed and that this mineral is not reliable for Re-Os geochronology. ?? 2004 by Economic Geology.

  12. Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives

    NASA Astrophysics Data System (ADS)

    Lüders, Volker

    2017-06-01

    During the past two decades, several studies of fluid inclusions hosted in some opaque ore minerals using near-infrared microscopy have been performed. Results indicated that this method can be applied to several sulfidic ores and metal oxides depending on their electronic band structures and infrared-active vibration modes. Infrared transmittance of individual ore minerals can be best characterized using Fourier transform infrared spectroscopy. Infrared microscopic observations are limited to the near-infrared region to about 2.3 μm depending on the IR sensitivity of the IR camera. The trace element content in ore minerals can be another limiting factor for optical observations in near-infrared light. Still, IR transmittance gradually decreases upon heating caused by shifting of IR absorption edges for higher wavelengths. Possibilities and limitations of studying fluid inclusions hosted in opaque minerals by near-infrared light microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are discussed.

  13. Geochemical Peculiarities of Galena and Sphalerite from Polymetallic Deposits of the Dal'negorskii Ore Region (Primorsky Krai, Russia)

    NASA Astrophysics Data System (ADS)

    Rogulina, L. I.; Moiseenko, V. G.; Ponomarchuk, V. A.

    2018-04-01

    New data on the composition of the major minerals from the skarn and vein polymetallic deposits of the Dal'negorskii ore region are reported. Analysis of galena and sphalerite was carried out by the X-ray fluorescent energy-dispersive method of synchrotron radiation for the first time. It is shown that the minor elements in major minerals of different deposits are typomorphic. Among these elements are Fe, Cu, Ni, Cd, Ag, Sn, and Sb, as well as In in sphalerite and Te in galena. The high concentrations of Ag, Cu, Te, Cd, and In in the extracted minerals indicate the complex character of mineralization. The compositional patterns of ore minerals characterize the sequence of mineral formation from the skarn to vein ores, and the sequence of deposits from the mesothermal to epithermal conditions. This provides geochemical evidence for the stage model of the formation of mineralization in the Dal'negorskii ore region.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcu, H.; Toroglu, I.; Piskin, S.

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  15. Product evaluation : bituminous pavement rejuvenator

    DOT National Transportation Integrated Search

    1986-07-03

    This report contains a product evaluation of K.A.E. Paving Consultant's Bituminous Pavement Rejuvenator (BPR). BPR is a coal tar product consisting of a low viscosity blend of aromatic oils designed to penetrate the asphalt, and rejuvenate and plasti...

  16. Design of bituminous surface mixes with high skid resistance.

    DOT National Transportation Integrated Search

    1974-01-01

    The Virginia Highway Research Council has proposed a study of the skid resistance of bituminous surfaces incorporating relatively hard and expensive aggregates. The hardness of the aggregates to be used aluminum oxide (Exolon) and calcined kaolin -- ...

  17. Reexamination of cold weather paving specifications for bituminous concrete.

    DOT National Transportation Integrated Search

    1978-01-01

    The cold weather paving specification for bituminous concrete adopted in 1970 was reexamined to determine its effectiveness and any need for revisions. Density and temperature measurements were obtained on five field projects and observations were ma...

  18. Aerobic Biofilms Grown from Athabasca Watershed Sediments Are Inhibited by Increasing Concentrations of Bituminous Compounds

    PubMed Central

    Lawrence, John R.; Sanschagrin, Sylvie; Roy, Julie L.; Swerhone, George D. W.; Korber, Darren R.; Greer, Charles W.

    2013-01-01

    Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per μm2, 68% less cyanobacterial biomass per μm2, 64% less algal biomass per μm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds. PMID:24056457

  19. Trees for strip-mined lands

    Treesearch

    George Hart; William R. Byrnes

    1960-01-01

    Open-pit or strip mining has become an important method of mining bituminous coal in Pennsylvania. In 1958 some 19.5 million tons of soft coal - 29 percent of the total bituminous production in the State - were produced by this method.

  20. Cold weather paving requirements for bituminous concrete.

    DOT National Transportation Integrated Search

    1973-01-01

    Cold weather paving specifications were developed from work by Corlew and Dickson, who used a computer solution to predict the cooling rate of bituminous concrete. Virginia had used a minimum atmospheric temperature as a criterion; however, it was ev...

  1. An evaluation of bituminized fiber pipe culverts.

    DOT National Transportation Integrated Search

    1970-01-01

    This report describes the results to date in a limited study, including laboratory tests and field evaluations, of the suitability of bituminized fiber pipe for use as highway culverts. Crushing strength data obtained from three-edge bearing tests in...

  2. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB) in the north, as well as the Southeastern Coast porphyry-skarn Cu-Mo-Au ore belt (SCB) recognized in South China in this paper, we propose that the latest Jurassic to earliest Cretaceous granitoids and associated ores were formed during a tearing of the subducting Izanagi slab. This tearing of the subduction slab caused the upwelling of asthenosphere and the resulting mantle-crust interaction. The granitoid-related W ore systems in JNB resulted from the remelting of the Proterozoic crust. The mafic-ultramafic volcanic rocks of the Shuangqiaoshan Group intercalated with phyllite and slate, ophiolitic mélange and magmatic arc rocks, mainly comprising I-type granite, basalt, andesite, rhyolite, pyroclastics, together with subduction-related metasomatized lithospheric mantle, would have provided additional mantle material. In this case, the partial melting of rocks of the Shuangqiaoshan Group can produce S-, I- and transitional type granitoids. After strong differentiation it formed tungsten-bearing granitoids characterized by enrichment of high alkali, silicon and volatile components. In the Yangchuling mine area the small monzogranitic porphyry stock has stronger fractionation, volatile content and ore-forming components than the older granodiorite, resulting in the development of the porphyry W-Mo ore system.

  3. Investigation of asphalt content design for open-graded bituminous mixes.

    DOT National Transportation Integrated Search

    1974-01-01

    Several design procedures associated with determining the proper asphalt content for open-graded bituminous mixes were investigated. Also considered was the proper amount of tack coat that should be placed on the old surface prior to paving operation...

  4. Effect of antistripping additives on the compaction of bituminous concrete.

    DOT National Transportation Integrated Search

    1981-01-01

    The objective of this investigation was to determine the effect of antistripping additives on the compaction of bituminous concrete. To do this, the densities obtained on test sections with and without additive were compared. Comparisons of nuclear d...

  5. Effect of temperature in the selective reduction process of limonite nickel ore

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Febriana, Eni; Prasetyo, A. B.

    2018-05-01

    Temperature is the main factor for the reduction process that influence to reduction degree, phase and morphology transformation. In order to determine these effects which is caused by reduction temperature, this study was conducted. Limoniticnickel ore was prepared by drying and size reduction. A part of prepared limonitewas characterized with XRF to determine the chemical composition. The other part was mixed with reducing agent and CaSO4 to produce pellet. A series of selective reduction processes were conducted to the pellet by using graphite crucible in the muffle furnace carbolite at 800° - 1100°C for 60 minutes. Reduced ore characterized by using XRD and SEM analysis. Based on the result study, weight loss and reduction degree increase as temperature raised along with CaSO4 addition. Moreover, it caused decomposition and transformation to the metallic phase of kamacite and iron up to 7.51% and 41.44% respectively in the reduction process at 1100°C for 60 minutes. Furthermore, particle size growth as metallic phase content increased.

  6. Vibratory compaction of bituminous concrete -- where does it stand?.

    DOT National Transportation Integrated Search

    1974-01-01

    A questionnaire concerning the specifications on the use of vibratory rollers on bituminous concrete was sent to the 50 state highway agencies. All 50 agencies replied, and many indicated that their specs were in a state of change. The report present...

  7. Installation report : thick lift bituminous base : construction and materials phase.

    DOT National Transportation Integrated Search

    1972-01-01

    During the 1970 construction season, the Basic Construction Company of Newport News, laid a 9-inch bituminous concrete base course in a single lift directly on an unimproved subgrade on a section of Route 31 just southwest of Williamsburg, as specifi...

  8. Beneficiation of the gold bearing ore by gravity and flotation

    NASA Astrophysics Data System (ADS)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  9. Natural manganese ore catalyst for low-temperature selective catalytic reduction of NO with NH3 in coke-oven flue gas.

    PubMed

    Zhu, Baozhong; Yin, Shoulai; Sun, Yunlan; Zhu, Zicheng; Li, Jiaxin

    2017-11-01

    Different types of manganese ore raw materials were prepared for use as catalysts, and the effects of different manganese ore raw materials and calcination temperature on the NO conversion were analyzed. The catalysts were characterized by XRF, XRD, BET, XPS, H 2 -TPR, NH 3 -TPD, and SEM techniques. The results showed that the NO conversion of calcined manganese ore with a Mn:Fe:Al:Si ratio of 1.51:1.26:0.34:1 at 450 °C reached 80% at 120 °C and 98% at 180~240 °C. The suitable proportions and better dispersibility of active ingredients, larger BET surface area, good reductibility, a lot of acid sites, contents of Mn 4+ and Fe 3+ , and surface-adsorbed oxygen played important roles in improving the NO conversion.

  10. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wang, Gongwen; Santosh, M.; Yang, Fan; Shen, Zhiwei; Kong, Liang; Guo, Nana; Zhang, Xuhuang; Jia, Wenjuan

    2018-05-01

    The Luanchuan ore fields form part of the East Qinling metallogenic belt in central China. In this study, we compare two ore-bearing intrusions, the Shibaogou granitic pluton (SBG) and the Zhongyuku granitic pluton (ZYK), with the ore-barren Laojunshan intrusion (LJS) from the Luanchuan ore field. Geochemically, all the three intrusions are characterized by high-Si, high-K, and alkalis, together with moderate-ASI, exhibiting I-type granite features. The rocks, especially the ore-related plutons also show enrichment in LREEs. Mineral chemistry of biotite from the intrusions exhibits similar features of high Si and Mg, and low Al and Fe. Zircon grains from the ZYK intrusion yielded a U-Pb age of 149.6 ± 2.4 Ma. The zircon grains show εHf (t) values and two stage model ages (TDM2) in the range of -16.8 to -19.7 and 1998-2156 Ma respectively. The biotite composition and Hf isotopic data indicate that the magma was derived by re-melting of deep crustal material with minor input of mantle components. We evaluate the results to understand the physico-chemical conditions, petrogenesis, and tectonic setting, and their implications for mineral exploration. The ore-bearing plutons show wide ranges of temperature and oxygen fugacity, favoring Mo-W mineralization. In addition, estimates on pressure and depth of emplacement suggest that lower solidification pressure in a decompressional setting contributed to the evolution of magmatic hydrothermal deposits. Our data suggest that the ZYK has the highest potential for Mo-W mineralization. The ore-bearing plutons of ZYK and SBG were formed in a transitional tectonic setting from compression to extension, with the large-scale metallogeny triggered by slab melts at ca. 145 Ma. However, the ore-barren LJS batholith formed in an extension-related geodynamic setting at ∼115 Ma. Our study shows that different tectonic settings and consequent physico-chemical conditions dictated the ore potential of the intrusions in the Luanchuan ore district.

  11. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  13. An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2003-01-01

    Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.

  14. Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China

    PubMed Central

    SHEN, Guofeng; TAO, Shu; Chen, Yuanchen; Zhang, Yanyan; Wei, Siye; Xue, Miao; Wang, Bin; WANG, Rong; LV, Yan; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Han

    2014-01-01

    Emission characterization of polycyclic aromatic hydrocarbons (PAHs) from residential combustion of crop residues, woody material, coal, and biomass pellets in domestic stoves in rural China are compared in term of emission factors (EFs), influencing factors, composition profiles, isomer ratios and phase distributions. The EFs of PAHs vary by two orders of magnitude among fuel types suggesting that a detailed fuel categorization is useful in the development of an emission inventory and potential in emission abatement of PAHs by replacing dirty fuels with relatively cleaner ones. The influence of fuel moisture in biomass burning is non-linear. Biofuels with very low moisture display relatively high emissions as do fuels with very high moisture. Bituminous coals and brushwood yield relatively large fractions of high molecular PAHs. The emission factor of Benzo(a)pyrene equivalent quantity for raw bituminous coal is as high as 52 mg/kg, which is 1–2 orders of magnitude higher than the other fuels. For source diagnosis, high molecular weight isomers are more informative than low molecular weight ones and multiple ratios could be used together whenever possible. PMID:24245776

  15. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun

    2017-07-01

    In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  17. Sawing and sealing joints in bituminous pavements to control cracking

    DOT National Transportation Integrated Search

    1996-03-01

    The practice of sawing and sealing joints in pavements is not a new one. In fact, it is common practice in the construction of jointed Portland Cement Concrete (PCC) pavements. The idea of sawing and sealing joints in bituminous pavements is much les...

  18. Use of carbon black in bituminous concrete in Virginia.

    DOT National Transportation Integrated Search

    1981-01-01

    In an attempt to verify the claim that the addition of carbon black to bituminous concrete increases its stability and performance, a test section placed on a deformed bridge deck surface near Altavista and one on Route 360 near Richmond are being ev...

  19. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu

    2014-10-01

    Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Experimental Study on the Coupling Mechanism of Early-strength Backfill and Rock

    NASA Astrophysics Data System (ADS)

    Wang, Mingxu

    2017-11-01

    In order to study the interaction mechanism between the ore rock and backfill at the early stage, paraffin is chosen as the cementing agent. Based on the damage mechanics and fractal theory, the interaction mechanism between the ore rock and backfill is characterized by the relevant tests on the complex of proportioned ore rock and backfill with resistance strain gauge, crack propagation, microscopic imaging and AE. The experimental results showed that: 1) Through the axial loading test, compared with the early strength of the cemented filling and paraffin mechanical deformation characteristics, the stress and strain curves of the two had a common linear deformation law, while in the early strength of the filling elastic capacity strong, with a certain degree of resilience. 2) The bearing capacity of the backfill was weak, but the deformation ability was strong. During the bearing process, the deformation of the upper load was mainly caused by the ore rock, which leaded to the damage of the rock. 3) The distribution of AE points during the co-carrying of the filling and the ore rock was monitored by the acoustic emission instrument. The damage occurred mainly in the contact zone between the backfill and the ore rock zone. The corresponding AE point distribution also validated the crack happening.

  1. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  2. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  3. Development of performance-based guidelines for selection of bituminous-based hot-poured pavement crack sealant : an executive summary report.

    DOT National Transportation Integrated Search

    2009-01-01

    This report summarizes research presented in separate technical reports, papers, and journal articles that collectively document the development of a systematic process to aid in the selection of appropriate bituminous hot-poured sealants for pavemen...

  4. Liquefaction of sub-bituminous coal

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1986-01-01

    Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.

  5. Critical Elements in Fly Ash from the Combustion of Bituminous Coal in Major Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Bielowicz, Barbara; Botor, Dariusz; Misiak, Jacek; Wagner, Marian

    2018-03-01

    The concentration of critical elements, including such REE as Fe, Co, W, Zn, Cr, Ni, V, Mn, Ti, Ag, Ga, Ta, Sr, Li, and Cu, in the so-called fly ash obtained from the 9 Polish power plants and 1 thermal power station has been determined. The obtained values, compared with the global average concentration in bituminous coal ash and sedimentary rocks (Clarke values), have shown that the enrichment of fly ash in the specified elements takes place in only a few bituminous coal processing sites in Poland. The enrichment factor (EF) is only slightly higher (the same order of magnitude) than the Clarke values. The enrichment factor in relation to the Clarke value in the Earth's crust reached values above 10 in all of the examined ashes for the following elements: Cr, Ni, V, W, and, in some ash samples, also Cu and Zn. The obtained values are low, only slightly higher than the global average concentrations in sedimentary rocks and bituminous coal ashes. The ferromagnetic grains (microspheres) found in bituminous coal fly ashes seem to be the most economically prospective in recovery of selected critical elements. The microanalysis has shown that iron cenospheres and plerospheres in fly ash contain, in addition to enamel and iron oxides (magnetite and hematite), iron spinels enriched in Co, Cr, Cu, Mn, Ni, W, and Zn.

  6. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  7. Treatments for clays in aggregates used to produce cement concrete, bituminous materials, and chip seals : technical report.

    DOT National Transportation Integrated Search

    2013-07-01

    The clay contamination of coarse and fine aggregates and its effects on pavement performance of portland cement concrete, bituminous mixes and chip seals is a major concern for Texas Department of Transportation. We proposed (i) to determine what typ...

  8. Study of bituminous surface treatments in Virginia : Phase II, Summer, 1964 : Distribution characteristics of materials, effectiveness of one size aggregate, setting time.

    DOT National Transportation Integrated Search

    1970-01-01

    Distribution Characteristics of Materials: Ten bituminous distributors and ten chip spreading operations were investigated the former by cotton pad, cup, and trough tests; the latter by measuring the distance covered by a truckload and by placing pan...

  9. INVESTIGATION OF PRIMARY FINE PARTICULATE MATTER FROM COAL COMBUSTION BY COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...

  10. Lead in the Getchell-Turquoise ridge Carlin-type gold deposits from the perspective of potential igneous and sedimentary rock sources in Northern Nevada: Implications for fluid and metal sources

    USGS Publications Warehouse

    Tosdal, R.M.; Cline, J.S.; Fanning, C.M.; Wooden, J.L.

    2003-01-01

    Lead isotope compositions of bulk mineral samples (fluorite, orpiment, and realgar) determined using conventional techniques and of ore-stage arsenian pyrite using the Sensitive High Resolution Ion-Microprobe (SHRIMP) in the Getchell and Turquoise Ridge Carlin-type gold deposits (Osgood Mountains) require contribution from two different Pb sources. One Pb source dominates the ore stage. It has a limited Pb isotope range characterized by 208Pb/206Pb values of 2.000 to 2.005 and 207Pb/206Pb values of 0.8031 to 0.8075, as recorded by 10-??m-diameter spot SHRIMP analyses of ore-stage arsenian pyrite. These values approximately correspond to 206Pb/204Pb of 19.3 to 19.6, 207Pb/204Pb of 15.65 to 15.75, and 208Pb/204Pb of 39.2 to 39.5. This Pb source is isotopically similar to that in average Neoproterozoic and Cambrian elastic rocks but not to any potential magmatic sources. Whether those clastic rocks provided Pb to the ore fluid cannot be unequivocally proven because their Pb isotope compositions over the same range as in ore-stage arsenian pyrite are similar to those of Ordovician to Devonian siliciclastic and calcareous rocks. The Pb source in the calcareous rocks most likely is largely detrital minerals, since that detritus was derived from the same sources as the detritus in the Neoproterozoic and Cambrian clastic rocks. The second Pb source is characterized by a large range of 206Pb/204Pb values (18-34) with a limited range of 208Pb/204Pb values (38.1-39.5), indicating low but variable Th/U and high and variable U/Pb values. The second Pb source dominates late and postore-stage minerals but is also found in preore sulfide minerals. These Pb isotope characteristics typify Ordovician to Devonian siliciclastic and calcareous rocks around the Carlin trend in northeast Nevada. Petrologically similar rocks host the Getchell and Turquoise Ridge deposits. Lead from the second source was either contributed from the host sedimentary rock sequences or brought into the hydrothermal system by oxidized ground water as the system collapsed. Late ore- and postore-stage sulfide minerals (pyrite, orpiment, and stibnite) from the Betze-Post and Meikle deposits in the Carlin trend and from the Jerritt Canyon mining district have Pb isotope characteristics similar to those determined in Getchell and Turquoise Ridge. This observation suggests that the Pb isotope compositions of their ore fluids may be similar to those at Getchell and Turquoise Ridge. Two models can explain the Pb isotope compositions of the ore-stage arsenian pyrite versus the late ore or postore sulfide minerals. In either model, Pb from the Ordovician to Devonian siliciclastic and calcareous rock source enters the hydrothermal system late in the ore stage but not to any extent during the main stage of ore deposition. In one model, ore-stage Pb was derived from a source with Pb isotope compositions similar to those of the Neoproterozoic and Cambrian clastic sequence, transported as part of the ore fluid and then deposited in the ore-stage arsenian pyrite and fluorite. The second model is based on the observation that the Pb isotope characteristics of the ore-stage minerals also are found in some Ordovician to Devonian calcareous and siliciclastic rocks. Hence, ore-stage Pb could have been derived locally and simply concentrated during the ore stage. Critical to the second model is the removal of all high 206Pb/204Pb (>20) material during alteration. It Also requires the retention of only the low 206Pb/204Pb component of the Ordovician to Devonian sedimentary rocks. This critical step is possible only if the high 206Pb/204Pb values are contained in readily dissolvable mineral phases, whereas the low 206Pb/204Pb values are found only in refractory minerals that released Pb during a final alteration stage just prior deposition of auriferous arsenian pyrite. Distinguishing between Pb transported with the ore fluid or inherited from the site of mineral deposition is not straightforward

  11. Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit

    DOE PAGES

    Brown, Shaun T.; Basu, Anirban; Christensen, John N.; ...

    2016-05-20

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The 238U/ 235U of groundwater varies bymore » approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in 238U and have the lowest U concentrations. Activity ratios of 234U/ 238U are ~5.5 up-gradient of the ore zone, ~1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of 234U/ 238U and 238U/ 235U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. Lastly, these results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.« less

  12. Idetification of the chemical sedimentary protolish of the early Paleoproterozoic banded iron formation from Wuyang area, in the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Lan, C.; Zhao, T.

    2016-12-01

    The Paleoproterozoic banded iron formation (BIF) from Wuyang area in the southern margin of the North China Craton (NCC) were metamorphosed under granulite facies, and are characterized with an assemblage of clinopyroxene, magnetite and orthopyroxene. Two types of iron ores can be identified on the basis of macro- and micro-textures: banded quartz-clinopyroxene (±othopyroxene) -magnetite ores and massive clinopyroxene-magnetite ores. Two-pyroxene geothermometry indicates that the primary counterparts of these ores have undergone metamorphism with a peak temperature of about 762±9°. Both the banded and massive ores have also similarly BIF-like REE+Y features, and thus are proposed to have all formed from chemical sediments. Similarly, clinopyroxenes from both types have BIF-like rare earth element compositions and are rich in Fe (16-23 wt.% FeOtotoal), further suggesting that they are primary Fe-Mg-Ca-rich chemical sediments during metamorphism. Slight enrichments of TiO2, Al2O3, Zr, Hf, Ta and Th of the Wuyang IF suggest relatively low detritus input. The massive ore have magnetite containing V, Cr and Ti much higher than those of the banded ores, suggesting that they may have undergone stronger secondary alteration possibly related to the intrusion of nearby pyroxenite plutons. Different ores have seawater-like REE+Y patterns with LREE depletions and positive anomalies of La, Eu, and Y, showing that granulite facies metamorphism did not essentially modify the primary compositions of the Wuyang IF deposited from paleo-seawater. Our results suggest less than 0.1% contribution from high-temperature hydrothermal fluids.

  13. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  14. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; ...

    2014-04-13

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less

  15. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less

  16. Study of bituminous surface treatments in Virginia : analysis of factors that significantly influence the quality of bituminous surface treatments.

    DOT National Transportation Integrated Search

    1970-01-01

    It is obvious that many variables may influence the quality of a surface treatment, but the relative importance of the many variables involved is a matter of conjecture. The purpose of this study was to define those variables which do significantly i...

  17. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal.

    PubMed

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-06-01

    The aim of this work was to study the thermal properties and interactions during co-combustion of rape straw (RS) before and after water-washing with bituminous coal. A series of experiments was conducted to investigate the properties and interactions during co-combustion of RS with bituminous coal (at 10, 20, 40 and 60% RS). The feasibility and potential of water-washing as an RS pre-treatment was also explored. Reactivity and the amount of heat released followed a quadratic trend, while changes to the degree of interactions between the fuels conformed to a cosine curve. Water-washing increased the ignition and burn-out temperatures and slightly decreased reactivity. Demineralization negatively affected the previously synergistic co-firing relationship, nevertheless, the amount of heat released increased by 10.28% and the average activation energy (146kJ/mol) was lower than that of the unwashed blend (186kJ/mol). Overall, water-washing of RS could prove a useful pre-treatment before co-combustion with bituminous coal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Musich, M.A.

    A fixed-bed reactor system with continuous Hg{sup 0} analysis capabilities was used to evaluate commercial carbon sorbents for the removal of elemental mercury from simulated flue gas. The objectives of the program were to compare the sorbent effectiveness under identical test conditions and to identify the effects of various flue gas components on elemental mercury sorption. Sorbents tested included steam-activated lignite, chemically activated hardwood, chemically activated bituminous coal, iodated steam-activated coconut shell, and sulfur-impregnated steam-activated bituminous coal. The iodated carbon was the most effective sorbent, showing over 99% mercury removal according to U.S. Environmental Protection Agency (EPA) Method 101A. Datamore » indicate that adding O{sub 2} at 4 vol% reduced the effectiveness of the steam-activated lignite, chemically activated hardwood, and sulfur- impregnated steam-activated bituminous coal. Adding SO{sub 2} at 500 ppm improved the mercury removal of the sulfur-impregnated carbon. Further, the presence of HCl gas (at 50 ppm) produced an order of magnitude increase in mercury removal with the chemically activated and sulfur-impregnated bituminous coal-based carbons.« less

  19. Influence of selected test parameters on measured values during the MSCR test

    NASA Astrophysics Data System (ADS)

    Benešová, Lucie; Valentin, Jan

    2017-09-01

    One of today’s most commonly used test on a Dynamic Shear Rheometer (DSR) is the Multiple Stress Creep Recovery (MSCR) test. The test is described in the standard EN 16659, which is valid in the Czech Republic since October 2016. The principle of the test is based on repeated loading and recovering of a bitumen sample, according to which it is possible to determine the percentage of elastic recovery (R) and non-recoverable creep compliance (Jnr) of the bituminous binder. This method has been recently promoted as the most suitable test for assessing the resistance of bituminous binders to permanent deformation. The test is performed at higher temperatures and is particularly suitable for modified bituminous binders. The paper deals with the comparison of the different input parameters set on the DSR device - different levels of stress, temperature of test, the geometry of the measuring device and also a comparison of the results for a different number of loading cycles. The research study was focused mainly on modified bituminous binders, but to compare the MSCR test it is performed even with conventional paving grade binders.

  20. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    NASA Astrophysics Data System (ADS)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  1. Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Patel, S.K.

    2009-07-01

    Studies on isothermal reduction kinetics (with F grade coal) in fired pellets of hematite iron ores, procured from four different mines of Orissa, were carried out in the temperature range of 850-1000C to provide information for the Indian sponge iron plants. The rate of reduction in all the fired iron ore pellets increased markedly with a rise of temperature up to 950C, and thereafter it decreased at 1000C. The rate was more intense in the first 30 minutes. All iron ores exhibited almost complete reduction in their pellets at temperatures of 900 and 950C in 2 hours' heating time duration,more » and the final product morphologies consisted of prominent cracks. The kinetic model equation 1-(1-a){sup 1/3}=kt was found to fit best to the experimental data, and the values of apparent activation energy were evaluated. Reductions of D. R. Pattnaik and M. G. Mohanty iron ore pellets were characterized by higher activation energies (183 and 150 kJ mol{sup -1}), indicating carbon gasification reaction to be the rate-controlling step. The results established lower values of activation energy (83 and 84 kJ mol{sup -1}) for the reduction of G. M. OMC Ltd. and Sakaruddin iron ore pellets, proposing their overall rates to be controlled by indirect reduction reactions.« less

  2. Isolation and phylogenetic characterization of iron-sulfur-oxidizing heterotrophic bacteria indigenous to nickel laterite ores of Sulawesi, Indonesia: Implications for biohydrometallurgy

    NASA Astrophysics Data System (ADS)

    Chaerun, Siti Khodijah; Hung, Sutina; Mubarok, Mohammad Zaki; Sanwani, Edy

    2015-09-01

    The main objective of this study was to isolate and phylogenetically identify the indigenous iron-sulfur-oxidizing heterotrophic bacteria capable of bioleaching nickel from laterite mineral ores. The bacteria were isolated from a nickel laterite mine area in South Sulawesi Province, Indonesia. Seven bacterial strains were successfully isolated from laterite mineral ores (strains SKC/S-1 to SKC/S-7) and they were capable of bioleaching of nickel from saprolite and limonite ores. Using EzTaxon-e database, the 16S rRNA gene sequences of the seven bacterial strains were subjected to phylogenetic analysis, resulting in a complete hierarchical classification system, and they were identified as Pseudomonas taiwanensis BCRC 17751 (98.59% similarity), Bacillus subtilis subsp. inaquosorum BGSC 3A28 (99.14% and 99.32% similarities), Paenibacillus pasadenensis SAFN-007 (98.95% and 99.33% similarities), Bacillus methylotrophicus CBMB 205 (99.37% similarity), and Bacillus altitudinis 41KF2b (99.37% similarity). It is noteworthy that members of the phylum Firmicutes (in particular the genus Bacillus) predominated in this study, therefore making them to have the high potential to be candidates for the bioleaching of nickel from laterite mineral ores. To our knowledge, this is the first report on the predominance of the phylum Firmicutes in the Sulawesi laterite mineral ores.

  3. Hydrocarbon source potential and maturation in eocene New Zealand vitrinite-rich coals: Insights from traditional coal analyses, and Rock-Eval and biomarker studies

    USGS Publications Warehouse

    Newman, J.; Price, L.C.; Johnston, J.H.

    1997-01-01

    The results of traditional methods of coal characterisation (proximate, specific energy, and ultimate analyses) for 28 Eocene coal samples from the West Coast of New Zealand correspond well with biomarker ratios and Rock-Eval analyses. Isorank variations in vitrinite fluorescence and reflectance recorded for these samples are closely related to their volatile-matter content, and therefore indicate that the original vitrinite chemistry is a key controlling factor. By contrast, the mineral-matter content and the proportion of coal macerals present appear to have had only a minor influence on the coal samples' properties. Our analyses indicate that a number of triterpane biomarker ratios show peak maturities by high volatile bituminous A rank; apparent maturities are then reversed and decline at the higher medium volatile bituminous rank. The Rock-Eval S1 +S2 yield also maximizes by high volatile bituminous A rank, and then declines; however, this decline is retarded in samples with the most hydrogen-rich (perhydrous) vitrinites. These Rock-Eval and biomarker trends, as well as trends in traditional coal analyses, are used to define the rank at which expulsion of gas and oil occurs from the majority of the coals. This expulsion commences at high volatile A bituminous rank, and persists up to the threshold of medium volatile bituminous rank (c. 1.1% Ro ran. or 1.2% Ro max in this sample set), where marked hydrocarbon expulsion from perhydrous vitrinites begins to take place.

  4. Origin of the Okrouhlá Radouň episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter

    2014-04-01

    The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.

  5. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  6. Analytical and mineralogical study of a Ghana manganese ore: Quantification of Mn speciation and effect of mechanical activation.

    PubMed

    He, Hongping; Cao, Jianglin; Duan, Ning

    2016-11-01

    In-depth understanding of the manganese ore would be beneficial to make the best use more environmental-friendly. A Ghana manganese ore before/after mechanical activation (MA) was therefore extensively characterized in our investigation. Surface Mn(4+)(35.5%), Mn(3+)(35.9%), Mn(2+)(28.6%) were detected by XPS, though XRD only revealed the presence of Mn(2+)-containing minerals. Thermal decomposition curve of manganese ore obtained by TG-DSC was divided into four stages from 373.15 K to 1273.15 K, which were quite consistent with the pattern of generated gases obtained by TG-FTIR and the theoretical thermodynamics analysis of the incorporated components involving ΔGT(θ) and Kp(θ). Mn species distribution showed no difference for manganese ores before/after MA, but quantitative analysis showed the decrease of residual Mn content (cannot be extracted effectively by acid, from about 12% to 1%), and thereby the increased contents of other four Mn species (exchangeables, carbonates, oxides, organics), which was suggested to be correlated with the dissociation of Mn-containing flocs and SiO2 particles witnessed by SEM-EDS. It was also found that MA could obviously promote the Mn dissolution kinetics in acid condition, though the dissolution of manganese ore before/after MA were both diffusion controlled. This investigation gives benignant inspiration for the resource utilization of manganese ore, taking the increasingly severer situation of Mn resource supply into consideration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  8. Whole-rock and mineral compositional constraints on the magmatic evolution of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Santaguida, Frank

    2018-01-01

    The 2.06 Ga mafic-ultramafic Kevitsa intrusion is located in the Central Lapland greenstone belt. The lower ultramafic part of the intrusion hosts a large disseminated Ni-Cu-(PGE) sulfide deposit with Ni tenors ranging widely from < 4 wt% (uneconomic false ore and contact mineralization) to 4-7 wt% (regular ore) and up to 40 wt% (Ni-PGE ore). The stratigraphy of the ultramafic cumulates is divided into the basal pyroxenite-gabbro (Basal series), olivine pyroxenite (OLPX), pyroxenite, and plagioclase-bearing (ol) websterite (pOLWB), of which the latter occurs together with minor microgabbros in the ore-bearing domain of the intrusion. Around the ore domain, the ultramafic cumulate succession records a simple lithological stratigraphy and modest and predictable variations in whole-rock and mineral compositions. The ore-bearing domain, in contrast, is characterized by a complex internal architecture, variations in whole-rock and mineral compositions, and the presence of numerous inclusions and xenoliths. The OLPXs are mainly composed of cumulus olivine (Fo77-89) and clinopyroxene (Mg#81-92) with variable amounts of oikocrystic orthopyroxene (Mg#79-84). They comprise the bulk of the ultramafic cumulates and are the dominant host rocks to the sulfide ore. The host rocks to the regular and false ore type are mineralogically and compositionally similar (Fo 80-83, mostly) and show mildly LREE-enriched REE patterns (CeN/YbN 2), characteristic for the bulk of the Kevitsa ultramafic cumulates. The abundance of orthopyroxene and magnetite is lowest in the host rocks to the Ni-PGE ore type, being in line with the mineral compositions of the silicates, which are the most primitive in the intrusion. However, it contrasts with the LREE-enriched nature of the ore type (CeN/YbN 7), indicating significant involvement of crustal material in the magma. The contrasting intrusive stratigraphy in the different parts of the intrusion likely reflects different emplacement histories. It is proposed that the Kevitsa magma chamber was initially filled by stable continuous flow ("single" input) of basaltic magma followed by differentiation in an at least nearly closed system. In the following stage, new magma pulses were repeatedly emplaced into the interior of the intrusion in a dynamic (open) system forming the sulfide ore bodies. To gain the peculiar compositional and mineralogical characteristics of the Ni-PGE ore type, the related magma probably interacted with different country rocks en route to the Kevitsa magma chamber.

  9. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  10. Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore.

    PubMed

    Brodusch, Nicolas; Waters, Kristian; Demers, Hendrix; Gauvin, Raynald

    2014-03-01

    A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Copyright © 2014 Wiley Periodicals, Inc.

  11. Porphyry-Style Petropavlovskoe Gold Deposit, the Polar Urals: Geological Position, Mineralogy, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.; Mansurov, R. Kh.; Ivanova, Yu. N.; Tyukova, E. E.; Sobolev, I. D.; Abramova, V. D.; Vykhristenko, R. I.; Trofimov, A. P.; Khubanov, V. B.; Groznova, E. O.; Dvurechenskaya, S. S.; Kryazhev, S. G.

    2017-11-01

    Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic-plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer-disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide-gold-quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite-(chlorite)-albite metasomatic rock of the main productive stage, which mainly develops in a volcanic-sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au-Ag-Te-W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =-6 to-7‰, and δ18O = +5‰ as the temperature decreases from 420-300°C (gold-sulfide ore) to 250-130°C (gold-(sulfide)-quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz-carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative-0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold-sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au-Te mineral assemblage. Taking into account structural-morphological and mineralogical-geochemical features, the ore-magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore-alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.

  12. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  13. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  14. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  15. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  16. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  17. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  18. An ore genetic model for the Lubin—Sieroszowice mining district, Poland

    NASA Astrophysics Data System (ADS)

    Wodzicki, A.; Piestrzyński, A.

    1994-04-01

    The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present on the peripheries and below anhydrite-cemented Weissliegendes sandstone. It resulted from redistribution of earlier copper and silver minerals by descending, reduced, sulphur-rich fluids (4). Stage IV consists of rare polymetallic veins of no economic importance that cut the stratigraphy and are probably related to Alpine tectonism. The richest and thickest ore is in the Weissliegendes, 10-15 km east of the Rote Fäule facies (Fig. 1). It probably occupies structures that trapped fluid (1) which was the main precipitant of metals in the sandstone.

  19. Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer

    NASA Astrophysics Data System (ADS)

    Tudu, Kichakeswari; Pal, Sagar; Mandre, N. R.

    2018-05-01

    This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.

  20. Process for removing pyritic sulfur from bituminous coals

    DOEpatents

    Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  1. Sprouting of thinned hybrid poplars on bituminous strip-mine spoils in Pennsylvania

    Treesearch

    Walter H. Davidson; Grant Davis

    1972-01-01

    Various thinning techniques were applied to 5-year old hybrid poplar stands on bituminous strip-mine spoils. Basal and stump sprays of 2, 4, 5-T in diesel oil were effective for killing the trees. There was no evidence that chemical treatments affected adjacent trees. Where trees were cut and stumps were not chemically treated, all clones sprouted prolifically....

  2. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  3. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  4. Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder.

    PubMed

    Shu, Benan; Wu, Shaopeng; Dong, Lijie; Wang, Qing; Liu, Quantao

    2018-04-19

    This work aims to develop an original alginate micro-emulsion combining with droplets microfluidic method to produce multinuclear Ca-alginate microcapsules containing rejuvenator for the self-healing of bituminous binder. The sizes of the Ca-alginate microcapsules could be easily controlled by tuning flow rates of the continuous and dispersed phases. The addition of a surfactant Tween80 not only improved the stability of the emulsion, but it also effectively reduced the size of the microcapsules. Size predictive mathematical model of the microcapsules was proposed through the analysis of fluid force. Optical microscope and remote Fourier infrared test confirmed the multinuclear structure of Ca-alginate microcapsules. Thermogravimetric analysis showed that the microcapsules coated with nearly 40% rejuvenator and they remained intact during the preparation of bitumen specimen at 135 °C. Micro self-healing process of bituminous binder with multinuclear Ca-alginate microcapsules containing rejuvenator was monitored and showed enhanced self-healing performance. Tensile stress-recovery test revealed that the recovery rate increased by 32.08% (in the case of 5% microcapsules), which meant that the Ca-alginate microcapsules containing rejuvenator could effectively enhance the self-healing property of bituminous binder.

  5. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  6. Continuous bench-scale slurry catalyst testing direct coal liquefaction of rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  7. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  8. A conceptual model of the copper-porphyry ore formation based on joint analysis of deep 3D geophysical models: Sorskoe complex (Russia) case study

    NASA Astrophysics Data System (ADS)

    Spichak, Viacheslav V.; Goidina, Alexandra G.

    2017-12-01

    Joint analysis of deep three-dimensional models of the electrical resistivity, seismic velocity, and density of the complex hosting the Sorskoe Cu-Mo deposit (Russia) is carried out aimed at finding geophysical markers characterizing the areas of ore generation, transportation and deposition. The three-dimensional lithology model of the study area is built based on the empirical relationship between the silica content of the rocks and seismic velocities. It is in agreement with geological and geochemical studies provided in this area earlier and could be used as a basis for forecasting locations of the copper-molybdenum ore deposits at depth. A conceptual model of the copper-porphyry complex explaining the mechanisms of ore generation, transportation from the lower to the upper crust and deposition in the upper crust is suggested. In particular, it is supposed that post-magmatic supercritical gas-water ore-bearing fluids are upwelling through the plastic crust due to the sliding of the fluid films along the cleavage planes of the foliated rocks while at the depths of the brittle upper crust this mechanism could be changed by volumetric fluid transportation along the network of large pores and cracks.

  9. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits.

    PubMed

    Mohanty, Sansuta; Ghosh, Shreya; Nayak, Sanghamitra; Das, Alok Prasad

    2017-04-01

    A comprehensive study on fungus assisted bioleaching of manganese (Mn) was carried out to demonstrate Mn solubilization of collected low grade ore from mining deposits of Sanindipur, Odisha, India. A native fungal strain MSF 5 was isolated and identified as Aspergillus sp. by Inter Transcribed Spacer (ITS) sequencing. The identified strain revealed an elevated tolerance ability to Mn under varying optimizing conditions like initial pH (2, 3, 4, 5, 6, 7), carbon sources (dextrose, sucrose, fructose and glucose) and pulp density (2%, 3%, 4%, 5% and 6%). Bioleaching studies carried out under optimized conditions of 2% pulp density of Mn ore at pH 6, temperature 37 °C and carbon dosage (dextrose) resulted with 79% Mn recovery from the ore sample within 20 days. SEM-EDX characterization of the ore sample and leach residue was carried out and the micrographs demonstrated porous and coagulated precipitates scattered across the matrix. The corresponding approach of FTIR analysis regulating the Mn oxide formation shows a distinctive peak of mycelium cells with and without treated Mn, resulting with generalized vibrations like MnO x stretching and CH 2 stretch. Thus, our investigation endeavors' the considerate possible mechanism involved in fungal surface cells onto Mn ore illustrating an alteration in cellular Mn interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Study of a rehabilitated road using GPR and FWD

    NASA Astrophysics Data System (ADS)

    Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria; Solla, Mercedes; Pajewski, Lara

    2017-04-01

    This work focus on the structural evaluation of a rehabilitated road after the conclusion of the first phase of the improvement works. The activities developed in the study comprised the characterization of the pavement layers condition (before the application of the asphalt surface layer) and the prediction of the pavement bearing capacity (taking into account the contribution of the wearing course, to be placed in accordance with the project specifications). For this study two non-destructive tests (NDT) were combined: Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR). The original pavement was essentially composed by a granular layer treated with a bituminous emulsion. The main objectives of the rehabilitation works were the enlargement of the road platform in selected locations, with the construction of a new pavement, and also the reinforcement of the existing pavement to increase its bearing capacity. The FWD tests were performed to assess the bearing capacity of the pavement and were conducted along the outer wheel path, in both directions. The spacing between measurement points was 75 m and the applied impulse load was 50 kN. The results showed a great variability of the deflections measured along the section under study. A preliminary zonation of the pavement was carried out, and was latter adjusted based on the results of the GPR. To determine the thickness of the pavement layers a GPR survey was carried out using a 1.8 GHz antenna and a radar control unit SIR-20, both from GSSI. The GPR tests were performed continuously along the same line as the FWD tests. The GPR tests allowed for the identification of the different structures of the pavement, corresponding to the zones with the new pavement and the existing pavement with reinforcement. Some cores were extracted to calibrate the thickness of the GPR bituminous layers, to verify the conditions of adhesion between layers and also to perform laboratory tests to characterize the bituminous mixtures. Test pits were also carried out to calibrate the GPR thickness for the granular layers. It was concluded that the areas with higher deflections coincided with the new pavement areas. The GPR results showed that in the existing reinforced pavement zones the total thickness of the reinforcement layers were higher than design values. On the other hand, for the new pavement zones, it was observed lower thicknesses for the base and sub-base layers and also for the binder layer, in comparison with the design values. The results of the laboratory tests carried out on samples of the bituminous mixtures showed that, in general, those mixtures had percentages of bitumen and porosities above the expected values. Based on the tests carried out, pavement response models were established and their predictable load capacity was estimated. This abstract is a contribution to COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.

  11. Fluid evolution and ore genesis of the Dalingshang deposit, Dahutang W-Cu ore field, northern Jiangxi Province, South China

    NASA Astrophysics Data System (ADS)

    Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui

    2018-02-01

    The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.

  12. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  13. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    USGS Publications Warehouse

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from these genetic models. ?? 1991.

  14. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  15. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    PubMed Central

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. PMID:28569759

  16. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE PAGES

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; ...

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  17. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.

    PubMed

    Bhattacharyya, Amrita; Campbell, Kate M; Kelly, Shelly D; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI) ) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV)  generated through biologically mediated U (VI)  reduction is the predominant U (IV)  species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV) . This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  18. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  19. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    USGS Publications Warehouse

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  20. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  1. Second-year results of hybrid poplar test plantings on bituminous strip-mine spoils in Pennsylvania

    Treesearch

    Grant Davis

    1964-01-01

    During the period 1946-49, The Pennsylvania State University established 22 experimental plantings of trees and shrubs on strip-mine spoil banks in the Bituminous Region of Pennsylvania to determine which species were best suited for revegetating such sites. When 10-year growth on the experimental plots was evaluated, a clone of hybrid poplar was found to have outgrown...

  2. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    NASA Astrophysics Data System (ADS)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2017-10-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending.

  3. Performance of PAHs emission from bituminous coal combustion.

    PubMed

    Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa

    2004-12-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  4. Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.

    2012-04-01

    Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to 370 g/t in grab samples (Gongalskiy et al., 2008a). The long-lived Udokan-Chiney ore-magmatic has small areal extent of explosive rocks and breccias (n*10 m) with massive sulfide veins (chalcopyrite, pyrrhotite) which are similar to Sudbury offset dikes. While the same vertical zones at the Rudnoye deposit have been confirmed over 0.5 km downward from the lower contact of the Chiney massif. Conclusions. Multielement and similar mineralogical composition ores of different deposits in the Udokan-Chiney area reflect long evolution of ore processes in very movable block of the crust. Observed combination of magmatic, sedimentary and partially hydrothermal deposits is a result of the telescoping of a wide range of metals into a limited area.

  5. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  6. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).

    PubMed

    Protano, Giuseppe; Nannoni, Francesco

    2018-05-01

    A geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability. Soils of roasting zone showed the highest Hg contamination levels mainly due to the deposition of Hg released as Hg 0 by furnaces during cinnabar roasting. High Hg contents were also measured in waste from the lower part of mining dump due to the presence of cinnabar. The fractionation pattern suggested that Hg was largely as volatile species in both uncontaminated and contaminated soils and mining waste, and concentrations of these Hg species increased as contamination increased. These findings were in agreement with the fact that the ASS mining site is characterized by high Hg concentrations in the air and the presence of Hg 0 liquid droplets in soil. Volatile Hg species were also prevalent in uncontaminated soils likely because the Monte Amiata region is an area characterized by anomalous fluxes of gaseous Hg from natural and anthropogenic inputs. At the ASS mining site soils were also contaminated by Sb, while As contents were comparable with its local background in soil. In all soil and waste samples Sb and As were preferentially in residual fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Integrate metalogenic database with GIS geological project (deposite Au-Ag Far East Russia). WEB-GIS approach.

    NASA Astrophysics Data System (ADS)

    Kucharenko, Evgeniy; Asavin, Alex

    2015-04-01

    Resource depletion has forced us to search for new ore deposit and reanalyze old mineral deposits. This is the main aim of metallogenic studies. Synthesis information about features resources work out deposit and emerging fields will play a key role in future. Development of metallogeny databases is one of the most difficult tasks for Earth sciences. Database needs to enter a large number of parameters describing the object of study - mine or ore occurrence. Majority of these parameters belong to different areas of geological knowledge. It can be ore mineralogy, geochemistry, lithology of host rocks, tectonic characteristics ore-controlling structures, geochemical parameters of ore processes, geochronological data on age of geological formations and processes of ore formation and some others. However, the cartographic materials of various scales apart from diverse documentation and numerical information are of a great importance. The adopted framework for the analysis of large-scale metallogeny has several levels: 1. The ore body (usually 1: 50000, 1: 100000) 2. The ore field, the field (1: 200000) 3. The ore cluster (1: 500000) Researchers can vary scheme and scale values, but fundamentally three levels of scale describing the location and geological structures controlling the placement of ore are included at least. Attention should be pay to the system of description the ore deposit. It is necessary to create the universal scheme for development of metallogeny information systems and set up the universal algorithm of ore deposit description. There is its own order of importance of used features and a form of description for each type of deposits and ore and genetic group and ore element. Lack of definition in the classification of a particular metallogenic object makes the choice of algorithm description justified quite weakly. It is quite notable that available features which used for description of different deposit (even of the same genetic group) are not of the same type or detailed enough. Waste deposit usually takes as a reference object with the most complete description in opposite to the recently discovered deposit not enough studied and with quite limited list of information indicators. There are following most actual tasks for information metallogeny system: 1. Search summarizing the characteristics of different objects 2. Select the most informative group of features 3. Show the links of groups of signs and analyze it as far as genesis of deposits. The actual task's list could be continued but it is enough to start. Essentially mentioned problems put us in a situation when deposit's metallogenic database is not available. There is only limited number of typical databases (for certain types of minerals) characterized nothing more than name of the fields and basic indicators of its economic importance (stocks, component content, ore types). The additional information: the age of host rock or ores or geochemistry features of some geological objects uses quite rarely. There is no systematic data for all objects in the database. Database of carbonatite deposits is the most well-developed. It should be also mentioned some works [Woolley & Kjarsgaard 2009; Bagdasarov et al.,2001; Burmistrov et al., 2008]. Unfortunately, such important characteristics as geological maps are not included there as

  8. Heterogenite vs asbolane: a mineralogical study of cobalt oxides from the DRC (Democratic Republic of the Congo)

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Decree, Sophie

    2014-05-01

    The largest cobalt ore reserves are located in DRC, the Democratic Republic of Congo. Most of cobalt is observed as black cobaltic oxide minerals: heterogenite [HCoO2] and asbolane [(Ni,Co)2-xMn(O,OH)4.nH2O] which are hardly differentiable since they exhibit similar macroscopic habit and textures. These minerals are frequently observed in similar environment (oxidized horizon of ore deposits) and they are commonly poorly-crystallized limiting their study with XRD. Their chemical composition is also not very well-constrained since they exhibit significant chemical substitutions with cations as Cu, Co, Ni, Mn. Our observations on a set of heterogenite and asbolane samples from DRC combined with samples from other localities shows that each phase, even under an amorphous form, can be readily distinguished by Raman microspectrometry. This technique is therefore attractive during ore deposit characterization campaigns or during the follow-up extraction operations where it is important to distinguish the main constituting Co-phase(s). The main advantage of this technique is its speed since no sample preparation is required during the collection Raman spectra that usually last few tens of seconds. The method provides information at a μm-scale and several points are thus required to fully characterize ore batches composed of different mineralogical phases. Our petrographical observations show also that asbolane and heterogenite mineralogical phases can coexist at a μm-scale as two distinct phases into 'heterogenite' ore. The distinction between heterogenite and asbolane from our sample set can also be conducted on a chemical base showing that heterogenite represents the richer Co-phase with variable Cu concentrations. By contrast, only Mn traces are usually observed in heterogenite minerals from DRC except in few samples, but always in lower concentration than in asbolane. The latter shows variable Mn/(Mn+Co) ratio between 0.85 and 0.3 and the decrease of this value is related to enrichment into Cu. PIC Figure 1. Example of coexisting heterogenite (Het) and asbolane (Asb), with their respective EDS spectrum.1 0.0.1 1Vanbrabant, Y., Burlet, C. and Louis, P., Mineralogical Characterization of Cobaltic Oxides from the Democratic Republic of Congo, in Ni-Co 2013, John Wiley & Sons, Inc., Hoboken, NJ, USA., Pages: 241-254, 2013

  9. Banana peel reductant for leaching medium grade manganese ore in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Joni, I. Made; Busaeri, Nundang; Usrah, Ifkar; Sudiana, I. Nyoman; Sabchevski, Svilen

    2017-03-01

    In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The effects of weighed amount of banana peels on the structural and leaching properties have been studied. The material's properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transforms infrared (FTIR) spectroscopy. It has been found that an increase of the weighed amount of banana peels up to 4 g leads to an increase of the leaching efficiency of manganese from manganese ore. Above 4 g, however, the leaching efficiency does not change significantly. The analysis based on the interpretation of both XRD patterns and FTIR spectrum allows one to explain the increase in the leaching efficiencies of manganese by the reduction of MnO2 minerals and by the removal of hemicelluloses groups of banana peel in the samples.

  10. Petrographic and Geochemical Characterization of Ore-Bearing Intrusions of the Noril'sk type, Siberia; With Discussion of Their Origin, Including Additional Datasets and Core Logs

    USGS Publications Warehouse

    Czamanske, Gerald K.

    2002-01-01

    The Noril'sk I, Talnakh, and Kharaelakh intrusions of the Noril'sk district host one of the outstanding metal concentrations in the world; contained Cu-Ni resources are comparable to the deposits at Sudbury, Ontario and the platinum group element (PGE) resource is second only to that of the Bushveld Complex. Our opportunity to cooperatively sample and study this district in Siberian Russia arose in 1990 through a memorandum of understanding between the U.S. Geological Survey and the former Ministry of Geology of the U.S.S.R. The world-class significance of these deposits and the possibility that understanding their geologic context, including construction of a credible 'ore-deposit model,' will lead to discovery of similar deposits elsewhere, inspired extensive studies of the ores, the mafic-intrusions which host them, and associated flood basalts.

  11. CO2 sequestration potential of Charqueadas coal field in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Santarosa, C; Crandall, D

    2013-02-01

    Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.more » The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.« less

  12. Transformism in Alberta: The Environmental Political Economy of the Bituminous Sands

    NASA Astrophysics Data System (ADS)

    Katz-Rosene, Ryan

    This thesis attempts to help establish environmental political economy as a viable academic field while providing an example of work in the discipline. It offers an analysis of societal processes resulting in the co-optation and/or neutralization of critical environmentalist ideas. Using Alberta's bituminous sands as a case study, and a Gramsci-influenced eco-Marxist theory as a foundation, the thesis argues that the term 'environmental transformism' (inspired by the Gramscian term trasformismo) is helpful in describing and framing such processes. Accordingly, the ensuing chapters provide an analysis of why environmental transformism is happening in Alberta, and demonstrate how this mechanism works at protecting the status quo from threatening ideologies, thereby consolidating neoliberal capitalism. A concluding argument discusses the inherent dangers posed to society by the transformism of certain environmental subjectivities. The thesis begins by introducing the contentious social and environmental issues surrounding the development of the bituminous sands.

  13. Sulfur Isotopic Composition of Sulfides in Skarn and Vein Mineralization of the Dal'negorsk Ore Region (Primorye)

    NASA Astrophysics Data System (ADS)

    Rogulina, L. I.; Moiseenko, V. G.; Odarichenko, E. G.; Voropayeva, E. N.

    2018-03-01

    The S isotopic composition in the ore-forming minerals galena and sphalerite was studied in different Ag-Pb-Zn deposits of the region. It was pointed out that the δ34S modal values range from-1.2 to +6.7‰ in the minerals with a positive value for the skarn mineralization. In the flyschoid formation, the vein-type mineralization is characterized by negative and positive values. The narrow range of δ34S values indicates the marginal-continental type of the mineralization and the multiple origins of its sources.

  14. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada

    USGS Publications Warehouse

    John, D.A.; Hofstra, A.H.; Fleck, R.J.; Brummer, J.E.; Saderholm, E.C.

    2003-01-01

    The Mule Canyon mine exploited shallow, low-sulfidation, epithermal Au-Ag deposits that lie near the west side of the Northern Nevada rift in northern Lander County, Nevada. Mule Canyon consists of six small deposits that contained premining reserves of about 8.2 Mt at an average grade of 3.81 g Au/tonne. It is an uncommon mafic end member of low-sulfidation Au-Ag deposits associated with tholeiitic bimodal basalt-rhyolite magmatism. The ore is hosted by a basalt-andesite eruptive center that formed between about 16.4 to 15.8 Ma during early mafic eruptions related to regionally extensive bimodal magmatism. Hydrothermal alteration and Au-Ag ores formed at about 15.6 Ma and were tightly controlled by north-northwest- to north-striking high-angle fault and breccia zones developed during rifting, emplacement of mafic dikes, and eruption of mafic lava flows. Hydrothermal alteration assemblages are zoned outward from fluid conduits in the sequence silica-adularia, adularia-smectite, smectite (intermediate argillic), and smectite-carbonate (propylitic). All alteration types contain abundant pyrite and/or marcasite ?? arsenopyrite. Field relations indicate that silica-adularia alteration is superimposed on argillic and propylitic alteration. Little or no steam-heated acid-sulfate alteration is present, probably the result of a near-surface water table during hydrothermal alteration and ore deposition. Two distinct ore types are present at Mule Canyon: early replacement and later open-space filling. Replacement ores consist of disseminated and vesicle-filling pyrite, marcasite, and arsenopyrite in argillically altered or weakly silicified rocks. Ore minerals consist of Au-bearing arsenopyrite and arsenian pyrite overgrowths on earlier-formed pyrite and marcasite. Open-space filling ores include narrow stockwork quartz-adularia veins, banded and crustiform opaline and chalcedonic silica-adularia veins, silica-adularia cemented breccias, and sparse carbonate-pyrite and/or marcasite veins. Ore minerals consist mostly of electrum and Ag sulfide and selenide minerals, with minor to major amounts of pyrite, marcasite, and arsenopyrite, and local stibnite. Both types of ores have similar geochemical signatures, characterized by high Au, Ag, As, Sb, and Se contents, locally high Hg, Mo, Tl, and W contents, and low Cu, Pb, and Zn contents. Stable isotope data indicate that ore fluids consisted dominantly of meteoric water that evolved by deep circulation through Paleozoic sedimentary rocks at low water/rock ratios (about 1) and high temperatures (>200??C). Calculated isotopic compositions of ore fluids are ??18OH2O = -3 to -7 per mil, ??DH2O = -107 to -124 per mil, ??13CCO2 = 0 to -6 per mil, and ??34SH2S = -3 to +8 per mil. The ore fluids obtained much of their H2S and CO2 and probably scavenged ore metals and trace elements from the Paleozoic sedimentary rocks. Some H2S and CO2 may have been derived from degassing Miocene magmas. Mule Canyon formed at shallow depths, probably about 100 m below the paleosurface. Ore fluids were dilute, nearly neutral in pH, reduced, H2S-rich, and CO2-bearing. Peak temperatures in ore zones reached 230?? to 265??C at nearly lithostatic pressures when some crystalline quartz ?? adularia precipitated, but most ore formed at temperatures <200??C at near hydrostatic pressures and was accompanied by precipitation of opaline and chalcedonic silica ?? adularia ?? calcite and dolomite. Deposition of gold in As-rich overgrowths on pyrite and/or marcasite in disseminated ores occurred owing to decreasing H2S in the ore fluids resulting from sulfidation reactions. Later electrum and Ag selenide precipitation in open spaces occurred owing to boiling, loss of H2S to the vapor phase, and cooling. Mule Canyon is similar to most other low-sulfidation Au-Ag deposits associated with Miocene tholeiitic bimodal basalt-rhyolite magmatism in the Great Basin, such as Sleeper, Midas, and Buckhorn. Major differences at Mule Canyon are

  15. Ore minerals textural characterization by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2013-02-01

    The utilization of hyperspectral detection devices, for natural resources mapping/exploitation through remote sensing techniques, dates back to the early 1970s. From the first devices utilizing a one-dimensional profile spectrometer, HyperSpectral Imaging (HSI) devices have been developed. Thus, from specific-customized devices, originally developed by Governmental Agencies (e.g. NASA, specialized research labs, etc.), a lot of HSI based equipment are today available at commercial level. Parallel to this huge increase of hyperspectral systems development/manufacturing, addressed to airborne application, a strong increase also occurred in developing HSI based devices for "ground" utilization that is sensing units able to play inside a laboratory, a processing plant and/or in an open field. Thanks to this diffusion more and more applications have been developed and tested in this last years also in the materials sectors. Such an approach, when successful, is quite challenging being usually reliable, robust and characterised by lower costs if compared with those usually associated to commonly applied analytical off- and/or on-line analytical approaches. In this paper such an approach is presented with reference to ore minerals characterization. According to the different phases and stages of ore minerals and products characterization, and starting from the analyses of the detected hyperspectral firms, it is possible to derive useful information about mineral flow stream properties and their physical-chemical attributes. This last aspect can be utilized to define innovative process mineralogy strategies and to implement on-line procedures at processing level. The present study discusses the effects related to the adoption of different hardware configurations, the utilization of different logics to perform the analysis and the selection of different algorithms according to the different characterization, inspection and quality control actions to apply.

  16. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of 296 Ma at East Kounrad, 294 Ma at Akshatau and 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan terranes commenced at the latest Late Carboniferous.

  17. Geologic setting, genesis and transformation of sulfide deposits in the northern part of Khetri copper belt, Rajasthan, India — an outline

    NASA Astrophysics Data System (ADS)

    Sarkar, S. C.; Dasgupta, Somnath

    1980-07-01

    The present study is confined to the northern part of the Khetri copper belt that extends for about 100 km in northern Rajasthan. Mineralization is more or less strata-bound and is confined to the garnetiferous chlorite schist and banded amphibolite quartzite, occurring towards the middle of the Proterozoic Delhi Supergroup. Preserved sedimentary features and re-estimation of the composition of the pre-metamorphic rocks suggest that the latter were deposited in shallow marine environment characterized by tidal activity. Cordierite-orthoamphibole-cummingtonite rock occurring in the neighbourhood of the ores is discussed, and is suggested to be isochemically metamorphosed sediment. The rocks together with the ores were deformed in two phases and metamorphosed in two progressive and one retrogressive events of metamorphism. Study of the host rocks suggests that the maximum temperature and pressure attained during metamorphism are respectively 550 600°C and < 5.5 kb. Principal ore minerals in Madan Kudan are chalcopyrite, pyrrhotite, pyrite and locally magnetite. In Kolihan these are chalcophyrite, pyrrhotite and cubanite. Subordinate phases are sphalerite, ilmenite, arsenopyrite, mackinawite, molybdenite, cobaltite and pentlandite. The last two are very rare. Gangue minerals comprise quartz, chlorite, garnet, amphiboles, biotite, scapolite, plagioclase and graphite. The ores are metamorphosed at temperatures > 491°C. Sulfide assemblages are explained in terms of fS 2 during metamorphism. Co-folding of the ore zone with the host rocks, confinement of the ores to the carbonaceous pelites or semi-pelitic rocks, strata-bound and locally even stratiform nature of the orebodies, lack of finite ‘wall rock alteration’, metamorphism of the ores in the thermal range similar to that for the host rocks, absence of spatial and temporal relationship with the granitic rocks of the region led the authors to conclude that the entire mineralization was originally sedimentary-diagenetic. Any loss of primitive features and development of incongruency are due to subsequent deformation and metamorphism to which the ores and their hosts were together subjected.

  18. Intergarted geophysical investigations by GPR and ERT on the largest rock fill dam in Europe: Monte Cotugno dam (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Loperte, A.; Bavusi, M.; Cerverizzo, G.; Lapenna, V.; Soldovieri, F.

    2012-04-01

    This work is concerned with the first results of a survey based on the integration of geophysical techniques for the inspection of the Monte Cotugno dam, the largest rock fill dam in Europe. The Monte Cotugno dam, managed by National Irrigation Development and Agrarian Transformation in Puglia, Basilicata and Irpinia is located on the Sinni river (Basilicata District, South Italy) and represents the nodal point in the whole hydraulic system on the Ionic side of Italy; in fact, the dam allows harnessing of the Sinni river water for agricultural, industrial, drinking and domestic purposes. The dam is of the zoned type and consists of a central core in sandy silt and of gravelly-sandy shoulders; its water tightness is ensured by a bituminous conglomerate facing on the upstream side, welded at the bottom to the foundation sealing system. The latter is about 1,900m long and consist of a massive concrete cut-off wall based on the marly-clay formation, 300m long on the right and 600 m long on the left side. On the valley bottom it is made up of a reinforced concrete cut-off wall that is inserted in the marly-clay formation and is surmounted by an inspection and percolation water collection tunnel. The watertight face consists of a bottom levelling layer 7-8 cm thick in semi open-graded bituminous concrete, a 5 cm separation layer in dense-graded bituminous concrete, a drainage layer in very open-graded concrete varying in thickness from 10 to 16 cm from the top of the dam down, two 4-cm top layers in dense-graded bituminous concrete with stepped joints, a finishing sealing coat containing 1.5 kg/cm2 of asphalt. The shallowest part of this layering is started to show incipient small detachments due to thermal solicitations; these detachments represent a possible way for water infiltration in the dam. In this framework, it was decided to perform the identification, characterization and evaluation of the potential loss of water through small cracks in the bituminous concrete dam and then monitor these areas of infiltration. For such a task, the use of conventional geotechnical investigation methods was discarded since these techniques often requires invasive actions in the inner of the structure to be investigated (destructiveness) and only provide punctual information for small volumes. On the contrary, in this case, it was decided to use non-invasive sensing techniques, which make it possible to investigate and gain "global" information about all the structure without affecting its operability. In particular, Ground Penetrating Radar and Electrical Resistivity Tomography techniques have been exploited so to have possibility of quickly investigating large portions of dam with different spatial and resolution scales and without the need of destructive actions. The results of this survey well agree with direct surveys and the details of the survey and of the diagnostic results will be shown at the conference.

  19. Metamorphic ore remobilization in the Hällefors district, Bergslagen, Sweden: constraints from mineralogical and small-scale sulphur isotope studies

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Jonsson, Erik; Boyce, Adrian J.

    2005-07-01

    The marble- and metavolcanic-hosted Pb Zn (Ag Sb As) deposits of the Hällefors district, located in the Palaeoproterozoic Bergslagen ore province, south central Sweden, comprise both stratabound sulphides and discordant, Ag-rich sulphide sulphosalt veins. The complex sulphide sulphosalt assemblages of the Alfrida-Jan Olof mines at Hällefors were investigated by a combination of ore microscopy, electron-microprobe analysis, and in situ laser sulphur isotope analysis. The massive ore is characterized by positive and homogeneous δ34S (+1.4‰ to +2.7‰ V-CDT), whereas vein-hosted sulphides and sulphosalts exhibit similar, but generally less positive to slightly negative δ34S (-0.6‰ to +2.0‰). Comparison of the observed ore mineral assemblages with calculated phase equilibria in the system Fe As S O H and isotopic fractionation as a function of temperature, oxygen fugacity and pH indicates that the vein-type mineralization was formed from relatively reduced and rather alkaline hydrothermal fluids. At these reduced conditions, fractionation of δ34S via changes of fO2 is insignificant, and thus the isotopic signatures of the vein minerals directly reflect the composition of the sulphur source. We therefore conclude that the vein-type ore essentially inherited the sulphur isotope signature from the pre-existing massive sulphides via metamorphic remobilization at approximately 300 400°C and 2 3 kbar. Scales of remobilization observable are on the order of about 5 mm to 30 cm. Overall, the sulphide sulphosalt assemblages from the Alfrida-Jan Olof mines exhibit δ34S values which are comparable to a majority of metasupracrustal-hosted deposits in the Bergslagen province, thereby suggesting a common origin from ca. 1.90 1.88 Ga volcanic-hydrothermal processes.

  20. Simulation of one-dimensional heat transfer system based on the blended coal combustion

    NASA Astrophysics Data System (ADS)

    Jin, Y. G.; Li, W. B.; Cheng, Z. S.; Cheng, J. W.; liu, Y.

    2017-12-01

    In this paper, the supercritical boiler thermodynamic calculation model is studied. Three types of heat exchangers are proposed, namely furnace (total radiation type), semi-radiation and convection, and discussed. Two cases were simulated - mixing of two bituminous coals and mixing of a bituminous coal and lignite- order to analyze the performance on the flue gas side. The study shows that the influence of flue air leakage and gas distribution coefficient on the system.

  1. Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P.D.; Wolff, E.N.

    1981-05-01

    Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability productsmore » of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence« less

  2. Sorption of the monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar.

    PubMed

    Hale, Sarah E; Endo, Satoshi; Arp, Hans Peter H; Zimmerman, Andrew R; Cornelissen, Gerard

    2015-01-01

    The sorption of two monoterpenes, α pinene and limonene to the carbonaceous geosorbents graphite, bituminous coal, lignite coke, biochar and Pahokee peat was quantified. Polyethylene (PE) passive samplers were calibrated for the first time for these compounds by determining the PE-water partitioning coefficients and used as a tool to determine sorption to the carbonaceous geosorbents. Log KPE-water values were 3.49±0.58 for α pinene and 4.08±0.27 for limonene. The sorption of limonene to all materials was stronger than that for α pinene (differences of 0.2-1.3 log units between distribution coefficients for the monoterpenes). Placing Kd values in increasing order for α pinene gave biochar≈Pahokee peat≈bituminous coal≈lignite coke

  3. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become increasingly important for supply of REEs in the future.

  4. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil.

    PubMed

    Santos, Jane Meri; Reis, Neyval Costa; Galvão, Elson Silva; Silveira, Alexsander; Goulart, Elisa Valentim; Lima, Ana Teresa

    2017-09-01

    Settleable particulate matter (SPM), especially coarser particles with diameters greater than 10 μm, has been found culprit of high deposition rates in cities affected by hinterland industrial activities. This is the case of Metropolitan Region of Vitoria (MRV), Espirito Santo, Brazil where industrial facilities are located within the urban sprawl and building constructions are intense. Frequent population complaints to the environmental protection agency (IEMA) throughout the years have triggered monitoring campaigns to determine SPM deposition rates and source apportionment. Eight different locations were monitored throughout the MRV, and SPM was quantified and chemically characterized. Sources profiles were defined either by using US EPA SPECIATE data or by experimental analysis. Atmospheric fallout in the MRV ranged between 2 and 20g/(m 2 30-day), with only one monitoring station ranging from 6-10 g/(m 2 30-day). EC, OC, Fe, Al, and Si were found the main constituents of dry deposition in the region. Source apportionment by the chemical mass balance (CMB) model determined that steel and iron ore pelletizing industries were the main contributor to one of the eight locations whereas resuspension, civil construction, and vehicular sources were also very important contributors to the other stations. Quarries and soil were also considered expressive SPM sources, but at the city periphery. CMB model could differentiate contributions from six industrial source groups: thermoelectric; iron ore, pellet, and pellet furnaces; coal coke and coke oven; sintering, blast furnace, and basic oxygen furnace; and soil, resuspension, and vehicles. However, the CMB model was unable to differentiate between iron ore and pellet stockpiles which are present in both steel and iron ore pelletizing industries. Further characterization of source and SPM might be necessary to aid local authorities in decision-making regarding these two industrial sources.

  5. Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield1[OPEN

    PubMed Central

    Gramegna, Giovanna; Trench, Bruna A.; Alves, Frederico R.R.; Silva, Eder M.; Silva, Geraldo F.F.; Thirumalaikumar, Venkatesh P.; Lupi, Alessandra C.D.; Demarco, Diego; Nogueira, Fabio T.S.; Freschi, Luciano

    2017-01-01

    Senescence is the process that marks the end of a leaf’s lifespan. As it progresses, the massive macromolecular catabolism dismantles the chloroplasts and, consequently, decreases the photosynthetic capacity of these organs. Thus, senescence manipulation is a strategy to improve plant yield by extending the leaf’s photosynthetically active window of time. However, it remains to be addressed if this approach can improve fleshy fruit production and nutritional quality. One way to delay senescence initiation is by regulating key transcription factors (TFs) involved in triggering this process, such as the NAC TF ORESARA1 (ORE1). Here, three senescence-related NAC TFs from tomato (Solanum lycopersicum) were identified, namely SlORE1S02, SlORE1S03, and SlORE1S06. All three genes were shown to be responsive to senescence-inducing stimuli and posttranscriptionally regulated by the microRNA miR164. Moreover, the encoded proteins interacted physically with the chloroplast maintenance-related TF SlGLKs. This characterization led to the selection of a putative tomato ORE1 as target gene for RNA interference knockdown. Transgenic lines showed delayed senescence and enhanced carbon assimilation that, ultimately, increased the number of fruits and their total soluble solid content. Additionally, the fruit nutraceutical composition was enhanced. In conclusion, these data provide robust evidence that the manipulation of leaf senescence is an effective strategy for yield improvement in fleshy fruit-bearing species. PMID:28710129

  6. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite.

    PubMed

    Khaleque, Himel N; Corbett, Melissa K; Ramsay, Joshua P; Kaksonen, Anna H; Boxall, Naomi J; Watkin, Elizabeth L J

    2017-11-20

    Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL -1 chloride ion and chalcopyrite up to 18gL -1 chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Identification of aggregates for Tennessee bituminous surface courses

    NASA Astrophysics Data System (ADS)

    Sauter, Heather Jean

    Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.

  8. Fabrication and Characterization of Novel Electrothermal Self-Healing Microcapsules with Graphene/Polymer Hybrid Shells for Bitumenious Material.

    PubMed

    Wang, Xinyu; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Wang, Yingyuan; Tan, Yiqiu

    2018-06-09

    Self-healing bituminous material has been a hot research topic in self-healing materials, and this smart self-healing approach is a promising a revolution in pavement material technology. Bitumen has a self-healing naturality relating to temperature, healing time, and aging degree. To date, heat induction and microencapsulation rejuvenator are two feasible approaches, which have been put into real applications. However, both methods have disadvantages limiting their practical results and efficiency. It will be an ideal method combining the advantages and avoiding the disadvantages of the above two methods at the same time. The aim of this work was to synthesize and characterize electrothermal self-healing microcapsules containing bituminous rejuvenator with graphene/organic nanohybrid structure shells. The microcapsules owned electric conductivity capability because of the advent of graphene, and realized the self-healing through the two approaches of heat induction and rejuvenation. The microcapsule shells were fabricated using a strength hexamethoxymethylmelamine (HMMM) resin and graphene by two-step hybrid polymerization. Experimental tests were carried out to character the morphology, integrity, and shell structure. It was found that the electric charge balance determined the graphene/HMMM microstructure. The graphene content in shells could not be greatly increased under an electrostatic balance in emulsion. X-ray photoelectron spectroscopy (XPS), Energy dispersive spectrometer (EDS), Transmission electron microscope (TEM) and Atomic force microscopy (AFM) results indicated that the graphene had deposited on shells. TGA/DTG tests implied that the thermal decomposition temperature of microcapsules with graphene had increased to about 350 °C. The thermal conductivity of microcapsules had been sharply increased to about 8.0 W/m²·K with 2.0 wt % graphene in shells. At the same time, electrical resistivity of microcapsules/bitumen samples had a decrease with more graphene in bitumen.

  9. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  10. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap includingmore » tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.« less

  11. Impact of arterial blood gas analysis in disability evaluation of the bituminous coal miner with simple pneumoconiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.L.; Roy, T.M.; Dow, F.T.

    1992-04-01

    The Department of Labor has set guidelines for the use of resting arterial blood gas analysis in determination of total and permanent disability for coal workers' pneumoconiosis. To determine the prevalence with which bituminous coal miners fall below the arterial tensions of both oxygen and carbon dioxide published in the Federal Register, we studied 1012 miners who had both reproducible spirometry and arterial blood gas analysis as part of their disability evaluation. Eighty-seven percent of impaired miners could be identified by the spirometric criteria. Thirteen percent of impaired bituminous coal miners had acceptable pulmonary function but were eligible for blackmore » lung benefits by the blood gas guidelines. This population would have been missed if blood gas analysis were excluded from the evaluation process. On the other hand, approximately 25% of the blood gas analyses that were performed could be eliminated if a policy was adopted to do this test only on miners with spirometry that exceed the federal guidelines.« less

  12. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Osipov, P. V.; Ryzhkov, A. F.

    2016-10-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air.

  14. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    PubMed

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Co-pyrolysis characteristic of biomass and bituminous coal.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Musich, M.A.

    A fixed-bed reactor system with continuous Hg{sup 0} analysis capabilities was used to evaluate commercial carbon sorbents for the removal of elemental mercury from simulated flue gas. The objectives of the program were to compare the sorbent effectiveness under identical test conditions and to identify the effects of various flue gas components on elemental mercury sorption. Sorbents tested included steam-activated lignite, chemical-activated hardwood and bituminous coal, iodated steam-activated coconut shell, and sulfur-impregnated steam-activated bituminous coal. The iodated carbon was the most effective carbon, showing over 99% mercury removal according to EPA Method 101A. Data indicate that O{sub 2} (4 vol%)more » and SO{sub 2} (500 ppm) improved the mercury removal of the other carbons for tests at 150{degrees}C using 100 {mu}g/m{sup 3} Hg{sup 0}. Further, the presence of HCl (at 50 ppm) produced a magnitude increase in mercury removal for the steam-activated and sulfur-impregnated bituminous coal-based carbons.« less

  17. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    NASA Astrophysics Data System (ADS)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg g-1 of PM2.5) but also, in a lesser extent, of Fe, Mn, Ti and Zn. We also highlighted high contribution of calcium ranging from 0.123 to 0.558 g g-1 for all of the industrial complexes under study. Since calcium is also widely used as a proxy of the dust contributions in source apportionment studies, our results suggest that this assumption should be reexamined in environments impacted by industrial emissions.

  18. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.

  19. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst

    NASA Astrophysics Data System (ADS)

    Chen, Wangsheng; Li, Ze; Hu, Fali; Qin, Linbo; Han, Jun; Wu, Gaoming

    2018-05-01

    In this study, the sintered ore used as catalysts for the selective catalytic reduction (SCR) of NOX with NH3 from the sintering flue gas was investigated. The experimental results demonstrated that the maximum denitration efficiency, about 61.64%, occurred at 300 °C, 1.0 NH3/NO ratio, and 1000 h-1 gas hourly space velocity (GHSV). In order to understand the SCR denitration mechanism, the catalyst was characterized by DRIFTS, XPS, H2-TPR, BET and ICP-MS. It was found that there were Lewis and Brønsted acid sites at the surface of the sintered ore, which lead to the appearance of amide species (sbnd NH2), NH4+ intermediates, gaseous or weakly adsorbed NO2 and nitrite species. Hence, it was concluded that the reaction of the amide species (sbnd NH2) with gaseous NO (E-R mechanism) and the reaction of absorbed NO2 with the coordinated ammonia (L-H mechanism) were attributed to NOx reduction.

  20. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    PubMed

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  1. Effect of Tourmaline-Doped on the Far Infrared Emission of Iron Ore Tailings Ceramics.

    PubMed

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Zhang, Hongchen; Gu, Xiaoyang

    2016-04-01

    Iron ore tailings as secondary resources have been of great importance to many countries in the world. Their compositions are similar to that of infrared emission ceramics, but there are few reports about it. In addition, tourmaline has high infrared emission properties due to its unique structure. With the purpose of expanding functional utilization of iron ore tailings, as well as reducing the production cost of far infrared ceramics, a new kind of far infrared emission ceramics was prepared by using iron ore tailings, calcium carbonate, silica, and natural tourmaline. The ceramics powders were characterized by Fourier transform infrared spectroscope, X-ray diffraction and scanning electron microscopy, respectively. The results show that after being sintered at 1065 °C, the percentage of pseudobrookite and lattice strain of samples increased with increasing the elbaite content. Furthermore, the added tourmaline was conducive to the densification sintering of ceramics. The appearance of Li-O vibration at 734.73 cm-1, as well as the strengthened Fe-O vibration at 987.68 cm-1 were attributed to the formation of Li0.375Fe1.23Ti1.4O5 solid solution, which led the average far infrared emissivity of ceramics increase from 0.861 to 0.906 within 8-14 µm.

  2. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    PubMed

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    PubMed

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  4. Development of Technology for Enrichment of Silver Containing Ores

    NASA Astrophysics Data System (ADS)

    Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka

    2016-10-01

    The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re-purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.

  5. Iron isotope fractionation during hydrothermal ore deposition and alteration

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  6. Metal-Sulfide Mineral Ores, Fenton Chemistry and Disease – Particle Induced Inflammatory Stress Response in Lung Cells

    PubMed Central

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A.A.

    2014-01-01

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 minutes and measured systematically for up to 24 hours). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. This study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management. PMID:25107347

  7. Stable isotope, chemical, and mineral compositions of the Middle Proterozoic Lijiaying Mn deposit, Shaanxi Province, China

    USGS Publications Warehouse

    Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian

    1999-01-01

    The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to <0.008 and P/Mn from 0.0023 to <0.001. Based on mineralogical data, the low ends of those ranges of ratios are probably close to ratios for the pure Mn minerals. Manganese contents have a strong positive correlation with Ce anomaly values and a moderate correlation with total REE contents. Compositional data indicate that kutnahorite is a metamorphic mineral and that most calcites formed as low-temperature marine carbonates that were subsequently metamorphosed. The braunite ore precursor mineral was probably a Mn oxyhydroxide, similar to those that formed on the deep ocean-floor during the Cenozoic. Because the Lijiaying precursor mineral formed in a shallow-water marine environment, the atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.

  8. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: Depositional environment and source rock potential

    USGS Publications Warehouse

    Hackley, Paul C.; Sanfilipo, John

    2016-01-01

    Organic geochemistry and petrology of Eocene Suzak bituminous marl outcrop samples from Madr village in north-central Afghanistan were characterized via an integrated analytical approach to evaluate depositional environment and source rock potential. Multiple proxies suggest the organic-rich (TOC ∼6 wt.%) bituminous marls are ‘immature’ for oil generation (e.g., vitrinite Ro < 0.4%, Tmax < 425 °C, PI ≤ 0.05, C29 ααα S/S + R ≤ 0.12, C29 ββS/ββS+ααR ≤ 0.10, others), yet oil seeps are present at outcrop and live oil and abundant solid bitumen were observed via optical microscopy. Whole rock sulfur content is ∼2.3 wt.% whereas sulfur content is ∼5.0–5.6 wt.% in whole rock extracts with high polar components, consistent with extraction from S-rich Type IIs organic matter which could generate hydrocarbons at low thermal maturity. Low Fe-sulfide mineral abundance and comparison of Pr/Ph ratios between saturate and whole extracts suggest limited Fe concentration resulted in sulfurization of organic matter during early diagenesis. From these observations, we infer that a Type IIs kerogen in ‘immature’ bituminous marl at Madr could be generating high sulfur viscous oil which is seeping from outcrop. However, oil-seep samples were not collected for correlation studies. Aluminum-normalized trace element concentrations indicate enrichment of redox sensitive trace elements Mo, U and V and suggest anoxic-euxinic conditions during sediment deposition. The bulk of organic matter observed via optical microscopy is strongly fluorescent amorphous bituminite grading to lamalginite, possibly representing microbial mat facies. Short chain n-alkanes peak at C14–C16 (n-C17/n-C29 > 1) indicating organic input from marine algae and/or bacterial biomass, and sterane/hopane ratios are low (0.12–0.14). Monoaromatic steroids are dominated by C28clearly indicating a marine setting. High gammacerane index values (∼0.9) are consistent with anoxia stratification and may indicate intermittent saline-hypersaline conditions. Stable C isotope ratios also suggest a marine depositional scenario for the Suzak samples, consistent with the presence of marine foraminifera including abundant planktic globigerinida(?) and rare benthic discocyclina(?) and nummulites(?). Biomarker 2α-methylhopane for photosynthetic cyanobacteria implies shallow photic zone deposition of Madr marls and 3β-methylhopane indicates presence of methanotrophic archaea in the microbial consortium. The data presented herein are consistent with deposition of Suzak bituminous marls in shallow stratified waters of a restricted marine basin associated with the southeastern incipient or proto-Paratethys. Geochemical proxies from Suzak rock extracts (S content, high polar content, C isotopes, normal (αααR) C27–29 steranes, and C29/C30 and C26/C25 hopane ratios) are similar to extant data from Paleogene oils produced to the north in the Afghan-Tajik Basin. This observation may indicate laterally equivalent strata are effective source rocks as suggested by previous workers; however, further work is needed to strengthen oil-source correlations.

  9. Routine Testing of Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  10. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  11. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  12. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were addressed, especially on raw coal.

  13. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province

    NASA Astrophysics Data System (ADS)

    Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.

    2017-09-01

    The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.

  14. Total Ore Processing Integration and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve themore » predictability of mill and agglomerator performance at Hibtac Mine.« less

  15. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal

    NASA Astrophysics Data System (ADS)

    Noronha, F.; Doria, A.; Dubessy, J.; Charoy, B.

    1992-01-01

    The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.

  16. Assessment of health risks due to arsenic from iron ore lumps in a beach setting.

    PubMed

    Swartjes, Frank A; Janssen, Paul J C M

    2016-09-01

    In 2011, an artificial hook-shaped peninsula of 128ha beach area was created along the Dutch coast, containing thousands of iron ore lumps, which include arsenic from natural origin. Elemental arsenic and inorganic arsenic induce a range of toxicological effects and has been classified as proven human carcinogens. The combination of easy access to the beach and the presence of arsenic raised concern about possible human health effects by the local authorities. The objective of this study is therefore to investigate human health risks from the presence of arsenic-containing iron ore lumps in a beach setting. The exposure scenarios underlying the human health-based risk limits for contaminated land in The Netherlands, based on soil material ingestion and a residential setting, are not appropriate. Two specific exposure scenarios related to the playing with iron ore lumps on the beach ('sandcastle building') are developed on the basis of expert judgement, relating to children in the age of 2 to 12years, i.e., a worst case exposure scenario and a precautionary scenario. Subsequently, exposure is calculated by the quantification of the following factors: hand loading, soil-mouth transfer effectivity, hand-mouth contact frequency, contact surface, body weight and the relative oral bioavailability factor. By lack of consensus on a universal reference dose for arsenic for use in the stage of risk characterization, three different types of assessments have been evaluated: on the basis of the current Provisional Tolerable Daily Intake (PTWI), on the basis of the Benchmark Dose Lower limit (BMDL), and by a comparison of exposure from the iron ore lumps with background exposure. It is concluded, certainly from the perspective of the conservative exposure assessment, that unacceptable human health risks due to exposure to arsenic from the iron ore lumps are unlikely and there is no need for risk management actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Leaching: use of a thermophilic and chemoautotrophic microbe.

    PubMed

    Brierley, C L; Murr, L E

    1973-02-02

    A chemoautotrophic, thermophilic, and acidophilic microorganism capable of oxidizing reduced sulfur and iron compounds and leaching concentrates of molybdenite and chalcopyrite at 60 degrees C has been characterized by transmission and scanning electron microscopy. This constitutes the first direct observations of microorganisms on ore fines.

  18. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  19. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    NASA Astrophysics Data System (ADS)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  20. Nonspecific airway hyperreactivity in nonsmoking bituminous coal miners demonstrated by quantitative methacholine inhalation challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgel, D.W.; Roe, R.

    Because nonsmoking underground bituminous coal miners often have symptoms of chronic bronchitis and because a high proportion of patients with chronic bronchitis have nonspecific airway hyperreactivity, we hypothesized that coal miners would have a higher prevalence of nonspecific airway hyperreactivity than nonminer nonsmoking control subjects. By use of a quantitative methacholine provocative inhalation challenge test, we evaluated 22 underground bituminous coal miners and 41 nonminer age- and sex-matched control subjects from the same community. We found that a significantly higher proportion of miners had reactivity to inhalation of 100 mg/ml or less of methacholine, X2 = 6.19, p less thanmore » 0.02. The slope of phase III of the single-breath nitrogen washout test was higher in the reactive miners than in the nonreactive miners and reactive control subjects, even though the reactive miners had only been working underground 8 +/- 3 (SEM) years. Within the reactive miner subgroup, the higher the reactivity to methacholine, the more abnormal the slope of phase III of the single-breath nitrogen test, r = 0.79. Miners had more symptoms than controls; the presence of methacholine reactivity was not associated with increased symptoms. We conclude that the bituminous coal miners in our study had an increased prevalence of nonspecific airway hyperreactivity and that within the reactive miner subgroup there was evidence of early airways disease. We speculate that the nonspecific airway hyperreactivity may be related to, and also be an indicator of, lung injury in coal miners.« less

  1. Rutting performance of cold bituminous emulsion mixtures

    NASA Astrophysics Data System (ADS)

    Arshad, Ahmad Kamil; Ali, Noor Azilatom; Shaffie, Ekarizan; Hashim, Wardati; Rahman, Zanariah Abd

    2017-10-01

    Cold Bituminous Emulsion Mixture (CBEM) is an environmentally friendly alternative to hot mix asphalt (HMA) for road surfacing, due to its low energy requirements. However, CBEM has generally been perceived to be less superior in performance, compared to HMA. This paper details a laboratory study on the rutting performance of CBEM. The main objective of this study is to determine the Marshall properties of CBEM and to evaluate the rutting performance. The effect of cement in CBEM was also evaluated in this study. The specimens were prepared using Marshall Mix Design Method and rutting performance was evaluated using the Asphalt Pavement Analyzer (APA). Marshall Properties were analysed to confirm compliance with the PWD Malaysia's specification requirements. The rutting performance for specimens with cement was also found to perform better than specimens without cement. It can be concluded that Cold Bituminous Emulsion Mixtures (CBEM) with cement is a viable alternative to Hot Mix Asphalt (HMA) as their Marshall Properties and performance obtained from this study meets the requirements of the specifications. It is recommended that further study be conducted on CBEM for other performance criteria such as moisture susceptibility and fatigue.

  2. Geochemistry of radioactive elements in bituminous sands and sandstones of Permian bitumen deposits of Tatarstan (east of the Russian plate)

    NASA Astrophysics Data System (ADS)

    Mullakaev, A. I.; Khasanov, R. R.; Badrutdinov, O. R.; Kamaletdinov, I. R.

    2018-05-01

    The article investigates geochemical features of Permian (Cisuralian, Ufimian Stage and Biarmian, Kazanian Stage of the General Stratigraphic Scale of Russia) bituminous sands and sandstones located on the territory of the Volga-Ural oil and gas province (Republic of Tatarstan). Natural bitumens are extracted using thermal methods as deposits of high-viscosity oils. In the samples studied, the specific activity of natural radionuclides from the 238U (226Ra), 232Th, and 40K series was measured using gamma spectrometry. As a result of the precipitation of uranium and thorium and their subsequent decay, the accumulation of radium (226Ra and 228Ra) has been shown to occur in the bituminous substance. In the process of exploitation of bitumen-bearing rock deposits (as an oil fields) radium in the composition of a water-oil mixture can be extracted to the surface or deposited on sulfate barriers, while being concentrated on the walls of pipes and other equipment. This process requires increased attention to monitoring and inspection the environmental safety of the exploitation procedure.

  3. Design of a bituminous mixture for perpetual pavement

    NASA Astrophysics Data System (ADS)

    Gireesh Kumar, S.; Satya, J.; Mittal, Kratagya; Raju, Sridhar

    2018-03-01

    The flexible pavements with a design period of 50 years without requiring major structural rehabilitation and reconstructions are called as perpetual pavements. The present study aims at designing a high modulus Dense Bituminous Macadam (DBM) mixture for perpetual pavements using Industrial Grade (IG) bitumen in combination with Viscosity Grade (VG30) bitumen. Various blending combinations were tried and the ratio of 70:30 for IG: VG30 was found to fulfill the requirements. The modified Marshall hammer was used for the preparation of specimens, as the nominal size of aggregate was 25 mm. A comparative study on DBM mixture with VG30 alone and with IG: VG30 (70:30) was done and the Optimum Binder Contents obtained were 5.0 % and 5.3 % respectively at 4 % air voids. The water sensitivity tests were carried out on the bituminous specimens in accordance with AASHTO T 283 and the Indirect Tensile Strength (ITS) ratio obtained were 80.0 % and 98.3 % respectively for specimens with VG30 and IG: VG30. The stiffness modulus of DBM specimens with IG: VG30 bitumen was 3 times higher than DBM with VG30 bitumen.

  4. Organic emissions from coal pyrolysis: mutagenic effects.

    PubMed Central

    Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F

    1987-01-01

    Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724

  5. Two types of ore-bearing mafic complexes of the Early Proterozoic East-Scandinavian LIP and their ore potential

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Zhirov, Dmitry; Bayanova, Tamara; Korchagin, Alexey; Chaschin, Victor

    2015-04-01

    Two types of the ore-bearing mafic complexes are allotted in the East-Scandinavian large igneous province (LIP). They differ in geodynamic setting, structure, isotope geochemistry, petrology and mineralogy. The PGE-bearing mafic-ultramafic layered intrusions are associated with the first complex. They have been formed at an initial (pre-rift) stage of LIP. Features of origin of this complex are: 1) large-scale, protracted, and multiple episodes of deep mantle plume or asthenosphere upwelling; 2) the vast non-subduction-type basaltic magma in an intraplate continental setting; 3) low-sulfide Pt-Pd (with Ni, Cu, Au, Co and Rh) mineralization in different geological setting (reef- and contact type etc.); 4) anomalously high concentrations of PGEs in the bulk sulfides, inferred platinum distribution coefficient between silicate and sulfide melts of >100000. Deep mantle magma source is enriched in ore components (fertile source) and lithophile elements. It is reflected in the isotope indicators such as ɛNd(T) from -1 to -3, ISr(87Sr/86Sr) from 0.702 to 0.704, 3Не/4Не = (10 ^-5 ÷ 10 ^-6). Magma and ore sources differ from those of Mid-Ocean Ridge basalts (MORB), subduction-related magma but are similar to EM-I. Ore-bearing mafic complexes formed during a long period of time and by different episodes (2490±10 Ma; 2470±10 Ma; 2450±10 Ma; 2400±10 Ma), and by mixing between the boninitic an anorthositic magmas. It is known about 10 deposits and occurrences in Kola region with total reserves and resources about 2000 tons in palladium equivalent (with an average content ≥2-3 ppm). Intrusions with the rich sulfide Ni-Cu ore (with Co and poor PGE) are associated with the second mafic complex. Ore-controlling mafic-ultramafic intrusions are formed at a final stage of the intracontinental rifting of the Transitional period (2200-1980 Ma). Initial magma is depleted and similar to the MORB in terms of rare earths distribution. Enriched ferropicritic Fe-Ti derivatives of magma generate single volcano-plutonic rock series. For intrusive ore bodies rock differentiation with the formation of syngenetic wehrlite-clinopyroxenite-gabbro- orthoclase gabbro sequence is typical. Upper mantle source of the depleted magma is characterized by the following isotope indicators: ɛNd(T) +0.5 to +4, ISr= 87Sr/86Sr 0.703-0.704. Ore-bearing intrusive bodies are injected in the upper part of the Early Palaeoproterozoic volcano-sedimentary cross-section. Ores are located in the basement of intrusions and in the redeposited veined bodies, including offset setting. Numerous Ni-Cu deposits with total reserves and resources of several million tons of Nickel equivalent (with an average grade ≥ 0,3%) have been explored, and some of them now is mining. As a result of our research, the complex of indicators and criteria is suggested for predicting the occurrence, for regional exploration target selection and for regional resource evaluation of PGE and base metals. The studies are supported by the Russian Foundation for Basic Research (project nos. 13-05-12055).

  6. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-04

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.

  7. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less

  8. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory drilling programs. The sporadic occurrence of these deposits makes it desirable to develop borehole geophysical techniques that will help to define the depositional environments of the uranium ore, which is characterized by geochemical changes near the uranium deposits. Geochemical changes are accompanied by changes in the physical characteristics of the rocks that can be detected with borehole geophysical tools. This study is concerned with a uranium deposit within the Jackson Group that is located just east of Karnes City, Tex. Five holes were drilled on this property to obtain borehole geophysical data and cores. The cores were analyzed for mineralogic and electrical properties. The borehole geophysical information at this property included induced polarization, resistivity, gamma-gamma density, neutron-neutron, gamma-ray, caliper, and single-point-resistance logs. Between-hole resistivity and induced polarization measurements were made between hole pairs across the ore deposit and off the ore deposit.

  9. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Naumov, E. A.; Borisenko, A. S.; Kovalev, K. R.; Antropova, A. I.

    2015-05-01

    The Ob-Zaisan folded zone is a fragment of a single structure composed of Paleozoic sedimentary and volcanogenic rocks (mainly black shale), which was formed at the margin of the Siberian continent and features a common set of magmatic complexes and mineral systems. However, there are some differences that determine the specific geological and metallogenic features of the Irtysh-Zaisan and Kolyvan-Tomsk fragments of the Ob-Zaisan folded zone. In the gold deposits of the West Kalba and Kolyvan-Tomsk auriferous belt, the main gold-sulfide mineralization is controlled by zones of shearing and dynamic metamorphism in carbonaceous carbonate-terrigenous rocks. This type of mineralization was formed in tectonic blocks in a compressional setting. Antimony mineralization is characterized by brecciated textures and the vein-like morphology of ore bodies, reflecting extensional tectonics. At some deposits (Zherek, Mirazh, Dalny), Sb mineralization is spatially separated from the main gold-sulfide ores and shows cross-cutting relations to the principal ore-controlling structures. In other gold deposits, stibnite is spatially associated with disseminated gold-sulfide ores and forms mineral assemblages with Ni, Co, Au, Pb, and Fe (Alimbet, Zhanan, Legostaevskoe, Semiluzhenskoe, and Kamenskoe deposits). This study reveals no direct correlation between Au and Sb in gold-sulfide ores of these deposits. SEM analysis indicated the absence of free gold in stibnite veins. However, atomic absorption and electron microprobe analysis indicated the presence of "invisible gold" from a few ppm to several tens of ppm in the stibnite. High gold contents in the gold-sulfide ores overprinted by antimony mineralization (Suzdalskoe, Zhanan, and Legostaevskoe deposits) can be explained by the processes of regeneration and redeposition. The results of microstructural observations, isotope geochronology, studies of mineral assemblages and fluid inclusions in the ores from gold deposits of the Ob-Zaisan folded zone suggest that antimony mineralization was formed at gold-polysulfide stage, which was separated from the early ore pyrite-arsenopyrite stage by a 30 Ma time gap. It can be assumed that the essentially stibnite mineralization was formed at a separate stage and was separated from the gold-polysulfide mineralization by a 7 Ma interval of tectonic activity. Our Ar-Ar data on sericite from ore samples, combined with U-Pb data on zircons from igneous rocks and previous data from the literature show that there were two major stages of ore formation: the Early Permian (282-270 Ma) and the Early Triassic (250-240 Ma). Most researchers suggest that these stages of mineralization can be related to the epochs of intraplate magmatism that led to the formation of the Tarim (280 Ma) and Siberian (250 Ma) large igneous provinces. These global geological events are generally connected with the influence of Tarim and Siberian mantle plumes.

  10. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    DOE PAGES

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; ...

    2014-07-10

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less

  11. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less

  12. U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. French; E. Anthony; P. Goodell

    2006-03-16

    The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s amore » maximum residence time for the boulder is about 25 years, this also means that the soil was at background as well. The purpose of this study is to characterize the transport of uranium series radionuclides from ore to the soil. Transport is characterized by determining the activities of individual radionuclides and daughter to parent ratios. Isotopes of the uranium series decay chain detected include {sup 210}Pb, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 214}Pb, and {sup 214}Bi. Peak areas for each isotope are determined using gamma-ray spectroscopy with a Canberra Ge (Li) detector and GENIE 2000 software. The boulder sample is close to secular equilibrium when compared to the standard BL-5 (Beaver Lodge Uraninite from Canada). Results for the soils, however, indicate that some daughter/parent pairs are in secular disequilibrium. These daughter/parent (D/P) ratios include {sup 230}Th/{sup 234}U, which is greater than unity, {sup 226}Ra/{sup 230}Th, which is also greater than unity, and {sup 210}Pb/{sup 214}Bi, which is less than unity. The gamma-ray spectrum for organic material lacks {sup 230}Th peaks, but contains {sup 234}U and {sup 226}Ra, indicating that plants preferentially incorporate {sup 226}Ra. Our results, combined with previous studies require multistage history of mobilization of the uranium series radionuclides. Earlier studies at the ore zone could limit the time span for mobilization only to a few thousand years. The contribution of this study is that the short residence time of the ore at the Prior High Grade Stockpile requires a time span for mobilization of 20-30 years.« less

  13. Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield

    NASA Astrophysics Data System (ADS)

    Ghosh, Rupam; Baidya, Tapan Kumar

    2017-12-01

    Banded iron formations (BIFs) are chemically precipitated sedimentary rock characterized by alternating Fe-rich and Si-rich bands. The origin of BIF has remained controversial despite years of diligent research. Most models proposed for the BIF origin are based on the observations of well-preserved Neoarchean to Paleoproterozoic BIFs. The present paper is focused on the origin of Mesoarchean BIFs present in the Badampahar greenstone belt (3.3-3.1 Ga), East Indian Shield. Here, BIF is interlayered with metavolcanic rocks, quartzite, phyllite and chert representing a typical greenstone sequence. Geochemical and sedimentological evidence suggest deposition of BIF below the wave base as part of a back-arc basin with insignificant detrital input. Interaction of seawater and volcanogenic high temperature hydrothermal fluids, generated from back-arc spreading centre, supplied metals for BIF deposition. Distinctly negative Ce anomalies in some lower BIF horizons indicate Fe2+ oxidation in an oxygenated hydrosphere and derivation of free oxygen from microbial photosynthesis. Subsequent stages of deformation, metamorphism, hydrothermal and supergene processes after deposition led to the formation of the iron ore bodies at present.

  14. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  15. Mineralogy, paragenesis, and mineral zoning of the Bulldog Mountain vein system, Creede District, Colorado

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela

    1994-01-01

    The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.

  16. URANIUM COMPOSITIONS

    DOEpatents

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  17. Optimizing Dose Characterizations for Measurement of in vivo Relative Potencies of Mineral Fibers

    EPA Science Inventory

    NHEERL and OSWER representatives were invited to Libby, MT, for meetings on September 26-27, 2007, to discuss research addressing the health effects of asbestos contamination of that community. Vermiculite ore mined for 70 years near the town contained substantial amounts of amp...

  18. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  19. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    PubMed

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feihu Li; Jianping Zhai; Xiaoru Fu

    2006-08-15

    The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni andmore » V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.« less

  1. Characterization of coals for circulating fluidized bed combustion by pilot scale tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de

    1995-12-31

    The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less

  2. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  3. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  4. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be; Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be; Braet, Johan, E-mail: johan.braet@uantwerpen.be

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages,more » e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.« less

  5. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.

  6. Multistage deformation of Au-quartz veins (Laurieras, French Massif Central): evidence for late gold introduction from microstructural, isotopic and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Fourcade, S.

    2001-07-01

    The relative chronology of fluid migration, quartz and Au-deposition in a silicified fault from the main Au-district (Laurieras, St Yrieix district) from northern French Massif Central has been determined from microstructural, fluid inclusion, isotopic and ore mineral evidences. Three main stages of fluid circulation, microfracturing and quartz crystallization, and ore deposition were distinguished on the basis of textural relationships and the pressure, temperature and composition of the palaeo-fluids: (1) a series of early fluid events was responsible for the localized drainage of retrograde metamorphic fluids along the main fault and the subsequent sealing by milky and microcrystalline quartz preceeded the main Au-ore stages. Early fluids were aqueous-carbonic, trapped under lithostatic to sublithostatic pressures at temperatures in the range 350-500°C. Subsequently, several types of microstructures were developed in the early quartz matrix. (2) NS microfractures filled by clear quartz, arsenopyrite and boulangerite (I) contain significant refractory gold concentrations. Clear quartz formed from aqueous-carbonic fluids of lower densities than those of the earlier fluids. Significant pressure drops, down to pressures around 55 MPa were responsible for a local immiscibility of the aqueous-carbonic fluids at temperatures of 340±20°C. (3) The main ore stage is characterized by the formation of dense sets of sub-vertical (EW) microfractures, healed fluid inclusion planes in quartz, and filled by ore minerals (native gold, galena and boulangerite II) when they crosscut earlier sulfides. The fluids are aqueous with low and decreasing salinity, and probable trapping temperatures around 230°C. Isotopic data, obtained on microfissured quartz, indicate these dilute aqueous fluids may be considered as meteoric waters that deeply infiltrated the crust. Late microfissuring of a mesothermal quartz vein, originally barren (only with pyrite and arsenopyrite), appears to be the main factor controlling gold enrichment. It can be related to late Hercynian deformational stages, disconnected from the early fault formation and silicification. These late stages which affected the Hercynian basement during its uplift, are of critical importance for the formation of Au-ores. We concluded that this type of Au-ore formed under rather shallow conditions, is distinct from those generally described in most mesothermal Au-veins.

  7. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s-1, with a median of 18.4 L s-1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-??m pore-size filter) SO4 (34-2000), Fe (0.046-512), Mn (0.019-74), and Al (0.007-108) varied widely. Predominant metalloid elements were Si (2.7-31.3 mg L-1), B ( C > P = N = Se) were not elevated in the CMD samples compared to average river water or seawater. Compared to seawater, the CMD samples also were poor in halogens (Cl > Br > I > F), alkalies (Na > K > Li > Rb > Cs), most alkaline earths (Ca > Mg > Sr), and most metalloids but were enriched by two to four orders of magnitude with Fe, Al, Mn, Co, Be, Sc, Y and the lanthanide rare-earth elements, and one order of magnitude with Ni and Zn. The ochre samples collected at a subset of 10 sites in 2003 were dominantly goethite with minor ferrihydrite or lepidocrocite. None of the samples for this subset contained schwertmannite or was Al rich, but most contained minor aluminosilicate detritus. Compared to concentrations in global average shale, the ochres were rich in Fe, Ag, As and Au, but were poor in most other metals and rare earths. The ochres were not enriched compared to commercial ore deposits mined for Au or other valuable metals. Although similar to commercial Fe ores in composition, the ochres are dispersed and present in relatively small quantities at most sites. Nevertheless, the ochres could be valuable for use as pigment.

  8. Variations in coal characteristics and their possible implications for CO2 sequestration: Tanquary injection site, southeastern Illinois, USA

    USGS Publications Warehouse

    Morse, D.G.; Mastalerz, Maria; Drobniak, A.; Rupp, J.A.; Harpalani, S.

    2010-01-01

    As part of the U.S. Department of Energy's Regional Sequestration Partnership program, the potential for sequestering CO2 in the largest bituminous coal reserve in United States - the Illinois Basin - is being assessed at the Tanquary site in Wabash County, southeastern Illinois. To accomplish the main project objectives, which are to determine CO2 injection rates and storage capacity, we developed a detailed coal characterization program. The targeted Springfield Coal occurs at 274m (900ft) depth, is 2.1m (7ft) thick, and is of high volatile B bituminous rank, having an average vitrinite reflectance (Ro) of 0.63%. Desorbed Springfield Coal gas content in cores from four wells ~15 to ~30m (50 to 100ft) apart varies from 4.7-6.6cm3/g (150 to 210scf/ton, dmmf) and consists, generally, of >92% CH4 with lesser amounts of N2 and then CO2. Adsorption isotherms indicate that at least three molecules of CO2 can be stored for each displaced CH4 molecule. Whole seam petrographic composition, which affects sequestration potential, averages 76.5% vitrinite, 4.2% liptinite, 11.6% inertinite, and 7.7% mineral matter. Sulfur content averages 1.59%. Well-developed coal cleats with 1 to 2cm spacing contain partial calcite and/or kaolinite fillings that may decrease coal permeability. The shallow geophysical induction log curves show much higher resistivity in the lower part of the Springfield Coal than the medium or deep curves because of invasion by freshwater drilling fluid, possibly indicating higher permeability. Gamma-ray and bulk density vary, reflecting differences in maceral, ash, and pyrite content. Because coal properties vary across the basin, it is critical to characterize injection site coals to best predict the potential for CO2 injection and storage capacity. ?? 2010 Elsevier B.V.

  9. STATUS REPORT FOR AGING STUDIES OF EPDM O-RING MATERIAL FOR THE H1616 SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefek, T.; Daugherty, W.; Skidmore, E.

    This is an interim status report for tasks carried out per Task Technical Plan SRNL-STI-2011-00506. A series of tasks/experiments are being performed at the Savannah River National Laboratory to monitor the aging performance of ethylene propylene diene monomer (EPDM) Orings used in the H1616 shipping package. The data will support the technical basis to extend the annual maintenance of the EPDM O-rings in the H1616 shipping package and to predict the life of the seals at bounding service conditions. Current expectations are that the O-rings will maintain a seal at bounding normal temperatures in service (152 F) for at leastmore » 12 months. The baseline aging data review suggests that the EPDM O-rings are likely to retain significant mechanical properties and sealing force at bounding service temperatures to provide a service life of at least 2 years. At lower, more realistic temperatures, longer service life is likely. Parallel compression stress relaxation and vessel leak test efforts are in progress to further validate this assessment and quantify a more realistic service life prediction. The H1616 shipping package O-rings were evaluated for baseline property data as part of this test program. This was done to provide a basis for comparison of changes in material properties and performance parameters as a function of aging. This initial characterization was limited to physical and mechanical properties, namely hardness, thickness and tensile strength. These properties appear to be consistent with O-ring specifications. Three H1616-1 Containment Vessels were placed in test conditions and are aging at temperatures ranging from 160 to 300 F. The vessels were Helium leak-tested initially and have been tested at periodic intervals after cooling to room temperature to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97 (< 1E-07 std cc air/sec at room temperature). To date, no leak test failures have occurred. The cumulative time at temperature ranges from 174 days for the 300 F vessel to 189 days for the 160 F vessel as of 8/1/2012. The compression stress-relaxation (CSR) behavior of H1616 shipping package O-rings is being evaluated to develop an aging model based on material properties. O-ring segments were initially aged at four temperatures (175 F, 235 F, 300 F and 350 F). These temperatures were selected to bound normal service temperatures and to challenge the seals within a reasonable aging period. Currently, samples aging at 300 F and 350 F have reached the mechanical failure point (end of life) which is defined in this study as 90% loss of initial sealing force. As a result, additional samples more recently began aging at {approx}270 F to provide additional data for the aging model. Aging and periodic leak testing of the full containment vessels, as well as CSR testing of O-ring segments is ongoing. Continued testing per the Task Technical Plan is recommended in order to validate the assumptions outlined in this status report and to quantify and validate the long-term performance of O-ring seals under actual service conditions.« less

  10. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  11. Chemical activation of bituminous coal for hampering oligomerization of organic contaminants.

    PubMed

    Yan, Liang; Sorial, George A

    2011-12-15

    Activated carbons prepared by KOH activation of bituminous coal were studied for hampering oligomerization of phenolic compounds on its surface. A total of 24 activated carbons with different microporosity and BET surface area were created. The effect of the different variables of the activation process (KOH/bituminous coal ratio, heating temperature, activation time, and flow rate of nitrogen gas) on critical carbon parameters was analyzed. The impact of activated carbon on oligomerization was examined by conducting isotherm experiments at a neutral pH on Carbon(exp) produced with optimal characteristics and granular activated carbon (GAC) F400 for phenol, 2-methylphenol and 2-ethylphenol. These isotherms were collected under anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions. The single solute adsorption of phenol, 2-methylphenol and 2-ethylphenol on Carbon(exp) showed no obvious differences between oxic and anoxic environment, which indicated that the Carbon(exp) sample is very effective in hampering the oligomerization of phenolic compounds under oxic conditions. On the other hand, F400, which have lower micropore percentage and BET surface area, significant increases in the adsorptive capacity had been observed when molecular oxygen was present. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Formation and retention of methane in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  13. Formation and retention of methane in coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  14. China's emergence as the world's leading iron-ore-consuming country

    USGS Publications Warehouse

    Kirk, W.S.

    2004-01-01

    China has become the leading iron ore consuming nation, and, based on recent steel production capacity increases and plans for more, its consumption will almost certainly to continue to grow. China's iron ore industry, however, faces a number of problems. China's iron ore is low-grade, expensive to process, and its mines are being depleted. For many Chinese steelmakers, particularly in the coastal regions, the delivered cost of domestic iron ore, is more than the delivered cost of foreign ore. Thus China's iron ore imports are expected to increase. As China's growth continues, it will almost certainly surpass Japan to become the leading iron ore importing country as well. Without China's increasing appetite for iron ore, the world iron ore market would be flat or declining. China's recent imports largely offset the slump in demand in North America and Europe. China is regarded by the iron ore industry as the growth sector for the next decade. Although Chinese imports are expected to continue their rapid increase and imports in other Asian countries are expected to continue growing, there appears to be enough greenfield and expansion projects to meet future demand for iron ore worldwide. Present suppliers of iron ore, Australia, Brazil, India, and South Africa, will probably be the chief beneficiaries of China's increasing consumption of iron ore. How long China can continue its extraordinary growth is the primary issue for the future of the iron ore industry. Based on the number and size of planned blast furnaces it appears that China's growth could continue for several more years. ?? 2004 Taylor and Francis.

  15. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U-Pb dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.

  16. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less

  17. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.

  18. Composite correlation filter for O-ring detection in stationary colored noise

    NASA Astrophysics Data System (ADS)

    Hassebrook, Laurence G.

    2009-04-01

    O-rings are regularly replaced in aircraft and if they are not replaced or if they are installed improperly, they can result in catastrophic failure of the aircraft. It is critical that the o-rings be packaged correctly to avoid mistakes made by technicians during routine maintenance. For this reason, fines may be imposed on the o-ring manufacturer if the o-rings are packaged incorrectly. That is, a single o-ring must be packaged and labeled properly. No o-rings or more than one o-ring per package is not acceptable. We present an industrial inspection system based on real-time composite correlation filtering that has successfully solved this problem in spite of opaque paper o-ring packages. We present the system design including the composite filter design.

  19. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution. The isolated carbonate platform (as a basin paleo-high) and related syndepositional fault system, together with the unconformity-related facies succession, may have controlled the migration pathway of ore-forming basinal fluids and subsequently determined the location of SMG deposits in the Youjiang basin. Unlike Carlin-type gold deposits, SMG mineralization in the Youjiang basin may represent an integral aspect of the dynamic evolution of extensional basins along divergent continental margins.

  20. Ore microscopy of the Paoli silver-copper deposit, Oklahoma

    USGS Publications Warehouse

    Thomas, C.A.; Hagni, R.D.; Berendsen, P.

    1991-01-01

    The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a cement around quartz sand grains, and brecciated pyrite grains are surrounded by rims of hematite and goethite. Dolomite is the principal sandstone cement. Cathodoluminescence microscopic study of the mineral has shown that it was deposited during seven periods before the copper sulfide mineralization. ?? 1991.

  1. Manganese and ferromanganese ores from different tectonic settings in the NW Himalayas, Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir Shah, Mohammad; Moon, Charles J.

    2007-02-01

    In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics. The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz. The chemical composition of the ferromanganese ores in Hazara suggests that the Mn-Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is suggested that the Fe-Mn ores of the Hazara area originated from a mixed hydrothermal-hydrogenetic source in shallow water in a ontinental shelf environment due to the transgression and regression of the sea, while the Mn ores of Waziristan were formed at sea-floor spreading centers within the Neo-Tethys Ocean, and were later obducted as part of the Waziristan ophiolite complex.

  2. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  3. The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru

    USGS Publications Warehouse

    Lewis, Richard Wheatley

    1964-01-01

    The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.

  4. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions...

  5. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ore subcategory. 440.10 Section 440.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of...

  6. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  7. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ore subcategory. 440.10 Section 440.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of...

  8. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  9. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  10. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  11. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The...

  12. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The...

  13. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The...

  14. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  15. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The...

  16. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions...

  17. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  18. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions...

  19. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ore subcategory. 440.10 Section 440.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of...

  20. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions...

  1. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions...

  2. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The...

  3. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The...

  4. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions...

  5. 10 CFR 40.23 - General license for carriers of transient shipments of natural uranium other than in the form of...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... natural uranium other than in the form of ore or ore residue. 40.23 Section 40.23 Energy NUCLEAR... carriers of transient shipments of natural uranium other than in the form of ore or ore residue. (a) A... than in the form of ore or ore residue, in amounts exceeding 500 kilograms. (b)(1) Persons generally...

  6. 10 CFR 40.23 - General license for carriers of transient shipments of natural uranium other than in the form of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... natural uranium other than in the form of ore or ore residue. 40.23 Section 40.23 Energy NUCLEAR... carriers of transient shipments of natural uranium other than in the form of ore or ore residue. (a) A... than in the form of ore or ore residue, in amounts exceeding 500 kilograms. (b)(1) Persons generally...

  7. 10 CFR 40.23 - General license for carriers of transient shipments of natural uranium other than in the form of...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... natural uranium other than in the form of ore or ore residue. 40.23 Section 40.23 Energy NUCLEAR... carriers of transient shipments of natural uranium other than in the form of ore or ore residue. (a) A... than in the form of ore or ore residue, in amounts exceeding 500 kilograms. (b)(1) Persons generally...

  8. 10 CFR 40.23 - General license for carriers of transient shipments of natural uranium other than in the form of...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... natural uranium other than in the form of ore or ore residue. 40.23 Section 40.23 Energy NUCLEAR... carriers of transient shipments of natural uranium other than in the form of ore or ore residue. (a) A... than in the form of ore or ore residue, in amounts exceeding 500 kilograms. (b)(1) Persons generally...

  9. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The provisions of this...

  10. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this...

  11. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this...

  12. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this...

  13. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this subpart...

  14. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...

  15. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this...

  16. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of this...

  17. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this subpart...

  18. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions of subpart D...

  19. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The provisions of this...

  20. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this...

  1. Composition and trace element content of coal in Taiwan

    USGS Publications Warehouse

    Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.

    2005-01-01

    To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.

  2. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  3. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  4. Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Johnson, Timothy J.; Orton, Christopher R.

    2015-11-11

    High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241)more » to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project. The following tasks were included: creation of an expanded library of Raman spectra of a UOC sample set, creation of optimal chemometric analysis methods to classify UOC samples by their type and level of impurities, and exploration of the various Raman wavelengths to identify the ideal instrument settings for UOC sample interrogation.« less

  5. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and (b...

  6. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and (b...

  7. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and (b...

  8. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  9. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...

  10. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...

  11. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  12. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  13. DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER FOUNDATION, AND BALL MILL FOUNDATIONS, LOOKING NORTH NORTHWEST. ORE FROM THE MINES WAS DUMPED FROM THE TRAM BUCKETS INTO THE PRIMARY ORE BIN UNDER THE TRAM TERMINAL. A SLIDING CONTROL DOOR INTRODUCED THE INTO THE JAW CRUSHER (FOUNDATIONS,CENTER). THE CRUSHED ORE WAS THEN CONVEYED INTO THE SECONDARY ORE BIN AT CENTER LEFT. A HOLE IN THE FLOOR OF THE ORE BIN PASSED ORE ONTO ANOTHER CONVEYOR THAT BROUGHT IT OUT TO THE BALL MILL(FOUNDATIONS,CENTER BOTTOM). THIS SYSTEM IS MOST LIKELY NOT THE ORIGINAL SET UP, PROBABLY INSTALLED IN THE MINE'S LAST OCCUPATION IN THE EARLY 1940s. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  14. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    NASA Astrophysics Data System (ADS)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.

  15. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    NASA Astrophysics Data System (ADS)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    The Iberian Pyrite Belt (IPB) is a massive sulfide province that is located in the south of Portugal and Spain, and hosts more than 90 massive sulfide deposits that amount to more than 1850 million metric tonnes of sulfide ore (Tornos, 2006). The ore deposits size, vary from ~1Mt to >100Mt (e.g. Neves Corvo and Aljustrel in Portugal, and Rio Tinto and Tharsis in Spain). The ore deposits are hosted by a submarine sedimentary and volcanic, felsic dominated, succession that constitutes the Upper Devonian to Lower Carboniferous Volcanic and Sedimentary Complex (VSC). The VSC ranges in thickness from approximately 600 to 1300 m (Tornos 2006). The VSC overlies the Phyllite-Quartzite Group (PQ) (Upper Devonian, base unknown) and is overlain by the Baixo Alentejo Flysch Group (Lower to Upper Carboniferous). The Lousal massive sulfide deposit is located in the western part of the IPB and occurs mostly interbedded with black mudstone. The VSC sequence at Lousal mine consists of a mudstone and quartzite sequence (PQ Group) in the lower part of the succession, over which a thick sequence of rhyolitic lavas (>300 m) occurs. Above the rhyolitic lavas there is a thick sequence of black and grey mudstone that hosts the massive sulfide ore bodies, and a rhyolitic sill. The upper part of the VSC sequence consists of a thick mudstone interval that hosts two thick basaltic units, locally with pillows. The rhyolites have small coherent cores, locally with flow bands, that grade to surrounding massive clastic intervals, with large lateral extent. The clasts show jigsaw-fit arrangement in many places and have planar or curviplanar margins and locally are perlitic at the margin. The top contact of these units is in most locations not exposed, which makes difficult to interpret the mode of emplacement. However, the thick clastic intervals, above described, are in accordance with quenching of volcanic glass with abundant water and therefore indicate that quenching of the rhyolites was the dominant fragmentation mechanism. Unlike many locations of the IPB, fiamme-rich pyroclastic units were not identified at Lousal. The ore deposits occur in close proximity with this volcanic centre that may have driven hydrothermal circulation that led to ore formation. The volcanic rocks show intense chloritic alteration, indicating that the mineralizing event occurred after most of the rhyolitic units have emplaced. The massive sulfides show abundant sedimentary structures which is not typical in the massive sulfide deposits of the IPB. The Lousal 50 Mt massive sulfide deposit consists of at least 11 ore bodies and was exploited until 1988 mainly for pyrite. The ores mined averaged 0.7% Cu, 0.8%Pb e 1.4%Zn (Strauss, 1971). These relatively low base metal grades led to an evaluation of the contents and distribution of high-tech element in the ore bodies, which would improve the economic viability of mining the deposit. This evaluation is currently focusing on the distribution and mineralogy of selenium, as ores mined in the past were known to be rich in this element. This work benefits from research projects INCA (PTDC/CTE-GIN/67027/2006; Characterization of crucial mineral resources for the development of renewable energy technologies: The Iberian Pyrite Belt ores as a source of indium and other high-technology elements) and project ARCHYMEDES II (POCTI/CTA/45873/2002), both funded by the Fundação para a Ciência e Tecnologia. REFERENCES Strauss, G.K., 1970. Sobre la geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal): Memoria del IGME 77, 1-266. Tornos, F., 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28, 259-307.

  16. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    NASA Astrophysics Data System (ADS)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz-sericite alteration zones. No Cl-bearing minerals were revealed in ore-metasomatic assemblages with the exception of extremely low Cl contents in secondary biotite and very rare low-Cl apatite in the early potassic alteration zone. In contrast, fluorine concentrates in chlorites and white micas; however, the F content in them is commonly lower than in dark minerals, especially in biotite from altered rocks. The highest F contents are typical of biotites related to potassic alteration (K-feldspar + biotite + quartz assemblage). For example, the F content at the Sora deposit ranges from 2.5-2.7 wt.% in the metasomatic biotite to 0.44-1.63 wt.% in the rock-forming biotite of host granitoids. At this deposit, fluorite is a major mineral of the ore-metasomatic assemblage. The Mo-rich Sora deposit drastically differs from the Cu-rich Erdenetiin Ovoo and Aksug deposits by extremely low (0.02-0.08 wt.%) Cl contents in dark minerals from all of the host rocks. The considerable quantity of chlorine released as a result of large-scale propylitic and phyllic alteration from halogen-bearing dark minerals at Cu-rich deposits considerably affected the general Cl budget in the ore-metasomatic system. This could significantly promote the generation of Cl-rich (up to 50-70 wt.% NaCl-equiv.) ore-forming solutions at such deposits. At the Sora deposit characterized by less concentrated ore-bearing solutions (12-20 wt.% NaCl-equiv.), the metasomatic alteration of host rocks was not accompanied by an appreciable removal of Cl. At the studied deposits, huge volumes of enclosing rocks were involved in metasomatism. The large amounts of halogens released during the metasomatic alteration of host rocks might have significantly influenced the balance of volatiles in the ore forming system, including the increase in the salinity of hydrothermal solutions.

  17. Solvent extraction of diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.

    1984-07-24

    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  18. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  20. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  1. Regional Crustal Structures and Their Relationship to the Distribution of Ore Deposits in the Western United States, Based on Magnetic and Gravity Data

    USGS Publications Warehouse

    Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.

    2000-01-01

    Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within regional zones or belts. This study of mineral deposits of the western United States demonstrates the ability of magnetic and gravity data to elucidate the regional geologic framework or structural setting and to contribute in locating favorable environments for hydrothermal mineralization.

  2. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  3. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  4. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  5. Blasting preparation for selective mining of complex structured ore deposition

    NASA Astrophysics Data System (ADS)

    Marinin, M. A.; Dolzhikov, V. V.

    2017-10-01

    Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.

  6. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  7. Characterization of alveolar macrophage eicosanoid production in a non-human primate model of mineral dust exposure.

    PubMed

    Kuhn, D C; Griffith, J W; Stauffer, J L; Riling, S; Demers, L M

    1993-09-01

    The relative activation of eicosanoid production which results from the exposure of the alveolar macrophage (AM) to mineral dusts is thought to be a key factor in the pathophysiology of occupational lung disease. We compared in vitro basal and silica-stimulated production of prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) by AM from normal humans and non-human primates (Macaca nemestrina). In addition, we instilled mineral dusts directly into one lung of the non-human primate and evaluated AM eicosanoid production at two week intervals following dust instillation. Unstimulated AM from humans produce more PGE2 and TXA2 than do AM from M. nemestrina. However, in vitro exposure of AM from both species to silica dust produced a qualitatively similar increase in TXA2 production accompanied by no change in PGE2 production. Sequential analysis of AM eicosanoid production following a single bolus exposure to bituminous or anthracite coal dusts, titanium dioxide (TiO2) dust or crystalline silica showed marked variability among individual non-human primates in qualitative and quantitative aspects of dust-induced eicosanoid production. However, the rank order of potency of the different dusts (silica > anthracite > bituminous) correlated with epidemiological evidence relating the type of dust mined to the incidence of pneumoconiosis. These studies suggest that the non-human primate may serve as a model for the study of both the role of eicosanoids in the etiology of dust-induced occupational lung disease and the biochemical basis for individual variability in the response of lung cells to mineral dust exposure.

  8. [Aerogenic risk factors and diagnosis of bauxite pneumoconiosis].

    PubMed

    Peshkova, A O; Roslaia, N A; Roslyĭ, O F; Likhacheva, E I; Fedoruk, A A; Slyshkina, T V; Vagina, E R

    2013-01-01

    The research purpose is an estimation of influence of the bauxite dust on the state of the bronchopulmonary system of workers. It has been indicated that exposure of the poor fibrogenic dust while the process of the bauxite ore extraction, results in development of pnevmokoniosis characterized by substantial ventilatory and haemodynamic disorders limiting the workability of patients.

  9. Titanium minerals of placer deposits as a source for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The obtained results of physical studies, mineral composition features, morphostructural characteristics and degree of alteration of titanium minerals from the placers specify a high potential of physical methods of processing (gravitational and magnetic separation, flotation) and possible application of combined methods of processing. Production of pigment titanium dioxide for further production of titanium white, paper, plastics etc is the usual application area of titanium concentrates. Titanium dioxide of high chemical purity is used to produce optically transparent glass, fiber optics, electronics (iPad), piezoceramics, in medical and food industry. We designed photocatalysts based on leucoxene from Pizhma placer. The results showed that the photocatalysts based on rutile, synthesized from leucoxene from Pizhma deposit, can be applied to decay phenols in water.

  10. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    NASA Astrophysics Data System (ADS)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the formation of IOA deposits in the Chilean Iron Belt, where the magnetite mineralization was sourced from intermediate magmas during the first Andean stage. In contrast, the beginning of the second Andean stage is characterized by shallow subduction and a compressive regime, which is represented in the district by the emplacement of the Punta de Piedra granite-granodiorite batholith (100 Ma) and marks the end of iron oxide-apatite deposit formation in the area.

  11. Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Cynthia F.; Smith, Paul Herrick; Weis, Eric M.

    The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but doesmore » not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). These experiments detect no significant O-ring degradation below 80°C. Furthermore, durometer measurements indicate that there is no significant change in O-ring hardness at all aging conditions examined. Therefore, our current conservative lifetime estimate for the O-ring and the filter is 10 years at 80°C. In FY17, we will continue to probe the chemical degradation mechanism using oxygen consumption measurements under accelerated aging conditions to reveal temperatures at which oxidation occurs, along with any differences in oxidation rate at the low vs. high aging temperatures. We will also refine the failure criteria and finalize the radiation/thermal synergistic studies to determine a final design lifetime.« less

  12. Petrogenesis of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from Jilongshan Au-Cu Skarn Deposit , the Middle-Lower Yangtze River Metallogenic Belt, Eastern China and their Geological Implications

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Wei, J.; Chen, M.; Zhao, X.

    2017-12-01

    Jilongshan Au-Cu skarn deposit in Edong-Jiurui ore district , Middle-Lower Yangtze River Metallogenic Belt(MLYRB) , eastern China ,contains 44 t gold and 32 Mt of copper ores. The mineralization is dominated by massive skarn ores, most of which occurs along the contact zone between the lower Triassic dolomitic limestones and Jilongshan granodioritic intrusion. However, Baiguoshu pluton, no more than 1 km western, has been not found any mineralized occurrence with the same strata. The ore-bearing and ore-barren intrusive rocks are granodiorite porphyries, could not be identified by petrographic characters. Besides, Zircon U-Pb dating results demonstrate that Jilongshan and Baiguoshu intrusion emplaced at 140 ± 1Ma and 141 ± 1 Ma respectively, coeval with the Early Cretaceous magmatism in Edong-Jiurui area. Elements geochemistry present that they are both characterized by high Al2O3, rich Na2O (Na2O/K2O>1.0), enrichment of LILE (Rb, Ba, K, Sr) and depletion of HFSE (Nb, Ta), and weak negative Eu anomalies, which suggest they may be originated from partial melting of enriched mantle and associated with crust-mantle interaction ,evidenced by the Sr-Nd-Hf isotopic composition as well. Although the two are partly geochemically similar with each other, they have some obvious differences. The former have higher K2O and Y, Yb ,lower MgO, and Cr, Ni contents, and more obvious differentiation degree between light and heavy REEs with (La/Yb)N=10.55-15.95 than the latter with (La/Yb)N=8.67-10.47. It is indicated that the magmas of the Jilongshan intrusive rocks were probably derived from deeper source than that of the Baiguoshu, also supported by mineralogical data of biotite. In addition, Jilongshan intrusive rocks have a relatively higher initial Nd (ɛNd (t) = -8.2 - -9.4) and Sr ((87Sr/86Sr)i=0.70822-0.70897) isotopic composition than Baiguoshu (-9.2 - -9.7 and 0.70855-0.70881), as same as Lu-Hf isotopic composition. Therefore, combined with previous studies, we suggest that the Jilongshan granodiorite porphyry originated as partial melts of an enriched mantle source experienced more sufficient interaction with lower crust materials during magma ascent compared with Baiguoshu granodiorite porphyry, which may lead to Cu-Au enriched magmas, contributing to subsequent mineralization.

  13. 46 CFR 97.12-1 - Bulk ores and similar cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar cargoes. 97.12-1 Section 97.12-1... OPERATIONS Cargo Stowage § 97.12-1 Bulk ores and similar cargoes. (a) The owners or operators of general cargo vessels which carry bulk cargoes such as ore, ore concentrates, and similar cargoes shall furnish...

  14. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    NASA Astrophysics Data System (ADS)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and acanthite [AgS2]; associated sulphides include galena, sphalerite, chalcopyrite, arsenopyrite and pyrite. In the main ore zone, base metal sulphides are commonly intergrown with the Ag-bearing sulfosalts. Analyses of galena show no significant silver values indicating that silver grades are exclusively associated with the Ag-bearing sulfosalts and sulphides. The distribution of the Sb/(Sb + As) ratios in the silver sulfosalts indicate that the ore forming fluid(s) was consistently antimony-rich during the Ag-rich ore deposition with no significant variation laterally, vertically, or along strike of the vein systems. However, Ag/(Ag + Cu) values in argentotennantite decrease along-strike from NE to SW and with depth. Compositions of argentotennantite + pyrargyrite + sphalerite indicate a primary depositional temperature around 325-350° C for the late phase of the Main-ore stage. Compositions of sphalerite also show an increasing trend in FeS (mol %) along strike of the deposit from NE to SW. The geometric relationship between the various structures, vein types, and the regional Miguel Auza fault zone suggest episodic reverse-sense reactivation of normal faults. It is argued that the structural evolution of the area, and, in particular, the Main-ore stage, provided transport pathways for metal-rich fluids and controlled the orientations of ore-bearing veins. Variations in mineral chemistry suggest that the rocks in the NE sector interacted with hotter fluids than in the SW part of the deposit.

  15. Assessing natural attenuation potential at a uranium (U) in situ recovery site (Rosita, TX, USA) using multiple redox-sensitive isotope systems

    NASA Astrophysics Data System (ADS)

    Basu, A.; Brown, S. T.; Christensen, J. N.; DePaolo, D. J.; Reimus, P. W.; Heikoop, J. M.; Simmons, A. M.; House, B.; Schilling, K.; Johnson, T. M.; Pelizza, M.

    2013-12-01

    The In Situ Recovery (ISR) U mining operation at Rosita, TX, USA, involved oxidative dissolution of U from roll front U deposits. This process mobilized U along with other characteristic elements (e.g., Se) from the roll fronts in their soluble and toxic oxidized forms (e.g., U(VI), Se(VI)). The dissolved U(VI) in groundwater poses significant ecological risk due to its chemical toxicity and must be restored below the existing regulatory limit to minimize the environmental impact of ISR mining. However, the undisturbed sediments downgradient to the roll front deposits are expected to remain reduced. Naturally occurring Fe-minerals (e.g., FeS, siderite, magnetite) and microorganisms in the sediments downgradient to ISR activity can reduce dissolved U(VI) to less toxic and insoluble U(IV) and promote natural attenuation. The reduction of oxyanions of U or Se induces measurable isotopic fractionation that can be used to monitor the natural attenuation by downgradient sediments. Here, we used multiple redox-sensitive isotope systems (U, Se, and S) to detect reducing conditions and natural attenuation of U(VI) at the ISR site. We collected groundwater samples from 26 wells located in the ore body, upgradient and downgradient to the ore body. The δ238U values measured in groundwater samples from 23 wells range from 0.48‰ to -1.66‰ (×0.12‰). A preliminary investigation of 6 groundwater samples shows a variation of δ82Se values from -1.44‰ to 5.24‰ (×0.15‰). The δ34SO4 measurements in groundwater vary from 11.8‰ to -19.9‰. The reduction of Se(VI) and SO42- fractionates the lighter isotopes (i.e., 32S and 76Se) in the reduced product phase rendering the remaining reactants in the groundwater enriched in heavier isotopes. Therefore, the high δ82Se and δ34SO4 values may suggest reduction of Se(VI) and SO42-, respectively. The highest δ238U values are observed in the wells located in the ore body or upgradient to the ore body whereas the downgradient wells show significantly lower δ238U values. High δ238U values in most of the wells located in the ore-zone may be attributed to the dissolution of the U ore enriched in 238U. The low δ238U values are generally observed in the wells with low U(VI) concentrations. Since U(VI) reduction fractionates 238U to the solid U(IV) phase, the depletion of 238U in the groundwater samples in the downgradient monitoring wells suggest U(VI) reduction by the downgradient sediments. The δ238U values in the groundwater samples conform to a Rayleigh distillation model with an isotopic fractionation factor α = 1.00013 × 0.00010. Future investigations include characterization of the U ore bearing sediments collected from boreholes in the ore body and downgradient of the ore body, measurement of the δ238U and δ82Se values in the ore and in remaining groundwater samples. The U(VI) reducing capacity and concomitant U isotopic fractionation factors for the sediments from downgradient boreholes will be determined from the batch incubation experiments and flow through column experiments.

  16. Intensification of the Reverse Cationic Flotation of Hematite Ores with Optimization of Process and Hydrodynamic Parameters of Flotation Cell

    NASA Astrophysics Data System (ADS)

    Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.

    2017-07-01

    The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.

  17. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore... are applicable to discharges from (a) mines, either open-pit or underground, that produce mercury ores...

  18. 5. Foreground: ore bridges, ore/coke/limestone bins, Detroit River; background: stock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Foreground: ore bridges, ore/coke/limestone bins, Detroit River; background: stock house on left, stripper building, BOF. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  19. ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE MINES ABOVE AT THE RIDGELINE AND TO THE RIGHT WAS CONVEYED TO THIS AREA AND DUMPED INTO THE SHAFT AT CENTER. THIS SHAFT OPENS INTO THE ADIT AT BOTTOM CENTER. THERE IS ANOTHER SHAFT OPENING INTO THE ADIT JUST ABOVE THE ADIT BEHIND THE STONE WALL. THE ORE WAS LOADED INTO TRAM CARS INSIDE THE ADIT AND CONVEYED ON TRACKS TO THE TRESTLE LEADING TO THE PRIMARY ORE BIN AT THE TRAM TERMINAL. TRACKS CAN BE SEEN LEADING FROM THE ADIT AND TO THE LEFT. THE ORE WAS THEN DUMPED INTO A CHUTE AT THE END OF THE TRESTLE CARRYING IT INTO THE ORE BIN AT THE TRAM TERMINAL(SEE CHUTE ON CA-291-30). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  20. Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences of the enrichment of the phosphate ore deposit

    NASA Astrophysics Data System (ADS)

    Bezzi, Nacer; Aïfa, Tahar; Merabet, Djoudi; Pivan, Jean-Yves

    2008-02-01

    To improve the enrichment of the Thanetian marine phosphate ore deposit from the quarry of Bled El Hadba (Djebel Onk, Algeria) before its exploitation, we first conducted a joint study using different techniques for comparison. These studies reveal that magnetic minerals play a significant role within the matrix of the central productive unit which is squeezed between two other units. Magnetic separation procedures show that there are some positive correlations between magnetic susceptibility and grain size fraction (80-250 μm). These dolomite-rich fractions are more clearly separated. Different tools were used to characterize the magnetic minerals (X-ray, microprobe, differential scanning calorimetry, thermogravimetric and thermomagnetic analyses). They show correlations between magnetic phases and the presence of associated magnetic minerals within the matrix or included in the phosphate ore deposit. They enabled us to distinguish a series of magnetic minerals (magnetite, hematite, maghemite, goethite, ilmenite, pyrite, iron-titanium oxide and titanium oxide sulphate) and to determine that Fe and Ti are prevalent in the separated fractions, following the same variation as Mg. The phosphorous (phosphate) rate is higher in the non-magnetic material, especially in the layers that are rich in dolomitic carbonates (upper and lower units), which could be trapped within the dolomitic matrix, while Magnesium (dolomite) is more important in the magnetic fraction. The separation of phosphate elements and dolomite carbonates is effective and therefore the ore can be enriched through magnetic procedures. Comparison between products enriched by magnetic separation, flotation and calcination showed important differences, chemically, economically and technically speaking.

  1. Magnetic anomalies associated with abundant production of pyrrhotite in a sulfide deposit in the Okinawa Trough, Japan

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Yamazaki, Toshitsugu; Ura, Tamaki; Okino, Kyoko; Morozumi, Haruhisa; Ueda, Satoshi

    2016-11-01

    We report here results from a deep-sea magnetic survey using an autonomous underwater vehicle over the Hakurei hydrothermal site, in the middle Okinawa Trough. Magnetic inversion revealed that the Hakurei site is associated with well-defined high-magnetization zones distributed within a broad low-magnetization zone. Results from rock magnetic measurements, performed on sulfide ore samples obtained by drilling, showed that some samples possessed extremely high natural remanent magnetization (NRM) (as much as 6.8-953.0 A/m), although most of the measured samples had much lower NRM. These high-NRM samples were characterized by high Königsberger ratios (101-103), indicating much larger NRM than induced magnetization, and contained pyrrhotite as the only magnetic mineral. This suggests that NRM carried by pyrrhotite is the source of the observed magnetic anomalies. The wide range of NRM intensity was considered to be due to a highly heterogeneous distribution of pyrrhotite, because pyrrhotite was commonly identified in both the high-NRM and low-NRM samples. Pyrrhotite production may have been occasionally drastically increased, with highly magnetic ores formed as a result. Rapid burial of active vents may result in the creation of an extensive reducing environment under the seafloor, which is favorable to pyrrhotite production, and may also prevent oxidation of pyrrhotite by isolating it from seawater. Because the magnetization intensity of sulfide ores was highly variable, it would not be straightforward to estimate the quantity of ore deposits from the magnetic anomalies. Nevertheless, this study demonstrates the usefulness of magnetic surveys in detecting hydrothermal deposits.

  2. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  3. Asphalt mixtures with a high amount of RAP - case study

    NASA Astrophysics Data System (ADS)

    Koudelka, Tomas; Varaus, Michal

    2017-09-01

    A case study of one trial section in the Pilsen region is presented. The pavement in the section was newly constructed in 2015 using one type of an asphalt concrete mixtures with varying RAP content. The constructed surface course comprises of 0% to 50% RAP. In order to restore the aged binder properties and to avoid the embrittlement of the produced mixtures, a rubber-based modifier/rejuvenator was employed. For technological reasons during manufacturing processes, which engage a parallel drying drum, a crude oil-based rejuvenator was also added. This article contains the preliminary data from an on-going project focused on monitoring the properties of bituminous binders contained in asphalt mixtures. The actual bituminous binders were extracted straight after production, after 6 months and after 12 months. The binder characteristics are evaluated using empirical testing as well as functional tests. Low temperature properties are measured by a Bending Beam Rheometer (BBR). The preliminary results show, that the bituminous binders properties change significantly in a relatively short period of time. The progress in binder’ characteristics is contradictory to up-to date knowledge. The probability that the phenomenon of diffusion between aged binder and rejuvenator agents occurs exists. Moreover, the data might indicate that the process of rejuvenator evaporation takes place.

  4. Natural radioactivity of the tar-sand deposits of Ondo State, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Fasasi, M. K.; Oyawale, A. A.; Mokobia, C. E.; Tchokossa, P.; Ajayi, T. R.; Balogun, F. A.

    2003-06-01

    A combination of gamma spectrometry and energy dispersive X-ray fluorescence was used to determine the presence and level of radioactivity of radionuclides in bituminous sand and overburden obtained from bituminous sand deposits in Ondo State Nigeria for the purpose of providing baseline data and assessing its impact on the environment. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th. The non-decay series of naturally occurring 40K was found to be below the limit of detection. The average specific activity concentration values obtained for 214 Bi, 208Tl, and 226Ra in the overburden are 165.64±2.91, 150.25±2.91 and 60.97±2.27 Bq kg -1, respectively. The measured activity in the bituminous sand layer is so low that it can be said to be non-radioactive. The result of the EDXRF supports the presence of radioelements in the overburden, which are likely to be embedded in accessory minerals like zircon and tourmaline. Thus, surface exploration technique using soil-gas radon measurement will not yield the desired result. Furthermore, the level of radioelements and associated decay daughter 222Rn is not expected to cause any health hazard.

  5. Bituminization of radioactive wastes: safety studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arod, J.

    1982-01-01

    The bitumen embedding of low- and medium-level radioactive wastes has reached the industrial stage. Bituminization plants are operating satisfactorily in France and throughout the world. However, bituminization presents certain risks due to the nature of bitumens themselves. These risks must be taken into account. This paper specifies those risks and presents the results of leachability tests performed in accordance with the International Atomic Energy Agency proposed standard on coated concentrates, on chemical coprecipitation sludges with and without addition of heavy solvents such as TBP and TLA, and on ion exchange resins. The results show that the leaching rates in demineralizedmore » water are on the order of 10/sup -6/ to 10/sup -8/ for cesium 137, 10/sup -5/ to 10/sup -7/ for strontium-90, 10/sup -5/ to 10/sup -6/ for ruthemium-106, 10/sup -5/ to 10/sup -6/ for cobalt-60, 10/sup -5/ to 10/sup -6/ for total gamma activity, and 10/sup -5/ to 10/sup -8/ for the plutonium-238, the plutonium-239, and the americium 241 alpha emitters. Even if this conditioning is not perfect, the storage of low- and medium-level radioactive wastes is made possible with adequate safety and at a reasonable cost.« less

  6. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  7. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  8. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  9. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  10. 13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. THE DOCK FEATURED FOUR HULETT UNLOADERS, EACH WITH A BUCKET CAPACITY OF 17 TONS; A 15-TON CAPACITY ORE STOCKING AND REHANDLING BRIDGE; AND A ONE-MILLION-TON CAPACITY ORE STORAGE YARD. THE WILLIAM-SEAVER-MORGAN COMPANY OF CLEVELAND BUILT THE DOCK EQUIPMENT. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.

  12. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.« less

  13. Chromite Ore from the Transvaal Region of South Africa

    EPA Pesticide Factsheets

    In 2001, EPA finalized a rule to to delete both chromite ore mined in the Transvaal Region of South Africa and the unreacted ore component of the chromite ore processing residue (COPR) from TRI reporting requirements.

  14. 26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN THE BACKGROUND. BLAST FURNACES ALONG THE RIGHT SIDE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. A unique ore-placer area of the Amur region with high-Hg gold

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.

    2017-10-01

    This work presents the geological structure and a description of the gold-ore occurrences and gold placers of the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black shales. Intrusive formations occur rarely. The sublatitudinal Un'ya Thrust is the principal ore-controlling structure. Paleozoic sandstones are thrust over Mesozoic flysch deposits along the Un'ya Thrust. The gold-ore occurrences are represented by quartz-vein zones. The ores are gold-quartz, low-sulfide. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. High-Hg native gold was revealed in the ore occurrences and placers. The high Hg content in native gold is explained by the presence of the frontal part of the gold-bearing column located within the cluster; the rich placers were formed due to crushing of this column.

  16. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Prevalence and Risk Factors of Elevated Blood Lead in Children in Gold Ore Processing Communities, Zamfara, Nigeria, 2012.

    PubMed

    Kaufman, John A; Brown, Mary Jean; Umar-Tsafe, Nasir T; Adbullahi, Muhammad Bashir; Getso, Kabiru I; Kaita, Ibrahim M; Sule, Binta Bako; Ba'aba, Ahmed; Davis, Lora; Nguku, Patrick M; Sani-Gwarzo, Nasir

    2016-09-01

    In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child's age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children's BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Obtained. The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. The authors declare no competing financial interests.

  18. Applied Geochemistry Special Issue on Environmental geochemistry of modern mining

    USGS Publications Warehouse

    Seal, Robert R.; Nordstrom, D. Kirk

    2015-01-01

    Environmental geochemistry is an integral part of the mine-life cycle, particularly for modern mining. The critical importance of environmental geochemistry begins with pre-mining baseline characterization and the assessment of environmental risks related to mining, continues through active mining especially in water and waste management practices, and culminates in mine closure. The enhanced significance of environmental geochemistry to modern mining has arisen from an increased knowledge of the impacts that historical and active mining can have on the environment, and from new regulations meant to guard against these impacts. New regulations are commonly motivated by advances in the scientific understanding of the environmental impacts of past mining. The impacts can be physical, chemical, and biological in nature. The physical challenges typically fall within the purview of engineers, whereas the chemical and biological challenges typically require a multidisciplinary array of expertise including geologists, geochemists, hydrologists, microbiologists, and biologists. The modern mine-permitting process throughout most of the world now requires that potential risks be assessed prior to the start of mining. The strategies for this risk assessment include a thorough characterization of pre-mining baseline conditions and the identification of risks specifically related to the manner in which the ore will be mined and processed, how water and waste products will be managed, and what the final configuration of the post-mining landscape will be.In the Fall 2010, the Society of Economic Geologists held a short course in conjunction with the annual meeting of the Geological Society of America in Denver, Colorado (USA) to examine the environmental geochemistry of modern mining. The intent was to focus on issues that are pertinent to current and future mines, as opposed to abandoned mines, which have been the focus of numerous previous short courses. The geochemical challenges of current and future mines share similarities with abandoned mines, but differences also exist. Mining and ore processing techniques have changed; the environmental footprint of waste materials has changed; environmental protection has become a more integral part of the mine planning process; and most historical mining was done with limited regard for the environment. The 17 papers in this special issue evolved from the Society of Economic Geologists’ short course.The relevant geochemical processes encompass the source, transport, and fate of contaminants related to the life cycle of a mine. Contaminants include metals and other inorganic species derived from geologic sources such as ore and solid mine waste, and substances brought to the site for ore processing, such as cyanide to leach gold. Factors, such as mine-waste mineralogy, hydrologic setting, mine-drainage chemistry, and microbial activity, that affect the hydrochemical risks from mining are reviewed by Nordstrom et al. In another paper, Nordstrom discusses baseline characterization at mine sites in a regulatory framework, and emphasizes the influence of mineral deposits in producing naturally elevated concentrations of many trace elements in surface water and groundwater. Surface water quality in mineralized watersheds is influenced by a number of processes that act on daily (diel) cycles and can produce dramatic variations in trace element concentrations as described by Gammons et al. Pre-mining baseline characterization studies should strive to capture the magnitude of these diel variations. Desbarats et al., using a case study of mine drainage from a gold mine, illustrate how elements that commonly occur as negatively charged species (anions) in solution, such as arsenic as arsenate, behave in an opposite fashion than most metals, which occur as positively charged species (cations). Significant improvement in the understanding of factors that influence the toxicity of metals to aquatic organisms in surface water has highlighted the importance of aqueous chemistry, particularly dissolved organic carbon, as described by Smith et al. Stream sediment contamination is another important pathway for affecting aquatic organisms, as reviewed by Besser et al. Understanding and predicting environmental consequences from mining begins with knowing the mineralogy and mineral reactivity of the ore, the wastes, and of secondary minerals formed later. Jamieson et al. review the importance of mineralogical studies in mine planning and remediation. A number of types of site-specific studies are needed to identify environmental risks related to individual mines. Lapakko reviews the general framework of mine waste characterization studies that are integral to the mine planning process. Hageman et al. present a comparative study of several static tests commonly used to characterize mine waste.The mining and ore processing practices employed at a specific mine site will vary on the basis of the commodities being targeted, the geology of the deposit, the geometry of the deposit, and the mining and ore processing methods used. Thus, these factors, in addition to the waste management practices used, can result in a variety of end-member mine waste features, each of which has its own set of challenges. Open pit mines and underground mines require waste rock to be removed to access ore. Waste rock presents unique problems because the rock is commonly mineralized at sub-economic grades and has not been processed to remove potentially problematic minerals, such as pyrite. Amos et al. examine the salient aspects of the geochemistry of waste rock. Mill tailings – the waste material after ore minerals have been removed – are a volumetrically important solid waste at many mine sites. Their fine grain size and the options for their management make their behavior in the environment distinct from that of waste rock. Lindsay et al. describe some of these differences through three case-study examples. Subaqueous disposal of tailings is another option described by Moncur et al. Cyanide leaching for gold extraction is a common method throughout the world. Johnson describes environmental aspects of cyanidation. Uranium mining presents unique environmental challenges, particularly since in-situ recovery has seen widespread use. Campbell et al. review the environmental geochemistry of uranium mining and current research on bioremediation. Ore concentrates from many types of metal mining undergo a pyrometallurgical technique known as smelting to extract the metal. Slag is the result of smelting, and it may be an environmental liability or a valuable byproduct, as described by Piatak et al. Finally, the open pits that result from surface mining commonly reach below the water table. At the end of mining, these pits may fill to form lakes that become part of the legacy of the mine. Castendyk et al., in two papers, review theoretical aspects of the environmental limnology of pit lakes. They also describe approaches that have been used to model pit lake water balance, wall-rock contributions to pit lake chemistry, pit lake water quality, and limnological processes, such as vertical mixing, through the use of three case studies.

  19. Fuel Flexibility in Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.

    2001-11-06

    In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, andmore » varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visibly apparent. To prevent bridges and ratholes from developing in the lowest coal feed hopper, it is normally fluidized. When feeding the coal sawdust mixtures the fluidizing gas was turned off to prevent segregation. The feed system worked as well with no fluidizing gas when using the mixtures as it did with fluidizing gas and only coal. In addition, it was inadvertently discovered that greatly increased pressure above the feeder resulted in greatly increased flow with the mixtures. Increased pressure above the feeder with coal only results in quickly plugging the feed system. Also, it was learned that addition of sawdust reduces the system loss during conveying compared to coal only. This is in spite of overall smaller particle sizes with the coal sawdust mixtures.« less

  20. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.

  1. Application of gold compositional analyses to mineral exploration in the United States

    USGS Publications Warehouse

    Antweiler, J.C.; Campbell, W.L.

    1977-01-01

    Native gold is a mineral composed of Au, Ag and Cu in solid solution and it usually contains one or more trace metals as lattice impurities, as mineral inclusions, in grain boundaries or in surface coatings. Alloy proportions of Au, Ag and Cu, together with certain other elements, can be thought of as constituting a gold "signature". Gold is associated with a great variety of ore deposits and has characteristic signatures for each of several types of ore deposits. Signatures for gold derived from igneous-metamorphic, hypothermal, mesothermal and epithermal deposits reflect conditions of ore formation by their content of Ag, Cu and characteristic associated elements. At higher temperatures of ore formation, gold has low Ag and high Cu content, and Bi and Pb are the most abundant trace elements. But at lower temperatures of ore formation, Ag is high, Cu is low, and Pb is the most abundant trace element. The same trend in gold signatures is observable in gold mining districts, such as Central City, Colorado, where zoning as shown by mineral assemblages indicates ore deposition at progressively lower temperatures as the distance from a central high-temperature zone increases. The signatures of gold may be useful in searching for porphyry Cu deposits. Signatures from Butte (Montana), Mineral Park (Arizona) and Cala Abajo (Puerto Rico), on the basis of limited sampling, are similar and distinctive. They are characterized by a similar assemblage of trace elements and are relatively high in both Ag and Cu. Another application of gold compositional data is in tracing placer gold to its bedrock source. For example, the Ag content of placer gold in the Tarryall district of Colorado differed from that of nearly all of the bedrock sources of gold found by early prospectors. However, one lightly prospected area peripheral to the Tertiary quartz monzonite stock at Montgomery Gulch contains gold with a Ag content similar to that of the placer gold. This area is the most likely source of the gold in the productive placers and may be a potential exploration target. Gold signatures may be useful in prospecting for metals other than gold. Several metals of low crustal abundance - notably Sn, W, Mo and the Pt group metals - are detected in analyses of some gold samples and may indicate economic deposits of these metals. ?? 1977.

  2. Face format at encoding affects the other-race effect in face memory.

    PubMed

    Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle

    2014-08-07

    Memory of own-race faces is generally better than memory of other-races faces. This other-race effect (ORE) in face memory has been attributed to differences in contact, holistic processing, and motivation to individuate faces. Since most studies demonstrate the ORE with participants learning and recognizing static, single-view faces, it remains unclear whether the ORE can be generalized to different face learning conditions. Using an old/new recognition task, we tested whether face format at encoding modulates the ORE. The results showed a significant ORE when participants learned static, single-view faces (Experiment 1). In contrast, the ORE disappeared when participants learned rigidly moving faces (Experiment 2). Moreover, learning faces displayed from four discrete views produced the same results as learning rigidly moving faces (Experiment 3). Contact with other-race faces was correlated with the magnitude of the ORE. Nonetheless, the absence of the ORE in Experiments 2 and 3 cannot be readily explained by either more frequent contact with other-race faces or stronger motivation to individuate them. These results demonstrate that the ORE is sensitive to face format at encoding, supporting the hypothesis that relative involvement of holistic and featural processing at encoding mediates the ORE observed in face memory. © 2014 ARVO.

  3. FY2017 status report: Model 9975 O-ring fixture long-term leak performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    A series of experiments to monitor the aging performance of Viton® GLT and GLT-S O-rings used in the Model 9975 shipping package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups with GLT O-rings were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially andmore » have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, a smaller test matrix with fourteen additional tests was initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. Leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The 300 °F GLT O-ring fixtures failed after 2.8 to 5.7 years at temperature. The remaining GLT O-ring fixtures aging at 300 ºF were retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 9 to 10.5 years, or in GLT O-ring fixtures aging at 270 ºF for 5.7 years. These aging temperatures bound O-ring temperatures anticipated during normal storage in K-Area Complex (KAC). Leak test failures have been experienced in all of the GLT-S O-ring fixtures aging at 300 ºF and above. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 and 250 ºF for 6.9 to 7.5 years. Data from the O-ring fixtures are generally consistent with results from compression stress relaxation testing, and provide confidence in the predictive models based on those results. However, uncertainty still exists in extrapolating these elevated temperature results to the lower temperatures of interest for normal storage in KAC. Measurement of compression set in O-rings removed from failed fixtures, compared to that from KAC surveillance O-rings, indicates margin remains for O-rings still in service. Aging and periodic leak testing will continue for the remaining PCV fixtures.« less

  4. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  5. Recycling of water-susceptible pavements

    NASA Astrophysics Data System (ADS)

    Maupin, G. W.

    1980-05-01

    Several bituminous concrete interstate pavements that experienced failures suspected to have been caused by stripping were investigated. On two projects, the degree of deterioration, potential serviceability, and possible remedial measures were studied. Cores were taken to determine the degreee of stripping and tensile strength, and dynaflect tests were performed. An emulsion mix design was developed for stripped bituminous concrete removed from another project with the expectation that it could be used as a surface mix on a highway with a low traffic volume. While this expectation was not realized, it was concluded that the material is suitable for use in a base mix. A maintenance resurfacing on a fourth project that experienced stripping failure is being monitored and the performance is being evaluated.

  6. Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    NASA Astrophysics Data System (ADS)

    Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo

    2018-01-01

    A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.

  7. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.

    PubMed

    Shen, Shaobo; Rao, Ruirui; Wang, Jincao

    2013-01-01

    The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.

  9. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  10. Main types of rare-metal mineralization in Karelia

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.

    2016-03-01

    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  11. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge.

    PubMed

    Anawar, Hossain Md

    2015-08-01

    The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Multi-Criteria selection of technology for processing ore raw materials

    NASA Astrophysics Data System (ADS)

    Gorbatova, E. A.; Emelianenko, E. A.; Zaretckii, M. V.

    2017-10-01

    The development of Computer-Aided Process Planning (CAPP) for the Ore Beneficiation process is considered. The set of parameters to define the quality of the Ore Beneficiation process is identified. The ontological model of CAPP for the Ore Beneficiation process is described. The hybrid choice method of the most appropriate variant of the Ore Beneficiation process based on the Logical Conclusion Rules and the Fuzzy Multi-Criteria Decision Making (MCDM) approach is proposed.

  13. Process for recovering hydrocarbons from a diatomite-type ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  14. Evolution of ore deposits on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Burns, R. G.

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.

  15. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.

  16. 6. Looking west showing top of dock: steaming frozen ore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking west showing top of dock: steaming frozen ore which had been put in pockets in December 1959, May 6, 1990. Photographer: unknown - Marquette Ore Dock No. 6, Ore Dock, On pilings in Marquette City Lower Harbor, Marquette, Marquette County, MI

  17. Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining

    NASA Astrophysics Data System (ADS)

    Trubachev, AI; Zykov, NV

    2017-02-01

    It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.

  18. Rational design of bottom blocks for development of ore deposits systems with caving of ore and enclosing rocks

    NASA Astrophysics Data System (ADS)

    Versilov, S. O.; Posylniy, Yu V.; Shurygin, D. N.; Tretyak, A. Ya

    2017-10-01

    The assessment of the geological conditions of development of existing ore deposits was made. For testing ore deposits in difficult mining and geological conditions, the authors proposed the system of development, accompanied by collapse of the mechanical ore with the use of feeders of active action that could be manufactured directly in the mine in accordance with the specific conditions of occurrence of minerals. The paper demonstrates the technology of manufacture of load-bearing structures of the feeder directly in the mine at the scene of the breaking of the first layer of ore, as well as the dynamics of the ore and the choice of parameters of concrete feeders. A new design of the bottom block was proposed, the idea of technical solution of which consists in the fact that it is offered to undergo the production of the smallest possible cross section, which is determined only by the dimensions of the conveyors to deliver ore. And before the explosion of fans of production wells, it is necessary to produce local collapse of the roof production to increase its height at the place of production of ore by blasting wellheads in two or three rows.

  19. Prevalence and Risk Factors of Elevated Blood Lead in Children in Gold Ore Processing Communities, Zamfara, Nigeria, 2012

    PubMed Central

    Kaufman, John A.; Brown, Mary Jean; Umar-Tsafe, Nasir T.; Adbullahi, Muhammad Bashir; Getso, Kabiru I.; Kaita, Ibrahim M.; Sule, Binta Bako; Ba’aba, Ahmed; Davis, Lora; Nguku, Patrick M.; Sani-Gwarzo, Nasir

    2018-01-01

    Background In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. Objectives The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. Methods A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. Results 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child’s age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Conclusions Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children’s BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Patient consent Obtained Ethics approval The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. Competing Interests The authors declare no competing financial interests. PMID:29416933

  20. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system in the post-ore stage.

  1. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  2. 28 CFR 79.62 - Criteria for eligibility for claims by ore transporters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ore transporters. 79.62 Section 79.62 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.62 Criteria for eligibility for claims by ore transporters. To establish eligibility for compensation...

  3. 28 CFR 79.62 - Criteria for eligibility for claims by ore transporters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ore transporters. 79.62 Section 79.62 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.62 Criteria for eligibility for claims by ore transporters. To establish eligibility for compensation...

  4. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  5. 28 CFR 79.62 - Criteria for eligibility for claims by ore transporters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ore transporters. 79.62 Section 79.62 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.62 Criteria for eligibility for claims by ore transporters. To establish eligibility for compensation...

  6. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  7. 28 CFR 79.62 - Criteria for eligibility for claims by ore transporters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ore transporters. 79.62 Section 79.62 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.62 Criteria for eligibility for claims by ore transporters. To establish eligibility for compensation...

  8. Translations on Eastern Europe, Scientific Affairs, Number 543

    DTIC Science & Technology

    1977-04-29

    They are economically more effective than those now used, for one gram of glass can replace ten kilograms of copper wire. For several years such a...and 62 times for nonferrous ores, the greatest increase being recorded for copper bearing ores. 1. Iron Ores Overall, the iron ore deposits which...percent S. 30 Intensive research and design work is being conducted to exploit two deposits of poor copper ore (0.25-D.35 percent Cu), a deposit of

  9. 32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. THE ORE BREAKER, A BLAKE JAW CRUSHER, IS IN THE BOX IN THE LEFT OF THE PHOTOGRAPH, THE ORE TO BE BROKEN IS FED INTO THE OPENING ON THE FLOOR AND NEXT TO ORE BREAKER BOX. THE GRIZZLY BARS ARE ON THE RIGHT AND THE PULLEYS FROM THE POWER SYSTEM ARE OVERHEAD. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  10. Acid pre-treatment method for in situ ore leaching

    DOEpatents

    Mallon, R.G.; Braun, R.L.

    1975-10-28

    An acid leaching method is described for the recovery of a desired element from a subterranean rubblized body of primary ore containing the element and also having associated therewith a carbonate mineral wherein the rubblized ore body is flooded with an aqueous acidic solution in order to release carbon dioxide from the associated carbonate mineral. After a substantial portion of the available carbon dioxide is released and removed from the ore body, as by venting to the atmosphere, an oxidizing gas is introduced into the flooded, rubblized ore to oxidize the ore and form an acid leach solution effective in the presence of the dissolved oxidizing gas to dissolve the ore and cause the desired element to go into solution. The leach solution is then circulated to the surface where the metal values are recovered therefrom.

  11. Automated quantitative micro-mineralogical characterization for environmental applications

    USGS Publications Warehouse

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  12. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  13. Sources of lead and zinc associated with metal smelting activities in the Trail area, British Columbia, Canada.

    PubMed

    Goodarzi, Fariborz; Sanei, Hamed; Labonté, Marcel; Duncan, William F

    2002-06-01

    The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.

  14. Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit

    NASA Astrophysics Data System (ADS)

    Talebi, Hassan; Asghari, Omid; Emery, Xavier

    2013-12-01

    An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.

  15. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  16. Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.

    Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less

  17. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite.

    PubMed

    Curtis, Susan B; Hewitt, Jeff; Macgillivray, Ross T A; Dunbar, W Scott

    2009-02-01

    During mineral processing, concentrates of sulfide minerals of economic interest are formed by froth flotation of fine ore particles. The method works well but recovery and selectivity can be poor for ores with complex mineralogy. There is considerable interest in methods that improve the selectivity of this process while avoiding the high costs of using flotation chemicals. Here we show the first application of phage biotechnology to the processing of economically important minerals in ore slurries. A random heptapeptide library was screened for peptide sequences that bind selectively to the minerals sphalerite (ZnS) and chalcopyrite (CuFeS2). After several rounds of enrichment, cloned phage containing the surface peptide loops KPLLMGS and QPKGPKQ bound specifically to sphalerite. Phage containing the peptide loop TPTTYKV bound to both sphalerite and chalcopyrite. By using an enzyme-linked immunosorbant assay (ELISA), the phage was characterized as strong binders compared to wild-type phage. Specificity of binding was confirmed by immunochemical visualization of phage bound to mineral particles but not to silica (a waste mineral) or pyrite. The current study focused primarily on the isolation of ZnS-specific phage that could be utilized in the separation of sphalerite from silica. At mining sites where sphalerite and chalcopyrite are not found together in natural ores, the separation of sphalerite from silica would be an appropriate enrichment step. At mining sites where sphalerite and chalcopyrite do occur together, more specific phage would be required. This bacteriophage has the potential to be used in a more selective method of mineral separation and to be the basis for advanced methods of mineral processing.

  18. Anisotropy of magnetic susceptibility versus lattice- and shape-preferred orientation in the Lac Tio hemo-ilmenite ore body (Grenville province, Quebec)

    NASA Astrophysics Data System (ADS)

    Bolle, Olivier; Charlier, Bernard; Bascou, Jérôme; Diot, Hervé; McEnroe, Suzanne A.

    2014-08-01

    The Lac Tio hemo-ilmenite ore body crops out in the outer portion of the 1.06 Ga Lac Allard anorthosite, a member of the Havre-Saint-Pierre anorthosite suite from the Grenville province of North America. It is made up of ilmenitite (commonly with more than 95% hemo-ilmenite) associated with noritic lithologies and anorthosite. The present study compares the magnetic fabric of the ore body, as deduced from anisotropy of magnetic susceptibility (AMS) measurements, with the crystallographic and shape fabrics, obtained from lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) measurements made using electron backscattered diffraction (EBSD) and 3D image analysis, respectively. Room-temperature hysteresis measurements, thermomagnetic curves and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by a mixed contribution of hemo-ilmenite and magnetite. The hemo-ilmenite grains display a LPO characterized by a strong preferred orientation of the basal (0001) plane of ilmenite along which hematite was exsolved. This LPO and the magnetic fabric fit well (angle between the crystallographic c-axis and the axis of minimum susceptibility ≤ ca. 15° for most samples), and the latter is thus strongly influenced by the hemo-ilmenite magneto-crystalline anisotropy. A magnetite SPO, concordant with the hemo-ilmenite LPO, may also influence and even dominate the magnetic fabric. The rock shape fabric is coaxial with the magnetic fabric that can thus be used to perform detailed structural mapping. Interpretation of the magnetic fabric and field structural data suggests that the Lac Tio ore body would be a sag point at the margin of the Lac Allard anorthosite, deformed by ballooning during the final stage of diapiric emplacement of the anorthosite body.

  19. New Mexico structural zone - An analogue of the Colorado mineral belt

    USGS Publications Warehouse

    Sims, P.K.; Stein, H.J.; Finn, C.A.

    2002-01-01

    Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.

  20. Comparative anatomy of epithermal precious- and base-metal districts hosted by volcanic rocks: A talk presented at the GAC/MSC/GGU Joint Annual Meeting, May 11-13, 1983, Victoria, British Columbia

    USGS Publications Warehouse

    Heald-Wetlaufer, Pamela; Hayba, Daniel O.; Foley, Nora K.; Goss, J.A.

    1983-01-01

    In order to distinguish dissimilar from similar features of epithermal districts, lithotectonic, mineralogical and geochemical traits are compiled for 15 such districts. The districts occur in structurally complex settings associated with silicic to intermediate volcanics. Affiliation with subduction environments on a continental scale and caldera settings on a regional scale is common but is not demonstrable for all districts. Most deposits formed near the end of major volcanism, but some formed considerably later. Paleodepth to the top of the ore is 300-600m for most districts, although Au-rich districts appear to be shallower. The lateral extent of the ore zone is highly variable and far exceeds the limited vertical range (300-800m). Most ore was deposited from dominantly meteoric fluids ranging in temperature from 220°-290°C. Salinities ranged from 0-13 wt% NaCl equiv., and typical values were 1-3 wt%. Although noted for eight deposits, boiling is clearly associated with precious-metal deposition in only two deposits. Four districts, typified by Goldfield, Nev., are characterized by a highly sulfidized mineral assemblage, advanced argillic alteration, and ore deposition closely following emplacement of the host rock. The remaining eleven districts highlight a second, discrete type of deposit. They contain adularia, exhibit sericitic ± argillic alteration, and were mineralized significantly after emplacement of the host rock. The latter category includes two subgroups: Ag- and base-metal-rich deposits (e.g., Creede, Colo.), and Au-rich, base-metal-poor deposits (e.g., Round Mtn., Nev.).

  1. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin

    2014-08-01

    Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.

  2. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  3. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  4. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  5. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  6. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the...

  7. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  8. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  9. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  10. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  11. 17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  12. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  13. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C are applicable to...

  14. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh-pH and salinity probably were critical for concentrating copper-cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation. There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu-Co-Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water. The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.

  15. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  16. Effect of fuels and domestic heating appliance types on emission factors of selected organic pollutants.

    PubMed

    Šyc, Michal; Horák, Jiří; Hopan, František; Krpec, Kamil; Tomšej, Tomáš; Ocelka, Tomáš; Pekárek, Vladimír

    2011-11-01

    This study reports on the first complex data set of emission factors (EFs) of selected pollutants from combustion of five fuel types (lignite, bituminous coal, spruce, beech, and maize) in six different domestic heating appliances of various combustion designs. The effect of fuel as well as the effect of boiler type was studied. In total, 46 combustion runs were performed, during which numerous EFs were measured, including the EFs of particulate matter (PM), carbon monoxide, polyaromatic hydrocarbons (PAH), hexachlorobenzene (HxCBz), polychlorinated dibenzo-p-dioxins and furans (PCDD/F), etc. The highest EFs of nonchlorinated pollutants were measured for old-type boilers with over-fire and under-fire designs and with manual stoking and natural draft. Emissions of the above-mentioned pollutants from modern-type boilers (automatic, downdraft) were 10 times lower or more. The decisive factor for emission rate of nonchlorinated pollutants was the type of appliance; the type of fuel plays only a minor role. Emissions of chlorinated pollutants were proportional mainly to the chlorine content in fuel, but the type of appliance also influenced the rate of emissions significantly. Surprisingly, higher EFs of PCDD/F from combustion of chlorinated bituminous coal were observed for modern-type boilers (downdraft, automatic) than for old-type ones. On the other hand, when bituminous coal was burned, higher emissions of HxCBz were found for old-type boilers than for modern-type ones.

  17. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  18. Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels

    PubMed Central

    Downward, George S.; Hu, Wei; Rothman, Nat; Reiss, Boris; Wu, Guoping; Wei, Fusheng; Xu, Jun; Seow, Wei Jie; Brunekreef, Bert; Chapman, Robert S.; Qing, Lan; Vermeulen, Roel

    2015-01-01

    Background Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China whose residents use a variety of solid fuels for cooking and heating including: bituminous and anthracite coal, and wood. Methods Measurements were taken over 2 consecutive 24 h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. Results PMabs measurements were higher in wood burning households (16.3 × 10−5 m−1) than bituminous and anthracite coal households (12 and 5.1 × 10−5 m−1 respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r= 0.49, p<0.01). Conclusion Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality and climate change contributions of domestic usage of solid fuels. PMID:26452237

  19. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Paktunc, D.; Foster, A.; Heald, S.; Laflamme, G.

    2004-01-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4??2H2O), ferric arsenates, arseniosiderite (Ca2Fe3 (AsO4)3O2??3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4 (AsO4)3(OH)4??6-7H2O), jarosite (K2Fe6(SO4)4 (OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 A?? and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides. Correlation of Ca with As in iron (III) oxyhydroxides as determined by electron microprobe analysis supports the coprecipitate origin for the presence of Ca in iron (III) oxyhydroxides. The samples containing higher abundances of ferric arsenates released higher As concentrations during the cyanidation tests. The presence of highly soluble ferric arsenates and Ca-Fe arsenates, and relatively unstable iron (III) oxyhydroxides with Fe/As molar ratios of less than 4 in the ore and process tailings suggests that not only the tailings in the impoundment will continue to release As, but also there is the potential for mobilization of As from the natural sources such as the unmined ore. ?? 2004 Elsevier Ltd.

  20. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Wang, Guorui; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao; Xu, Bei

    2016-09-01

    The large Chaganbulagen Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein-style orebodies of the deposit occur in the NWW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite stage, a middle quartz-carbonate-pyrite-sphalerite-galena-silver-bearing minerals stage, and a late quartz-carbonate-pyrite stage. The sericite sample yielded a 40Ar -39Ar plateau age of 138 ± 1 Ma and an isochron age of 137 ± 3 Ma, and the zircon LA-ICP-MS U-Pb age of monzogranite porphyry was 143 ± 2 Ma, indicating that the ages of mineralization and monzogranite porphyry in the Chaganbulagen deposit should be the Early Cretaceous, and that the mineralization should be slightly later than the intrusion of monzogranite porphyry. There are only liquid inclusions in quartz veins of the Chaganbulagen deposit. Homogenization temperatures, densities, and salinities of the fluid inclusions from the early stage are 261-340 °C, 0.65-0.81 g/cm3, and 0.7-6.3 wt.% NaCl eqv., respectively. Fluid inclusions of the middle stage have homogenization temperatures, densities, and salinities of 209-265 °C, 0.75-0.86 g/cm3, and 0.5-5.7 wt.% NaCl eqv., respectively. For fluid inclusions of the late stage, their homogenization temperatures, densities, and salinities are 173-219 °C, 0.85-0.91 g/cm3, and 0.4-2.7 wt.% NaCl eqv., respectively. The ore-forming fluids of the deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl ± CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from - 17.9‰ to - 10.8‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from - 166‰ to - 127‰, suggesting that the ore-forming fluids consist dominantly of meteoric water. The δ34SV-CDT values range from 1.4‰ to 4.1‰. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ore minerals are in the ranges of 18.302-19.037, 15.473-15.593, and 38.110-38.945, respectively. The data for the S and Pb isotopic systems indicate that the ore-forming metals and sulfur came from Mesozoic magma. The Chaganbulagen deposit is a low-sulfidation epithermal Pb-Zn-Ag deposit, and the temperature decrease is the dominant mechanism for the deposition of ore-forming materials.

  1. Origin of the Lengshuigou porphyry-skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Wang, Ruiting; Meng, Deming; Sun, Jia; Dai, Junzhi; Ren, Tao; Li, Jianbi; Zhao, Haijie

    2017-04-01

    Porphyry Cu and Mo deposits are two economically important types of metal deposits worldwide, but factors controlling their difference remain enigmatic. Compared with the well-studied large porphyry Mo province in the south margin of the North China Block (S-NCB), the origin of newly discovered porphyry Cu deposits in the South Qinling (SQB) is poorly constrained. Integrated zircon LA-ICPMS U-Pb and molybdenite Re-Os ages and geological evidence indicate three stages of magmatism at Lengshuigou: (1) late Neoproterozoic (718 to 704 Ma) quartz diorite + albitite + granite association during the pre-ore stage, (2) 146 to 145 Ma granodiorite porphyry during the syn-ore stage, and (3) 145 Ma granite porphyry during the post-ore stage. Elemental and Sr-Nd isotopic evidence provide important constraints on their magma source. Pre-ore Neoproterozoic quartz diorite + albitite + granite was derived by re-melting of a mixture of crustal and juvenile mantle materials, and stronger fractional crystallization was involved in these ore-hosting intrusions than in contemporary granitoids hosted in the Douling Group. Syn-ore granodiorite porphyry was derived from mantle-derived magma with contributions from different proportions of crustal components. Post-ore granite porphyry was derived mainly from a crustal source. Nearly contemporaneous porphyry Cu and Mo systems were identified in Qinling Province, including the 147-139 Ma porphyry Mo systems in the S-NCB and 150-146 Ma porphyry Cu systems in the SQB. Granitic stocks related to porphyry Cu systems in the SQB are characterized by moderate SiO2 contents (58.01-69.07 %) and less radiogenic Nd-Hf isotopes (ɛNd(t) = -3.8 to -6.3, ɛHf(t) = -4.5 to +1.6), whereas the granitic stocks related to porphyry Mo deposits in the S-NCB have high SiO2 concentrations (64.00-76.00 %) and more radiogenic Nd-Hf isotopes (ɛNd(t) = -18.0 to -11.6, ɛHf(t) = -26.3 to -13.5). In addition, molybdenite from the Chigou and Lengshuigou porphyry Cu deposits in the S-NCB show higher Re contents (77.50-394.3 ppm) than those from nearly contemporaneous porphyry Mo deposits (9.34-49.7 ppm) in the S-NCB. These lines of evidence indicate that a higher proportion of mantle component was involved in the formation of porphyry Cu deposits in the SQB than nearly contemporaneous porphyry Mo deposits in the S-NCB. It is most likely that the nature of the magma source plays an essential role in the differences between porphyry Cu and Mo deposits.

  2. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Paktunc, Dogan; Foster, Andrea; Heald, Steve; Laflamme, Gilles

    2004-03-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO 4·2H 2O), ferric arsenates, arseniosiderite (Ca 2Fe 3(AsO 4) 3O 2·3H 2O), Ca-Fe arsenates, pharmacosiderite (KFe 4(AsO 4) 3(OH) 4·6-7H 2O), jarosite (K 2Fe 6(SO 4) 4(OH) 12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As 5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 Å and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides. Correlation of Ca with As in iron (III) oxyhydroxides as determined by electron microprobe analysis supports the coprecipitate origin for the presence of Ca in iron (III) oxyhydroxides. The samples containing higher abundances of ferric arsenates released higher As concentrations during the cyanidation tests. The presence of highly soluble ferric arsenates and Ca-Fe arsenates, and relatively unstable iron (III) oxyhydroxides with Fe/As molar ratios of less than 4 in the ore and process tailings suggests that not only the tailings in the impoundment will continue to release As, but also there is the potential for mobilization of As from the natural sources such as the unmined ore.

  3. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    USGS Publications Warehouse

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these minerals are associated with other rock-forming minerals, the iron content of marketable ore has a lower range from 30 to 67 percent.Chemical constituents other than iron also are important in determining the marketability of iron ore. Although some iron ores can be used in the blast furnace as mined, others must first be improved either chemically by reduction of undesirable constituents, or physically by aggregation. Phosphorus and sulfur particularly are common deleterious elements; excessive silica is also undesirable but within certain limits can be controlled by additional flux. Lime and magnesia are beneficial in specified amounts because of their fluxing qualities, and a small amount of alumina improves the fluidity of slag. Manganese is especially desirable as a deoxidizing and desulfurizing agent. Titanium, chromium, and nickel must also be considered in the use of ore containing these elements.The principal iron-ore deposits in the United States have been formed by three processes. Hematite-bearing bedded deposits such as those at Birmingham, Ala., are marine sedimentary rocks which, except for weathering along the outcrop, have remained practically unaltered since deposition. Deposits of the Lake Superior region, also in sedimentary strata, originally had a slightly lower iron content than those at-Birmingham, but ore bodies of hematite and limonite were formed by removal of other constituents in solution after deposition of the beds, with a relative increase of iron content in the material remaining. Limestone adjacent to igneous intrusions has been replaced by magnetite deposits at Cornwall, Pa., and by hematite-magnetite deposits near Cedar City, Utah. Magnetite deposits in New Jersey and in the Adirondack Mountains of New York are generally believed to have been formed by replacement of grains of other minerals in metamorphic rocks. Iron-ore resources are made up of reserves of iron ore, material usable under existing economic and technologic conditions; and potential ore, material likely to become usable under more favorable conditions. The tonnage and grade of material of combined reserves and potential ore in each of the deposits known or believed to contain at least 200,000 long tons of iron-ore resources are tabulated in this report, and numerous sources of additional information are given in a selected bibliography. The total domestic iron-ore resources are estimated at approximately 75,000 million long tons of crude ore. About 10,000 million tons of the resources is reserves of crude ore that will probably yield 5,500 million tons of concentrates and direct-shipping ore. About 65,000 million tons is potential ore and may yield 25,000 million tons of concentrates and some direct-shipping ore.

  4. 3-D ore body modeling and structural settings of syn-to late orogenic Variscan hydrothermal mineralization, Siegerland district, Rhenish Massif, NW Germany

    NASA Astrophysics Data System (ADS)

    Peters, Meike; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt mineralization. These vein-hooks are characterized by a dip direction to the W, which is opposite to the plunge of F1-folds. The vein-hooks are interpreted to have formed during oblique normal faulting. The compilation of historical mining and mineralogical information in combination with 3-D ore body modeling provides new insights into the structural evolution of mineralization and can be used to evaluate further mineral potential of the area, especially in currently non-explored depth levels. The 3-D ore body model is also vital for resource calculation and the design of a brown-fields drilling program. References Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z. dt. geol. Ges. 129, 229-247 Hein, U.F. (1993). Min. Mag. 57, 451-476 Hellmann, A., Wagner, T. and Meyer, F.M. (2012). Conference proceedings GB 2012. http://www.geologicabelgica.be/PDF/GB/S13/S13_8_Hellmann.pdf Peters, M., Hellmann A. and Meyer, F.M. (2012). Conference proceedings GeoHannover 2012. Series of paper of the German Society of Geosciences, Vol. 80, 387.

  5. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled with kaolinite and gibbsite, which make it low grade. Massive iron ores are devoid of any lamination and usually associated with BHJ and lower shale. The thickness of the massive ore layer varies with the location. The massive iron ore grades in to well-developed bedded BHJ in depth. Blue dust occurs in association with BHJ as pockets and layers. Although blue dust and friable ore are both powdery ores, and subjected to variable degree of deformation, leading to the formation of folding, faulting and joints of complex nature produce favourable channels. Percolating water play an important role in the formation of blue dust and the subterranean solution offers the necessary acidic environment for leaching of quartz from the BHJ. The dissolution of silica and other alkalis are responsible for the formation of blue dust. The friable and powdery ore on the other hand are formed by soft laminated ore. As it is formed from the soft laminated ore, its alumina content remains high similar to soft laminated ore compaired to blue dust. Mineralogy study suggests that magnetite was the principal iron oxide mineral, now a relict phase whose depositional history is preserved in BHJ, where it remains in the form of martite. The platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Hard laminated ores, martite-goethite ore and soft laminated ore are resultant of desilicification process through the action of hydrothermal fluids. Geochemistry of banded iron-formations of the Noamundi-Koira iron ore deposits shows that they are detritus-free chemical precipitates. The mineralogical and geochemical data suggest that the hard laminated, massive, soft laminated ores and blue dust had a genetic lineage from BIF's aided with certain input from hydrothermal activity. The comparative study of major elemental composition of the basin samples and while plotting a binary diagram, it shows a relation between major oxides against iron oxides, in which iron oxides is taken as a reference oxide (Mirza, 2011). On the other hand, by plotting a binary diagram between chemical index of alteration (CIA) and other oxides while taking the samples of lower, middle and upper shales. It reflects an immobility and mobility of ions during partial and complete weathering processes (Mirza, 2011). Geochemical data indicate that BIF are in general detritus free chemical precipitates. Fe2O3 content of BHJ are varies in between 36.6% to 65.04%. In hard laminated ore, Fe2O3 content varies from 93.8% to 96.38%, Soft laminated ore varies from 83.64% to 89.5% and laterite ore varies from 53.5% to 79.11%. Fe2O3 content in Martite- Goethite ore varies from 86.38% to 89.42% and blue dust having 90.74% to 95.86% and all other oxides like SiO2, Al2O3, CaO, MgO, K2O, Na2O are decreases. Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The presence of intacalated tuffaceous shales pointing towards the genesis of iron, which could have leached from sea floor by volcanogenic process. Iron and silica of BIF were provided by the hydrothermal solutions emplaced at the vent sites situated at the Archean-Mid Oceanic Ridges. References: Mirza A (2011). Major element geochemistry of iron ore deposits in Noamundi-Koira basin of Singhbhum-Orissa craton (India). MSc thesis, Aligarh Muslim University, India. Saha AK (1994). Crustal evolution of Singhbhum, North Orissa, Eastern India; Geol. Soc. India Memoir 27 341. Sharma M, Basu AR and Ray SL (1994). Sm-Nd isotopic and geochemical study of the Archaean tonalite-amphibolite association from the eastern Indian craton. Contrib. Mineral Petrol. 117:45-55. Van Schalkwyk J and Beukes N J (1986). The Sishen iron ore deposit, Griqualand West; In: Mineral deposits of Southern Africa (eds) Annhaeusser C R and Maske S S, Geological Society of South Africa, Johannesburg, 931-956.

  6. The recovery of gold from refractory ores by the use of carbon-in-chlorine leaching

    NASA Astrophysics Data System (ADS)

    Greaves, John N.; Palmer, Glenn R.; White, William W.

    1990-09-01

    Recently, the U.S. Bureau of Mines examined the recovery of gold by chlorination of refractory carbonaceous and sulfidic ores, comparing various treatment methods in which a ground ore pulp is contacted with chlorine gas and activated carbon is added to the pulp for a carbon-in-chlorine leach (CICL). The objective of this research was to demonstrate the basic feasibility of CICL technology. Results showed that the organic carbon deactivating environment of CICL lowers, but does not eliminate, the adsorption of gold on activated carbon. In this environment, the refractory ore is altered, and gold is extracted and then recovered on activated carbon. With highly carbonaceous ores, CICL achieved a higher recovery than with primarily sulfidic refractory ores. Basic cyanide amenability testing of two carbonaceous ores achieved recoveries of only 5.5% and 46%. With CICL treatment, recoveries on carbon were 90% and 92%.

  7. Solubility and chemistry of materials encountered by beryllium mine and ore extraction workers: relation to risk.

    PubMed

    Deubner, David C; Sabey, Philip; Huang, Wenjie; Fernandez, Diego; Rudd, Abigail; Johnson, William P; Storrs, Jason; Larson, Rod

    2011-10-01

    Beryllium mine and ore extraction mill workers have low rates of beryllium sensitization and chronic beryllium disease relative to the level of beryllium exposure. The objective was to relate these rates to the solubility and composition of the mine and mill materials. Medical surveillance and exposure data were summarized. Dissolution of BeO, ore materials and beryllium hydroxide, Be(OH)(2) was measured in synthetic lung fluid. The ore materials were more soluble than BeO at pH 7.2 and similar at pH 4.5. Be(OH)(2) was more soluble than BeO at both pH. Aluminum dissolved along with beryllium from ore materials. Higher solubility of beryllium ore materials and Be(OH)(2) at pH 7.2 might shorten particle longevity in the lung. The aluminum content of the ore materials might inhibit the cellular immune response to beryllium.

  8. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS WESTERN SIDE OF CLEVELAND BULK TERMINAL BUILDINGS AND A SELF-UNLOADING IRON ORE SHIP AT DOCK. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  9. Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field

    NASA Astrophysics Data System (ADS)

    Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.

    2017-09-01

    The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.

  10. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Underground transformer stations, battery charging stations, substations, and rectifiers except— (A) Where... rectifiers and power centers with transformers that are either dry-type or contain nonflammable liquid...

  11. Radon emanation from low-grade uranium ore.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p < 0.001) between in situ(222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Influence of the association of the EVA and NBR on the characteristics of modified bitumen

    NASA Astrophysics Data System (ADS)

    Bensaada, A.; Soudani, K.; Haddadi, S.; Saoula, S.

    2015-03-01

    Durability and the performance of pavement depend mainly on the characteristics of materials which change over time like all other organic substances. They are subject to significant changes due to environmental conditions during the different phases of use. In the present work we investigated experimentally the influence of the association of ethyl vinyl acetate polymer (EVA) with an industrial waste, acrylonitrile-butadiene rubber (NBR) on the modification of bitumen AC 35-50 and its rheological behavior. The incorporation of NBR and EVA in the bitumen improved its intrinsic characteristics (softening point, penetration and ductility). In addition to improving the characteristics of bituminous binders that will affect the durability of bituminous structures, the environment will be preserved by the recycling of industrial waste.

  13. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  14. Secretinite-Reflectance and chemical data from two high volatile bituminous coals (Upper Carboniferous) of North America

    USGS Publications Warehouse

    Lyons, P.C.; Mastalerz, Maria

    2001-01-01

    Secretinite - a maceral of the inertinite group as recognized by the ICCP in 1996- is a noncellular maceral of seed fern origin. New reflectance data indicate that this maceral has primary anisotropy with bireflectances of 0.4% to 0.9% in high-volatile B bituminous (Ro = 0.6%) Carboniferous coal of North America. The highest reflectance is in cross-section as opposed to longitudinal section. Characteristic feature of secretinite is the virtual absence of Si and Al, unlike that in associated vitrinite. This indicates the absence of submicron aluminosilicates in secretinite and their presence in vitrinites. Secretinite is highly aromatic as indicated by low O/C ratios and high contribution of aromatic hydrogen bands detected by FTIR analysis. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. Study on coal char ignition by radiant heat flux.

    NASA Astrophysics Data System (ADS)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  16. Development of Pavement Temperature Contours for India

    NASA Astrophysics Data System (ADS)

    Nivitha, M. R.; Krishnan, J. M.

    2014-06-01

    The stress-strain response of the bituminous pavements is highly sensitive to temperature. To systematically analyze the pavement performance, it is necessary that one understands the variation of pavement temperature spatially and temporally during the life time of a pavement. In this investigation, historic air temperature data for 37 locations across India was collected. Using this database, pavement temperature data was predicted by an appropriate air temperature-pavement temperature model. High and low temperature pavement temperature contours were generated for the first time for India. It was seen that the locations spanning from Srinagar to Madhya Pradesh and Rajasthan to Orissa were extremely critical. The minimum temperature in these locations was 10 C and the maximum temperature was around 68 C. Clearly such information is necessary when making choice of binder grade and bituminous layer thickness.

  17. Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: A case study from the Edong metallogenic district, South China

    NASA Astrophysics Data System (ADS)

    Duan, Deng-Fei; Jiang, Shao-Yong

    2018-06-01

    In order to find criteria to discriminate the synchronous ore-associated and barren granitoid rocks, we have determined apatite chemistry associated with ore-associated (Cu-Au) and barren granitoid rocks in the Edong district of the Middle and Lower Yangtze River metallogenic belt, South China. Both rock types give zircon U-Pb ages between 135.0 and 138.7 Ma. Apatite has a higher volatile and Li content (Cl: 0.19-0.57 wt%, average 0.35 wt%, SO3: 0.08-0.71 wt%, average 0.32 wt%, Li: 0.49-7.99 ppm, average 3.23 ppm) in ore-associated rocks than those in barren rocks (Cl: 0.09-0.31 wt%, average 0.16 wt%, SO3: 0.06-0.28 wt%, average 0.16 wt%, Li: 0.15-0.89 ppm, average 0.36 ppm). Apatite (La/Yb)N ratios and Eu/Eu* values are relatively high and show wider variation in ore-associated rocks than those in barren rocks. Apatite (La/Sm)N and (Yb/Sm)N show positive correlation in ore-associated rocks but negative in barren rocks. The higher volatile content occurs in ore-associated magma, favoring Cu-Au transportation and deposition. Furthermore, amphibole fractional crystallization in ore-associated magma further enriched the ore elements in the residual melt. Barren rocks may have undergone fluid exsolution before emplacement, which makes it barren in Cl, S and ore elements (Cu, S). These signatures emphases the significance of volatile and magma evolution in mineralization and indicate that analyses of magmatic apatite can serve to distinguish ore-associated from barren intrusions.

  18. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yongqing, E-mail: ydonglai@mail.cgs.gov.cn; Zhao Pengda; Chen Jianguo

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. Amore » geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.« less

  19. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    NASA Astrophysics Data System (ADS)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh environment of

  20. Gold ores related to shear zones, West Santa Comba-Fervenza Area (Galicia, NW Spain): A mineralogical study

    NASA Astrophysics Data System (ADS)

    Castroviejo, R.

    1990-12-01

    Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite — accompanied by quartz, adularia, sericite, ± (tourmaline, chlorite, carbonates, graphite), as main gangue minerals -with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrothermal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.

  1. Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico

    USGS Publications Warehouse

    Granger, H.C.; Santos, E.S.

    1982-01-01

    The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and uraninite. They also contain vanadium and selenium but are virtually devoid of molybdenum. Although much has been learned about these deposits since the time this study was conducted, in 1966, a great deal more study will by required to completely elucidate their geologic history.

  2. Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia

    USGS Publications Warehouse

    Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R.

    2003-01-01

    The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron-formation (BIF)-hosted ore zones in the gently dipping Sunrise Shear Zone and high-grade vein-hosted ore in the Western Lodes. There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post-dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C. O and S isotopic compositions of ore-related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low-salinity aqueous-carbonic fluids and late high-salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2-H2O, and H2O- dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low-salinity aqueous-carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280??C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace-element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted In As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones most likely result from different gold-deposition mechanisms. The association of ore zones in the Sunrise Shear Zone with pyrite-replaced BIF suggests that wall-rock sulfidation was the most significant mechanism of gold precipitation, through the destabilisation of gold-bisulfide complexes. The Western Lodes, however, do not exhibit any host-rock preference and multistage veins commonly contain coarse-grained gold. Fluid-inclusion characteristics and breccia textures in veins in the Western Lodes suggest that rapid pressure changes, brought about by intermittent release of overpressured fluids and concomitant phase separation, are likely to have caused the destabilisation of gold-thiocomplexes, leading to formation of higher-grade gold ore zones.

  3. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    USGS Publications Warehouse

    Lyons, P.C.; Mastalerz, Maria; Orem, W.H.

    2009-01-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell and Yallourn fossil resins from brown coal (lignite B) Australia do not have some of the FTir characteristics of the New Zealand resins, which most likely indicates they have a different plant source because different degrees of oxidation and weathering and changes due to fires (i.e., charring) can be ruled out. Our results have implications for studies of the maturation, provenance, and botanical sources of fossil resins and resinites in Eocene and Miocene coals and sediments of New Zealand and Australia. ?? 2009 Elsevier B.V. All rights reserved.

  4. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulkmore » solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.« less

  5. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.« less

  6. Recycling of water-susceptible pavements.

    DOT National Transportation Integrated Search

    1980-01-01

    Several bituminous concrete interstate pavements that experienced failures suspected to have been caused by stripping were investigated. On two projects, the degree of deterioration, potential serviceability, and possible remedial measures were studi...

  7. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  8. 18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ORE BIN AND TRESTLE FROM TWO JOHNS TRAMLINE TO SOUTH, CRUDE ORE BIN IN FOREGROUND. MACHINE SHOP IN BACKGROUND. THE TRAM TO PORTLAND PASSED TO NORTH OF MACHINE SHOP. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  9. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  10. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  11. Bacterio-electric leaching of metals

    DOEpatents

    Lazaroff, Norman; Dugan, Patrick R.

    1992-07-07

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  12. Bacterio-electric leaching of metals

    DOEpatents

    Lazaroff, Norman; Dugan, Patrick R.

    1992-01-01

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  13. 4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, c. 1912. SHOWS TIMBER FRAMING UNDER CONSTRUCTION FOR EAST AND WEST CRUDE ORE BINS AT PREVIOUS LOCATION OF CRUSHER HOUSE, AND SNOW SHED PRESENT OVER SOUTH CRUDE ORE BIN WITH PHASE CHANGE IN SNOW SHED CONSTRUCTION INDICATED AT EAST END OF EAST CRUDE ORE BIN. THIS PHOTOGRAPH IS THE FIRST IMAGE OF THE MACHINE SHOP, UPPER LEFT CORNER. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  14. Explosibility of Metal Powders

    DTIC Science & Technology

    1964-01-01

    299 1832 - Copper ore, sulfide , Mexic.................................................- - 100 - - - 300 1873 - Iron ore, magnetite...100 - - - 302 2076.............................................. do...................................... - - 100 - - - 303 749 - Iron ore, sulfide ...9 Pyrophoricity ............................................................... 9 Prevention of ignition and explosion

  15. [In vitro toxicity of naturally occurring silica nanoparticles in C1 coal in bronchial epithelial cells].

    PubMed

    Li, Guangjian; Huang, Yunchao; Liu, Yongjun; Guo, Lv; Zhou, Yongchun; Yang, Kun; Chen, Ying; Zhao, Guangqiang; Lei, Yujie

    2012-10-01

    China's Xuan Wei County in Yunnan Province have the world's highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring), control group (silica; industrial produced and crystalline silica) was detected by assay used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the reactive oxygen species (ROS), lactate dehydrogenase (LDH) were determined after 24 h-72 h exposed to these particles. ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace; ②Naturally occurring silica nanoparticles have irregular morphology, surface area, and containing complex trace elements may has greater toxicity than the silica nanoparticle of industrial produced and crystalline silica.

  16. Use of mesophilic and thermophilic bacteria for the improvement of copper extraction from a low-grade ore

    NASA Astrophysics Data System (ADS)

    Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.

    2011-04-01

    Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.

  17. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  18. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  19. 3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  20. IMPACT: How ORE Findings Have Affected Decisions in Austin and Beyond.

    ERIC Educational Resources Information Center

    Wilkinson, David, Ed.; Ligon, Glynn, Ed.

    Over the years, findings of the Office of Research and Evaluation (ORE) of the Austin (Texas) Independent School District (AISD) have had a significant impact on decisions made in the district and sometimes beyond it. The ORE's impact in the AISD is reviewed in 16 areas. Some of the major findings are summarized: (1) ORE studies of retention in…

  1. 75 FR 68788 - Ore Knob Mine Superfund Site; Jefferson, Ashe County, North Carolina; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2010-0893, FRL-9223-8] Ore Knob Mine... Agency has entered into a settlement for reimbursement of past response costs concerning the Ore Knobe..., identified by Docket ID No. EPA-RO4- SFUND-2010-0893 or Site name Ore Knob Mine Superfund Site by one of the...

  2. Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.

    PubMed

    Henda, R; Hermas, A; Gedye, R; Islam, M R

    2005-01-01

    A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.

  3. Selective Removal of Iron from Low-Grade Ti Ore by Reacting with Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2017-02-01

    Recently, titanium metal production by molten salt electrolysis using CaCl2 as molten salt and TiO2 or rutile (94 to 96 pct TiO2) as feedstock has been drawing attention. However, when a low-grade Ti ore (mainly FeTiO3) is used as feedstock, removal of iron (Fe) from the ore is indispensable. In this study, the influence of reaction temperature, reaction time, particle size of the ore, and source country for the ore on the removal of iron by selective chlorination using CaCl2 was assessed. Experimental results showed that the mass percent of iron in the ore decreased from 49.7 to 1.79 pct under certain conditions by selective removal of iron as FeCl2. As a result, high-grade CaTiO3 was produced when the ore particles smaller than 74 µm reacted with CaCl2 at 1240 K (967 °C) for 8 to 10 hours. Therefore, this study demonstrates that the removal of iron from the ore is feasible through the selective chlorination process using CaCl2 by optimizing the variables.

  4. Remote sensing strategic exploration of large or superlarge gold ore deposits

    NASA Astrophysics Data System (ADS)

    Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong

    1998-08-01

    To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.

  5. The North American iron ore industry: a decade into the 21st century

    USGS Publications Warehouse

    Jorgenson, John D.; Perez, A. A

    2011-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through periods of transformation. The beginning of the 21st century has seen another period of transformation, with the failure of a number of steel companies and with consolidation of control within the North American iron ore industry. Canadian and United States iron ore production and the market control structure involved are changing rapidly. Consolidation of ownership, formation of foreign joint ventures, divestitures of upstream activities by steelmakers, and industry changes to ensure availability of feedstocks all played a role in recent developments in the North American iron ore industry. Canadian and U.S. iron ore operations and their strong linkage to downstream production, although isolated, must also be considered within the context of the changing global economy. Projects using new technology to produce direct reduced iron nuggets of 96-98% iron content and other projects designed to produce steel at minesites may once again change the face of the iron ore industry. Social and environmental issues related to sustainable development have had a significant effect on the North American iron ore industry.

  6. Stochastic production phase design for an open pit mining complex with multiple processing streams

    NASA Astrophysics Data System (ADS)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  7. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  8. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  9. Difference in rockburst hazard in ore and coal mines

    NASA Astrophysics Data System (ADS)

    Lovchikov, AV

    2018-03-01

    In the Russian mining and engineering literature, in most cases, there is no difference in the assessment of the rockburst hazards in metal and coal mines. Nevertheless, it exists, in view of the difference in geological and geotechnical conditions of coal and ore deposits. Since ore deposits occur in the solid magmatic or metamorphic rock masses, the strongest induced earthquakes are much more powerful in ore mines than in coal mines. The main difference of rockbursting lies in the difference of natural stress state: gravity stress state in the coal fields and gravity-and-tectonic stress state in ore mines. The actual stresses are mostly vertical in the first case and horizontal in the second case, which conditions the difference in rockburst hazard in coal and ore mines.

  10. Method development for mass spectrometry based molecular characterization of fossil fuels and biological samples

    NASA Astrophysics Data System (ADS)

    Mahat, Rajendra K.

    In an analytical (chemical) method development process, the sample preparation step usually determines the throughput and overall success of the analysis. Both targeted and non-targeted methods were developed for the mass spectrometry (MS) based analyses of fossil fuels (coal) and lipidomic analyses of a unique micro-organism, Gemmata obscuriglobus. In the non-targeted coal analysis using GC-MS, a microwave-assisted pressurized sample extraction method was compared with the traditional extraction method, such as Soxhlet. On the other hand, methods were developed to establish a comprehensive lipidomic profile and to confirm the presence of endotoxins (a.k.a. lipopolysaccharides, LPS) in Gemmata.. The performance of pressurized heating techniques employing hot-air oven and microwave irradiation were compared with that of Soxhlet method in terms of percentage extraction efficiency and extracted analyte profiles (via GC-MS). Sub-bituminous (Powder River Range, Wyoming, USA) and bituminous (Fruitland formation, Colorado, USA) coal samples were tested. Overall 30-40% higher extraction efficiencies (by weight) were obtained with a 4 hour hot-air oven and a 20 min microwave-heating extraction in a pressurized container when compared to a 72 hour Soxhlet extraction. The pressurized methods are 25 times more economic in terms of solvent/sample amount used and are 216 times faster in term of time invested for the extraction process. Additionally, same sets of compounds were identified by GC-MS for all the extraction methods used: n-alkanes and diterpanes in the sub-bituminous sample, and n-alkanes and alkyl aromatic compounds in the bituminous coal sample. G. obscuriglobus, a nucleated bacterium, is a micro-organism of high significances from evolutionary, cell and environmental biology standpoints. Although lipidomics is an essential tool in microbiological systematics and chemotaxonomy, complete lipid profile of this bacterium is still lacking. In addition, the presence of LPS and thus outer membrane (OM) in Gemmata is unknown. Global lipidomic analysis of G. obscuriglobus showed fatty acids (FAs) in the range C14 - C22, with octadecanoic and cis-9 hexadecenoic acids (C18:0 and ωc9 C16:1) being the two most abundant FAs. Thirteen different Gram-negative specific 3-hydroxy fatty acids (3-HOFAs) and eukaryote specific sterols (C30; four in number) were identified. Additionally, like a eukaryotic cell, a polyunsaturated fatty acid (PUFA; tent. ω3 C27:3) has also been discovered. The targeted lipidomic study found a series of novel biomarkers in G. obscuriglobus. Compositional analysis of LPS confirmed eight different 3-HOFAs and a sugar-acid, 2-keto 3-deoxy-D-manno -octulosonic acid (Kdo). These two groups of compounds, being unique to a Gram-negative LPS, confirmed the presence of OM in G. obscuriglobus. Moreover, compositional analyses by GC-MS also confirmed glucosamine and hexose and heptose sugars in the LPS. These compositional information obtained from GC-MS analyses were combined with molecular/structural information collected from Matrix-assisted laser desorption and ionization-time of flight (MALDI-TOF) MS. The MALDI-TOF MS showed a cluster of ions separated by 14 u, from m/z 2017.16 to 2143.28. For the most intense ion at m/z 2087.22, a tentative hexa-acylated lipid A structure has been proposed. Identifications of multiple 3-HOFAs by GC-MS and a cluster of ions in MALDI suggest presence of multiple lipid A species, i.e., heterogeneous lipid A molecule, in G. obscuriglobus..

  11. SEVENTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2012-08-30

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23more » GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 54-72 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 30 - 36 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51 – 96%. This is greater than seen to date for any packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350 – 400 ºF). However, at 300 ºF, the room temperature leak test failures to date experienced longer aging times than predicted by the CSRbased model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 ºF will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining PCV O-ring fixtures.« less

  12. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    NASA Astrophysics Data System (ADS)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba, which like Pb also have a divalent ionic radius larger than that of Ca2+ and form carbonate minerals with the aragonite structure, did not consistently agree well with known concentrations of Sr and Ba in fluid inclusions. The ore fluid Zn concentrations predicted in the present study lie within the range of Zn concentrations typical of modern sedimentary brines and are high enough to allow deposition of the observed amounts of Zn in the Illinois-Kentucky and Central Tennessee districts within ranges of geologically reasonable times and ore fluid flow velocities. If the pH of the Illinois-Kentucky and Central pH ore fluids was as low as current evidence suggests to be possible, then these ore fluids could simultaneously have transported enough sulfide with their Zn to account for the observed amounts of sphalerite in the districts.

  13. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of many giant Cu-Mo-Au ore deposits may be arrested when the surface is catastrophically breached, as multiple km-scale breccia pipes empty their volatile and metal contents into the atmosphere. The new equation for studying ore geology should be one that reconstructs ore formation from beginning to end, that is, from source, release, and transport, to breach. Of course, detailed measurements and mapping of ore bodies remains essential, but a full understanding of metal migration and budgets can only be achieved if we model what might have been left behind in deeper Earth, and what may have been lost to the atmosphere. To do this, we need to understand much more than the geology at our ore deposit of interest. Stein, H.J. (2014) Dating and Tracing the History of Ore Formation. Treatise on Geochemistry 13: 87-118. Elsevier. Support for time to think - CHRONOS, funded by a consortium of Norwegian petroleum companies.

  14. Saw & seal, airport pavement.

    DOT National Transportation Integrated Search

    2009-05-01

    Due to extreme cold temperatures, hot bituminous pavements on Maines airports are subject to transverse : or thermal cracking. This can lead to poorly performing pavement structure causing heaving and : settlement problems. Studies have shown that...

  15. Chip seal performance measures : best practices.

    DOT National Transportation Integrated Search

    2015-03-01

    The Washington State Department of Transportation (WSDOT) has a long history of designing, constructing, : and maintaining chip seal or bituminous surface treatment pavements. However, to date WSDOT has not : developed pavement performance indicators...

  16. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    NASA Astrophysics Data System (ADS)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc setting suggest that the Zhilingtou Mo deposit is likely to be an Endako type porphyry Mo deposit. It is different from Shapinggou Mo deposit, which were formed in an intra-continental setting and characterized by intensive potassic alteration and CO2-rich ore-forming fluids.

  17. Impact of solvent extraction organics on adsorption and bioleaching of A. ferrooxidans and L. ferriphilum

    NASA Astrophysics Data System (ADS)

    Hualong, Yu; Xiaorong, Liu

    2017-04-01

    Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.

  18. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  19. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  20. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect prospecting and mining for stibnite ore in the area, are outlined. The principal available ore and reserves are considered to be ores earlier mined but never shipped, ore minable from near-surface deposits, and ores recoverable as a by-product of future gold mining. The outlook for stibnite production in the district is very uncertain. Apparently the greater portion of stibnite ore has already been recovered and present operations will strip the two principal areas of the district. This conclusion is based on the scanty discoveries since the last war and the fact that the areas are so pock-marked with prospects that there is little likelihood that any other large near-surface bodies remain to be discovered. Future prospecting would essentially be limited to attempts to seek the continuation of lodes previously having high yields of stibnite.

  1. Performance of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature.

    PubMed

    Wang, Tao; Zhu, Chengzhu; Liu, Haibo; Xu, Yongpeng; Zou, Xuehua; Xu, Bin; Chen, Tianhu

    2018-02-01

    Natural manganese ore catalysts for selective catalytic reduction (SCR) of NO with NH 3 at low temperature in the presence and absence of SO 2 and H 2 O were systematically investigated. The physical and chemical properties of catalysts were characterized by X-ray diffraction, Brunauer-Emmett-Teller (BET) specific surface area, NH 3 temperature-programmed desorption (NH 3 -TPD) and NO-TPD methods. The results showed that natural manganese ore from Qingyang of Anhui Province had a good low-temperature activity and N 2 selectivity, and it could be a novel catalyst in terms of stability, good efficiency, good reusability and lower cost. The NO conversion exceeded 85% between 150°C and 300°C when the initial NO concentration was 1000 ppm. The activity was suppressed by adding H 2 O (10%) or SO 2 (100 or 200 ppm), respectively, and its activity could recover while the SO 2 supply is cut off. The simultaneous addition of H 2 O and SO 2 led to the increase of about 100% in SCR activity than bare addition of SO 2 . The formation of the amorphous MnO x , high concentration of lattice oxygen and surface-adsorbed oxygen groups and a lot of reducible species as well as adsorption of the reactants brought about excellent SCR performance and exhibited good SO 2 and H 2 O resistance.

  2. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  3. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Problems of the Synthesis of Radar Signals,

    DTIC Science & Technology

    1981-05-14

    Unfortunately, the more ccmplete wcrk cf the same authors on the theme indicated (reference of 6 articles [43]) was not published. In the number of research cn...conditicns cf ore or tha other interferences. Some research of this type is [15]. But here, as when selecting of general/common/total apprcach tc the...this approach more rarely. set Y, characterized by the desired property, frequently contains continuous, analytic functions. Therefore research of

  5. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  6. Performance related specifications for bituminous concrete.

    DOT National Transportation Integrated Search

    1984-01-01

    This report discusses the philosophy and evolution of performance related specifications. The properties of most .importance in the construction of asphaltic concrete pavements, as well as the associated specifications, are listed and discussed. The ...

  7. 14 CFR 151.39 - Project eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... located; and (ii) Adequate replacement housing that is open to all persons, regardless of race, color...) Bituminous resurfacing of pavements with a minimum of 100 pounds of plant-mixed material for each square yard...

  8. 14 CFR 151.39 - Project eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... located; and (ii) Adequate replacement housing that is open to all persons, regardless of race, color...) Bituminous resurfacing of pavements with a minimum of 100 pounds of plant-mixed material for each square yard...

  9. Results of reflective crack questionnaire survey.

    DOT National Transportation Integrated Search

    1973-01-01

    Department engineers were surveyed to obtain their opinions on the potential detrimental effects of transverse reflective cracks through the surface course of bituminous pavements and the costs of preventive measures. The majority of respondents (67%...

  10. Vibratory roller study.

    DOT National Transportation Integrated Search

    1984-01-01

    Recently, much criticism has been directed toward the use of vibratory rollers to compact bituminous concrete. The results of the study reported here indicate that when these rollers are operated properly they can produce dense, strong, smooth riding...

  11. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Analysis of coals and biomass pyrolysis using the distributed activation energy model.

    PubMed

    Li, Zhengqi; Liu, Chunlong; Chen, Zhichao; Qian, Juan; Zhao, Wei; Zhu, Qunyi

    2009-01-01

    The thermal decomposition of coals and biomass was studied using thermogravimetric analysis with the distributed activation energy model. The integral method resulted in Datong bituminous coal conversions of 3-73% at activation energies of 100-486 kJ/mol. The corresponding frequency factors were e(19.5)-e(59.0)s(-1). Jindongnan lean coal conversions were 8-52% at activation energies of 100-462 kJ/mol. Their corresponding frequency factors were e(13.0)-e(55.8)s(-1). The conversion of corn-stalk skins were 1-84% at activation energies of 62-169 kJ/mol with frequency factors of e(10.8)-e(26.5)s(-1). Datong bituminous coal, Jindongnan lean coal and corn-stalk skins had approximate Gaussian distribution functions with linear ln k(0) to E relationships.

  13. Pelletizing/reslurrying as a means of distributing and firing clean coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  14. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  15. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource

    USGS Publications Warehouse

    Montgomery, S.L.; Barker, C.E.

    2003-01-01

    Cook Inlet Basin of south-central Alaska is a forearc basin containing voluminous Tertiary coal deposits with sufficient methane content to suggest a major coalbed gas resource. Coals ranging in thickness from 2 to 50 ft (0.6 to 15 m) and in gas content from 50 to 250 scf/ton (1.6 to 7.8 cm2/g) occur in Miocene-Oligocene fluvial deposits of the Kenai Group. These coals have been identified as the probable source of more than 8 tcf gas that has been produced from conventional sandstone reservoirs in the basin. Cook Inlet coals can be divided into two main groups: (1) those of bituminous rank in the Tyonek Formation that contain mainly thermogenic methane and are confined to the northeastern part of the basin (Matanuska Valley) and to deep levels elsewhere; and (2) subbituminous coals at shallow depths (<5000 ft [1524 m]) in the Tyonek and overlying Beluga formations, which contain mainly biogenic methane and cover most of the central and southern basin. Based on core and corrected cuttings-desorption analyses, gas contents average 230 scf/ton (7.2 cm2/g) for bituminous coals and 80 scf/ton (2.5 cm2/g) for subbituminous coals. Isotherms constructed for samples of both coal ranks suggest that bituminous coals are saturated with respect to methane, whereas subbituminous coals at shallow depths along the eroded west-central basin margin are locally unsaturated. A preliminary estimate of 140 tcf gas in place is derived for the basin.

  16. Reuse of bituminous pavements: A mini-review of research, regulations and modelling.

    PubMed

    Anthonissen, Joke; Van den Bergh, Wim; Braet, Johan

    2017-04-01

    Bituminous pavement can be recycled - even multiple times - by reusing it in new bituminous mixtures. If the mechanical properties of the binder get worse, this reclaimed asphalt is often used in the sub-structure of the road. Apparently, up till now, no end-of-life phase exists for the material. Actually, defining the end-of-life and the end-of-waste stage of a material is important for life cycle assessment modelling. Various standards and scientific studies on modelling life cycle assessment are known, but the crucial stages are not yet defined for reclaimed asphalt pavement. Unlike for iron, steel and aluminium scrap, at this moment, no legislative end-of-waste criteria for aggregates are formulated by the European Commission. More research is necessary in order to develop valuable end-of-life criteria for aggregates. This contribution is a mini-review article of the current regulations, standards and studies concerning end-of-life and end-of-waste of reclaimed asphalt pavement. The existing methodology in order to define end-of-waste criteria, a case study on aggregates and the argumentation used in finished legislative criteria are the basis to clarify some modelling issues for reclaimed asphalt material. Hence, this contribution elucidates the assignment of process environmental impacts to a life cycle stage as defined by EN15804, that is, end-of-life stage (C) and the supplementary information Module D with benefits and loads beyond the system boundary.

  17. Strain accumulation in bituminous binders under repeated creep-recovery loading predicted from small-amplitude oscillatory shear (SAOS) experiments

    NASA Astrophysics Data System (ADS)

    Laukkanen, Olli-Ville; Winter, H. Henning

    2017-11-01

    The creep-recovery (CR) test starts out with a period of shearing at constant stress (creep) and is followed by a period of zero-shear stress where some of the accumulated shear strain gets reversed. Linear viscoelasticity (LVE) allows one to predict the strain response to repeated creep-recovery (RCR) loading from measured small-amplitude oscillatory shear (SAOS) data. Only the relaxation and retardation time spectra of a material need to be known and these can be determined from SAOS data. In an application of the Boltzmann superposition principle (BSP), the strain response to RCR loading can be obtained as a linear superposition of the strain response to many single creep-recovery tests. SAOS and RCR data were collected for several unmodified and modified bituminous binders, and the measured and predicted RCR responses were compared. Generally good agreement was found between the measured and predicted strain accumulation under RCR loading. However, in the case of modified binders, the strain accumulation was slightly overestimated (≤20% relative error) due to the insufficient SAOS information at long relaxation times. Our analysis also demonstrates that the evolution in the strain response under RCR loading, caused by incomplete recovery, can be reasonably well predicted by the presented methodology. It was also shown that the outlined modeling framework can be used, as a first approximation, to estimate the rutting resistance of bituminous binders by predicting the values of the Multiple Stress Creep Recovery (MSCR) test parameters.

  18. [Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt].

    PubMed

    Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu

    2013-05-01

    The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.

  19. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or its mode of occurrence; (b) mills beneficiating iron ores by physical (magnetic and nonmagnetic) and/or chemical separation; and (c) mills beneficiating iron ores by magnetic and physical separation...

  20. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or its mode of occurrence; (b) mills beneficiating iron ores by physical (magnetic and nonmagnetic) and/or chemical separation; and (c) mills beneficiating iron ores by magnetic and physical separation...

Top