Sample records for bk channel activity

  1. Molecular mechanism of pharmacological activation of BK channels

    PubMed Central

    Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.

    2012-01-01

    Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907

  2. Proximal clustering between BK and CaV1.3 channels promotes functional coupling and BK channel activation at low voltage

    PubMed Central

    Vivas, Oscar; Moreno, Claudia M; Santana, Luis F; Hille, Bertil

    2017-01-01

    CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near −50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials. DOI: http://dx.doi.org/10.7554/eLife.28029.001 PMID:28665272

  3. Heme Regulates Allosteric Activation of the Slo1 BK Channel

    PubMed Central

    Horrigan, Frank T.; Heinemann, Stefan H.; Hoshi, Toshinori

    2005-01-01

    Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state. PMID:15955873

  4. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. © 2016 Elsevier Inc. All rights reserved.

  5. Modulation of BK channels by ethanol

    PubMed Central

    Dopico, Alex M.; Bukiya, Anna N.; Kuntamallappanavar, Guruprasad; Liu, Jianxi

    2017-01-01

    In alcohol-naïve systems, ethanol (<100 mM) exposure of calcium-gated BK channels perturbs physiology and behavior. Brief (several minutes) ethanol exposure usually leads to increased BK current, which results from ethanol interaction with a pocket mapped to the BK channel-forming slo1 protein cytosolic tail domain. The importance of this region in alcohol-induced intoxication has been addressed in Caenorhabditis elegans slo1 mutants. However, ethanol-induced BK activation is not universal as refractoriness and inhibition have been reported. The final effect depends on many factors, including intracellular calcium levels, slo1 isoform, BK beta subunit composition, post-translational modification of BK proteins, channel lipid microenvironment and type of ethanol administration. Studies in Drosophila melanogaster, Caenorhabditis elegans and rodents show that protracted/repeated ethanol administration leads to tolerance to alcohol-induced modification of BK-driven physiology and behavior. Unveiling the mechanisms underlying tolerance is of major importance, as tolerance to alcohol has been proposed as predictor of risk for alcoholism. PMID:27238266

  6. Biophysics of BK Channel Gating.

    PubMed

    Pantazis, A; Olcese, R

    2016-01-01

    BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties. © 2016 Elsevier Inc. All rights reserved.

  7. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  8. Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Matthews, Elizabeth A.; Disterhoft, John F.

    2009-01-01

    Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…

  9. BK channels in innate immune functions of neutrophils and macrophages

    PubMed Central

    Essin, Kirill; Gollasch, Maik; Rolle, Susanne; Weissgerber, Patrick; Sausbier, Matthias; Bohn, Erwin; Autenrieth, Ingo B.; Ruth, Peter; Luft, Friedrich C.; Kettritz, Ralph

    2009-01-01

    Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK−/−) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-α secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK−/− and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-κB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-α release and signal transduction BMDMs. PMID:19074007

  10. Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation

    PubMed Central

    Davis, S. J.; Scott, L. L.; Ordemann, G.; Philpo, A.; Cohn, J.; Pierce-Shimomura, J. T.

    2016-01-01

    Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action. PMID:26113050

  11. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    PubMed

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  12. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum

    PubMed Central

    Pratt, Christopher P.; Kuljis, Dika A.; Homanics, Gregg E.; He, Jianjun; Kolodieznyi, Dmytro; Dudem, Srikanth; Hollywood, Mark A.; Barth, Alison L.; Bruchez, Marcel P.

    2017-01-01

    BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking. PMID:29163049

  13. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    PubMed

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  15. A BK (Slo1) channel journey from molecule to physiology

    PubMed Central

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517

  16. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  17. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  18. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  19. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  20. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  1. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels

    PubMed Central

    Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron

    2016-01-01

    In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581

  2. TRPV1 Channels Are Functionally Coupled with BK(mSlo1) Channels in Rat Dorsal Root Ganglion (DRG) Neurons

    PubMed Central

    Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system. PMID:24147119

  3. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing

    PubMed Central

    Pantazis, Antonios

    2012-01-01

    Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1–S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K+ (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a “decentralized” distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD. PMID:22802360

  4. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle

    PubMed Central

    Tao, Xiaoxiao; Lin, Mike T.; Thorington, Glyne U.; Wilson, Sean M.; Longo, Lawrence D.

    2015-01-01

    Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K+ channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca2+ activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca2+ set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca2+ and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus. PMID:25599571

  5. Atomic determinants of BK channel activation by polyunsaturated fatty acids

    PubMed Central

    Tian, Yutao; Aursnes, Marius; Hansen, Trond Vidar; Tungen, Jørn Eivind; Galpin, Jason D.; Leisle, Lilia; Ahern, Christopher A.; Xu, Rong; Heinemann, Stefan H.; Hoshi, Toshinori

    2016-01-01

    Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA–channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion–dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery. PMID:27849612

  6. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    PubMed Central

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  7. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.

    PubMed

    Torres, Yolima P; Granados, Sara T; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  8. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy

    PubMed Central

    Ge, Lisheng; Hoa, Neil T.; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xia-Tang; Tajhya, Rajeev B.; Beeton, Christine; Jadus, Martin R.

    2017-01-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, Stretch-activated potassium channels, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of BK channels, especially its role, and that it has in the immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered. PMID:25027630

  9. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  10. BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats.

    PubMed

    Zaman, Tariq; De Oliveira, Cleusa; Smoka, Mahabba; Narla, Chakravarthi; Poulter, Michael O; Schmid, Susanne

    2017-04-26

    Habituation is a basic form of implicit learning and represents a sensory filter that is disrupted in autism, schizophrenia, and several other mental disorders. Despite extensive research in the past decades on habituation of startle and other escape responses, the underlying neural mechanisms are still not fully understood. There is evidence from previous studies indicating that BK channels might play a critical role in habituation. We here used a wide array of approaches to test this hypothesis. We show that BK channel activation and subsequent phosphorylation of these channels are essential for synaptic depression presumably underlying startle habituation in rats, using patch-clamp recordings and voltage-sensitive dye imaging in slices. Furthermore, positive modulation of BK channels in vivo can enhance short-term habituation. Although results using different approaches do not always perfectly align, together they provide convincing evidence for a crucial role of BK channel phosphorylation in synaptic depression underlying short-term habituation of startle. We also show that this mechanism can be targeted to enhance short-term habituation and therefore to potentially ameliorate sensory filtering deficits associated with psychiatric disorders. SIGNIFICANCE STATEMENT Short-term habituation is the most fundamental form of implicit learning. Habituation also represents a filter for inundating sensory information, which is disrupted in autism, schizophrenia, and other psychiatric disorders. Habituation has been studied in different organisms and behavioral models and is thought to be caused by synaptic depression in respective pathways. The underlying molecular mechanisms, however, are poorly understood. We here identify, for the first time, a BK channel-dependent molecular synaptic mechanism leading to synaptic depression that is crucial for habituation, and we discuss the significance of our findings for potential treatments enhancing habituation. Copyright © 2017

  11. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  12. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions.

    PubMed

    Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin

    2014-02-21

    BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.

  13. Downregulation of BK Channel Function and Protein Expression in Coronary Arteriolar Smooth Muscle Cells of Type 2 Diabetic Patients.

    PubMed

    Lu, Tong; Chai, Qiang; Jiao, Guoqing; Wang, Xiao-Li; Sun, Xiaojing; Furuseth, Jonathan D; Stulak, John M; Daly, Richard C; Greason, Kevin L; Cha, Yong-Mei; Lee, Hon-Chi

    2018-05-30

    Type 2 diabetes (T2D) is strongly associated with cardiovascular morbidity and mortality in patients. Vascular large conductance Ca2+-activated potassium (BK) channels, composed of four pore-forming α subunits (BK-α) and four regulatory β1 subunits (BK-β1), are densely expressed in coronary arterial smooth muscle cells (SMCs) and play an important role in regulating vascular tone and myocardial perfusion. However, the role of BK channels in coronary microvascular dysfunction of human subjects with diabetes is unclear. In this study, we examined BK channel function and protein expression, and BK channel-mediated vasodilation in freshly isolated coronary arterioles from T2D patients. Atrial tissues were obtained from 25 patients with T2D and 16 matched non-diabetic subjects during cardiopulmonary bypass procedure. Microvessel videomicroscopy and immunoblot analysis were performed in freshly dissected coronary arterioles and inside-out single BK channel currents was recorded in enzymatically isolated coronary arteriolar SMCs. We found that BK channel sensitivity to physiological Ca2+ concentration and voltage was downregulated in the coronary arteriolar SMCs of diabetic patients, compared with non-diabetic controls. BK channel kinetics analysis revealed that there was significant shortening of the mean open time and prolongation of the mean closed time in diabetic patients, resulting in a remarkable reduction of the channel open probability. Functional studies showed that BK channel activation by dehydrosoyasaponin-1 was diminished and that BK channel-mediated vasodilation in response to shear stress was impaired in diabetic coronary arterioles. Immunoblot experiments confirmed that the protein expressions of BK-α and BK-β1 subunits were significantly downregulated, but the ratio of BK-α/BK-β1 was unchanged in the coronary arterioles of T2D patients. Our results demonstrated for the first time that BK channel function and BK channel-mediated vasodilation were

  14. Alcohol modulation of BK channel gating depends on β subunit composition

    PubMed Central

    Kuntamallappanavar, Guruprasad

    2016-01-01

    In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1–β4) subunits. When Ca2+i (3–20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations—all determinants of the BK response to ethanol—made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel (“cbv1” from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation–inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca2+i. Second, applying Horrigan–Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel’s apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd

  15. Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.

    PubMed

    Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H

    2009-07-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via

  16. Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes

    PubMed Central

    Deitcher, David L.; Bass, Andrew H.

    2009-01-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via

  17. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock

    PubMed Central

    McNally, Beth A.

    2018-01-01

    Large conductance K+ (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca2+ (Ca2+i). To enable this regulation, BK channels functionally couple to both voltage-gated Ca2+ channels (VGCCs) and channels mediating Ca2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)—the brain’s circadian clock—BK current, VGCC current, and Ca2+i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca2+i are reduced. Here, to determine whether diurnal regulation of Ca2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca2+ channels (LTCCs) are the primary daytime Ca2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)–mediated Ca2+i release. The N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. PMID:29237755

  18. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    PubMed

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  19. Effect of aldosterone on BK channel expression in mammalian cortical collecting duct

    PubMed Central

    Estilo, Genevieve; Liu, Wen; Pastor-Soler, Nuria; Mitchell, Phillip; Carattino, Marcelo D.; Kleyman, Thomas R.; Satlin, Lisa M.

    2008-01-01

    Apical large-conductance Ca2+-activated K+ (BK) channels in the cortical collecting duct (CCD) mediate flow-stimulated K+ secretion. Dietary K+ loading for 10–14 days leads to an increase in BK channel mRNA abundance, enhanced flow-stimulated K+ secretion in microperfused CCDs, and a redistribution of immunodetectable channels from an intracellular pool to the apical membrane (Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM. Am J Physiol Renal Physiol 289: F922–F932, 2005). To test whether this adaptation was mediated by a K+-induced increase in aldosterone, New Zealand White rabbits were fed a low-Na+ (LS) or high-Na+ (HS) diet for 7–10 days to alter circulating levels of aldosterone but not serum K+ concentration. Single CCDs were isolated for quantitation of BK channel subunit (total, α-splice variants, β-isoforms) mRNA abundance by real-time PCR and measurement of net transepithelial Na+ (JNa) and K+ (JK) transport by microperfusion; kidneys were processed for immunolocalization of BK α-subunit by immunofluorescence microscopy. At the time of death, LS rabbits excreted no urinary Na+ and had higher circulating levels of aldosterone than HS animals. The relative abundance of BK α-, β2-, and β4-subunit mRNA and localization of immunodetectable α-subunit were similar in CCDs from LS and HS animals. In response to an increase in tubular flow rate from ∼1 to 5 nl·min−1·mm−1, the increase in JNa was greater in LS vs. HS rabbits, yet the flow-stimulated increase in JK was similar in both groups. These data suggest that aldosterone does not contribute to the regulation of BK channel expression/activity in response to dietary K+ loading. PMID:18579708

  20. Inhibitory action of ICI-182,780, an estrogen receptor antagonist, on BK(Ca) channel activity in cultured endothelial cells of human coronary artery.

    PubMed

    Liu, Yen-Chin; Lo, Yi-Ching; Huang, Chin-Wei; Wu, Sheng-Nan

    2003-11-15

    ICI-182,780 is known to be a selective inhibitor of the intracellular estrogen receptors. The effect of ICI-182,780 on ion currents was studied in cultured endothelial cells of human coronary artery. In whole-cell current recordings, ICI-182,780 reversibly decreased the amplitude of K(+) outward currents. The decrease in outward current caused by ICI-182,780 could be counteracted by further application of magnolol or nordihydroguaiaretic acid, yet not by 17beta-estradiol. Under current-clamp condition, ICI-182,780 (3microM) depolarized the membrane potentials of the cells, and magnolol (10 microM) or nordihydroguaiaretic acid (10 microM) reversed ICI-182,780-induced depolarization. In inside-out patches, ICI-182,780 added to the bath did not alter single-channel conductance of large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels), but decreased their open probability. ICI-182,780 reduced channel activity in a concentration-dependent manner with an IC(50) value of 3 microM. After BK(Ca) channel activity was suppressed by 2-methoxyestradiol (3 microM), subsequent application of ICI-182,780 (3 microM) did not further reduce the channel activity. The application of ICI-182,780 shifted the activation curve of BK(Ca) channels to positive potentials. Its decrease in the open probability primarily involved a reduction in channel open duration. ICI-182,780 also suppressed the proliferation of these endothelial cells with an IC(50) value of 2 microM. However, in coronary smooth muscle cells, a bell-shaped concentration-response curve for the ICI-182,780 effect on BK(Ca) channel activity was observed. This study provides evidence that ICI-182,780 can inhibit BK(Ca) channels in vascular endothelial cells in a mechanism unlikely to be linked to its anti-estrogen activity. The inhibitory effects on these channels may partly contribute to the underlying mechanisms by which ICI-182,780 affects endothelial function.

  1. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra

  2. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    PubMed

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  3. Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels

    PubMed Central

    Zuidema, Mozow Y.; Yang, Yan; Wang, Meifang; Kalogeris, Theodore; Liu, Yajun; Meininger, Cynthia J.; Hill, Michael A.; Davis, Michael J.

    2010-01-01

    The objectives of this study were to determine the role of calcium-activated, small (SK), intermediate (IK), and large (BK) conductance potassium channels in initiating the development of an anti-inflammatory phenotype elicited by preconditioning with an exogenous hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS). Intravital microscopy was used to visualize rolling and firmly adherent leukocytes in vessels of the small intestine of mice preconditioned with NaHS (in the absence and presence of SK, IK, and BK channel inhibitors, apamin, TRAM-34, and paxilline, respectively) or SK/IK (NS-309) or BK channel activators (NS-1619) 24 h before ischemia-reperfusion (I/R). I/R induced marked increases in leukocyte rolling and adhesion, effects that were largely abolished by preconditioning with NaHS, NS-309, or NS-1619. The postischemic anti-inflammatory effects of NaHS-induced preconditioning were mitigated by BKB channel inhibitor treatment coincident with NaHS, but not by apamin or TRAM-34, 24 h before I/R. Confocal imaging and immunohistochemistry were used to demonstrate the presence of BKα subunit staining in both endothelial and vascular smooth muscle cells of isolated, pressurized mesenteric venules. Using patch-clamp techniques, we found that BK channels in cultured endothelial cells were activated after exposure to NaHS. Bath application of the same concentration of NaHS used in preconditioning protocols led to a rapid increase in a whole cell K+ current; specifically, the component of K+ current blocked by the selective BK channel antagonist iberiotoxin. The activation of BK current by NaHS could also be demonstrated in single channel recording mode where it was independent of a change in intracellular Ca+ concentration. Our data are consistent with the concept that H2S induces the development of an anti-adhesive state in I/R in part mediated by a BK channel-dependent mechanism. PMID:20833953

  4. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.

    PubMed

    Zhang, Guohui; Geng, Yanyan; Jin, Yakang; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L; Salkoff, Lawrence; Cui, Jianmin

    2017-03-06

    Large conductance Ca 2+ -activated K + channels (BK channels) gate open in response to both membrane voltage and intracellular Ca 2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca 2+ sensor. How these voltage and Ca 2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca 2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca 2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel's β1 and β2 subunits. © 2017 Zhang et al.

  5. Cysteine residue 911 in C-terminal tail of human BK(Ca)α channel subunit is crucial for its activation by carbon monoxide.

    PubMed

    Telezhkin, Vsevolod; Brazier, Stephen P; Mears, Ruth; Müller, Carsten T; Riccardi, Daniela; Kemp, Paul J

    2011-06-01

    The large conductance, voltage- and calcium-activated potassium channel, BK(Ca), is a known target for the gasotransmitter, carbon monoxide (CO). Activation of BK(Ca) by CO modulates cellular excitability and contributes to the physiology of a diverse array of processes, including vascular tone and oxygen-sensing. Currently, there is no consensus regarding the molecular mechanisms underpinning reception of CO by the BK(Ca). Here, employing voltage-clamped, inside-out patches from HEK293 cells expressing single, double and triple cysteine mutations in the BK(Ca) α-subunit, we test the hypothesis that CO regulation is conferred upon the channel by interactions with cysteine residues within the RCK2 domain. In physiological [Ca(2+)](i), all mutants carrying a cysteine substitution at position 911 (C911G) demonstrated significantly reduced CO sensitivity; the C911G mutant did not express altered Ca(2+)-sensitivity. In contrast, histidine residues in RCK1 domain, previously shown to ablate CO activation in low [Ca(2+)](i), actually increased CO sensitivity when [Ca(2+)](i) was in the physiological range. Importantly, cyanide, employed here as a substituent for CO at potential metal centres, occluded activation by CO; this effect was freely reversible. Taken together, these data suggest that a specific cysteine residue in the C-terminal domain, which is close to the Ca(2+) bowl but which is not involved in Ca(2+) activation, confers significant CO sensitivity to BK(Ca) channels. The rapid reversibility of CO and cyanide binding, coupled to information garnered from other CO-binding proteins, suggests that C911 may be involved in formation of a transition metal cluster which can bind and, thereafter, activate BK(Ca).

  6. A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel α Subunit Alters Human Chondrocyte Function.

    PubMed

    Suzuki, Yoshiaki; Ohya, Susumu; Yamamura, Hisao; Giles, Wayne R; Imaizumi, Yuji

    2016-11-11

    Large conductance Ca 2+ -activated K + (BK) channels play essential roles in both excitable and non-excitable cells. For example, in chondrocytes, agonist-induced Ca 2+ release from intracellular store activates BK channels, and this hyperpolarizes these cells, augments Ca 2+ entry, and forms a positive feed-back mechanism for Ca 2+ signaling and stimulation-secretion coupling. In the present study, functional roles of a newly identified splice variant in the BK channel α subunit (BKαΔe2) were examined in a human chondrocyte cell line, OUMS-27, and in a HEK293 expression system. Although BKαΔe2 lacks exon2, which codes the intracellular S0-S1 linker (Glu-127-Leu-180), significant expression was detected in several tissues from humans and mice. Molecular image analyses revealed that BKαΔe2 channels are not expressed on plasma membrane but can traffic to the plasma membrane after forming hetero-tetramer units with wild-type BKα (BKαWT). Single-channel current analyses demonstrated that BKα hetero-tetramers containing one, two, or three BKαΔe2 subunits are functional. These hetero-tetramers have a smaller single channel conductance and exhibit lower trafficking efficiency than BKαWT homo-tetramers in a stoichiometry-dependent manner. Site-directed mutagenesis of residues in exon2 identified Helix2 and the linker to S1 (Trp-158-Leu-180, particularly Arg-178) as an essential segment for channel function including voltage dependence and trafficking. BKαΔe2 knockdown in OUMS-27 chondrocytes increased BK current density and augmented the responsiveness to histamine assayed as cyclooxygenase-2 gene expression. These findings provide significant new evidence that BKαΔe2 can modulate cellular responses to physiological stimuli in human chondrocyte and contribute under pathophysiological conditions, such as osteoarthritis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels

    PubMed Central

    Zhang, Guohui; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L.; Salkoff, Lawrence

    2017-01-01

    Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+. The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA. http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel’s β1 and β2 subunits. PMID:28196879

  8. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  9. Structural Determinants for Functional Coupling Between the β and α Subunits in the Ca2+-activated K+ (BK) Channel

    PubMed Central

    Orio, Patricio; Torres, Yolima; Rojas, Patricio; Carvacho, Ingrid; Garcia, Maria L.; Toro, Ligia; Valverde, Miguel A.; Latorre, Ramon

    2006-01-01

    High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (β) subunits. The most remarkable effects of β1 and β2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detailed characteristics of channels formed by α and β1 or β2 are dissimilar, the most remarkable difference being a reduction of the voltage sensitivity in the presence of β1 but not β2. Here we reveal the molecular regions in these β subunits that determine their differential functional coupling with the pore-forming α-subunit. We made chimeric constructs between β1 and β2 subunits, and BK channels formed by α and chimeric β subunits were expressed in Xenopus laevis oocytes. The electrophysiological characteristics of the resulting channels were determined using the patch clamp technique. Chimeric exchange of the different regions of the β1 and β2 subunits demonstrates that the NH3 and COOH termini are the most relevant regions in defining the behavior of either subunit. This strongly suggests that the intracellular domains are crucial for the fine tuning of the effects of these β subunits. Moreover, the intracellular domains of β1 are responsible for the reduction of the BK channel voltage dependence. This agrees with previous studies that suggested the intracellular regions of the α-subunit to be the target of the modulation by the β1-subunit. PMID:16446507

  10. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel

    PubMed Central

    Zhu, Yaohui; Huizinga, Jan D

    2008-01-01

    Abstract Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from −80 to + 40 mV evoked 357 ± 159 pA current in the nystatin perforated patch configuration and 1075 ± 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at −25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. PMID:18194464

  11. The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells

    PubMed Central

    Shao, Li-Rong; Halvorsrud, Ragnhild; Borg-Graham, Lyle; Storm, Johan F

    1999-01-01

    The role of large-conductance Ca2+-dependent K+ channels (BK-channels; also known as maxi-K- or slo-channels) in spike broadening during repetitive firing was studied in CA1 pyramidal cells, using sharp electrode intracellular recordings in rat hippocampal slices, and computer modelling. Trains of action potentials elicited by depolarizing current pulses showed a progressive, frequency-dependent spike broadening, reflecting a reduced rate of repolarization. During a 50 ms long 5 spike train, the spike duration increased by 63·6 ± 3·4% from the 1st to the 3rd spike. The amplitude of the fast after-hyperpolarization (fAHP) also rapidly declined during each train. Suppression of BK-channel activity with (a) the selective BK-channel blocker iberiotoxin (IbTX, 60 nM), (b) the non-peptidergic BK-channel blocker paxilline (2–10 μM), or (c) calcium-free medium, broadened the 1st spike to a similar degree (≈60%). BK-channel suppression also caused a similar change in spike waveform as observed during repetitive firing, and eliminated (occluded) most of the spike broadening during repetitive firing. Computer simulations using a reduced compartmental model with transient BK-channel current and 10 other active ionic currents, produced an activity-dependent spike broadening that was strongly reduced when the BK-channel inactivation mechanism was removed. These results, which are supported by recent voltage-clamp data, strongly suggest that in CA1 pyramidal cells, fast inactivation of a transient BK-channel current (ICT), substantially contributes to frequency-dependent spike broadening during repetitive firing. PMID:10562340

  12. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    PubMed

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  13. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels

    PubMed Central

    Malysz, John; Afeli, Serge A. Y.; Provence, Aaron

    2013-01-01

    Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429

  14. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  15. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  16. Reactive Oxygen Species Signaling Facilitates FOXO-3a/FBXO-Dependent Vascular BK Channel β1 Subunit Degradation in Diabetic Mice

    PubMed Central

    Lu, Tong; Chai, Qiang; Yu, Ling; d’Uscio, Livius V.; Katusic, Zvonimir S.; He, Tongrong; Lee, Hon-Chi

    2012-01-01

    Activity of the vascular large conductance Ca2+-activated K+ (BK) channel is tightly regulated by its accessory β1 subunit (BK-β1). Downregulation of BK-β1 expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)–dependent F-box–only protein (FBXO) expression. However, the upstream signaling regulating this process is unclear. Overproduction of reactive oxygen species (ROS) is a common finding in diabetic vasculopathy. We hypothesized that ROS signaling cascade facilitates the FOXO-3a/FBXO-mediated BK-β1 degradation and leads to diabetic BK channel dysfunction. Using cellular biology, patch clamp, and videomicroscopy techniques, we found that reduced BK-β1 expression in streptozotocin (STZ)-induced diabetic mouse arteries and in human coronary smooth muscle cells (SMCs) cultured with high glucose was attributable to an increase in protein kinase C (PKC)-β and NADPH oxidase expressions and accompanied by attenuation of Akt phosphorylation and augmentation of atrogin-1 expression. Treatment with ruboxistaurin (a PKCβ inhibitor) or with GW501516 (a peroxisome proliferator–activated receptor δ activator) reduced atrogin-1 expression and restored BK channel-mediated coronary vasodilation in diabetic mice. Our results suggested that oxidative stress inhibited Akt signaling and facilitated the FOXO-3a/FBXO-dependent BK-β1 degradation in diabetic vessels. Suppression of the FOXO-3a/FBXO pathway prevented vascular BK-β1 degradation and protected coronary function in diabetes. PMID:22586590

  17. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney.

    PubMed

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B; Tian, Jin-Bin; Zhu, Michael X; O'Neil, Roger G

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which

  18. BK channels are required for multisensory plasticity in the oculomotor system

    PubMed Central

    Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-01

    SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457

  19. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity

    PubMed Central

    Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming

    2014-01-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913

  20. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel.

    PubMed

    Kshatri, Aravind S; Gonzalez-Hernandez, Alberto J; Giraldez, Teresa

    2018-04-01

    BK channels are dually regulated by voltage and Ca 2+ , providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca 2+ concentration is sensed by a large cytoplasmic region in the channel known as "gating ring", which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca 2+ coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca 2+ . Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca 2+ in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca 2+ sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca 2+ coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca 2+ binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca 2+ binding sites regulating the Ca 2+ dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    PubMed Central

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  2. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pan; High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031; Li, Dong

    2013-08-02

    Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. Themore » intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.« less

  3. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    PubMed

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.

    PubMed

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R; Trimmer, James S; Rasband, Matthew N; Misonou, Hiroaki

    2015-05-06

    In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/357082-13$15.00/0.

  5. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder.

    PubMed

    Isogai, Ayu; Lee, Ken; Mitsui, Retsu; Hashitani, Hikaru

    2016-09-01

    We investigated the role of TRPV4 channels (TRPV4) in regulating the contractility of detrusor smooth muscle (DSM) and muscularis mucosae (MM) of the urinary bladder. Distribution of TRPV4 in DSM and MM of guinea-pig bladders was examined by fluorescence immunohistochemistry. Changes in the contractility of DSM and MM bundles were measured using isometric tension recording. Intracellular Ca(2+) dynamics were visualized by Cal-520 fluorescent Ca(2+) imaging, while membrane potential changes were recorded using intracellular microelectrode technique. DSM and MM expressed TRPV4 immunoreactivity. GSK1016790A (GSK, 1 nM), a TRPV4 agonist, evoked a sustained contraction in both DSM and MM associated with a cessation of spontaneous phasic contractions in a manner sensitive to HC-067047 (10 μM), a TRPV4 antagonist. Iberiotoxin (100 nM) and paxilline (1 μM), large conductance Ca(2+)-activated K(+) (BK) channel blockers restored the spontaneous contractions in GSK. The sustained contractions in DSM and MM were reduced by nifedipine (10 μM), a blocker of L-type voltage-dependent Ca(2+) channels (LVDCCs) by about 40 % and by nominally Ca(2+)-free solution by some 90 %. GSK (1 nM) abolished spontaneous Ca(2+) transients, increased basal Ca(2+) levels and also prevented spontaneous action potential discharge associated with DSM membrane hyperpolarization. In conclusion, Ca(2+) influx through TRPV4 appears to activate BK channels to suppress spontaneous contractions and thus a functional coupling of TRPV4 with BK channels may act as a self-limiting mechanism for bladder contractility during its storage phase. Despite the membrane hyperpolarization in GSK, Ca(2+) entry mainly through TRPV4 develops the tonic contraction.

  6. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission

    PubMed Central

    Fernandes, Vítor S.; Xin, Wenkuan

    2015-01-01

    Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca2+-activated K+ (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca2+ imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na+ channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca2+ channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca2+ transients and basal Ca2+ levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels. PMID:25948731

  7. BK Channels Are Required for Multisensory Plasticity in the Oculomotor System.

    PubMed

    Nelson, Alexandra B; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-04

    Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

    PubMed

    Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei

    2013-03-19

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

  9. The Role of Ca2+ and BK Channels of Locus Coeruleus (LC) Neurons as a Brake to the CO2 Chemosensitivity Response of Rats.

    PubMed

    Imber, Ann N; Patrone, Luis G A; Li, Ke-Yong; Gargaglioni, Luciane H; Putnam, Robert W

    2018-06-15

    The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K + channels or activation of Na + and Ca +2 channels to depolarize CO 2 -sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. Hypercapnic acidosis activates L-type Ca 2+ channels and large conductance Ca-activated K + (BK) channels, which function as a "brake" on the chemosensitive response of LC neurons. Our findings indicate that both Ca 2+ and BK currents develop over the first 2 weeks of postnatal life in rat LC slices and that this brake pathway may cause the developmental decrease in the chemosensitive firing rate response of LC neurons to hypercapnic acidosis. Inhibition of this brake by paxilline (BK channel inhibitor) returns the magnitude of the chemosensitive firing rate response from LC neurons in rats older than P10 to high values similar to those in LC neurons from younger rats. Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Location of the β4 transmembrane helices in the BK potassium channel

    PubMed Central

    Wu, Roland S.; Chudasama, Neelesh; Zakharov, Sergey I.; Doshi, Darshan; Motoike, Howard; Liu, Guoxia; Yao, Yongneng; Niu, Xiaowei; Deng, Shi-Xian; Landry, Donald W.; Karlin, Arthur; Marx, Steven O.

    2009-01-01

    Large-conductance, voltage- and Ca2+-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of α subunits, which contain the voltage-sensor domains and the Ca2+- sensor domains, and form the pore, and often one of four types of β subunits, which modulate the channel in a cell-specific manner. β4 is expressed in neurons throughout the brain. Deletion of β4 in mice causes temporal lobe epilepsy. Compared to channels composed of α alone, channels composed of α and β4 activate and deactivate more slowly. We inferred the locations of the two β4 transmembrane (TM) helices, TM1 and TM2, relative to the seven αTM helices, S0-S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that β4 TM2 is close to α S0 and that β4 TM1 is close to both α S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3 through S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V50 and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states. PMID:19571123

  11. Big-conductance Ca2+-activated K+ channels in physiological and pathophysiological urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao

    2016-01-01

    ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440

  12. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  13. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John

    2013-01-01

    Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333

  14. BK Channel-Mediated Relaxation of Urinary Bladder Smooth Muscle: A Novel Paradigm for Phosphodiesterase Type 4 Regulation of Bladder Function

    PubMed Central

    Xin, Wenkuan; Li, Ning; Cheng, Qiuping

    2014-01-01

    Elevation of intracellular cAMP and activation of protein kinase A (PKA) lead to activation of large conductance voltage- and Ca2+-activated K+ (BK) channels, thus attenuation of detrusor smooth muscle (DSM) contractility. In this study, we investigated the mechanism by which pharmacological inhibition of cAMP-specific phosphodiesterase 4 (PDE4) with rolipram or Ro-20-1724 (C15H22N2O3) suppresses guinea pig DSM excitability and contractility. We used high-speed line-scanning confocal microscopy, ratiometric fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp techniques on freshly isolated DSM cells, along with isometric tension recordings of DSM isolated strips. Rolipram caused an increase in the frequency of Ca2+ sparks and the spontaneous transient BK currents (TBKCs), hyperpolarized the cell membrane potential (MP), and decreased the intracellular Ca2+ levels. Blocking BK channels with paxilline reversed the hyperpolarizing effect of rolipram and depolarized the MP back to the control levels. In the presence of H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride], a PKA inhibitor, rolipram did not cause MP hyperpolarization. Rolipram or Ro-20-1724 reduced DSM spontaneous and carbachol-induced phasic contraction amplitude, muscle force, duration, and frequency, and electrical field stimulation-induced contraction amplitude, muscle force, and tone. Paxilline recovered DSM contractility, which was suppressed by pretreatment with PDE4 inhibitors. Rolipram had reduced inhibitory effects on DSM contractility in DSM strips pretreated with paxilline. This study revealed a novel cellular mechanism whereby pharmacological inhibition of PDE4 leads to suppression of guinea pig DSM contractility by increasing the frequency of Ca2+ sparks and the functionally coupled TBKCs, consequently hyperpolarizing DSM cell MP. Collectively, this decreases the global intracellular Ca2+ levels and DSM contractility in a BK channel

  15. DiBAC4(3) hits a “sweet spot” for the activation of arterial large-conductance Ca2+-activated potassium channels independently of the β1-subunit

    PubMed Central

    Scornik, Fabiana S.; Bucciero, Ronald S.; Wu, Yuesheng; Selga, Elisabet; Bosch Calero, Cristina; Brugada, Ramon

    2013-01-01

    The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] has been reported as a novel large-conductance Ca2+-activated K+ (BK) channel activator with selectivity for its β1- or β4-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β1-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β1-subunit, we explored the effects of DiBAC4(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC4(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β1-knockout mice in excised patches. BK channels from brain arteries, with or without the β1-subunit, were similarly activated by DiBAC4(3). In addition, we found that saturating concentrations of DiBAC4(3) (∼30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as −300 mV. This “sweet spot” for persistent activation is independent of Ca2+ and/or the β1–4-subunits and is fully achieved when DiBAC4(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC4(3) varies across species and/or vascular beds. DiBAC4(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators. PMID:23542916

  16. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  17. Broadening roles for FMRP: big news for big potassium (BK) channels.

    PubMed

    Contractor, Anis

    2013-02-20

    FMRP is an RNA-binding protein that negatively regulates translation and which is lost in fragile X syndrome. In this issue of Neuron, Deng et al. (2013) demonstrate a novel translation-independent function for FMRP as a regulator of presynaptic BK channels that modulate the dynamics of neurotransmitter release. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.

    PubMed

    Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L

    2017-10-01

    Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.

  19. Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume

    PubMed Central

    Niu, Xiaowei

    2011-01-01

    Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger. PMID:21576375

  20. Inhibition of Large-Conductance Ca2+-Activated K+ Channels by Nanomolar Concentrations of Ag+S⃞

    PubMed Central

    Xia, Xiaoming; Lingle, Christopher J.

    2010-01-01

    Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag+ at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca2+-activated K+ channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag+ inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolate-active reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag+ sensitivity, in which the Ag+ modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag+ in humans and other species. PMID:20729303

  1. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  2. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  3. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK) Channel Antagonist Mycotoxin Penitrem A

    PubMed Central

    Goda, Amira A.; Naguib, Khayria M.; Mohamed, Magdy M.; Amra, Hassan A.; Nada, Somaia A.; Abdel-Ghaffar, Abdel-Rahman B.; Gissendanner, Chris R.; El Sayed, Khalid A.

    2016-01-01

    Penitrem A (PA) is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K) channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST) is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs), inducing neuroprotective effects. Docosahexaenoic acid (DHA) is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU), aspartate (ASP), and gamma amino butyric acid (GABA), with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA), serotonin (5-HT), and norepinephrine (NE) levels were abnormal, Nitric Oxide (NO) and Malondialdehyde (MDA) levels were significantly increased, and total antioxidant capacity (TAC) level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  4. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    PubMed

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists

    PubMed Central

    Kyle, Barry D.; Bradley, Eamonn; Large, Roddy; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.

    2013-01-01

    We used the perforated patch-clamp technique at 37°C to investigate the mechanisms underlying the activation of a transient large-conductance K+ (tBK) current in rabbit urethral smooth muscle cells. The tBK current required an elevation of intracellular Ca2+, resulting from ryanodine receptor (RyR) activation via Ca2+-induced Ca2+ release, triggered by Ca2+ influx through L-type Ca2+ (CaV) channels. Carbachol inhibited tBK current by reducing Ca2+ influx and Ca2+ release and altered the shape of spike complexes recorded under current-clamp conditions. The tBK currents were blocked by iberiotoxin and penitrem A (300 and 100 nM, respectively) and were also inhibited when external Ca2+ was removed or the CaV channel inhibitors nifedipine (10 μM) and Cd2+ (100 μM) were applied. The tBK current was inhibited by caffeine (10 mM), ryanodine (30 μM), and tetracaine (100 μM), suggesting that RyR-mediated Ca2+ release contributed to the activation of the tBK current. When IP3 receptors (IP3Rs) were blocked with 2-aminoethoxydiphenyl borate (2-APB, 100 μM), the amplitude of the tBK current was not reduced. However, when Ca2+ release via IP3Rs was evoked with phenylephrine (1 μM) or carbachol (1 μM), the tBK current was inhibited. The effect of carbachol was abolished when IP3Rs were blocked with 2-APB or by inhibition of muscarinic receptors with the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 μM). Under current-clamp conditions, bursts of action potentials could be evoked with depolarizing current injection. Carbachol reduced the number and amplitude of spikes in each burst, and these effects were reduced in the presence of 2-APB. In the presence of ryanodine, the number and amplitude of spikes were also reduced, and carbachol was without further effect. These data suggest that IP3-generating agonists can modulate the electrical activity of rabbit urethral smooth muscle cells and may contribute to the effects of neurotransmitters on

  6. R- and S-terbutaline activate large conductance and Ca2+ dependent K+ (BKCa) channel through interacting with β2 and M receptor respectively.

    PubMed

    Fan, Zhuo; Lin, Wei; Lv, Nanying; Ye, Yanrui; Tan, Wen

    2016-11-01

    This study investigated the effect of the β 2 receptor agonist terbutaline on the single channel activity of BK Ca channel. The effects of racemate and two isomers of terbutaline were all assessed. β 2 adrenoceptors were stably overexpressed on HEK293 cells by lentiviral transduction method and chicken BK Ca channels were transiently expressed on normal HEK293 cell line or HEK293 cells overexpressing β 2 receptors. Data showed that terbutaline significantly increased the single channel open probability of BK Ca channel within 10min. The channel activating effects of terbutaline are stereoselective and mainly stay with the R-enantiomers. The opening probability of BK Ca channel at 10min after drug application normalized to that just before drug application (Po10/Po0s) for R- and S-terbutaline were 7.85±3.20 and 1.06±0.45 respectively at 1μM concentration, corresponding to 28.37±9.96 and 2.68±1.09 at the higher concentration of 10μM. ICI 118551 blocked the effect of R- but not S-terbutaline (10μM), whereas atropine blocked the channel activating effects of S-terbutaline of higher concentration. In addition, the muscarinic receptor agonist carbachol increased the BK Ca channel activity in an atropine-sensitive manner as an positive control experiment, which indicate the involvement of M receptor in the channel activating effect of S-terbutaline. Copyright © 2016. Published by Elsevier B.V.

  7. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubinskiy-Nadezhdin, Vladislav I., E-mail: vchubinskiy@gmail.com; Vasileva, Valeria Y.; Pugovkina, Natalia A.

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances inmore » hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca{sup 2+} entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca{sup 2+}-sensitive BK and SK channels was shown. • Local Ca{sup 2+} influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca{sup 2+}]{sub i}. • Functional clustering of SACs and BK channels in stem cell membrane is proposed.« less

  8. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    PubMed

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  9. Ca2+ block and flickering both contribute to the negative slope of the IV curve in BK channels.

    PubMed

    Schroeder, Indra; Thiel, Gerhard; Hansen, Ulf-Peter

    2013-04-01

    Single-channel current-voltage (IV) curves of human large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels are quite linear in 150 mM KCl. In the presence of Ca(2+) and/or Mg(2+), they show a negative slope conductance at high positive potentials. This is generally explained by a Ca(2+)/Mg(2+) block as by Geng et al. (2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210955) in this issue. Here, we basically support this finding but add a refinement: the analysis of the open-channel noise by means of β distributions reveals what would be found if measurements were done with an amplifier of sufficient temporal resolution (10 MHz), namely that the block by 2.5 mM Ca(2+) and 2.5 mM Mg(2+) per se would only cause a saturating curve up to +160 mV. Further bending down requires the involvement of a second process related to flickering in the microsecond range. This flickering is hardly affected by the presence or absence of Ca(2+)/Mg(2+). In contrast to the experiments reported here, previous experiments in BK channels (Schroeder and Hansen. 2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) showed saturating IV curves already in the absence of Ca(2+)/Mg(2+). The reason for this discrepancy could not be identified so far. However, the flickering component was very similar in the old and new experiments, regardless of the occurrence of noncanonical IV curves.

  10. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata

    PubMed Central

    Benton, Mark D.; Lewis, Amanda H.; Bant, Jason S.

    2013-01-01

    Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17–21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell

  11. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications.

    PubMed

    Zhou, Yu; Xia, Xiao-Ming; Lingle, Christopher J

    2015-04-21

    To probe structure and gating-associated conformational changes in BK-type potassium (BK) channels, we examined consequences of Cd(2+) coordination with cysteines introduced at two positions in the BK inner pore. At V319C, the equivalent of valine in the conserved Kv proline-valine-proline (PVP) motif, Cd(2+) forms intrasubunit coordination with a native glutamate E321, which would place the side chains of V319C and E321 much closer together than observed in voltage-dependent K(+) (Kv) channel structures, requiring that the proline between V319C and E321 introduces a kink in the BK S6 inner helix sharper than that observed in Kv channel structures. At inner pore position A316C, Cd(2+) binds with modest state dependence, suggesting the absence of an ion permeation gate at the cytosolic side of BK channel. These results highlight fundamental structural differences between BK and Kv channels in their inner pore region, which likely underlie differences in voltage-dependent gating between these channels.

  12. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    PubMed

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  13. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels

    PubMed Central

    Hoshi, Toshinori; Wissuwa, Bianka; Tian, Yutao; Tajima, Nobuyoshi; Xu, Rong; Bauer, Michael; Heinemann, Stefan H.; Hou, Shangwei

    2013-01-01

    Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA), found abundantly in oily fish, may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems. However, the mechanisms underlying the purported health-promoting effects of DHA remain largely unclear, in part because molecular signaling pathways and effectors of DHA are only beginning to be revealed. In vascular smooth muscle cells, large-conductance Ca2+- and voltage-activated K+ (BK) channels provide a critical vasodilatory influence. We report here that DHA with an EC50 of ∼500 nM rapidly and reversibly activates BK channels composed of the pore-forming Slo1 subunit and the auxiliary subunit β1, increasing currents by up to ∼20-fold. The DHA action is observed in cell-free patches and does not require voltage-sensor activation or Ca2+ binding but involves destabilization of the closed conformation of the ion conduction gate. DHA lowers blood pressure in anesthetized wild-type but not in Slo1 knockout mice. DHA ethyl ester, contained in dietary supplements, fails to activate BK channels and antagonizes the stimulatory effect of DHA. Slo1 BK channels are thus receptors for long-chain omega-3 fatty acids, and these fatty acids—unlike their ethyl ester derivatives—activate the channels and lower blood pressure. This finding has practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for the critically ill receiving omega-3–enriched formulas. PMID:23487785

  15. Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat.

    PubMed

    Pabbidi, Mallikarjuna R; Roman, Richard J

    2017-01-01

    Previous studies suggest that middle cerebral arteries (MCAs) of Fawn Hooded Hypertensive (FHH) rats exhibit impaired myogenic response and introgression of a small region of Brown Norway chromosome 1 containing 15 genes restored the response in FHH.1 BN congenic rat. The impaired myogenic response in FHH rats is associated with an increase in the activity of the large conductance potassium (BK) channel in vascular smooth muscle cells (VSMCs). The present study examined whether the increased BK channel function in FHH rat alters vasoconstrictor response to serotonin (5-HT). Basal myogenic tone and spontaneous myogenic response of the MCA was attenuated by about twofold and about fivefold, respectively in FHH compared with FHH.1 BN rats. 5-HT (0.1 μM)-mediated vasoconstriction was about twofold lower, and inhibition of the BK channel increased the vasoconstrictor response by about threefold in FHH compared with FHH.1 BN rats. 5-HT (3 μM) decreased BK channel and spontaneous transient outward currents in VSMCs isolated from FHH.1 BN but had no effect in FHH rats. 5-HT significantly depolarized the membrane potential in MCAs of FHH.1 BN than FHH rats. Blockade of the BK channel normalized 5-HT-induced depolarization in MCAs of FHH rats. The 5-HT-mediated increase in cytosolic calcium concentration was significantly reduced in plateau phase in the VSMCs of FHH relative to FHH.1 BN rats. These findings suggest that sequence variants in the genes located in the small region of FHH rat chromosome 1 impairs 5-HT-mediated vasoconstriction by decreasing its ability to inhibit BK channel activity, depolarize the membrane and blunt the rise in cytosolic calcium concentration. Copyright © 2017 the American Physiological Society.

  16. Effects of nitric oxide on expressions of nitrosocysteine and calcium-activated potassium channels in the supraoptic nuclei and neural lobe of dehydrated rats

    PubMed Central

    Kadekaro, Massako; Su, Guangxiao; Chu, Rong; Lei, Yongzhong; Li, Junfa; Fang, Li

    2007-01-01

    Nitric oxide (NO) is an important gas mediator in the signal transduction cascade regulating osmotic function in the hypothalamo-neurohypophysial system. We previously found that increased nitric oxide synthase (NOS) activity in the supraoptic nuclei (SON) and neural lobe following osmotic stimulation and NO could regulate the expression of Ca2+-activated K+ channel (BK channels) protein in the magnocellular system during dehydration. The aim of the current study is to examine the role of NO in the regulation of nitrosocysteine and BK channel protein in the magnocellular system in dehydrated animals. Using Western blot analysis and quantitative immunofluorescent staining study, we found that water deprivation in rats significantly enhanced the expression of nitrosocysteine protein in SON and neural lobes. Immunohistochemistry study indicated that dehydration significantly increased the profiles of SON neurons co-expressing nitrosocysteine with BK-channel protein. Intracerebroventricular administration of L-NAME (an inhibitor of NO synthase) significantly reduced the neuronal profiles of nitrosocysteine, as well as their co-expression with BK-channel in SON of dehydrated rats. However, treatment of sodium nitroprusside (a donor of NO) increased this co-expression. Our results indicate that NO signaling cascade may control the expression of BK channels through the regulation of nitrosocysteine in SON and neural lobe of rats during osmotic regulation. PMID:17098363

  17. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study

    PubMed Central

    González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima

    2013-01-01

    Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851

  18. Calcium Activated K+ Channels in The Electroreceptor of the Skate Confirmed by Cloning. Details of Subunits and Splicing

    PubMed Central

    King, Benjamin L.; Shi, Ling Fang; Kao, Peter; Clusin, William T.

    2015-01-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K+ channels, first described in l974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intracellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted˜ in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. PMID:26687710

  19. Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel

    PubMed Central

    2017-01-01

    For those interested in the machinery of ion channel gating, the Ca2+ and voltage-activated BK K+ channel provides a compelling topic for investigation, by virtue of its dual allosteric regulation by both voltage and intracellular Ca2+ and because its large-single channel conductance facilitates detailed kinetic analysis. Over the years, biophysical analyses have illuminated details of the allosteric regulation of BK channels and revealed insights into the mechanism of BK gating, e.g., inner cavity size and accessibility and voltage sensor-pore coupling. Now the publication of two structures of an Aplysia californica BK channel—one liganded and one metal free—promises to reinvigorate functional studies and interpretation of biophysical results. The new structures confirm some of the previous functional inferences but also suggest new perspectives regarding cooperativity between Ca2+-binding sites and the relationship between voltage- and Ca2+-dependent gating. Here we consider the extent to which the two structures explain previous functional data on pore-domain properties, voltage-sensor motions, and divalent cation binding and activation of the channel. PMID:29025867

  20. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    PubMed

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Determination of the Stoichiometry between α- and γ1 Subunits of the BK Channel Using LRET.

    PubMed

    Carrasquel-Ursulaez, Willy; Alvarez, Osvaldo; Bezanilla, Francisco; Latorre, Ramon

    2018-06-05

    Two families of accessory proteins, β and γ, modulate BK channel gating and pharmacology. Notably, in the absence of internal Ca 2+ , the γ1 subunit promotes a large shift of the BK conductance-voltage curve to more negative potentials. However, very little is known about how α- and γ1 subunits interact. In particular, the association stoichiometry between both subunits is unknown. Here, we propose a method to answer this question using lanthanide resonance energy transfer. The method assumes that the kinetics of lanthanide resonance energy transfer-sensitized emission of the donor double-labeled α/γ1 complex is the linear combination of the kinetics of the sensitized emission in single-labeled complexes. We used a lanthanide binding tag engineered either into the α- or the γ1 subunits to bind Tb +3 as the donor. The acceptor (BODIPY) was attached to the BK pore-blocker iberiotoxin. We determined that γ1 associates with the α-subunit with a maximal 1:1 stoichiometry. This method could be applied to determine the stoichiometry of association between proteins within heteromultimeric complexes. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Fragile X mental retardation protein controls ion channel expression and activity.

    PubMed

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Relative similarity within purine nucleotide and ligand structures operating on nitric oxide synthetase, guanylyl cyclase and potassium (K ATP, BK Ca) channels.

    PubMed

    Williams, W Robert

    2011-01-01

    Purine nucleotides play a central role in signal transduction events initiated at the cell membrane. The NO-cGMP-cGK pathway, in particular, mediates events involving NOS and some classes of K(+) ion channel. The aim of this study is to investigate relative molecular similarity within the ligands binding to NOS, K(ATP), BK(Ca) channels and regulatory nucleotides. Minimum energy conformers of the ligand structures were superimposed and fitted to L-arginine and the nucleotides of adenine and guanine using a computational program. Distinctive patterns were evident in the fitting of NOS isoform antagonists to L-arginine. K(ATP) channel openers and antagonists superimposed on the glycosidic linkage and imidazole ring of the purine nucleotides, and guanidinium and ribose groups of GTP in the case of glibenclamide. The fits of BK(Ca) channel openers and antagonists to cGMP were characterized by the linear dimensions of their structures; distances between terminal oxy groups in respect of dexamethasone and aldosterone. The findings provide structural evidence for the functional interaction between K(+) channel openers/antagonists and the regulatory nucleotides. Use of the purine nucleotide template systematizes the considerable heterogeneity evident within the structures of ligands operating on K(+) ion channels. © 2010 The Author. JPP © 2010 Royal Pharmaceutical Society.

  4. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    PubMed

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  5. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of

  6. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon

    PubMed Central

    Zhang, Jin; Halm, Susan T.

    2012-01-01

    Secretagogues acting at a variety of receptor types activate electrogenic K+ secretion in guinea pig distal colon, often accompanied by Cl− secretion. Distinct blockers of KCa1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (Isc) associated with K+ secretion. Mucosal addition of IbTx inhibited epinephrine-activated Isc (epiIsc) and transepithelial conductance (epiGt) consistent with K+ secretion occurring via apical membrane KCa1.1. The concentration dependence of IbTx inhibition of epiIsc yielded an IC50 of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited epiGt with an IC50 of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited epiIsc and epiGt by ∼50%. IbTx and paxilline also inhibited Isc activated by mucosal ATP, supporting apical KCa1.1 as a requirement for this K+ secretagogue. Responses to IbTx and paxilline indicated that a component of K+ secretion occurred during activation of Cl− secretion by prostaglandin-E2 and cholinergic stimulation. Analysis of KCa1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits KCaβ1 and KCaβ4 also was demonstrated. Immunolocalization supported the presence of KCa1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K+ secretion involving apical membrane KCa1.1 during activation by several secretagogue types, but the observed K+ secretion likely required the activity of additional K+ channel types in the apical membrane. PMID:23064759

  7. Preliminary Studies of Acute Cadmium Administration Effects on the Calcium-Activated Potassium (SKCa and BKCa) Channels and Na+/K+-ATPase Activity in Isolated Aortic Rings of Rats.

    PubMed

    Vassallo, Dalton V; Almenara, Camila C P; Broseghini-Filho, Gilson Brás; Teixeira, Ariane Calazans; da Silva, David Chaves F; Angeli, Jhuli K; Padilha, Alessandra S

    2018-06-01

    Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na + /K + -ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K + channels, voltage-activated calcium channel, and Na + /K + -ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K + channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K + channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca 2+ -activated K + channels-SK Ca ), iberiotoxin (a selective blocker of large-conductance Ca 2+ -activated K + channels-BK Ca ), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na + /K + -ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SK Ca and BK Ca ) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na + /K + -ATPase activity.

  8. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    PubMed Central

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  9. Sodium cyanate-induced opening of calcium-activated potassium currents in hippocampal neuron-derived H19-7 cells.

    PubMed

    Huang, Chin-Wei; Huang, Chao-Ching; Huang, Mei-Han; Wu, Sheng-Nan; Hsieh, Yi-Jung

    2005-03-29

    We investigated the chemical toxic agent sodium cyanate (NaOCN) on the large conductance calcium-activated potassium channels (BK(Ca)) on hippocampal neuron-derived H19-7 cells. The whole-cell and cell-attach configuration of patch-clamp technique were applied to investigate the BK(Ca) currents in H19-7 cells in the presence of NaOCN (0.3 mM). NaOCN activated BK(Ca) channels on H19-7 cells. The single-channel conductance of BK(Ca) channels was 138+/-7pS. The presence of NaOCN (0.3 mM) caused an obvious increase in open probability of BK(Ca) channels. NaOCN did not exert effect on the slope of the activation curve and stimulated the activity of BK(Ca) channels in a voltage-dependent fashion in H19-7 cells. The presence of paxilline or EGTA significantly reduced the BK(Ca) amplitude, in comparison with the presence of NaOCN. These findings suggest that during NaOCN exposure, the activation of BK(Ca) channels in neurons could be one of the ionic mechanisms underlying the decreased neuronal excitability and neurological disorders.

  10. Orientations and Proximities of the Extracellular Ends of Transmembrane Helices S0 and S4 in Open and Closed BK Potassium Channels

    PubMed Central

    Wu, Roland S.; Chudasama, Neelesh; Zakharov, Sergey I.; Karlin, Arthur; Marx, Steven O.

    2013-01-01

    The large-conductance potassium channel (BK) α subunit contains a transmembrane (TM) helix S0 preceding the canonical TM helices S1 through S6. S0 lies between S4 and the TM2 helix of the regulatory β1 subunit. Pairs of Cys were substituted in the first helical turns in the membrane of BK α S0 and S4 and in β1 TM2. One such pair, W22C in S0 and W203C in S4, was 95% crosslinked endogenously. Under voltage-clamp conditions in outside-out patches, this crosslink was reduced by DTT and reoxidized by a membrane-impermeant bis-quaternary ammonium derivative of diamide. The rate constants for this reoxidation were not significantly different in the open and closed states of the channel. Thus, these two residues are approximately equally close in the two states. In addition, 90% crosslinking of a second pair, R20C in S0 and W203C in S4, had no effect on the V50 for opening. Taken together, these findings indicate that separation between residues at the extracellular ends of S0 and S4 is not required for voltage-sensor activation. On the contrary, even though W22C and W203C were equally likely to form a disulfide in the activated and deactivated states, relative immobilization by crosslinking of these two residues favored the activated state. Furthermore, the efficiency of recrosslinking of W22C and W203C on the cell surface was greater in the presence of the β1 subunit than in its absence, consistent with β1 acting through S0 to stabilize its immobilization relative to α S4. PMID:23472181

  11. Differential efficacy of GoSlo-SR compounds on BKα and BKαγ1–4 channels

    PubMed Central

    Kshatri, Aravind S.; Li, Qin; Yan, Jiusheng; Large, Roddy J.; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.; Hollywood, Mark A.

    2017-01-01

    ABSTRACT Large conductance, voltage and Ca2+ activated K+ channels (BK channels) are abundantly expressed throughout the body and are important regulators of smooth muscle tone and neuronal excitability. Their dysfunction is implicated in various diseases including overactive bladder, hypertension and erectile dysfunction. Therefore, BK channel openers bear significant therapeutic potential to treat the above diseases. GoSlo-SR compounds were designed to be potent and efficacious BK channel openers. Although their structural activity relationships, activation in both BKα and BKαβ channels and the hypothetical mode of action of these compounds has been studied in detail in recent years, their effectiveness to open the BKαγ channels still remains unexplored. In this study, we have examined the efficacy of 3 closely related GoSlo-SR openers, GoSlo-SR-5-6 (SR-5-6), GoSlo-SR-5-44 (SR-5-44) and GoSlo-SR-5-130 (SR-5-130) using inside out patches on BKα channels coexpressed with 4 different LRRC (γ1–4) subunits in HEK293 cells. Our data suggests that the activation effects due to SR-5-6 were not significantly affected in the presence of γ1–4 subunits. Interestingly, the effects of more efficacious BK channel opener SR-5-44 were altered by different γ subunits. In cells expressing BKα channels, the shift in V1/2 (ΔV1/2) induced by SR-5-44 (3 μM) was −76 ± 3 mV, whereas it was significantly reduced by ∼70 % in BKαγ1 channels (ΔV1/2= −23 ± 3, p < 0.001, ANOVA). In BKαγ2 channels the ΔV1/2 was −36 ± 1 mV, which was less than that observed in BKαγ3 and BKαγ4 channels where the ΔV1/2 was −47 ± 5 mV, and −82 ± 5 mV, respectively. Additionally, the excitatory effects of a ‘β specific’ BK channel opener, SR-5-130 were only partially restored in the patches containing BKαγ1–4 channels. Together this data highlights that subtle modifications in GoSlo-SR structures alter their effectiveness on BK channels with accessory

  12. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection

    PubMed Central

    Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H

    2016-01-01

    Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research. PMID:27683628

  13. Low Na, High K Diet and the Role of Aldosterone in BK-Mediated K Excretion

    PubMed Central

    Cornelius, Ryan J.; Wen, Donghai; Li, Huaqing; Yuan, Yang; Wang-France, Jun; Warner, Paige C.; Sansom, Steven C.

    2015-01-01

    A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/β4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-β4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-β4 knockout (β4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of β4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in β4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/β4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease. PMID:25607984

  14. Direct activation of Ca2+ and voltage-gated potassium channels of large conductance by anandamide in endothelial cells does not support the presence of endothelial atypical cannabinoid receptor.

    PubMed

    Bondarenko, Alexander I; Panasiuk, Olga; Okhai, Iryna; Montecucco, Fabrizio; Brandt, Karim J; Mach, Francois

    2017-06-15

    Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca 2+ -dependent K + channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca 2+ -free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn 2+ , an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BK Ca channel activity in a concentration-dependent manner within a physiological Ca 2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca 2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BK Ca channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BK Ca opener. The action does not require cell integrity or integrins and is caused by direct modification of BK Ca channel activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  16. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron

    PubMed Central

    Cornelius, Ryan J.; Wen, Donghai; Hatcher, Lori I.

    2012-01-01

    Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH4Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia. PMID:22993067

  17. Correlation of BK Virus Neutralizing Serostatus With the Incidence of BK Viremia in Kidney Transplant Recipients.

    PubMed

    Abend, Johanna R; Changala, Marguerite; Sathe, Atul; Casey, Fergal; Kistler, Amy; Chandran, Sindhu; Howard, Abigail; Wojciechowski, David

    2017-06-01

    BK virus (BKV)-associated nephropathy is the second leading cause of graft loss in kidney transplant recipients. Due to the high prevalence of persistent infection with BKV in the general population, it is possible that either the transplant recipient or donor may act as the source of virus resulting in viruria and viremia. Although several studies suggest a correlation between donor-recipient serostatus and the development of BK viremia, specific risk factors for BKV-related complications in the transplant setting remain to be established. We retrospectively determined the pretransplant BKV neutralizing serostatus of 116 donors (D)-recipient (R) pairs using infectious BKV neutralization assays with representatives from the 4 major viral serotypes. The neutralizing serostatus of donors and recipients was then correlated with the incidence of BK viremia during the first year posttransplantation. There were no significant differences in baseline demographics or transplant data among the 4 neutralizing serostatus groups, with the exception of calculated panel-reactive antibody which was lowest in the D+/R- group. Recipients of kidneys from donors with significant serum neutralizing activity (D+) had elevated risk for BK viremia, regardless of recipient serostatus (D+ versus D-: odd ratio, 5.0; 95% confidence interval, 1.9-12.7]; P = 0.0008). Furthermore, donor-recipient pairs with D+/R- neutralizing serostatus had the greatest risk for BK viremia (odds ratio, 4.9; 95% confidence interval, 1.7-14.6; P = 0.004). Donor neutralizing serostatus correlates significantly with incidence of posttransplant BK viremia. Determination of donor-recipient neutralizing serostatus may be useful in assessing the risk of BKV infection in kidney transplant recipients.

  18. Down-regulation of CaV1.2 channels during hypertension: how fewer CaV1.2 channels allow more Ca2+ into hypertensive arterial smooth muscle

    PubMed Central

    Tajada, Sendoa; Cidad, Pilar; Colinas, Olaia; Santana, L Fernando; López-López, José R; Pérez-García, M Teresa

    2013-01-01

    Hypertension is a clinical syndrome characterized by increased arterial tone. Although the mechanisms are varied, the generally accepted view is that increased CaV1.2 channel function is a common feature of this pathological condition. Here, we investigated the mechanisms underlying vascular dysfunction in a mouse model of genetic hypertension. Contrary to expectation, we found that whole-cell CaV1.2 currents (ICa) were lower in hypertensive (BPH line) than normotensive (BPN line) myocytes. However, local CaV1.2 sparklet activity was higher in BPH cells, suggesting that the relatively low ICa in these cells was produced by a few hyperactive CaV1.2 channels. Furthermore, our data suggest that while the lower expression of the pore-forming α1c subunit of CaV1.2 currents underlies the lower ICa in BPH myocytes, the increased sparklet activity was due to a different composition in the auxiliary subunits of the CaV1.2 complexes. ICa currents in BPN cells were produced by channels composed of α1c/α2δ/β3 subunits, while in BPH myocytes currents were probably generated by the opening of channels formed by α1c/α2δ/β2 subunits. In addition, Ca2+ sparks evoked large conductance, Ca2+-activated K+ (BK) currents of lower magnitude in BPH than in BPN myocytes, because BK channels were less sensitive to Ca2+. Our data are consistent with a model in which a decrease in the global number of CaV1.2 currents coexist with the existence of a subpopulation of highly active channels that dominate the resting Ca2+ influx. The decrease in BK channel activity makes the hyperpolarizing brake ineffective and leads BPH myocytes to a more contracted resting state. PMID:24167226

  19. Decay properties of Bk24397 and Bk24497

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Kondev, F. G.; Greene, J. P.; Zhu, S.

    2018-01-01

    Electron capture decays of 243Bk and 244Bk have been studied by measuring the γ -ray spectra of mass-separated sources and level structures of 243Cm and 244Cm have been deduced. In 243Cm, the electron capture population to the ground state, 1 /2+[631 ] , and 1 /2+[620 ] Nilsson states have been observed. The octupole Kπ=2- band was identified in 244Cm at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them.

  20. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  1. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  2. Decay properties of Bk 97 243 and Bk 97 244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, I.; Kondev, F. G.; Greene, J. P.

    2018-01-01

    Electron capture decays of Bk-243 and Bk-244 have been studied by measuring the gamma-ray spectra of mass-separated sources and level structures of Cm-243 and Cm-244 have been deduced. In Cm-243, the electron capture population to the ground state, 1/2(+)[631], and 1/2(+)[620] Nilsson states have been observed. The octupole K-pi = 2(-) band was identified in Cm-244 at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them

  3. Activation of ATP-sensitive potassium channels antagonize nociceptive behavior and hyperexcitability of DRG neurons from rats.

    PubMed

    Du, Xiaona; Wang, Chao; Zhang, Hailin

    2011-05-14

    Nociceptive responses to noxious stimuli are initiated at peripheral nociceptor terminals. Ion channels play a vital role in pain signal initiation and conduction. Activation of KATP channels has been implicated in mediating the analgesic effects of agents such as morphine. However, systematic studies regarding the effects of KATP activators on nociception and neuronal excitability are scarce. In this study, we describe the antagonistic effects of KATP activators pinacidil and diazoxide on nocifensive behavior induced by bradykinin (BK), thermo and mechanical stimuli, and the bradykinin-induced hyperexcitability of DRG neurons. We also found that KATP activators can moderately activate KATP in DRG neurons. Because the effects of KATP activators can be reversed by the KATP blocker glyburide, direct activation of KATP is most likely the underlying mechanism. This systematic study clearly demonstrates that activation of KATP could have significant modulatory effects on the excitability of sensory neurons and thus on sensory behaviors, such as nociception. KATP activators can be evaluated clinically for the treatment of pain symptoms.

  4. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel.

    PubMed

    Dismuke, William M; Sharif, Najam A; Ellis, Dorette Z

    2009-07-01

    There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux.

  5. Palmitoylation of the β4-Subunit Regulates Surface Expression of Large Conductance Calcium-activated Potassium Channel Splice Variants*

    PubMed Central

    Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.

    2013-01-01

    Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458

  6. A linkage analysis toolkit for studying allosteric networks in ion channels

    PubMed Central

    2013-01-01

    A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca2+-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the “work function,” or the free energy required to activate the principal component. The second are “lever operations” activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy WH[g], which is a “local” work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy WC[q], representing “global” gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (VM) of normalized capacitance (slope of Q-V curve). Plots of WH[g] and WC[q] versus voltage and Ca2+ potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca2+-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%. PMID:23250867

  7. Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder.

    PubMed

    Takagi, Hiroaki; Hashitani, Hikaru

    2016-10-15

    The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress.

    PubMed

    Melnyk, Mariia I; Dryn, Dariia O; Al Kury, Lina T; Zholos, Alexander V; Soloviev, Anatoly I

    2018-04-19

    The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and 'empty' phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H 2 O 2 -induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BK Ca channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100 μg/ml of lipid and 3 μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010 ± 0.003 to 0.034 ± 0.004 (n = 5; p < 0.05), whereas single-channel conductance increased non-significantly from 138 to 146 pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, 'empty' PCL (100 μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010 ± 0.003 to 0.019 ± 0.003 (n = 5; p < 0.05) and did not affect single-channel conductance (139 pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H 2 O 2 -induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the 'pure' liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel's phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.

  9. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  10. Transduction of Voltage and Ca2+ Signals by Slo1 BK Channels

    PubMed Central

    Hoshi, T.; Pantazis, A.; Olcese, R.

    2013-01-01

    Large-conductance Ca2+- and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism. PMID:23636263

  11. The renal TRPV4 channel is essential for adaptation to increased dietary potassium

    PubMed Central

    Mamenko, Mykola; Boukelmoune, Nabila; Tomilin, Viktor; Zaika, Oleg; Jensen, V. Behrana; O’Neil, Roger G.; Pochynyuk, Oleh

    2016-01-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. PMID:28187982

  12. The renal TRPV4 channel is essential for adaptation to increased dietary potassium.

    PubMed

    Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M

    2017-06-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Outcomes of renal transplant recipients with BK virus infection and BK virus surveillance in the Auckland region from 2006 to 2012.

    PubMed

    Hsiao, Chun-Yuan; Pilmore, Helen L; Zhou, Lifeng; de Zoysa, Janak R

    2016-11-06

    To evaluate incidence, risk factors and treatment outcome of BK polyomavirus nephropathy (BKVN) in a cohort of renal transplant recipients in the Auckland region without a formal BK polyomavirus (BKV) surveillance programme. A cohort of 226 patients who received their renal transplants from 2006 to 2012 was retrospectively reviewed. Seventy-six recipients (33.6%) had a BK viral load (BKVL) test and 9 patients (3.9%) developed BKVN. Cold ischaemia time (HR = 1.18, 95%CI: 1.04-1.35) was found to be a risk factor for BKVN. Four recipients with BKVN had complete resolution of their BKV infection; 1 recipient had BKVL less than 625 copies/mL; 3 recipients had BKVL more than 1000 copies/mL and 1 had graft failure from BKVN. BKVN has a negative impact on graft function [median estimated glomerular filtration rate (eGFR) 22.5 (IQR 18.5-53.0) mL/min per 1.73 m 2 , P = 0.015), but no statistically significant difference ( P = 0.374) in renal allograft function was found among negative BK viraemia group [median eGFR 60.0 (IQR 48.5-74.2) mL/min per 1.73 m 2 ), positive BK viraemia without BKVN group [median eGFR 55.0 (IQR 47.0-76.0) mL/min per 1.73 m 2 ] and unknown BKV status group [median eGFR 54.0 (IQR 43.8-71.0) mL/min per 1.73 m 2 ]. The incidence and treatment outcomes of BKVN were similar to some centres with BKV surveillance programmes. Recipients with BVKN have poorer graft function. Although active surveillance for BKV has been shown to be effective in reducing incidence of BKVN, it should be tailored specifically to that transplant centre based on its epidemiology and outcomes of BKVN, particularly in centres with limited resources.

  14. Introducing the Big Knowledge to Use (BK2U) challenge.

    PubMed

    Perl, Yehoshua; Geller, James; Halper, Michael; Ochs, Christopher; Zheng, Ling; Kapusnik-Uner, Joan

    2017-01-01

    The purpose of the Big Data to Knowledge initiative is to develop methods for discovering new knowledge from large amounts of data. However, if the resulting knowledge is so large that it resists comprehension, referred to here as Big Knowledge (BK), how can it be used properly and creatively? We call this secondary challenge, Big Knowledge to Use. Without a high-level mental representation of the kinds of knowledge in a BK knowledgebase, effective or innovative use of the knowledge may be limited. We describe summarization and visualization techniques that capture the big picture of a BK knowledgebase, possibly created from Big Data. In this research, we distinguish between assertion BK and rule-based BK (rule BK) and demonstrate the usefulness of summarization and visualization techniques of assertion BK for clinical phenotyping. As an example, we illustrate how a summary of many intracranial bleeding concepts can improve phenotyping, compared to the traditional approach. We also demonstrate the usefulness of summarization and visualization techniques of rule BK for drug-drug interaction discovery. © 2016 New York Academy of Sciences.

  15. Introducing the Big Knowledge to Use (BK2U) challenge

    PubMed Central

    Perl, Yehoshua; Geller, James; Halper, Michael; Ochs, Christopher; Zheng, Ling; Kapusnik-Uner, Joan

    2016-01-01

    The purpose of the Big Data to Knowledge (BD2K) initiative is to develop methods for discovering new knowledge from large amounts of data. However, if the resulting knowledge is so large that it resists comprehension, referred to here as Big Knowledge (BK), how can it be used properly and creatively? We call this secondary challenge, Big Knowledge to Use (BK2U). Without a high-level mental representation of the kinds of knowledge in a BK knowledgebase, effective or innovative use of the knowledge may be limited. We describe summarization and visualization techniques that capture the big picture of a BK knowledgebase, possibly created from Big Data. In this research, we distinguish between assertion BK and rule-based BK and demonstrate the usefulness of summarization and visualization techniques of assertion BK for clinical phenotyping. As an example, we illustrate how a summary of many intracranial bleeding concepts can improve phenotyping, compared to the traditional approach. We also demonstrate the usefulness of summarization and visualization techniques of rule-based BK for drug–drug interaction discovery. PMID:27750400

  16. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  17. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  18. Endothelial SK(Ca) and IK(Ca) channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow.

    PubMed

    Hannah, Rachael M; Dunn, Kathryn M; Bonev, Adrian D; Nelson, Mark T

    2011-05-01

    Calcium-sensitive potassium (K(Ca)) channels have been shown to modulate the diameter of cerebral pial arteries; however, little is known regarding their roles in controlling cerebral parenchymal arterioles (PAs). We explored the function and cellular distribution of small-conductance (SK(Ca)) and intermediate-conductance (IK(Ca)) K(Ca) channels and large-conductance K(Ca) (BK(Ca)) channels in endothelial cells (ECs) and smooth muscle cells (SMCs) of PAs. Both SK(Ca) and IK(Ca) channels conducted the outward current in isolated PA ECs (current densities, ~20 pA/pF and ~28 pA/pF at +40 mV, respectively), but these currents were not detected in PA SMCs. In contrast, BK(Ca) currents were prominent in PA SMCs (~154 pA/pF), but were undetectable in PA ECs. Pressurized PAs constricted to inhibition of SK(Ca) (~16%) and IK(Ca) (~16%) channels, but were only modestly affected by inhibition of BK(Ca) channels (~5%). Blockade of SK(Ca) and IK(Ca) channels decreased resting cortical cerebral blood flow (CBF) by ~15%. NS309 (6,7-dichloro-1H-indole-2,3-dione3-oxime), a SK(Ca)/IK(Ca) channel opener, hyperpolarized PA SMCs by ~27 mV, maximally dilated pressurized PAs, and increased CBF by ~40%. In conclusion, these data show that SK(Ca) and IK(Ca) channels in ECs profoundly modulate PA tone and CBF, whereas BK(Ca) channels in SMCs only modestly influence PA diameter.

  19. Positions of the cytoplasmic end of BK α S0 helix relative to S1–S6 and of β1 TM1 and TM2 relative to S0–S6

    PubMed Central

    Liu, Guoxia; Zakharov, Sergey I.; Yao, Yongneng

    2015-01-01

    The large-conductance, voltage- and Ca2+-gated K+ (BK) channel consists of four α subunits, which form a voltage- and Ca2+-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance–voltage (G-V) curve to the left at [Ca2+] > 2 µM. In addition to the six transmembrane (TM) helices, S1–S6, conserved in all voltage-dependent K+ channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2–S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2–S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2–S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2–S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50. PMID:25667410

  20. BK virus-associated hemorrhagic cystitis after pediatric stem cell transplantation

    PubMed Central

    Han, Seung Beom; Kang, Jin Han

    2014-01-01

    Hemorrhagic cystitis is a common stem cell transplantation-related complication. The incidence of early-onset hemorrhagic cystitis, which is related to the pretransplant conditioning regimen, has decreased with the concomitant use of mesna and hyperhydration. However, late-onset hemorrhagic cystitis, which is usually caused by the BK virus, continues to develop. Although the BK virus is the most common pathogenic microorganism of poststem cell transplantation late-onset hemorrhagic cystitis, pediatricians outside the hemato-oncology and nephrology specialties tend to be unfamiliar with hemorrhagic cystitis and the BK virus. Moreover, no standard guidelines for the early diagnosis and treatment of BK virus-associated hemorrhagic cystitis after stem cell transplantation have been established. Here, we briefly introduce poststem cell transplantation BK virus-associated hemorrhagic cystitis. PMID:25653684

  1. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal.

    PubMed

    Kwon, Young; Kim, Sang Hoon; Ronderos, David S; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M; Guggino, William B; Smith, Dean P; Montell, Craig

    2010-09-28

    Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Polyomavirus BK infection in blood and marrow transplant recipients

    PubMed Central

    Dropulic, LK; Jones, RJ

    2011-01-01

    The association of BK virus infection with hemorrhagic cystitis in blood and marrow transplant (BMT) recipients was first demonstrated two decades ago. During this time, therapeutic interventions focused on supportive measures such as hyperhydration, continuous bladder irrigation and topical administration of agents that alter the mucosal surface of the bladder wall. In recent years, PCR amplification of viral DNA in the urine and plasma has solidified the association of BK virus infection with hemorrhagic cystitis, demonstrating that higher urine and plasma viral loads occur in the setting of disease. The evaluation of virus-specific therapy has lagged behind assessment of the viral load and theories of pathogenesis. Extrapolating from successes in the treatment of BK virus nephropathy in the renal transplant population, cidofovir and leflunomide are identified as potential effective agents for the treatment of BK virus-associated hemorrhagic cystitis. The fluoroquinolone antibiotics may prove to be effective as prophylactic agents. Given the manifestation of BK virus infection in organs outside of the urinary tract in an increasing immunocompromised patient population and the availability of potential antiviral agents, therapeutic trials need to progress beyond the small case series in order to improve the morbidity and mortality caused by BK virus-associated hemorrhagic cystitis in the BMT population. PMID:17952131

  3. Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition.

    PubMed

    Simões, Herbert Gustavo; Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg(9)-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg(9)-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15 min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg(9)-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg(9)-BK production and reduced PEH in relation to ND participants after a single exercise session.

  4. Type 2 Diabetes Elicits Lower Nitric Oxide, Bradykinin Concentration and Kallikrein Activity Together with Higher DesArg9-BK and Reduced Post-Exercise Hypotension Compared to Non-Diabetic Condition

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg9-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg9-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg9-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg9-BK production and reduced PEH in relation to ND participants after a single exercise session. PMID:24265812

  5. Efficacy of Levofloxacin in the Treatment of BK Viremia: A Multicenter, Double-Blinded, Randomized, Placebo-Controlled Trial

    PubMed Central

    Lee, Belinda T.; Gabardi, Steven; Grafals, Monica; Hofmann, R. Michael; Akalin, Enver; Aljanabi, Aws; Mandelbrot, Didier A.; Adey, Deborah B.; Heher, Eliot; Fan, Pang-Yen; Conte, Sarah; Dyer-Ward, Christine

    2014-01-01

    Background and objectives BK virus reactivation in kidney transplant recipients can lead to progressive allograft injury. Reduction of immunosuppression remains the cornerstone of treatment for active BK infection. Fluoroquinolone antibiotics are known to have in vitro antiviral properties, but the evidence for their use in patients with BK viremia is inconclusive. The objective of the study was to determine the efficacy of levofloxacin in the treatment of BK viremia. Design, setting, participants, & measurements Enrollment in this prospective, multicenter, double-blinded, placebo-controlled trial occurred from July 2009 to March 2012. Thirty-nine kidney transplant recipients with BK viremia were randomly assigned to receive levofloxacin, 500 mg daily, or placebo for 30 days. Immunosuppression in all patients was adjusted on the basis of standard clinical practices at each institution. Plasma BK viral load and serum creatinine were measured monthly for 3 months and at 6 months. Results At the 3-month follow-up, the percentage reductions in BK viral load were 70.3% and 69.1% in the levofloxacin group and the placebo group, respectively (P=0.93). The percentage reductions in BK viral load were also equivalent at 1 month (58% versus and 67.1%; P=0.47) and 6 months (82.1% versus 90.5%; P=0.38). Linear regression analysis of serum creatinine versus time showed no difference in allograft function between the two study groups during the follow-up period. Conclusions A 30-day course of levofloxacin does not significantly improve BK viral load reduction or allograft function when used in addition to overall reduction of immunosuppression. PMID:24482066

  6. Efficacy of levofloxacin in the treatment of BK viremia: a multicenter, double-blinded, randomized, placebo-controlled trial.

    PubMed

    Lee, Belinda T; Gabardi, Steven; Grafals, Monica; Hofmann, R Michael; Akalin, Enver; Aljanabi, Aws; Mandelbrot, Didier A; Adey, Deborah B; Heher, Eliot; Fan, Pang-Yen; Conte, Sarah; Dyer-Ward, Christine; Chandraker, Anil

    2014-03-01

    BK virus reactivation in kidney transplant recipients can lead to progressive allograft injury. Reduction of immunosuppression remains the cornerstone of treatment for active BK infection. Fluoroquinolone antibiotics are known to have in vitro antiviral properties, but the evidence for their use in patients with BK viremia is inconclusive. The objective of the study was to determine the efficacy of levofloxacin in the treatment of BK viremia. Enrollment in this prospective, multicenter, double-blinded, placebo-controlled trial occurred from July 2009 to March 2012. Thirty-nine kidney transplant recipients with BK viremia were randomly assigned to receive levofloxacin, 500 mg daily, or placebo for 30 days. Immunosuppression in all patients was adjusted on the basis of standard clinical practices at each institution. Plasma BK viral load and serum creatinine were measured monthly for 3 months and at 6 months. At the 3-month follow-up, the percentage reductions in BK viral load were 70.3% and 69.1% in the levofloxacin group and the placebo group, respectively (P=0.93). The percentage reductions in BK viral load were also equivalent at 1 month (58% versus and 67.1%; P=0.47) and 6 months (82.1% versus 90.5%; P=0.38). Linear regression analysis of serum creatinine versus time showed no difference in allograft function between the two study groups during the follow-up period. A 30-day course of levofloxacin does not significantly improve BK viral load reduction or allograft function when used in addition to overall reduction of immunosuppression.

  7. Evaluation of fluoroquinolones for the prevention of BK viremia after renal transplantation.

    PubMed

    Gabardi, Steven; Waikar, Sushrut S; Martin, Spencer; Roberts, Keri; Chen, Jie; Borgi, Lea; Sheashaa, Hussein; Dyer, Christine; Malek, Sayeed K; Tullius, Stefan G; Vadivel, Nidyanandh; Grafals, Monica; Abdi, Reza; Najafian, Nader; Milford, Edgar; Chandraker, Anil

    2010-07-01

    Nearly 30% of renal transplant recipients develops BK viremia, a prerequisite for BK nephropathy. Case reports have evaluated treatment options for BK virus, but no controlled studies have assessed prophylactic therapies. Fluoroquinolone antibiotics were studied for prevention of BK viremia after renal transplantation. This retrospective analysis evaluated adult renal transplant recipients with at least one BK viral load (blood) between 90 and 400 days after transplantation. Six to 12 months of co-trimoxazole was used for Pneumocystis prophylaxis. In sulfa-allergic/-intolerant patients, 6 to 12 months of atovaquone with 1 month of a fluoroquinolone was used. Fluoroquinolones can inhibit BK DNA topoisomerase. The two groups studied were those that received 30 days of levofloxacin or ciprofloxacin after transplantation and those that did not. The primary endpoint was BK viremia rates at 1 year. Of note, of the 160 patients not receiving fluoroquinolone prophylaxis, 40 received a fluoroquinolone for treatment of a bacterial infection within 3 months after transplantation. Subgroup analysis evaluating these 40 patients against the 120 who had no exposure to fluoroquinolones was completed. A 1-month fluoroquinolone course after transplantation was associated with significantly lower rates of BK viremia at 1 year compared with those with no fluoroquinolone. In the subgroup analysis, exposure to fluoroquinolone for treatment of bacterial infections within 3 months after transplantation was associated with significantly lower 1-year rates of BK viremia. This analysis demonstrates that fluoroquinolones are effective at preventing BK viremia after renal transplantation.

  8. Simultaneous optical and electrical recording of a single ion-channel.

    PubMed

    Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio

    2002-10-01

    In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.

  9. Evaluation of Fluoroquinolones for the Prevention of BK Viremia after Renal Transplantation

    PubMed Central

    Waikar, Sushrut S.; Martin, Spencer; Roberts, Keri; Chen, Jie; Borgi, Lea; Sheashaa, Hussein; Dyer, Christine; Malek, Sayeed K.; Tullius, Stefan G.; Vadivel, Nidyanandh; Grafals, Monica; Abdi, Reza; Najafian, Nader; Milford, Edgar; Chandraker, Anil

    2010-01-01

    Background and objectives: Nearly 30% of renal transplant recipients develops BK viremia, a prerequisite for BK nephropathy. Case reports have evaluated treatment options for BK virus, but no controlled studies have assessed prophylactic therapies. Fluoroquinolone antibiotics were studied for prevention of BK viremia after renal transplantation. Design, setting, participants, & measurements: This retrospective analysis evaluated adult renal transplant recipients with at least one BK viral load (blood) between 90 and 400 days after transplantation. Six to 12 months of co-trimoxazole was used for Pneumocystis prophylaxis. In sulfa-allergic/-intolerant patients, 6 to 12 months of atovaquone with 1 month of a fluoroquinolone was used. Fluoroquinolones can inhibit BK DNA topoisomerase. The two groups studied were those that received 30 days of levofloxacin or ciprofloxacin after transplantation and those that did not. The primary endpoint was BK viremia rates at 1 year. Of note, of the 160 patients not receiving fluoroquinolone prophylaxis, 40 received a fluoroquinolone for treatment of a bacterial infection within 3 months after transplantation. Subgroup analysis evaluating these 40 patients against the 120 who had no exposure to fluoroquinolones was completed. Results: A 1-month fluoroquinolone course after transplantation was associated with significantly lower rates of BK viremia at 1 year compared with those with no fluoroquinolone. In the subgroup analysis, exposure to fluoroquinolone for treatment of bacterial infections within 3 months after transplantation was associated with significantly lower 1-year rates of BK viremia. Conclusions: This analysis demonstrates that fluoroquinolones are effective at preventing BK viremia after renal transplantation. PMID:20507960

  10. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  11. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors.

    PubMed

    Sgarra, Luca; Leo, Valentina; Addabbo, Francesco; Iacobazzi, Dominga; Carratù, Maria Rosaria; Montagnani, Monica; Potenza, Maria Assunta

    2014-01-01

    The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent

  12. Intermittent Losartan Administration Triggers Cardiac Post-Conditioning in Isolated Rat Hearts: Role of BK2 Receptors

    PubMed Central

    Sgarra, Luca; Leo, Valentina; Addabbo, Francesco; Iacobazzi, Dominga; Carratù, Maria Rosaria; Montagnani, Monica; Potenza, Maria Assunta

    2014-01-01

    Introduction The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. Methods Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. Results When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). Conclusions Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan

  13. BK viruria and viremia in children with systemic lupus erythematosus.

    PubMed

    Gupta, Nirupama; Nguyen, Cuong Q; Modica, Renee F; Elder, Melissa E; Garin, Eduardo H

    2017-04-11

    BK virus (BKV) is a ubiquitous polyoma virus that lies dormant in the genitourinary tract once acquired in early childhood. In states of cellular immunodeficiency, the virus can reactivate to cause hemorrhagic cystitis and nephritis. Children with systemic lupus erythematosus (SLE) have an increased risk of developing infectious complications secondary to their immunocompromised state from the administration of several immuno-modulatory drugs. Currently, there are no data regarding the prevalence of BK viruria or viremia in children with SLE. We conducted a prospective cohort study involving children with SLE of 18 years and younger. We obtained urine and blood samples at baseline and every 3 months up to 1 year for BK virus detection by real-time, quantitative polymerase chain reaction analysis. A comprehensive review of demographic information, clinical characteristics and medication history was also obtained. Thirty-two pediatric patients (26 females and 6 males) with SLE were enrolled. Median age at the time of SLE diagnosis and enrollment into study was 13.6 years and 16.0 years old, respectively. The prevalence at enrollment was 3.1% (1/32) for BK viruria and 6.2% (2/32) for BK viremia. During the study period, 3 patients had viruria, 5 had viremia and 4 had both viruria and viremia. Of the 12 patients with BKV reactivation, only one was positive for microscopic hematuria, all others were asymptomatic. A total of nine of 97(9.2%) urine samples and 10 of 96(10.4%) blood samples were positive for BK virus. The most commonly utilized biologics in this cohort group were Rituximab (90.6%), Abatacept (12.5%), and Belimumab (9.3%). The type of medication exposure and clinical characteristics did not statistically differ between the groups that did or did not have BK viruria and/or viremia. Our study suggests that pediatric patients with SLE have BK viremia and/or viruria at a higher rate than the general healthy population, although the significance of the

  14. Quantification of polyoma BK viruria in hemorrhagic cystitis complicating bone marrow transplantation.

    PubMed

    Leung, A Y; Suen, C K; Lie, A K; Liang, R H; Yuen, K Y; Kwong, Y L

    2001-09-15

    Polyoma BK virus (BKV) is frequently identified in the urine of bone marrow transplantation (BMT) patients with hemorrhagic cystitis (HC). However, viruria is common even in asymptomatic patients, making a direct causative role of BKV difficult to establish. This study prospectively quantified BK viruria and viremia in 50 BMT patients to define the quantitative relationship of BKV reactivation with HC. Adenovirus (ADV) was similarly quantified as a control. More than 800 patient samples were quantified for BKV VP1 gene with a real-time quantitative polymerase chain reaction. Twenty patients (40%) developed HC, 6 with gross hematuria (HC grade 2 or higher) and 14 with microscopic hematuria (HC grade 1). When compared with asymptomatic patients, patients with HC had significantly higher peak BK viruria (6 x 10(12) versus 5.7 x 10(7) genome copies/d, P <.001) and larger total amounts of BKV excreted during BMT (4.9 x 10(13) versus 7.7 x 10(8) genome copies, P <.001). There was no detectable increase in BK viremia. Binary logistic regression analysis showed that BK viruria was the only risk factor, with HC not related to age, conditioning regimen, type of BMT, and graft-versus-host disease. Furthermore, the levels of ADV viruria in patients with or without HC were similar and comparable with those of BK viruria in patients without HC, suggesting that the significant increase in BK viruria in HC patients was not due to background viral reactivation or damage to the urothelium. BK viruria was quantitatively related to the occurrence of HC after BMT.

  15. A Simple and Reliable Strategy for BK Virus Subtyping and Subgrouping

    PubMed Central

    Morel, Virginie; Martin, Elodie; François, Catherine; Helle, François; Faucher, Justine; Mourez, Thomas; Choukroun, Gabriel; Duverlie, Gilles; Castelain, Sandrine

    2017-01-01

    ABSTRACT BK virus (BKV)-associated diseases in transplant recipients are an emerging issue. However, identification of the various BK virus subtypes/subgroups is a long and delicate process on the basis of currently available data. Therefore, we wanted to define a simple and effective one-step strategy for characterizing all BK virus strains from the VP1 gene sequence. Based on the analysis of 199 available complete DNA VP1 sequences, phylogenetic trees, alignments, and isolated polymorphisms were used to define an effective strategy for distinguishing the 12 different BK virus subtypes/subgroups. Based on the 12 subtypes identified from the 199 complete BKV VP1 sequences (1,089 bp), 60 mutations that can be used to differentiate these various subtypes/subgroups were identified. Some genomic areas were more variable and comprised mutational hot spots. From a subregion of only 100 bp in the VP1 region (1977 through 2076), we therefore constructed an algorithm that enabled rapid determination of all BKV subtypes/subgroups with 99% agreement (197/199) relative to the complete VP1 sequence. We called this domain of the BK viral genome the BK typing and grouping region (BKTGR). Finally, we validated our viral subtype identification process in a population of 100 transplant recipients with 100% efficiency. The new simpler method of BKV subtyping/subgrouping reported here constitutes a useful tool for future studies that will help us to more clearly understand the impact of BKV subtypes/subgroups on diagnosis, infection, and BK virus-associated diseases. PMID:28151406

  16. The human polyomavirus BK: Potential role in cancer.

    PubMed

    Fioriti, D; Videtta, M; Mischitelli, M; Degener, A M; Russo, G; Giordano, A; Pietropaolo, V

    2005-08-01

    In human cancer, a role has been suggested for the human polyomavirus BK, primarily associated with tubulointerstitial nephritis and ureteric stenosis in renal transplant recipients, and with hemorrhagic cystitis in bone marrow transplant (BMT) recipients. After the initial infection, primarily unapparent and without clinical signs, the virus disseminates and establishes a persistent infection in the urinary tract and lymphocytes. There is correlative evidence regarding potential role of polyomavirus BK in cancer. In fact, the BK virus (BKV) DNA (complete genome and/or subgenomic fragments containing the early region) is able to transform embryonic fibroblasts and cells cultured from kidney and brain of hamster, mouse, rat, rabbit, and monkey. Nevertheless, transformation of human cells by BKV is inefficient and often abortive. Evidence supporting a possible role for BKV in human cancer has accumulated slowly in recent years, after the advent of polymerase chain reaction (PCR). BKV is known to commonly establish persistent infections in people and to be excreted in the urine by individuals who are asymptomatic, complicating the evaluation of its potential role in development of human cancer. Therefore, there is no certain proof that human polyomavirus BK directly causes the cancer in humans or acts as a cofactor in the pathogenesis of some types of human cancer. (c) 2005 Wiley-Liss, Inc.

  17. BK Viremia Precedes Hemorrhagic Cystitis in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Laskin, Benjamin L.; Denburg, Michelle; Furth, Susan; Diorio, Donna; Goebel, Jens; Davies, Stella M.; Jodele, Sonata

    2013-01-01

    BK virus is associated with hemorrhagic cystitis after hematopoietic stem cell transplantation (HSCT), although evidence supporting a causal relationship remains limited. Although BK viruria is common after HSCT, BK viremia may better predict clinically significant cystitis, similar to its predictive value for nephropathy after kidney transplantation. We hypothesized that BK viremia would precede hemorrhagic cystitis in a cohort of 88 consecutive children prospectively enrolled to originally study thrombotic microangiopathy in the first 100 days after allogeneic HSCT. Cox regression models with time-varying covariates assessed the association between different BK viremia cutoffs and the development of hemorrhagic cystitis, defined as at least macroscopic hematuria. Subjects with a peak plasma BK viral load 1 to 9999 copies/mL had an adjusted hazard ratio of 4.2 (95% confidence interval (CI), 1.3 to 13.7) for the development of hemorrhagic cystitis. Those with peak BK viremia >100,000 copies/mL had an adjusted hazard ratio of 116.8 (95% CI, 12 to 1136) for cystitis. Other independent risk factors for hemorrhagic cystitis included age >7 years and HHV-6 viremia. Neither graft-versus-host disease nor achieving engraftment increased the risk for cystitis. If therapeutic strategies are found to be effective, these observations may support screening for BK viremia after HSCT, as currently recommended for other DNA viruses. PMID:23665115

  18. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity

    PubMed Central

    Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D

    2013-01-01

    Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426

  19. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Antibodies to BK virus in children prior to allogeneic hematopoietic cell transplant

    PubMed Central

    Laskin, Benjamin L; Sullivan, Kathleen E; Hester, Jeff; Goebel, Jens; Davies, Stella M; Jodele, Sonata

    2015-01-01

    BK virus (BKV) is associated with kidney and bladder disease after hematopoietic cell transplantation (HCT) but less is known about the seroprevalence of pre-transplant antibodies to BKV in children. We measured BKV IgG antibody titers in 36 children before HCT. BKV IgG antibodies were detected in all 36 patients, with 28/36 (77.8%) developing BK viremia in the first 100 days. Pre-HCT BKV IgG antibody titers >1:40,960 were protective against later BK viremia ≥10,000 copies/mL. The seroprevalence of antibodies to BKV is high in children undergoing HCT and post-transplant BK viremia, which is associated with bladder and kidney injury, is common. PMID:25833296

  1. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BKCa channels, and nitric oxide dependent mechanisms.

    PubMed

    López-Dyck, Evelyn; Andrade-Urzúa, Felipa; Elizalde, Alejandro; Ferrer-Villada, Tania; Dagnino-Acosta, Adan; Huerta, Miguel; Osuna-Calleros, Zyanya; Rangel-Sandoval, Cinthia; Sánchez-Pastor, Enrique

    2017-12-01

    Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB 1 -selective agonist) and JWH-133 (CB 2 -selective agonist) regulate the vascular tone of rat superior mesenteric arteries. To screen the expression of CB 1 (Cannabinoid receptor 1) and CB 2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BK Ca ) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. CB 1 and CB 2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB 1 receptors, BK Ca channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB 2 receptors located in smooth muscle and by a CB 2 receptor-independent mechanism inducing NO release. CB 1 and CB 2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BK Ca channels and NO release. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Calycosin and Formononetin Induce Endothelium-Dependent Vasodilation by the Activation of Large-Conductance Ca2+-Activated K+ Channels (BKCa).

    PubMed

    Tseng, Hisa Hui Ling; Vong, Chi Teng; Leung, George Pak-Heng; Seto, Sai Wang; Kwan, Yiu Wa; Lee, Simon Ming-Yuen; Hoi, Maggie Pui Man

    2016-01-01

    Calycosin and formononetin are two structurally similar isoflavonoids that have been shown to induce vasodilation in aorta and conduit arteries, but study of their actions on endothelial functions is lacking. Here, we demonstrated that both isoflavonoids relaxed rat mesenteric resistance arteries in a concentration-dependent manner, which was reduced by endothelial disruption and nitric oxide synthase (NOS) inhibition, indicating the involvement of both endothelium and vascular smooth muscle. In addition, the endothelium-dependent vasodilation, but not the endothelium-independent vasodilation, was blocked by BK Ca inhibitor iberiotoxin (IbTX). Using human umbilical vein endothelial cells (HUVECs) as a model, we showed calycosin and formononetin induced dose-dependent outwardly rectifying K + currents using whole cell patch clamp. These currents were blocked by tetraethylammonium chloride (TEACl), charybdotoxin (ChTX), or IbTX, but not apamin. We further demonstrated that both isoflavonoids significantly increased nitric oxide (NO) production and upregulated the activities and expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS). These results suggested that calycosin and formononetin act as endothelial BK Ca activators for mediating endothelium-dependent vasodilation through enhancing endothelium hyperpolarization and NO production. Since activation of BK Ca plays a role in improving behavioral and cognitive disorders, we suggested that these two isoflavonoids could provide beneficial effects to cognitive disorders through vascular regulation.

  3. Co-infection with human polyomavirus BK enhances gene expression and replication of human adenovirus.

    PubMed

    Bil-Lula, Iwona; Woźniak, Mieczysław

    2018-03-26

    Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 10 3  ± 8.5 x 10 2 copies/ml) and urine (mean 1.9 x 10 3  ± 8.0 x 10 2 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.

  4. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid

    PubMed Central

    Xu, Rong; Hou, Shangwei; Heinemann, Stefan H.; Tian, Yutao

    2013-01-01

    Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA) at nanomolar concentrations reversibly activate human large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels containing auxiliary β1 or β4 subunits in cell-free patches. Here we examined the action of DHA on the Slo1 channel without any auxiliary subunit and sought to elucidate the biophysical mechanism and the molecular determinants of the DHA sensitivity. Measurements of ionic currents through human Slo1 (hSlo1) channels reveal that the stimulatory effect of DHA does not require activation of the voltage or Ca2+ sensors. Unlike gating of the hSlo1 channel, that of the Drosophila melanogaster Slo1 (dSlo1) channel is unaltered by DHA. Our mutagenesis study based on the differential responses of human and dSlo1 channels to DHA pinpoints that Y318 near the cytoplasmic end of S6 in the hSlo1 channel is a critical determinant of the stimulatory action of DHA. The mutation Y318S in hSlo1, which replaces Y with S as found in dSlo1, greatly diminishes the channel’s response to DHA with a 22-carbon chain whether β1 or β4 is absent or present. However, the responses to α-linolenic acid, an omegea-3 fatty acid with an 18-carbon chain, and to arachidonic acid, an omega-6 fatty acid with a 20-carbon chain, remain unaffected by the mutation. Y318 in the S6 segment of hSlo1 is thus an important determinant of the electrophysiological response of the channel to DHA. Furthermore, the mutation Y318S may prove to be useful in dissecting out the complex lipid-mediated modulation of Slo1 BK channels. PMID:24127525

  5. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain.

    PubMed

    Inoue, Shigeki; Murata, Kaoru; Tanaka, Aiko; Kakuta, Eri; Tanemura, Saori; Hatakeyama, Shiori; Nakamura, Atsunao; Yamamoto, Chihiro; Hasebe, Masaharu; Kosakai, Kumiko; Yoshino, Masami

    2014-09-01

    Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in

  6. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    PubMed

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters

    PubMed Central

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-01-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309

  8. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

    PubMed Central

    Kim, Sung-Jo; Kang, Sun-Yang; Yi, Jin Woong; Kim, Seung-Min

    2014-01-01

    Purpose Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium (KCa) channel genes in HOKPP patients. Methods We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the KCa channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes KCa1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels. PMID:25379045

  9. Effect of protein leaking BK-F PMMA-based hemodialysis on plasma pentosidine levels.

    PubMed

    Tessitore, Nicola; Lapolla, Annunziata; Aricò, Nadia Concetta; Poli, Albino; Gammaro, Linda; Bassi, Antonella; Bedogna, Valeria; Corgnati, Angela; Reitano, Rachele; Fedele, Domenico; Lupo, Antonio

    2004-01-01

    Advanced glycation end-products (AGEs) are now considered to contribute to the middle molecule toxicity of uremia and, because they are not cleared by conventional low-flux hemodialysis, alternative strategies are needed to improve their removal. In a prospective cross-over trial involving 18 adult chronic hemodialysis subjects, we evaluated the intradialytic removal and the long-term effect on predialysis levels of Protein-bound (PBPe) and Free (FPe) pentosidine by high-pore, protein-leaking BK-F Polymethylmethacrylate-based hemodialysis (BK-F-HD), by comparing it to hemodialysis using low-flux dialyzers (LF-HD). A single BK-F-HD session removed more PBPe, but not FPe, than LF-HD. Long-term BK-F-HD was associated with a significant decrease in pre-dialysis PBPe, FPe, and albumin (17.7 +/- 20.8, 25.3 +/- 17.3 and 8.0 +/- 3.3%, p<0.01) and no change in body mass index and protein catabolic rate, compared to LF-HD. Multiple stepwise regression analysis identified C-reactive Protein (CRP) (standardized beta coefficient=-0.629), pre-dialysis levels in LF-HD (beta=0.452) and dialysis vintage (beta=0.428) as significant determinants of BK-F-induced changes in predialysis PBPe, and predialysis FPe and PBPe levels in LF-HD as significant determinants of BK-F-induced changes in predialysis FPe (beta=0.720 and 0.286, respectively). Our study shows that long-term standard diffusive hemodialysis with BK-F membrane reduces predialysis PBPe and FPe levels by comparison with LF-HD, largely due to a greater intradialytic clearance of PBPe. Serum albumin is also reduced without any associated changes in nutritional status markers. The study also suggests that the effect of BK-F-HD in lowering PBPe levels is modulated by the body burden of pentosidine and is blunted or even lost in the presence of elevated CRP levels.

  10. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  11. The prevalence and implications of BK virus replication in non-renal solid organ transplant recipients: A systematic review.

    PubMed

    Viswesh, Velliyur; Yost, Sarah E; Kaplan, Bruce

    2015-07-01

    The significance of BK viruria and viremia in non-renal solid organ transplants is poorly understood. A systematic review was performed reviewing the incidence and implications of BK virus replication in non-renal solid organ transplants. Ninety-seven studies were identified, of which 18 including lung, heart, liver and pancreas transplants were included. The overall incidence of BK viruria and viremia was 20% and 3% respectively and 17 cases of BK nephropathy were identified. Heart transplant recipients had a higher overall incidence of BK viremia than other non-renal organ types, and the majority of cases of BK virus-associated nephropathy were in heart transplant recipients. The incidence of BK viremia was significantly lower in non-renal solid organ transplants than that of renal transplant recipients and BK virus-associated nephropathy was rare. BK virus-associated nephropathy may be considered in heart transplant recipients who have unexplained and persistent renal dysfunction not attributable to other causes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Molecular mapping of qBK1 WD , a major QTL for bakanae disease resistance in rice.

    PubMed

    Lee, Sais-Beul; Hur, Yeon-Jae; Cho, Jun-Hyeon; Lee, Jong-Hee; Kim, Tae-Heon; Cho, Soo-Min; Song, You-Chun; Seo, Young-Su; Lee, Jungkwan; Kim, Tae-Sung; Park, Yong-Jin; Oh, Myung-Kyu; Park, Dong-Soo

    2018-01-10

    Bakanae or foot rot disease is a prominent disease of rice caused by Gibberella fujikuroi. This disease may infect rice plants from the pre-emergence stage to the mature stage. In recent years, raising rice seedlings in seed boxes for mechanical transplanting has increased the incidence of many seedling diseases; only a few rice varieties have been reported to exhibit resistance to bakanae disease. In this study, we attempted to identify quantitative trait loci (QTLs) conferring bakanae disease resistance from the highly resistant japonica variety Wonseadaesoo. A primary QTL study using the genotypes/phenotypes of the recombinant inbred lines (RILs) indicated that the locus qBK1 WD conferring resistance to bakanae disease from Wonseadaesoo was located in a 1.59 Mb interval delimited on the physical map between chr01_13542347 (13.54 Mb) and chr01_15132528 (15.13 Mb). The log of odds (LOD) score of qBK1 WD was 8.29, accounting for 20.2% of the total phenotypic variation. We further identified a gene pyramiding effect of two QTLs, qBK WD and previously developed qBK1. The mean proportion of healthy plant for 31 F 4 RILs that had no resistance genes was 35.3%, which was similar to that of the susceptible check variety Ilpum. The proportion of healthy plants for the lines with only qBK WD or qBK1 was 66.1% and 55.5%, respectively, which was significantly higher than that of the lines without resistance genes and that of Ilpum. The mean proportion of the healthy plant for 15 F 4 RILs harboring both qBK WD and qBK1 was 80.2%, which was significantly higher than that of the lines with only qBK WD or qBK1. Introducing qBK WD or pyramiding the QTLs qBK WD and qBK1 could provide effective tools for breeding rice with bakanae disease resistance. To our knowledge, this is the first report on a gene pyramiding effect that provides higher resistance against bakanae disease.

  13. Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure.

    PubMed

    Yu, Guofeng; Cheng, Mengting; Wang, Wei; Zhao, Rong; Liu, Zhen

    2017-04-01

    Potassium homeostasis plays an essential role in the control of blood pressure. It is unknown, however, whether potassium balance is involved in the gender-associated blood pressure differences. We therefore investigated the possible mechanism of sexual dimorphism in blood pressure regulation by measuring the blood pressure, plasma potassium, renal actions of potassium channels and upstream regulator in male and female mice. Here we found that female mice exhibited lower blood pressure and higher plasma K + level as compared to male littermates. Western blot analyses of mouse kidney extract revealed a significant decrease in renal outer medullary potassium (ROMK) channel expression, while large-conductance Ca 2+ -activated K + (BK) channel and Na-K-2Cl cotransporter (NKCC2) as well as the upstream regulator with-no-lysine kinase 1 (WNK1) enhanced in female mice under normal condition. Surprisingly, both dietary K + loading and K + depletion eliminated the differences in plasma K + and blood pressure between females and males, and the differences of renal K + channels and WNK1 also attenuated in both groups of mice. These findings indicated the existence of a close correlation between K + homeostasis and sex-associated blood pressure. Moreover, the differential regulation of ROMK, BK-α and NKCC2 between female and male mice, at least, were partly mediated via WNK1 pathway, which may contribute to the sexual dimorphism of plasma K + and blood pressure control. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. BK virus-associated hemorrhagic cystitis in pediatric cancer patients receiving high-dose cyclophosphamide.

    PubMed

    Cheerva, Alexandra C; Raj, Ashok; Bertolone, Salvatore J; Bertolone, Kathy; Silverman, Craig L

    2007-09-01

    Hemorrhagic cystitis (HC) is a known complication of oxazophosphorine chemotherapy. BK virus (BKV) has been commonly found to be associated with hematuria in stem cell transplant patients; however, it has rarely been reported after cyclophosphamide chemotherapy alone. The authors present 3 cases of BK viruria with HC in nontransplant pediatric oncology patients. The 3 patients with BKV had more prolonged hematuria (14 to 16 wk) compared with 1 patient with BKV-negative HC (10 wk). The HC necessitated chemotherapy delays and also prolonged supportive care. One patient was treated with intravenous cidofovir with resolution of BK viruria and hematuria. BKV may have an association with the development of HC in nonstem cell transplant patients receiving high-dose oxazophosphorine chemotherapy. HC may present early and be more prolonged in patients with BK viruria. Patients with HC after cyclophosphamide or ifosfamide with negative bacterial cultures should be studied for BKV. Cidofovir may be beneficial in certain patients with BK viruria and HC; however, definitive data will require a clinical trial.

  15. Management of BK virus nephropathy in kidney transplant recipients at the Royal Hospital - Clinical Audit - Oman.

    PubMed

    Al-Raisi, Fatma; Mohsin, Nabil; Kamble, Pramod

    2015-04-01

    Nephropathy from BK virus (BKV) infection is a growing challenge in kidney transplant recipients globally. It is the result of contemporary potent immunosuppressives aimed at reducing acute rejection and improving allograft survival. Untreated BK virus infections lead to kidney allograft dysfunction or loss. Decreased immunosuppression is the principle treatment but predisposes to acute and chronic rejection. Screening for early detection and prevention of symptomatic BK virus nephropathy may improve outcomes. Although no approved antiviral drug is available, leflunomide, cidofovir, quinolones, and intravenous immunoglobulin have been used. Since the introduction of the new immunosuppressive agents in the transplant regimen at the Royal Hospital, Few cases of BK virus have been detected, and the challenge was to decide upon the best treatment option. The audit was carried out at the Royal Hospital-Oman between January 2010 and December 2012. The nephrology consultant and the clinical pharmacist reviewed all the BK cases and the Royal Hospital. Extensive literature review carried out by the pharmacist to look into the prevalence, prognosis and treatment of BK nephropathy. A treatment protocol was prepared by the clinical pharmacist through guidance of the consultant and was peer reviewed by team of clinical pharmacists and nephrology doctors and approved by the consultant. The audit included 19 patients with positive BK virus ployoma nephropathy. The treatment options were applied stepwise in all the patients with BK virus nephropathy with success rate more than 70%. BK virus nephropathy is emerging at an alarming rate and requires increasing awareness. The uses of current treatment options are still questionable. Our audit confirms that reducing immunosuppression appears to be the criterian standard for the treatment of BK nephropathy.

  16. Genotyping of polyomavirus BK by Real Time PCR for VP1 gene.

    PubMed

    Gambarino, Stefano; Costa, Cristina; Astegiano, Sara; Piasentin, Elsa Alessio; Segoloni, Giuseppe P; Cavallo, Rossana; Bergallo, Massimiliano

    2011-10-01

    Polyomavirus BK latently persist in different sites, including the renourinary tract, and may reactivate causing nephropathy in renal transplant recipients or hemorrhagic cystitis in bone marrow recipients. Based on the sequence of the VP1 gene, four genotypes have been described, corresponding to the four serologically differentiated subtypes I-IV, with different prevalence and geographic distribution. In this study, the development and clinical validation of four different Real-Time PCR assays for the detection and discrimination of BKV genotypes as a substitute of DNA sequencing are described. 379 BK VP1 sequences, belonging to the main four genotypes, were aligned and "hot spots" of mutation specific for all the strains or isolates were identified. Specific primers and probes for the detection and discrimination of each genotype by four Real-Time PCR assays were designed and technically validated. Subsequently, the four Real-Time PCR assays were used to test 20 BK-positive urine specimens from renal transplant patients, and evidenced a prevalence of BK genotype I, as previously reported in Europe. Results were confirmed by sequencing. The availability of a rapid and simple genotyping method could be useful for the evaluation of BK genotypes prevalence and studies on the impact of the infecting genotype on viral biological behavior, pathogenic role, and immune evasion strategies.

  17. Characterization of an extracellular lipase by Pseudomonas koreensis BK-L07 isolated from soil.

    PubMed

    Anbu, Periasamy

    2014-01-01

    Screening using spirit blue agar revealed that strain BK-L07 had the highest lipase activity. Furthermore, the isolated strain was identified as Pseudomonas sp. based on morphological, physiological, biochemical, and molecular analyses. The 16S rRNA gene sequence of strain BK-L07 shared a high similarity with that of Pseudomonas koreensis (99%). The nutritional conditions and physicochemical properties were influenced by P. koreensis BK-L07. The maximum lipase production was obtained in tryptic soy broth medium at pH 8.0 and a temperature of 25°C after 36 hr of incubation. In addition, the lipase activity was determined using different carbon sources and lipase inducers. The lipase production was greatest when 1% maltose was used as the carbon source and olive oil was used as the lipase inducer. The lipase production was significantly increased approximately threefold in the optimized medium when compared with the original medium. Further, the lipase was purified by ammonium sulfate precipitation and gel filtration chromatography with a purification yield of 10.8%. The molecular mass of lipase was 45 kDa. The optimum temperature and pH were 40°C and 8.0, respectively. The enzyme was stable up to 50°C and at pH from 7 to 9. In addition, the enzyme activity was stimulated by MgSO4 and completely inhibited by ethylenediamine tetraacetic acid (EDTA), indicating the metalloenzyme type. The lipase activity was toward medium to long chain length of fatty acids (C10 to C18). Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  18. Free-energy relationships in ion channels activated by voltage and ligand

    PubMed Central

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  19. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  20. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  1. Review article: BK virus in systemic lupus erythematosus.

    PubMed

    Gupta, Nirupama; Lawrence, Robert M; Nguyen, Cuong; Modica, Renee F

    2015-08-21

    BK virus (BKV) is a human polyomavirus with a seroprevalence of 60-80 % in the general population. In renal transplant patients, it is known to cause renal failure, ureteric stenosis and hemorrhagic cystitis. In bone marrow transplant patients, it is evident that BKV can also cause hemorrhagic cystitis along with BK virus nephropathy (BKVN) in the native kidneys, with subsequent renal failure. However, little is known about BVKN in non-transplanted immune-compromised patients, such as systemic lupus erythematosus (SLE) who may have underlying nephritis and have a compromised immune system due to therapy and/or systemic illness. Thus, this article will focus on the clinical aspects of BKV and its association in patients with SLE.

  2. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  3. Diagnosis of BK viral nephropathy in the renal allograft biopsy: role of fluorescence in situ hybridization.

    PubMed

    Wang, Zhen; Portier, Bryce P; Hu, Bo; Chiesa-Vottero, Andres; Myles, Jonathan; Procop, Gary W; Tubbs, Raymond R

    2012-09-01

    Early recognition of BK viral nephropathy is essential for successful management. Our aim in this study was to evaluate a novel fluorescence in situ hybridization (FISH) assay for detection of BK virus in renal transplant biopsies in the context of standard detection methods. Renal allograft biopsies (n = 108) were analyzed via H&E, immunohistochemistry (IHC) for simian virus 40, and FISH for BK virus. BK virus was detected in 16 (14.8%) cases by H&E, 13 (12%) cases by IHC, 18 (16.6%) cases by FISH, and 19 (17.6%) cases by real-time PCR; 24 of 108 showed a discrepancy in ≥1 testing modalities. Comparison of H&E, IHC, and FISH showed no statistical difference in detection of BK virus. However, performing comparisons between the different tissue-based assays in the context of plasma or urine real-time PCR results showed significant improvement in detection of BK by FISH over H&E (P = 0.02) but not IHC (P = 0.07). This novel FISH-based approach for BK virus identification in renal allograft biopsy tissue mirrored real-time PCR results and showed superior performance to detection of inclusions by H&E. Therefore, use of FISH for BK virus detection in the setting of renal allograft biopsy is a useful and sensitive detection method and could be adopted in any laboratory that currently performs FISH analysis. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I.

    PubMed

    Texter, Kelly B; Waymach, Rachel; Kavanagh, Pierce V; O'Brien, John E; Talbot, Brian; Brandt, Simon D; Gardner, Elizabeth A

    2018-01-01

    2-Amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) has recently emerged as a new psychoactive substance (NPS). It is most commonly consumed orally, although there are indications that it might also be ingested by inhalation or 'smoking'. Information about the stability of bk-2C-B when exposed to heat is unavailable and the potential for pyrolytic degradation and formation of unknown substances available for inhalation prompted an investigation using a simulated 'meth pipe' scenario. Twelve products following pyrolysis of bk-2C-B were detected and verified by organic synthesis of the corresponding standards. In addition, 2-amino-1-(4-iodo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-I) was characterized for the first time and subjected to pyrolysis as well. Similar products were formed, which indicated that the replacement of the bromo with the iodo substituent did not affect the pyrolysis pattern under the conditions used. Two additional products were detected in the bk-2C-I pyrolates, namely 1-(2,5-dimethoxyphenyl)-ethanone and 1-iodo-4-ethenyl-5-methoxyphenol. The potential ingestion of pyrolysis products with unknown toxicity adds an element of concern. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Role of ion channels and subcellular Ca2+ signaling in arachidonic acid-induced dilation of pressurized retinal arterioles.

    PubMed

    Kur, Joanna; McGahon, Mary K; Fernández, Jose A; Scholfield, C Norman; McGeown, J Graham; Curtis, Tim M

    2014-05-02

    To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacologic agents inhibiting Ca(2+) sparks and oscillations and K(+) channels. Subcellular Ca(2+) signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Arachidonic acid dilated pressurized retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. Arachidonic acid-induced dilation was associated with an inhibition of subcellular Ca(2+) signals. Interventions known to block Ca(2+) sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. Arachidonic acid accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous large-conductance calcium-activated K(+) (BK) currents, but only at positive membrane potentials. Pharmacologic inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. Arachidonic acid suppressed L-type Ca(2+) currents. These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca(2+)-signaling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca(2+)-channel activity. Arachidonic acid actions on K(+) currents are inconsistent with a model in which K(+) channels contribute to the vasodilator effects of AA.

  6. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    PubMed

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  7. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood–brain barrier permeability

    PubMed Central

    De Bock, Marijke; Culot, Maxime; Wang, Nan; Bol, Mélissa; Decrock, Elke; De Vuyst, Elke; da Costa, Anaelle; Dauwe, Ine; Vinken, Mathieu; Simon, Alexander M; Rogiers, Vera; De Ley, Gaspard; Evans, William Howard; Bultynck, Geert; Dupont, Geneviève; Cecchelli, Romeo; Leybaert, Luc

    2011-01-01

    The cytoplasmic Ca2+ concentration ([Ca2+]i) is an important factor determining the functional state of blood–brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca2+]i changes on BBB function. We applied different agonists that trigger [Ca2+]i oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca2+]i oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca2+]i with BAPTA, indicating that [Ca2+]i oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca2+]i oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca2+]i oscillations provoked by exposure to adenosine 5′ triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations. PMID:21654699

  8. Mechanisms of acetylcholine- and bradykinin-induced preconditioning.

    PubMed

    Critz, Stuart D; Cohen, Michael V; Downey, James M

    2005-01-01

    Acetylcholine (ACh) and bradykinin (BK) are potent pharmacological agents which mimic ischemic preconditioning (IPC) enabling hearts to resist infarction during a subsequent period of ischemia. The cardioprotective pathways activated by BK but not ACh may also protect when activated at reperfusion. ACh and BK stimulate Gi/o-linked receptors and ultimately mediate protection by opening mitochondrial ATP-sensitive potassium channels with the generation of reactive oxygen species that act as second messengers to activate protein kinase C (PKC). There appear to be key differences, however, in the pathways prior to potassium channel opening for these two receptors. This review aims to summarize what is currently known about pharmacological preconditioning by ACh and BK with an emphasis on differences that are seen in the signal transduction cascades. Understanding the cellular basis of protection by ACh and BK is a critical step towards developing pharmacological agents that will prevent infarction during ischemia resulting from coronary occlusion or heart attack.

  9. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.

    PubMed

    Dale, T J; Cryan, J E; Chen, M X; Trezise, D J

    2002-11-01

    The bee venom toxin apamin is an important drug tool for characterising small conductance Ca(2+)-activated K(+) channels (SK channels). In recombinant expression systems both rSK2 and rSK3 channels are potently blocked by apamin, whilst the sensitivity of SK1 channels is somewhat less clear. In the present study we have conducted a detailed analysis by patch clamp electrophysiology of the effects of apamin on human SK channels (SK1, SK2 and SK3) stably expressed in Chinese hamster ovary (CHO-K1) cells. CHO-K1 cell lines expressing either hSK1, 2 or 3 channels were first validated using specific antibodies and Western blotting. Specific protein bands of a size corresponding to the predicted channel tetramer (approximately 250-290 kDa) were detected. In each cell line, but not wild-type untransfected cells, large, time-independent inwardly rectifying Ca(2+)-dependent K(+) currents were observed under voltage-clamp. In CHO-hSK1, this current was markedly reduced by apamin (IC(50) value 8 nM), however, a significant fraction of the current remained unblocked (39+/-5%), even at saturating concentrations (1 microM apamin). The apamin-sensitive and -insensitive currents possess very similar biophysical and pharmacological properties. Each are Ca(2+)-dependent, inwardly rectify and have relative ionic permeabilities of K(+)>Cs(+)>Li(+)=Na(+). Both components were resistant to block by charybdotoxin and iberiotoxin, known IK and BK channel blockers, but were attenuated by the tricyclic antidepressant cyproheptadine (>95% block at 1 mM). The SK channel opener 1-EBIO could still produce channel activation in the presence of apamin. Importantly, hSK2 and hSK3 channels also exhibit partial apamin sensitivity in our experimental paradigm (IC(50) values of 0.14 nM and 1.1 nM, respectively, and maximal percentage inhibition values of 47+/-7% and 58+/-9%, respectively). Our data indicate that, at least in a recombinant expression system, all three SK channels can be partially

  10. Unraveling hominin behavior at another anthropogenic site from Olduvai Gorge (Tanzania): new archaeological and taphonomic research at BK, Upper Bed II.

    PubMed

    Domínguez-Rodrigo, M; Mabulla, A; Bunn, H T; Barba, R; Diez-Martín, F; Egeland, C P; Espílez, E; Egeland, A; Yravedra, J; Sánchez, P

    2009-09-01

    New archaeological excavations and research at BK, Upper Bed II (Olduvai Gorge, Tanzania) have yielded a rich and unbiased collection of fossil bones. These new excavations show that BK is a stratified deposit formed in a riverine setting close to an alluvial plain. The present taphonomic study reveals the second-largest collection of hominin-modified bones from Olduvai, with abundant cut marks found on most of the anatomical areas preserved. Meat and marrow exploitation is reconstructed using the taphonomic signatures left on the bones by hominins. Highly cut-marked long limb shafts, especially those of upper limb bones, suggest that hominins at BK were actively engaged in acquiring small and middle-sized animals using strategies other than passive scavenging. The exploitation of large-sized game (Pelorovis) by Lower Pleistocene hominins, as suggested by previous researchers, is supported by the present study.

  11. [The BK virus load in urine in association with the development of hemorrhagic cystitis after hematopoietic stem cell transplantation].

    PubMed

    Xie, Ying; Han, Yue; Wu, De-pei; Sun, Ai-ning; Cen, Jian-nong; Yao, Li; Ruan, Chang-geng

    2009-08-01

    To analyze the relationship between BK viruria and the late onset hemorrhagic cystitis (LOHC) after hematopoietic stem cell transplantation (HSCT), and investigate the role of BK virus load in the development of LOHC. From August 2006 to April 2008, urine samples were collected weekly from 113 patients undergoing HSCT. Virus DNA were extracted from the urine samples and amplified by qualitative PCR. Real-time quantitative PCR was used to quantify BKV DNA in the urine samples of all BK viruria patients. LOHC occurred in 22 patients (19.5%), including grade 1 in 7, grade 2 in 11, grade 3 in 3, and grade 4 in one. The median onset time was 44 (13 - 114) days after transplantation. Twenty-one of which (95.5%) were BK virus positive, being significantly higher than that in non-LOHC patients (31.9%) (P = 0.000). No BK virus was detected in the healthy control group at the same time. Quantitative PCR detection showed that the mean BK virus DNA copies in LOHC patients at a week before occurring HC was higher than that at the first positive samples (10(5) copies/microl versus 10(4) copies/microl, P = 0.025), and it was no significant change at the onset and a week after HC. Meanwhile, there was no statistical difference in the mean level of BK virus DNA copies among the LOHC patients with different grades. The mean level of BK virus DNA copies in non-HC patients was 10(3) to 10(4) copies/microl, being lower than that in LOHC patients. BK viruria is an important pathogenic cause of the LOHC after HSCT. The occurrence of BKV viruria in HSCT patients, together with the increasing of BK virus DNA copies in urine, over the level of 10(5) copies/microl may indicate a possible development of LOHC.

  12. Polyomavirus BK non-coding control region rearrangements in health and disease.

    PubMed

    Sharma, Preety M; Gupta, Gaurav; Vats, Abhay; Shapiro, Ron; Randhawa, Parmjeet S

    2007-08-01

    BK virus is an increasingly recognized pathogen in transplanted patients. DNA sequencing of this virus shows considerable genomic variability. To understand the clinical significance of rearrangements in the non-coding control region (NCCR) of BK virus (BKV), we report a meta-analysis of 507 sequences, including 40 sequences generated in our own laboratory, for associations between rearrangements and disease, tissue tropism, geographic origin, and viral genotype. NCCR rearrangements were less frequent in (a) asymptomatic BKV viruria compared to patients viral nephropathy (1.7% vs. 22.5%), and (b) viral genotype 1 compared to other genotypes (2.4% vs. 11.2%). Rearrangements were commoner in malignancy (78.6%), and Norwegians (45.7%), and less common in East Indians (0%), and Japanese (4.3%). A surprising number of rearranged sequences were reported from mononuclear cells of healthy subjects, whereas most plasma sequences were archetypal. This difference could not be related to potential recombinase activity in lymphocytes, as consensus recombination signal sequences could not be found in the NCCR region. NCCR rearrangements are neither required nor a sufficient condition to produce clinical disease. BKV nephropathy and hemorrhagic cystitis are not associated with any unique NCCR configuration or nucleotide sequence.

  13. NPPB structure-specifically activates TRPA1 channels.

    PubMed

    Liu, Kun; Samuel, Manoj; Ho, Melisa; Harrison, Richard K; Paslay, Jeff W

    2010-07-01

    TRPA1 channels have been found to play an important role in mammalian pain sensation, especially when the pain is caused by chemicals on site of inflammation. A large number of structurally diverse chemicals are found to activate TRPA1 channels, implicating a potential chemosensor in neuronal nociception. Identification of the channel activation by cysteine modification through covalent chemical reaction provides arguments for the diversity of the agonist structures. However, it is largely unknown how nonreactive compounds activate TRPA1 channels. Here, we report that NPPB, a classic Cl(-) channel blocker, potently activated human TRPA1 channels overexpressed in mammalian HEK-293 cells. This effect was confirmed in Ca(2+) imaging assay, patch clamp whole cell and single channel recordings. The NPPB response was quick, fully reversible and replicable, contrary to the effect of covalent modification by AITC. The mutagenesis studies revealed a refreshed look at several mutations known to be critical for the actions of AITC and menthol. The blocking profile of NPPB on these mutants showed that the NPPB activation was similar to that of FTS and different from AITC and menthol. The results indicated a possible close interaction between S5 and N-terminal domains of the channel. We also tested a group of NPPB analogs on TRPA1 channel activities. The results demonstrated that NPPB activation was tightly associated with chemical structure. None of the single chemical group was sufficient to activate the channel, indicating that NPPB activated TRPA1 through a structure-specific mechanism. (c) 2010 Elsevier Inc. All rights reserved.

  14. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  15. Evaluating the BK 21 Program. Research Brief

    ERIC Educational Resources Information Center

    Seong, Somi; Popper, Steven W.; Goldman, Charles A.; Evans, David K.; Grammich, Clifford A.

    2008-01-01

    The Brain Korea 21 program (BK21), an effort to improve Korean universities and research, has attracted a great deal of attention in Korea, producing the need to understand how well the program is meeting its goals. RAND developed a logic model for identifying program goals and dynamics, suggested quantitative and qualitative evaluation methods,…

  16. Down regulated expression of the beta1 subunit of the big-conductance Ca2+ sensitive K+ channel in sphincter of Oddi cells from rabbits fed with a high cholesterol diet.

    PubMed

    Du, Pang; Cui, Guang-Bin; Wang, Ya-Rong; Zhang, Xiao-Yong; Ma, Ke-Jun; Wei, Jing-Guo

    2006-12-01

    Hypercholesterolemia, which is closely related to gallbladder bile stasis, can cause sphincter of Oddi dysfunction (SOD) by increasing the tension of sphincter of Oddi (SO). Intracellular calcium ion concentration ([Ca(2+)](i)) could influence the tension of SO. The beta1 subunit of the big-conductance Ca(2+) sensitive K(+) channel (BK(Ca)) can enhance the sensitivity of the BK(Ca) channel to [Ca(2+)](i). Absence and decline of the BKCa channel subunit beta1 could lead to many diseases. However, the relationship between hypercholesterolemia and the expression of beta1 subunit is not well understood. In this study, we successfully expressed and purified the rabbit BK(Ca) beta1 subunit protein and prepared its polyclonal antibody. The specificity of the prepared antibody was determined by Western blotting. A SOD rabbit model induced by a high cholesterol diet was established and the expression of the beta1 subunit of SO was determined by immunohistochemical staining and western blotting. Compared with the controls, our results demonstrated that hypercholesterolemia could decrease the expression of the beta1 subunit in the SO cells from rabbits. This indicates that lower expression of BKCa channel beta1 subunit might induce SOD.

  17. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels.

    PubMed

    Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori

    2006-03-01

    Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by -30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary beta1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues.

  18. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels

    PubMed Central

    Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori

    2006-01-01

    Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by −30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary β1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues. PMID:16396928

  19. Duration differences of corticostriatal responses in striatal projection neurons depend on calcium activated potassium currents

    PubMed Central

    Arias-García, Mario A.; Tapia, Dagoberto; Flores-Barrera, Edén; Pérez-Ortega, Jesús E.; Bargas, José; Galarraga, Elvira

    2013-01-01

    The firing of striatal projection neurons (SPNs) exhibits afterhyperpolarizing potentials (AHPs) that determine discharge frequency. They are in part generated by Ca2+-activated K+-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs) than in indirect pathway SPNs (iSPNs). In contrast, iSPNs generate dendritic autoregenerative responses. Using whole cell recordings in brain slices, we asked whether the participation of Ca2+-activated K+-currents plays a role in these responses. Secondly, we asked if these currents may explain some differences in synaptic integration between dSPNs and iSPNs. Neurons obtained from BAC D1 and D2 GFP mice were recorded. We used charybdotoxin and apamin to block BK and SK channels, respectively. Both antagonists increased the depolarization and delayed the repolarization of suprathreshold corticostriatal responses in both neuron classes. We also used NS 1619 and NS 309 (CyPPA), to enhance BK and SK channels, respectively. Current enhancers hyperpolarized and accelerated the repolarization of corticostriatal responses in both neuron classes. Nevertheless, these drugs made evident that the contribution of Ca2+-activated K+-currents was different in dSPNs as compared to iSPNs: in dSPNs their activation was slower as though calcium took a diffusion delay to activate them. In contrast, their activation was fast and then sustained in iSPNs as though calcium flux activates them at the moment of entry. The blockade of Ca2+-activated K+-currents made iSPNs to look as dSPNs. Conversely, their enhancement made dSPNs to look as iSPNs. It is concluded that Ca2+-activated K+-currents are a main intrinsic determinant causing the differences in synaptic integration between corticostriatal polysynaptic responses between dSPNs and iSPNs. PMID:24109439

  20. Intermediate-dose cidofovir without probenecid in the treatment of BK virus allograft nephropathy.

    PubMed

    Araya, Carlos E; Lew, Judy F; Fennell, Robert S; Neiberger, Richard E; Dharnidharka, Vikas R

    2006-02-01

    BK virus allograft nephropathy (BKVAN) is a rising complication in kidney transplant recipients. Reducing immunosuppression has been the initial form of therapy in most cases, but is not always associated with improvement in graft function. Anti-viral therapy with low-dose cidofovir (0.25-0.42 mg/kg/dose) has been used successfully in some patients, but dose-related nephrotoxicity has limited its use. We present our experience with 3 kidney transplant recipients diagnosed with BKVAN who received intermediate-dose cidofovir (0.75-1.0 mg/kg/dose) without probenecid, and without concomitant nephrotoxicity. Three female patients, ages 8, 19 and 20 yr, presented with elevated serum creatinine (SCr) values, BK virus stain positive on renal biopsy and high plasma BK viral loads. As a result of viral loads being >2 million copies/ml in two patients and a lack of response to reduction in immunosuppression in the third, we initiated therapy with low-dose cidofovir. Because of persistent positive BK stain and positive plasma viral load, we then administered intermediate-dose cidofovir, without probenecid, for several subsequent doses (seven to 15 infusions till date). All patients tolerated the intermediate-dose cidofovir with no significant rise in SCr during the course of the infusions. The most recent SCr values in all three patients were improved from those at the initial diagnosis of BKVAN. All three patients showed a marked drop in BK viral loads when on intermediate-dose cidofovir, with complete clearing of viremia in two patients. In our experience, intermediate-dose cidofovir without probenecid, used judiciously, is not associated with additional nephrotoxicity and may provide an additional alternative for treatment.

  1. Use of hybridot assay to screen for BK and JC polyomaviruses in non-immunosuppressed patients.

    PubMed Central

    Cobb, J J; Wickenden, C; Snell, M E; Hulme, B; Malcolm, A D; Coleman, D V

    1987-01-01

    Urine samples from 50 patients attending a genitourinary outpatient clinic and from 13 renal allograft recipients were investigated for evidence of infection with human BK and JC polyomaviruses using cytology and a new DNA hybridot assay. Forty four per cent of samples from the renal allograft recipients were positive by cytology and 75% by DNA hybridisation, indicating that hybridot assay is more sensitive than cytological screening. BK and JC viral DNA was found in 20% of the patients attending the genitourinary clinic, showing infection with BK virus and JC virus in a group of patients with clinical conditions not normally associated with immunological deficiency-a finding that has not been reported before. Images Figure PMID:3040812

  2. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  3. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    PubMed

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  4. BK polyomavirus-associated hemorrhagic cystitis among pediatric allogeneic bone marrow transplant recipients: treatment response and evidence for nosocomial transmission.

    PubMed

    Koskenvuo, Minna; Dumoulin, Alexis; Lautenschlager, Irmeli; Auvinen, Eeva; Mannonen, Laura; Anttila, Veli-Jukka; Jahnukainen, Kirsi; Saarinen-Pihkala, Ulla M; Hirsch, Hans H

    2013-01-01

    BK polyomavirus-associated hemorrhagic cystitis (BK-PyVHC) is a significant complication of allogenic hematopoietic stem cell transplantation (HSCT), but risk factors and treatment are currently unresolved. BK-PyVHC typically presents with clinical cystitis, macrohematuria, and increasing urine and blood BKV loads. Characterization of children undergoing allogeneic HSCT with BK-PyVHC and their clinical and antibody response to cidofovir treatment. By prospective screening of urine and plasma in 50 pediatric allogenic HSCT performed between 2008 and 2010, we identified 6 (12%) children with BK-PyVHC. Cidofovir was administered intravenously to 5 patients and intravesically to 4 patients (3 double treatments). Decreasing BKV viremia of>2log(10)copies/mL and clinical resolution was seen in 4 patients over 5-12 weeks. Responses occurred only in patients mounting BKV-specific IgM and IgG responses. Epidemic curve plots, BKV genotyping and contact tracing provided evidence of transmission between 2 BKV-seronegative patients, but ruled out transmission among the remaining four patients The data suggest that BK-PyVHC may be the result of nosocomial transmission in children with low/undetectable BKV antibodies and raises urgent questions about appropriate infection control measures and the role of cidofovir. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. BK/TD models for analyzing in vitro impedance data on cytotoxicity.

    PubMed

    Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R

    2015-06-01

    The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    PubMed

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  7. Prediction of Early BK Virus Infection in Kidney Transplant Recipients by the Number of Cells With Intranuclear Inclusion Bodies (Decoy Cells)

    PubMed Central

    Yamada, Yoshiteru; Tsuchiya, Tomohiro; Inagaki, Isao; Seishima, Mitsuru; Deguchi, Takashi

    2018-01-01

    Background BK virus (BKV) is the cause of nephropathy. Because BKV nephropathy can progress to graft loss, early diagnosis of BKV infection is very important. In this study, we aimed to investigate the utility of quantifying cells with intranuclear inclusion bodies (decoy cells) in urinary sediment for the screening and monitoring of BKV infection in renal transplant recipients at our hospital. Methods This was a retrospective single-center study. Urine sediment examination was performed at each outpatient visit, and the number of decoy cells was measured in the whole microscopic field. Patients (n = 41) were divided into the BK viremia group (blood positive for BKV DNA by polymerase chain reaction [PCR]) and non-BK viremia group (blood negative for BKV DNA by PCR), and the decoy cell count in urinary sediments was examined. Results The maximum decoy cell count was significantly higher (P = 0.04) in the BK viremia group than in the non-BK viremia group. In the receiver operating characteristic curve for the maximum decoy cells, the cutoff value was 507 cells. The area under the receiver operating characteristic curve was 0.8774 (95% confidence interval, 0.7739-0.9810). The number of decoy cells at the time of appearance in the BK viremia group was not significantly different from that in the non-BK viremia group. However, the BK viremia group showed an increasing trend, whereas the non-BK viremia group showed a decreasing trend, in the number of decoy cells. There was a positive correlation between the number of decoy cells and the data from the urine BKV-DNA PCR quantification (correlation coefficient [r] = 0.74). Conclusions Measurement of decoy cells in urinary sediments may predict early BKV infection, and if performed quickly, it may be useful for screening and continuous monitoring of BKV infection in renal transplant recipients. PMID:29464201

  8. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    PubMed

    Basara, N; Rasche, F-M; Schwalenberg, T; Wickenhauser, C; Maier, M; Ivovic, J; Niederwieser, D; Lindner, T H

    2010-01-01

    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor.

  9. Nanofinishing of BK7 glass using a magnetorheological solid rotating core tool.

    PubMed

    Kumar, Sumit; Singh, Anant Kumar

    2018-02-01

    Surface finishing is a promising method to improve the optical characteristics of crown glass. BK7 finds its applications in transmissive optics, i.e., lenses of binoculars, lenses of microscopes, lenses of telescopes, and light-emitting diodes. The magnetorheological (MR) nanofinishing of optical glasses using a solid rotating core tool is found more advantageous than the other advanced finishing processes in aspects such as precision and accuracy. In the present research, the MR nanofinishing with a solid rotating core tool is carried out on the BK7 glass of size 10×10×3  mm. Response surface methodology is conducted in order to find the optimum process parameters. The effects of process parameters on the percentage change in surface roughness are analyzed. The best surface roughness R a and R q values are achieved at 22 nm and 32 nm from the initial of 41 nm and 57 nm in 30 min of the finishing time cycle. To study the surface morphology of nanofinished BK7 glass, scanning electron microscopy is performed with sputter coating of gold on a glass specimen.

  10. Insulin receptor regulates photoreceptor CNG channel activity.

    PubMed

    Gupta, Vivek K; Rajala, Ammaji; Rajala, Raju V S

    2012-12-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.

  11. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential.

    PubMed

    Gavello, Daniela; Carbone, Emilio; Carabelli, Valentina

    2016-07-03

    Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.

  12. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    PubMed Central

    Basara, N.; Rasche, F.-M.; Schwalenberg, T.; Wickenhauser, C.; Maier, M.; Ivovic, J.; Niederwieser, D.; Lindner, T. H.

    2010-01-01

    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor. PMID:20936157

  13. Insulin receptor regulates photoreceptor CNG channel activity

    PubMed Central

    Gupta, Vivek K.; Rajala, Ammaji

    2012-01-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr498 and Tyr503 residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR−/− mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo. PMID:23032687

  14. BK Virus-Associated Nephropathy: Current Situation in a Resource-Limited Country.

    PubMed

    Yooprasert, P; Rotjanapan, P

    Data on BK virus-associated nephropathy (BKVAN) and treatment strategy in a resource-limited country are scarce. This study aimed to evaluate epidemiology of BKVAN and its situation in Thailand. A retrospective analysis was conducted among adult kidney transplant recipients at Ramathibodi Hospital from October 2011 to September 2016. Patients' demographic data, information on kidney transplantation, immunosuppressive therapy, cytomegalovirus and BK virus infections, and allograft outcomes were retrieved and analyzed. This study included 623 kidney transplant recipients. Only 327 patients (52.49%) received BK virus infection screening, and 176 of 327 patients had allograft dysfunction as a trigger for screening. BKVAN was identified in 39 of 327 patients (11.93%). Deceased donor transplantation and cytomegalovirus infection were associated with a higher risk of BKVAN (odds ratio = 2.2, P = .024, 95% confidence intervals [1.1, 4.43], and odds ratio = 2.6, P = .006, 95% confidence intervals [1.29, 5.26], respectively). BKVAN patients were at significantly higher risk for allograft rejection (P < .001) and allograft failure (P = .036). At the end of the study, 4 graft losses were documented (12.12%). BKVAN was associated with high rate of allograft rejection and failure. However, surveillance of its complications has been underperformed at our facility. Implementing a formal practice guideline may improve allograft outcome in resource-limited countries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  16. Polyomavirus-Specific Cellular Immunity: From BK-Virus-Specific Cellular Immunity to BK-Virus-Associated Nephropathy?

    PubMed Central

    Dekeyser, Manon; François, Hélène; Beaudreuil, Séverine; Durrbach, Antoine

    2015-01-01

    In renal transplantation, BK-virus (BKV)-associated nephropathy has emerged as a major complication, with a prevalence of 1–10% and graft loss in >50% of cases. BKV is a member of the polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BKV-specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BKV-associated nephropathy. PMID:26136745

  17. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  18. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study.

    PubMed

    Sun, Peng; Wang, Furong; Wang, Li; Zhang, Yu; Yamamoto, Ryo; Sugai, Tokio; Zhang, Qing; Wang, Zhengda; Kato, Nobuo

    2011-11-09

    Clinical evidence suggests that cortical excitability is increased in depressives. We investigated its cellular basis in a mouse model of depression. In a modified version of forced swimming (FS), mice were initially forced to swim for 5 consecutive days and then were treated daily with repetitive transcranial magnetic stimulation (rTMS) or sham treatment for the following 4 weeks without swimming. On day 2 through day 5, the mice manifested depression-like behaviors. The next and last FS was performed 4 weeks later, which revealed a 4 week maintenance of depression-like behavior in the sham mice. In slices from the sham controls, excitability in cingulate cortex pyramidal cells was elevated in terms of membrane potential and frequencies of spikes evoked by current injection. Depolarized resting potential was shown to depend on suppression of large conductance calcium-activated potassium (BK) channels. This BK channel suppression was confirmed by measuring spike width, which depends on BK channels. Chronic rTMS treatment during the 4 week period significantly reduced the depression-like behavior. In slices obtained from the rTMS mice, normal excitability and BK channel activity were recovered. Expression of a scaffold protein Homer1a was reduced by the FS and reversed by rTMS in the cingulate cortex. Similar recovery in the same behavioral, electrophysiological, and biochemical features was observed after chronic imipramine treatment. The present study demonstrated that manifestation and disappearance of depression-like behavior are in parallel with increase and decrease in cortical neuronal excitability in mice and suggested that regulation of BK channels by Homer1a is involved in this parallelism.

  19. Monitoring of polyomavirus BK viruria in bone marrow transplantation patients by DNA hybridization assay and by polymerase chain reaction: an approach to assess the relationship between BK viruria and hemorrhagic cystitis.

    PubMed

    Azzi, A; Fanci, R; Bosi, A; Ciappi, S; Zakrzewska, K; de Santis, R; Laszlo, D; Guidi, S; Saccardi, R; Vannucchi, A M

    1994-08-01

    An association between long-lasting hemorrhagic cystitis (HC) in bone marrow transplantation (BMT) patients and viral infections, mostly with reactivation of the human polyomavirus BK (BKV), is suggested by several previous reports. We have carried out a prospective study in 55 (30 allogeneic, 24 autologous, 1 syngeneic) BMT recipients with the aim of evaluating the role of BKV in this frequent complication after BMT. To overcome the well known difficulties in BK virus isolation in cell cultures, a DNA hybridization assay and the polymerase chain reaction (PCR) were used for the detection and monitoring of viral urinary shedding, respectively. The presence of human polyomavirus JC and adenovirus DNA was also sought in urine specimens. BK viruria was demonstrated in 52.7% of patients (in 53.3% allogeneic and in 54.1% autologous BMT), whereas JCV and adenovirus were seldom present. Seven cases of HC (20% in allogeneic and 4% in autologous BMT) occurred and in all cases the clinical event was associated with BKV urinary shedding. This study suggests that BKV infection alone does not invariably lead to HC in BMT patients; for HC to occur the presence of other, at present unidentified, factors seems to be necessary.

  20. Collinearly-improved BK evolution meets the HERA data

    DOE PAGES

    Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...

    2015-10-03

    In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov (BK) equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order correctionsmore » to the BK equation which are enhanced by (single or double) collinear logarithms. Furthermore, we then use numerical solutions to this equation to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q 2 = 400 GeV 2 for the exchanged photon, uses as an initial condition the running-coupling version of the McLerran–Venugopalan model, with the QCD coupling running according to the smallest dipole prescription.« less

  1. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  2. BK-virus nephropathy and simultaneous C4d positive staining in renal allografts.

    PubMed

    Honsová, E; Lodererová, A; Viklický, O; Boucek, P

    2005-10-01

    The role of antibodies in rejection of transplanted kidneys was the subject of debate at the last two Banff meetings and in medical journals. Diffuse C4d positive staining of peritubular capillaries (PTCs) was recognized as a marker of antibody-mediated rejection and this morphological feature was included in the updated Banff schema. At the same time polyomavirus infection of the renal allografts has been reported more frequently and is emerging as an important cause of renal allograft dysfunction and graft loss. At the present time, BK-virus nephropathy (BKN) represents the most common viral disease affecting renal allografts. BKN was identified in 6 patients in 12 biopsies and 2 graft nephrectomy specimens of 1115 biopsies between September 2000 and December 2003. Definite virus identification was done by immunohistochemistry. The reason for graft nephrectomies was graft failure due to BKN in a recipient after kidney-pancreas transplantation with good function of his pancreas graft and the necessity of continuing immunosuppression. Detection of C4d deposits was performed by immunofluorescence or by immunohistochemistry. In graftectomy samples C4d detection was performed by immunohistochemistry and retrospectively in all cases of BKN. Focal C4d positive PTCs and BKN were found simultaneously in 9 of 12 needle biopsies and in both graft nephrectomy samples. Detection of C4d by immunohistochemistry disclosed focal C4d positive staining in kidney tissue but diffuse in the sites where BK-virus inclusions in tubular epithelial cells were found. The complement system is part of the host defense response and is crucial to our natural ability to ward off infection. In cases of BKN, virus likely gains access to the bloodstream through injured tubular walls and via PTCs. Vascular endothelium in the PTCs represents a potential target antigen for alloresponse, and simultaneously possibly represents an imprint of complement activation or complement production in the places

  3. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    NASA Astrophysics Data System (ADS)

    Konki, J.; Khuyagbaatar, J.; Uusitalo, J.; Greenlees, P. T.; Auranen, K.; Badran, H.; Block, M.; Briselet, R.; Cox, D. M.; Dasgupta, M.; Di Nitto, A.; Düllmann, Ch. E.; Grahn, T.; Hauschild, K.; Herzán, A.; Herzberg, R.-D.; Heßberger, F. P.; Hinde, D. J.; Julin, R.; Juutinen, S.; Jäger, E.; Kindler, B.; Krier, J.; Leino, M.; Lommel, B.; Lopez-Martens, A.; Luong, D. H.; Mallaburn, M.; Nishio, K.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Rezynkina, K.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Sulignano, B.; Theisen, Ch.; Ward, A.; Yakushev, A.; Yakusheva, V.

    2017-01-01

    The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion-evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6 (2)s and 22-6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα = 8.19 (3)MeV and 8.09 (3)MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16 (6) and 0.04 (2) were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  4. Riluzole activates TRPC5 channels independently of PLC activity

    PubMed Central

    Richter, Julia M; Schaefer, Michael; Hill, Kerstin

    2014-01-01

    BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252

  5. Ent-7α-acetoxytrachyloban-18-oic acid and ent-7α-hydroxytrachyloban-18-oic acid from Xylopia langsdorfiana A. St-Hil. & Tul. modulate K(+) and Ca(2+) channels to reduce cytosolic calcium concentration on guinea pig ileum.

    PubMed

    Santos, Rosimeire F; Martins, Italo R R; Travassos, Rafael A; Tavares, Josean F; Silva, Marcelo S; Paredes-Gamero, Edgar J; Ferreira, Alice T; Nouailhetas, Viviane L A; Aboulafia, Jeannine; Rigoni, Vera L S; da Silva, Bagnólia A

    2012-03-05

    In this study we investigated the mechanism underlying the spasmolytic action of ent-7α-acetoxytrachyloban-18-oic acid (trachylobane-360) and ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318), diterpenes obtained from Xylopia langsdorfiana, on guinea pig ileum. Both compounds inhibited histamine-induced cumulative contractions (slope=3.5±0.9 and 4.4±0.7) that suggests a noncompetitive antagonism to histaminergic receptors. CaCl(2)-induced contractions were nonparallelly and concentration-dependently reduced by both diterpenes, indicating blockade of calcium influx through voltage-dependent calcium channels (Ca(v)). The Ca(v) participation was confirmed since both trachylobanes equipotently relaxed ileum pre-contracted with S-(-)-Bay K8644 (EC(50)=3.5±0.7×10-(5) and 1.1±0.2×10-(5)M) and KCl (EC(50)=5.5±0.3×10-(5) and 1.4±0.2×10-(5)M). K(+) channels participation was confirmed since diterpene-induced relaxation curves were significantly shifted to right in the presence of 5mM tetraethylammonium (TEA(+)) (EC(50)=0.5±0.04×10-(4) and 2.0±0.5×10-(5)M). ATP-sensitive K(+) channel (K(ATP)), voltage activated K(+) channels (K(V)), small conductance calcium-activated K(+) channels (SK(Ca)) or big conductance calcium-activated K(+) channels (BK(Ca)) did not seem to participate of trachylobane-360 spasmolytic action. However trachylobane-318 modulated positively K(ATP), K(V) and SK(Ca) (EC(50)=1.1±0.3×10-(5), 0.7±0.2×10-(5) and 0.7±0.2×10-(5)M), but not BK(Ca). A fluorescence analysis technique confirmed the decrease of cytosolic calcium concentration ([Ca(2+)](c)) induced by both trachylobanes in ileal myocytes. In conclusion, trachylobane-360 and trachylobane-318 induced spasmolytic activity by K(+) channel positive modulation and Ca(2+) channel blockade, which results in [Ca(2+)](c) reduction at cellular level leading to smooth muscle relaxation. Copyright © 2011. Published by Elsevier B.V.

  6. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  7. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  8. Berberine reduced blood pressure and improved vasodilation in diabetic rats.

    PubMed

    Ma, Yu-Guang; Liang, Liang; Zhang, Yin-Bin; Wang, Bao-Feng; Bai, Yun-Gang; Dai, Zhi-Jun; Xie, Man-Jiang; Wang, Zhong-Wei

    2017-10-01

    Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca 2+ -activated K + channel (BK Ca ) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and β1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BK Ca β1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BK Ca channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BK Ca channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes. © 2017 Society for Endocrinology.

  9. Clinical Utility of Urinary Cytology to Detect BK Viral Nephropathy.

    PubMed

    Nankivell, Brian J; Renthawa, Jasveen; Jeoffreys, Neisha; Kable, Kathy; O'Connell, Philip J; Chapman, Jeremy R; Wong, Germaine; Sharma, Raghwa N

    2015-08-01

    Reactivation of BK polyoma virus can result in destructive viral allograft nephropathy (BKVAN) with limited treatment options. Screening programs using surrogate markers of viral replication are important preventive strategies, guiding immunosuppression reduction. We prospectively evaluated the diagnostic test performance of urinary decoy cells and urinary SV40T immunochemistry of exfoliated cells, to screen for BKVAN, (defined by reference histology with SV40 immunohistochemistry, n = 704 samples), compared with quantitative viremia, from 211 kidney and 141 kidney-pancreas transplant recipients. The disease prevalence of BKVAN was 2.6%. Decoy cells occurred in 95 of 704 (13.5%) samples, with a sensitivity of 66.7%, specificity of 88.6%, positive predictive value (PPV) of 11.7%, and negative predictive value of 98.5% to predict histologically proven BKVAN. Quantification of decoy cells improved the PPV to 32.1% (10 ≥ cells threshold). Immunohistochemical staining of urinary exfoliated cells for SV40T improved sensitivity to 85.7%, detecting atypical or degenerate infected cells (specificity of 92.3% and PPV of 33.3%), but was hampered by technical failures. Viremia occurred in 90 of 704 (12.8%) with sensitivity of 96.3%, specificity of 90.3%, PPV of 31.5%, and negative predictive value of 99.8%. The receiver-operator curve performance of quantitative viremia surpassed decoy cells (area under the curve of 0.95 and 0.79, respectively, P = 0.0018 for differences). Combining decoy cell and BK viremia in a diagnostic matrix improved prediction of BKVAN and diagnostic risk stratification, especially for high-level positive results. Although quantified decoy cells are acceptable surrogate markers of BK viral replication with unexceptional test performances, quantitative viremia displayed superior test characteristics and is suggested as the screening test of choice.

  10. BK Virus Load Associated with Serum Levels of sCD30 in Renal Transplant Recipients

    PubMed Central

    Malik, Salma N.; Al-Saffer, Jinan M.; Jawad, Rana S.

    2016-01-01

    Background. Rejection is the main drawback facing the renal transplant operations. Complicated and overlapping factors, mainly related to the immune system, are responsible for this rejection. Elevated serum levels of sCD30 were frequently recorded as an indicator for renal allograft rejection, while BV virus is considered as one of the most serious consequences for immunosuppressive treatment of renal transplant recipients (RTRs). Aims. This study aimed to determine the association of BK virus load with serum levels of sCD30 in RTRs suffering from nephropathy. Patients and Methods. A total of 50 RTRs with nephropathy and 30 age-matched apparently healthy individuals were recruited for this study. Serum samples were obtained from each participant. Real-time PCR was used to quantify BK virus load in RTRs serum, while ELISA technique was employed to estimate serum levels of sCD30. Results. Twenty-two percent of RTRs had detectable BKV with mean viral load of 1.094E + 06 ± 2.291E + 06. RTRs showed higher mean serum level of sCD30 (20.669 ± 18.713 U/mL) than that of controls (5.517 ± 5.304 U/mL) with significant difference. BK virus load had significant positive correlation with the serum levels of sCD30 in RTRs group. Conclusion. These results suggest that serum levels of sCD30 could be used as an indicator of BK viremia, and accordingly the immunosuppressive regime should be adjusted. PMID:27051424

  11. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  12. Large conductance Ca(2+)-activated K(+) channel (BKCa) activating properties of a series of novel N-arylbenzamides: Channel subunit dependent effects.

    PubMed

    Kirby, R W; Martelli, A; Calderone, V; McKay, N G; Lawson, K

    2013-07-15

    Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α+β1-subunit complex. Channel activity was determined using a non-radioactive Rb(+) efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb(+) efflux both in cells expressing α-subunit alone or α+β1-subunits. Co-expression of the β1-subunit modified the Rb(+) efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α+β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α+β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α+β1-subunit expressing cells. In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats.

    PubMed

    Li, Zheng-Wei; Wu, Bin; Ye, Pin; Tan, Zhi-Yong; Ji, Yong-Hua

    2016-12-01

    A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca 2+ -activated K + (BK Ca ) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BK Ca channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.

  14. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+). Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Active integrated filters for RF-photonic channelizers.

    PubMed

    El Nagdi, Amr; Liu, Ke; LaFave, Tim P; Hunt, Louis R; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L; Christensen, Marc P

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1-5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.

  16. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels

    PubMed Central

    Phadnis, Nitin

    2017-01-01

    Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. PMID:28810709

  17. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy.

    PubMed

    Carter, Richard M; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R; Daniel Esser, M J; Lamb, Robert A; Hand, Duncan P

    2017-06-01

    We report systematic analysis and comparison of ps-laser microwelding of industry relevant Al6082 parts to SiO 2 and BK7. Parameter mapping of pulse energy and focal depth on the weld strength is presented. The welding process was found to be strongly dependent on the focal plane but has a large tolerance to variation in pulse energy. Accelerated lifetime tests by thermal cycling from -50° to +90°C are presented. Welds in Al6082-BK7 parts survive over the full temperature range where the ratio of thermal expansion coefficients is 3.4:1. Welds in Al6082-SiO 2 parts (ratio 47.1:1) survive only a limited temperature range.

  18. Potassium and ANO1/TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis

    PubMed Central

    Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J

    2012-01-01

    BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103

  19. Results of gamma activity traverses made in process tube channels and VSR channels at 105-KW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, M.C. Jr.

    1955-02-03

    Activity traverses were made at Hanford reactor 105-KW in VSR channels 23, 29, 37, 46, 55, 63 and 69 and in process channels 4669, 4569, 4668, 4670 and 4769. These traverses were made during cleaning operations to assist in the location of any contaminated material in these channels and again after completion of the cleaning operations to determine if all of the contaminated material was removed. Upon completion of the cleaning of the VSR channels and process channels activity traverses were made in all of the channels. The results of these traverses show that no detectable amounts of contaminated materialmore » were present in any of these channels. The traverses made in the VSR channels all show a large peak in the lower part of the pile indicating that the metal in the lower part of the pile received as much as five times the integrated exposure received by the metal in the upper half of the pile. 15 figs.« less

  20. Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1

    PubMed Central

    Thompson, Jill L; Shuttleworth, Trevor J

    2013-01-01

    Currently, Orai proteins are known to encode two distinct agonist-activated, highly calcium-selective channels: the store-operated Ca2+ release-activated Ca2+ (CRAC) channels, and the store-independent, arachidonic acid-activated ARC channels. Surprisingly, whilst the trigger for activation of these channels is entirely different, both depend on stromal interacting molecule 1 (STIM1). However, whilst STIM1 in the endoplasmic reticulum membrane is the critical sensor for the depletion of this calcium store that triggers CRAC channel activation, it is the pool of STIM1 constitutively resident in the plasma membrane that is essential for activation of the ARC channels. Here, using a variety of approaches, we show that the key domains within the cytosolic part of STIM1 identified as critical for the activation of CRAC channels are also key for activation of the ARC channels. However, examination of the actual steps involved in such activation reveal marked differences between these two Orai channel types. Specifically, loss of calcium from the EF-hand of STIM1 that forms the key initiation point for activation of the CRAC channels has no effect on ARC channel activity. Secondly, in marked contrast to the dynamic and labile nature of interactions between STIM1 and the CRAC channels, STIM1 in the plasma membrane appears to be constitutively associated with the ARC channels. Finally, specific mutations in STIM1 that induce an extended, constitutively active, conformation for the CRAC channels actually prevent activation of the ARC channels by arachidonic acid. Based on these findings, we propose that the likely role of arachidonic acid lies in inducing the actual gating of the channel. PMID:23690558

  1. Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade.

    PubMed

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-01-15

    Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2

  2. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells.

    PubMed

    Kucherenko, Yuliya V; Wagner-Britz, Lisa; Bernhardt, Ingolf; Lang, Florian

    2013-04-01

    DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.

  3. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2017-07-01

    Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    PubMed

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  5. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker

    PubMed Central

    Ta, Chau M; Adomaviciene, Aiste; Rorsman, Nils J G; Garnett, Hannah

    2016-01-01

    Background and Purpose Calcium‐activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene‐9‐carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. Experimental Approach Patch‐clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. Key Results In the presence of high intracellular Ca2+, A9C inhibited TMEM16A currents in a voltage‐dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca2+ concentrations, was also voltage‐dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open‐channel block mechanism. Activation was due to a dramatic leftward shift in the steady‐state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl−, suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. Conclusions and Implications A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels. PMID:26562072

  6. Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model

    PubMed Central

    Cardoso, Ronie Cleverson; Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Carlotti, Carlos Gilberto; Walz, Roger; Alvarez-Silva, Márcio; Trentin, Andréa Gonçalves; Nicolau, Mauro

    2004-01-01

    Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study. PMID:15458573

  7. BAD and KATP channels regulate neuron excitability and epileptiform activity

    PubMed Central

    Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L

    2018-01-01

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690

  8. The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells.

    PubMed

    Park, Won Sun; Son, Youn Kyoung; Ko, Eun A; Ko, Jae-Hong; Lee, Hyang Ae; Park, Kyoung Sun; Earm, Yung E

    2005-06-17

    We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.

  9. Recombined sequences between the non-coding control regions of JC and BK viruses found in the urine of a renal transplantation patient.

    PubMed

    Liaw, Yu-Ching; Chen, Cheng-Hsu; Shu, Kuo-Hsiung; Fang, Chiung-Yao; Ou, Wei-Chih; Chen, Pei-Lain; Shen, Cheng-Huang; Lin, Mien-Chun; Chang, Deching; Wang, Meilin

    2012-12-01

    Kidney cells are the common host for JC virus (JCV) and BK virus (BKV). Reactivation of JCV and/or BKV in patients after organ transplantation, such as renal transplantation, may cause hemorrhagic cystitis and polyomavirus-associated nephropathy. Furthermore, JCV and BKV may be shed in the urine after reactivation in the kidney. Rearranged as well as archetypal non-coding control regions (NCCRs) of JCV and BKV have been frequently identified in human samples. In this study, three JC/BK recombined NCCR sequences were identified in the urine of a patient who had undergone renal transplantation. They were designated as JC-BK hybrids 1, 2, and 3. The three JC/BK recombinant NCCRs contain up-stream JCV as well as down-stream BKV sequences. Deletions of both JCV and BKV sequences were found in these recombined NCCRs. Recombination of DNA sequences between JCV and BKV may occur during co-infection due to the relatively high homology of the two viral genomes.

  10. Thermally activated TRP channels: molecular sensors for temperature detection.

    PubMed

    Castillo, Karen; Diaz-Franulic, Ignacio; Canan, Jonathan; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2018-01-24

    Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.

  11. Lubiprostone: a chloride channel activator.

    PubMed

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  12. Contact activation: a revision.

    PubMed

    Schmaier, A H

    1997-07-01

    In conclusion, a revised view of the contact system has been presented. This system has little to do with the initiation of hemostasis. Like lupus anticoagulants, deficiencies of contact proteins give prolonged APTTs but may be risk factors for thrombosis. BK from kininogens is a potent modulator of vascular biology inducing vasodilation, tissue plasminogen activator release, and prostacyclin liberation. Kininogens, themselves, are selective inhibitors of alpha-thrombin-induced platelet activation preventing alpha-thrombin from cleaving the cloned thrombin receptor after arginine41. Kininogens' alpha-thrombin inhibitory activity exists in intact kininogens, BK, and all of BK's breakdown products. HK also is the pivotal protein for contact protein assembly on endothelium. It is the receptor for prekallikrein which when bound to HK becomes activated to kallikrein by an endothelial cell enzyme system independent of activated forms of plasma factor XII. Prekallikrein activation on endothelial cells results in kinetically favorable single chain urokinase and plasminogen activation. Thus the "physiologic, negatively charged surface" for contact system activation is really the assembly of these proteins on cell membranes and activation by membrane-associated enzymes.

  13. Use-dependent activation of neuronal Kv1.2 channel complexes.

    PubMed

    Baronas, Victoria A; McGuinness, Brandon R; Brigidi, G Stefano; Gomm Kolisko, Rachel N; Vilin, Yury Y; Kim, Robin Y; Lynn, Francis C; Bamji, Shernaz X; Yang, Runying; Kurata, Harley T

    2015-02-25

    In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons. Copyright © 2015 the authors 0270-6474/15/353515-10$15.00/0.

  14. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl− channels

    PubMed Central

    Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu

    2001-01-01

    Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521

  15. Proton and non-proton activation of ASIC channels

    PubMed Central

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization. PMID:28384246

  16. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones

    PubMed Central

    Canepari, Marco; Ogden, David

    2006-01-01

    Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of l-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated transient K+ conductance was seen prior to the slow EPSC (sEPSC). It was seen only in PNs previously allowed to fire spontaneously or held at depolarized potentials for several seconds and was slowly inhibited by agatoxin IVA, which blocks P/Q-type Ca2+ channels. It peaked in 148 ms, had well-defined kinetics and, unlike the sEPSC, was abolished by the phospholipase C (PLC) inhibitor U73122. It was blocked by the BK Ca2+-activated K+ channel blocker iberiotoxin and unaffected by apamin, indicating selective activation of BK channels by PLC-dependent store-released Ca2+. The K+ conductance and underlying transient Ca2+ release showed a highly reproducible delay of 99.5 ms following PF burst stimulation, with a precision of 1–2 ms in repeated responses of the same PN, and a subsequent fast rise and fall of Ca2+ concentration. Analysis of Ca2+ signals showed that activation of the K+ conductance by Ca2+ release occured in small dendrites and subresolution structures, most probably spines. The results show that PF burst stimulation activates two pathways of mGluR1 signalling in PNs. First, transient, PLC-dependent Ca2+ release from stores with precisely reproducible timing and second, slower Ca2+ influx in the cation-permeable sEPSC channel. The priming by prior Ca2+ influx in P/Q-type Ca2+ channels may determine the path of mGluR1 signalling. The precise timing of PLC-mediated store release may be important for interactions of PF mGluR1 signalling with other inputs to the PN. PMID:16497716

  17. BK virus (BKV) plasma dynamics in patients with BKV-associated hemorrhagic cystitis following allogeneic stem cell transplantation.

    PubMed

    Drew, R J; Walsh, A; Ní Laoi, B; Conneally, E; Crowley, B

    2013-06-01

    The use of real-time polymerase chain reaction testing in the investigation of BK virus (BKV)-associated disease has been widely studied in renal transplant recipients; however, far less research has been done in this area with respect to the plasma BK viral load dynamics of BKV hemorrhagic cystitis (BKV-HC) in hematopoietic stem cell transplant recipients. The aim of this study was to examine the BK viral load dynamics in plasma samples collected from patients post transplant who had laboratory-confirmed BKV-HC. Patients who developed BK viremia were compared with patients who did not develop viremia, and a statistical comparison of risk factors for viremia was performed. Seventeen patients were included in this study. Urine samples from the day of BKV diagnosis were available in 13 of the 17 cases. In total, 154 archived plasma samples from around the time of the BKV-HC event were also included in the study from these 17 patients. The median time from transplantation to the onset of detectable viremia was 68 days. The median viral load in the 13 urine samples was 1.8 × 10(8) copies/mL, which was significantly higher than the median viral load in the 38 positive plasma samples of 6.6 × 10(2) copies/mL (Mann-Whitney test, U = 16, P < 0.001). The lymphocyte count on the day of the positive BKV test was significantly lower in patients with BKV viremia than in patients with no viremia (P = 0.02) and also the white cell and platelet counts were lower on the day of the first positive BKV test. Although there is not inter-patient consistency as regards correlation between urinary BK viral loads and severity of clinical BKV-HC, in individual patients the decline in viral load in plasma did correlate with clinical recovery. © 2013 John Wiley & Sons A/S.

  18. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    PubMed

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  19. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    PubMed

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  20. Modulation of Gardos channel activity by cytokines in sickle erythrocytes.

    PubMed

    Rivera, Alicia; Jarolim, Petr; Brugnara, Carlo

    2002-01-01

    It has recently been shown that the Gardos channel activity of mouse erythrocytes can be modified by endothelins, suggesting a functional linkage between endothelin receptors and the Gardos channel. Using (86)Rubidium ((86)Rb) influx, effects were estimated of proinflammatory molecules such as platelet activator factor (PAF), endothelin-1 (ET-1), interleukin-10 (IL-10), and regulated on activation normal T cells expressed and secreted (RANTES) on the Gardos channel activity in human normal and sickle red cells. It was found that PAF (EC(50): 15 +/- 7 nM), RANTES (EC(50), 9 +/- 6 ng/mL [1.2 +/- 0.8 nM]), IL-10 (EC(50), 11 +/- 8 ng/mL [204 +/- 148 nM]), and ET-1 (EC(50), 123 +/- 34 nM) induce a significant increase in Gardos channel activity-between 28% and 84%-over the control. In addition, these agents modify the Gardos channel affinity for internal Ca(++) (K(0.5)) by 2- to 6-fold. Biochemical evidence is provided for the presence of ET receptor subtype B in sickle and normal red cells. Furthermore, it was found that ET-1, PAF, RANTES, and IL-10 induce a significant increase in red cell density (P <.05). These data suggest that activation of the Gardos channel is functionally coupled to receptor motifs such as C-X-C (PAF), C-C (RANTES), and ET receptor subtype B. Thus, cell volume regulation or erythrocyte hydration states might be altered by activation of the Gardos channel by cytokines in vivo. The role of these mediators in promoting sickle cell dehydration in vivo is under investigation.

  1. Relationship of BK polyoma virus (BKV) in the urine with hemorrhagic cystitis and renal function in recipients of T Cell-depleted peripheral blood and cord blood stem cell transplantations.

    PubMed

    Lee, Yeon Joo; Zheng, Junting; Kolitsopoulos, Yovanna; Chung, Dick; Amigues, Isabelle; Son, Tammy; Choo, Kathleen; Hester, Jeff; Giralt, Sergio A; Glezerman, Ilya G; Jakubowski, Ann A; Papanicolaou, Genovefa A

    2014-08-01

    Hematopoietic stem cell transplant (HSCT) recipients are at significant risk for BK virus (BKV) reactivation, hemorrhagic cystitis (HC), and renal dysfunction. We prospectively monitored 98 patients who had received HSCT by serial BKV PCR in the urine through day (D) +100 to analyze the relationship between BK viruria and HC, serum creatinine (Cr), and creatinine clearance (CrCl) through D +180 or death. Patients, median age 52 years (range, 20 to 73), received T cell-depleted (50%) or cord blood allografts (21%). Median pre-HSCT BKV IgG titers were 1:10,240. Incremental increase in BKV IgG titers correlated with developing BK viruria ≥ 10(7) copies/mL. By D +100, 53 (54%) patients had BK viruria. BKV load in the urine increased at engraftment and persisted throughout D +100. HC developed in 10 patients (10%); 7 of 10 with BK viruria. In competing risk analyses, BK viruria ≥ 10(7) copies/mL, older age, cytomegalovirus reactivation, and foscarnet use were risk factors for HC. Cr and CrCl at 2, 3, and 6 months after HSCT were similar between patients with and without BK viruria. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

    PubMed Central

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan

    2013-01-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981

  3. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K+ and Ca2+ channels.

    PubMed

    Marinko, Marija; Jankovic, Goran; Nenezic, Dragoslav; Milojevic, Predrag; Stojanovic, Ivan; Kanjuh, Vladimir; Novakovic, Aleksandra

    2018-02-01

    In this study, we aimed to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human saphenous vein (HSV), as a part of its cardioprotective action, and to define the mechanisms underlying this vasorelaxation. (-)-Epicatechin induced a concentration-dependent relaxation of HSV pre-contracted by phenylephrine. Among K + channel blockers, 4-aminopyridine, margatoxin, and iberiotoxin significantly inhibited relaxation of HSV, while glibenclamide considerably reduced effects of the high concentrations of (-)-epicatechin. Additionally, (-)-epicatechin relaxed contraction induced by 80 mM K + , whereas in the presence of nifedipine produced partial relaxation of HSV rings pre-contracted by phenylephrine. In Ca 2+ -free solution, (-)-epicatechin relaxed contraction induced by phenylephrine, but had no effect on contraction induced by caffeine. A sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, thapsigargin, significantly reduced relaxation of HSV produced by (-)-epicatechin. These results demonstrate that (-)-epicatechin produces endothelium-independent relaxation of isolated HSV rings. Vasorelaxation to (-)-epicatechin probably involves activation of 4-aminopyridine- and margatoxin-sensitive K V channels, BK Ca channels, and at least partly, K ATP channels. In addition, not only the inhibition of extracellular Ca 2+ influx, but regulation of the intracellular Ca 2+ release, via inositol-trisphosphate receptors and reuptake into sarcoplasmic reticulum, via stimulation of Ca 2+ -ATPase, as well, most likely participate in (-)-epicatechin-induced relaxation of HSV. Copyright © 2017 John Wiley & Sons, Ltd.

  4. The non-diuretic hypotensive effects of thiazides are enhanced during volume depletion states

    PubMed Central

    Alshahrani, Saeed; Rapoport, Robert M.; Zahedi, Kamyar; Jiang, Min; Nieman, Michelle; Barone, Sharon; Meredith, Andrea L.; Lorenz, John N.; Rubinstein, Jack

    2017-01-01

    Thiazide derivatives including Hydrochlorothiazide (HCTZ) represent the most common treatment of mild to moderate hypertension. Thiazides initially enhance diuresis via inhibition of the kidney Na+-Cl- Cotransporter (NCC). However, chronic volume depletion and diuresis are minimal while lowered blood pressure (BP) is maintained on thiazides. Thus, a vasodilator action of thiazides is proposed, likely via Ca2+-activated K+ (BK) channels in vascular smooth muscles. This study ascertains the role of volume depletion induced by salt restriction or salt wasting in NCC KO mice on the non-diuretic hypotensive action of HCTZ. HCTZ (20mg/kg s.c.) lowered BP in 1) NCC KO on a salt restricted diet but not with normal diet; 2) in volume depleted but not in volume resuscitated pendrin/NCC dKO mice; the BP reduction occurs without any enhancement in salt excretion or reduction in cardiac output. HCTZ still lowered BP following treatment of NCC KO on salt restricted diet with paxilline (8 mg/kg, i.p.), a BK channel blocker, and in BK KO and BK/NCC dKO mice on salt restricted diet. In aortic rings from NCC KO mice on normal and low salt diet, HCTZ did not alter and minimally decreased maximal phenylephrine contraction, respectively, while contractile sensitivity remained unchanged. These results demonstrate 1) the non-diuretic hypotensive effects of thiazides are augmented with volume depletion and 2) that the BP reduction is likely the result of HCTZ inhibition of vasoconstriction through a pathway dependent on factors present in vivo, is unrelated to BK channel activation, and involves processes associated with intravascular volume depletion. PMID:28719636

  5. Irreversible temperature gating in trpv1 sheds light on channel activation.

    PubMed

    Sánchez-Moreno, Ana; Guevara-Hernández, Eduardo; Contreras-Cervera, Ricardo; Rangel-Yescas, Gisela; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2018-06-05

    Temperature-activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening. © 2018, Sánchez-Moreno et al.

  6. Irreversible temperature gating in trpv1 sheds light on channel activation

    PubMed Central

    Sánchez-Moreno, Ana; Guevara-Hernández, Eduardo; Contreras-Cervera, Ricardo; Rangel-Yescas, Gisela; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara

    2018-01-01

    Temperature-activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening. PMID:29869983

  7. High burden of BK virus-associated hemorrhagic cystitis in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Gilis, L; Morisset, S; Billaud, G; Ducastelle-Leprêtre, S; Labussière-Wallet, H; Nicolini, F-E; Barraco, F; Detrait, M; Thomas, X; Tedone, N; Sobh, M; Chidiac, C; Ferry, T; Salles, G; Michallet, M; Ader, F

    2014-05-01

    BK virus (BKV) reactivation has been increasingly associated with the occurrence of late-onset hemorrhagic cystitis (HC) after allogeneic hematopoietic SCT (allo-HSCT) resulting in morbidity and sometimes mortality. We investigated the incidence, risk factors and outcome of BKV-HC in 323 consecutive adult patients undergoing allo-HSCT over a 5-year period. BK viremia values for HC staging were evaluated, as well as the medico-economic impact of the complication. Forty-three patients developed BKV-HC. In univariate analysis, young age (P=0.028), unrelated donor (P=0.0178), stem cell source (P=0.0001), HLA mismatching (P=0.0022) and BU in conditioning regimen (P=0.01) were associated with a higher risk of developing BKV-HC. In multivariate analysis, patients receiving cord blood units (CBUs) (P=0.0005) and peripheral blood stem cells (P=0.011) represented high-risk subgroups for developing BKV-HC. BK viremia was directly correlated to HC severity (P=0.011) with a 3 to 6-log peak being likely associated with grades 3 or 4 HC. No correlation was found between BKV-HC and acute graft versus host disease or mortality rate. Patients with BKV-HC required a significantly longer duration of hospitalization (P<0.0001), more RBC (P=0.0003) and platelet transfusions (P<0.0001). Over the 5-year study period, the financial cost of the complication was evaluated at \\[euro]2 376 076 ($3 088 899). Strategies to prevent the occurrence of late-onset BKV-HC after allo-HSCT are urgently needed, especially in CBU and peripheral blood stem cell recipients. BK viremia correlates with the severity of the disease. Prospective studies are required to test prophylactic approaches.

  8. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  9. Channeling Children's Energy through Vocabulary Activities

    ERIC Educational Resources Information Center

    Schindler, Andrea

    2006-01-01

    In this article, the author shares vocabulary development activities for young learners. These activities channel students' energy and make learning more effective and fun. The author stresses the importance of giving young learners a good language-learning experience, and the challenges of teaching young learners who are not literate in their L1.…

  10. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  11. Effective pore size and radius of capture for K(+) ions in K-channels.

    PubMed

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-02-02

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

  12. Molecular basis of ancestral vertebrate electroreception

    PubMed Central

    Bellono, Nicholas W.; Leitch, Duncan B.; Julius, David

    2017-01-01

    Elasmobranch fishes, including sharks, rays, and skates, use specialized electrosensory organs called Ampullae of Lorenzini to detect extremely small changes in environmental electric fields. Electrosensory cells within these ampullae are able to discriminate and respond to minute changes in environmental voltage gradients through an as-yet unknown mechanism. Here we show that the voltage-gated calcium channel CaV1.3 and big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important in the detection of specific, weak electrical signals. Both channels exhibit unique properties compared with their mammalian orthologues to support electrosensory functions: structural adaptations in CaV1.3 mediate a low voltage threshold for activation, while alterations in BK support specifically tuned voltage oscillations. These findings reveal a molecular basis of electroreception and demonstrate how discrete evolutionary changes in ion channel structure facilitate sensory adaptation. PMID:28264196

  13. TRPV3 channels mediate strontium-induced mouse egg activation

    PubMed Central

    Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A.; Clapham, David E.

    2014-01-01

    SUMMARY In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a Transient Receptor Potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, as TrpV3−/− eggs failed to permeate Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is the major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078

  14. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  15. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  16. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    NASA Astrophysics Data System (ADS)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  17. A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.

    PubMed

    Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A

    1996-02-01

    Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.

  18. Activation of TRPM7 channels by small molecules under physiological conditions.

    PubMed

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  19. Vaccine for BK Polyomavirus-associated Infections in Transplant Recipients | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI researches identified a BK polyomavirus (BKV) virulent strain that causes chronic urinary tract infections, and the development of vaccine and therapeutic methods that would block BKV pathogenesis. The NCI Laboratory of Cellular Oncology, seek parties to license or co-develop this technology.

  20. BK virus: opportunity makes a pathogen.

    PubMed

    Hirsch, Hans H

    2005-08-01

    More than 70% of the general population worldwide has serological evidence of exposure to Polyomavirus hominis type 1, better known as BK virus (BKV). BKV infection typically occurs during childhood, without specific symptoms, followed by a state of nonreplicative infection in various tissues, with the urogenital tract as the principal site. Asymptomatic reactivation and low-level replication with viruria is observed in 5% of healthy individuals. Persistent high-level BKV replication is the hallmark of polyomavirus-associated nephropathy in renal transplantation and of hemorrhagic cystitis in bone marrow transplantation. Since these manifestations are rare in other types of immunocompromised patients, the presence of specific cofactors is postulated. The role of BKV in autoimmune disease and cancer is a controversial topic and is difficult to determine, because the pathology no longer depends on BKV replication. This article discusses current views of pathogenesis, diagnosis, and treatment.

  1. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  2. Full myeloablative conditioning and an unrelated HLA mismatched donor increase the risk for BK virus-positive hemorrhagic cystitis in allogeneic hematopoetic stem cell transplanted patients.

    PubMed

    Dalianis, Tina; Ljungman, Per

    2011-03-01

    BK virus (BKV)-associated hemorrhagic cystitis (HC), varying from mild hematuria with or without dysuria to life-threating bleeding and clots that may cause urinary obstruction and renal failure, causes significant morbidity and mortality in haematopoetic stem cell transplanted (HSCT) patients. Unfortunately, its development is difficult to predict since BK viruria is very common after HSCT and can be present in patients with and without HC. There is therefore the need to identify risk factors that may increase the risk of developing HC after HSCT. The viral load of BK-viruria, as well as BK viremia, has been monitored for this purpose. Moreover, having full myeoblative conditioning (MC) versus reduced intensity conditioning (RIC) prior to HSCT and an HLA-matched or -mismatched graft from an unrelated donor in contrast to an HLA-matched graft from a related donor have been studied as risk factors for HC. In addition, graft versus host disease has been examined, but has not been defined as a definite risk factor for HC. We conclude that the present evidence suggests that HSCT patients with BK viruria, receiving MC and an unrelated donor graft that is HLA-mismatched have an increased risk for developing HC in comparison to patients receiving RIC and an HLA-matched related donor graft.

  3. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.

    PubMed Central

    Mayer, E A; Loo, D D; Snape, W J; Sachs, G

    1990-01-01

    1. The regulation of Ca2(+)-activated K+ channels by the agonist substance P in freshly dissociated smooth muscle cells from the rabbit longitudinal colonic muscle was characterized using the patch clamp technique. 2. In the cell-attached recording mode, when pipette and bath solutions contained equal [K+] (126 mM), the Ca2(+)-activated K+ channels showed a linear current-voltage relationship (between -50 mV and 50 mV) with a slope conductance of 210 +/- 35 pS (n = 12). Reversal potential measurements indicated that the channel was highly selective for K+ over Na+ (PK/PNa = 110). 3. Channels were activated by depolarizing membrane voltages and cytosolic Ca2+, and in inside-out patches channel activation depended sigmoidally on voltage and [Ca2+]. The potential for half-activation at a cytosolic [Ca2+] of 5 x 10(-6) M was 0 mV. A tenfold increase in cytosolic Ca2+ resulted in a 60 mV shift of the sigmoidal voltage activation curve to more negative potentials. 4. Threshold concentrations of substance P (10(-12) M), which did not result in cell contraction, caused a prolonged activation of K+ channels. The K+ channels were observed to open in clusters: simultaneous opening of multiple channels was interrupted by complete, prolonged channel closure. 5. Lowering bath [Ca2+] to submicromolar concentrations abolished the effect of substance P. The activation of K+ channels by substance P (10(-12) M) was also inhibited by the dihydropyridine nifedipine (10(-6) M), a blocker of L-type Ca2+ channels. 6. In the whole-cell recording mode, with the pipette solution containing 126 mM-KCl, 0.77 mM-EGTA and 1 mM-ATP, depolarization from a holding potential of -70 mV elicited outward currents which increased to steady-state values. These were K+ currents as they were blocked by TEA (tetraethylammonium, 30 mM) and Ba2+ (1 mM) and were abolished when pipette K+ was replaced by Cs+. 7. The depolarization-activated outward current was not affected by lowering extracellular [Ca2+] or by

  4. Adjuvant Ciprofloxacin for Persistent BK Polyomavirus Infection in Kidney Transplant Recipients

    PubMed Central

    Chandran, Sindhu; Vagefi, Parsia A.

    2014-01-01

    Background. BK virus (BKV) infection is a common complication following kidney transplantation. Immunosuppression reduction is the cornerstone of treatment while adjuvant drugs have been tried in small uncontrolled studies. We sought to examine our center's experience with the use of ciprofloxacin in patients with persistent BKV infection. Methods. Retrospective evaluation of the effect of a 30-day ciprofloxacin course (250 mg twice daily) on BKV infection in kidney transplant recipients who had been diagnosed with BK viruria ≥106 copies/mL and viremia ≥500 copies/mL and in whom the infection did not resolve after immunosuppression reduction and/or treatment with other adjuvant agents. BKV in plasma and urine was evaluated after 3 months following treatment with ciprofloxacin. Results. Nine kidney transplant recipients received ciprofloxacin at a median of 130 days following the initial reduction in immunosuppression. Three patients showed complete viral clearance and another 3 had a ≥50% decrease in plasma viral load. No serious adverse events secondary to ciprofloxacin were reported and no grafts were lost due to BKV up to 1 year after treatment. Conclusion. Ciprofloxacin may be a useful therapy for persistent BKV infection despite conventional treatment. Randomized trials are required to evaluate the potential benefit of this adjuvant therapy. PMID:25349720

  5. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  6. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  7. BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Liesl K.; Madden, Vicki; Webster-Cyriaque, Jennifer, E-mail: jennifer@med.unc.ed

    Background: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. Results: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BKmore » virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. Conclusion: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.« less

  8. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  9. Bradykinin activates a cross-signaling pathway between sensory and adrenergic nerve endings in the heart: a novel mechanism of ischemic norepinephrine release?

    PubMed

    Seyedi, N; Maruyama, R; Levi, R

    1999-08-01

    We had shown that bradykinin (BK) generated by cardiac sympathetic nerve endings (i.e., synaptosomes) promotes exocytotic norepinephrine (NE) release in an autocrine mode. Because the synaptosomal preparation may include sensory C-fiber endings, which BK is known to stimulate, sensory nerves could contribute to the proadrenergic effects of BK in the heart. We report that BK is a potent releaser of NE from guinea pig heart synaptosomes (EC(50) approximately 20 nM), an effect mediated by B(2) receptors, and almost completely abolished by prior C-fiber destruction or blockade of calcitonin gene-related peptide and neurokinin-1 receptors. C-fiber destruction also greatly decreased BK-induced NE release from the intact heart, whereas tyramine-induced NE release was unaffected. Furthermore, C-fiber stimulation with capsaicin and activation of calcitonin gene-related peptide and neurokinin-1 receptors initiated NE release from cardiac synaptosomes, indicating that stimulation of sensory neurons in turn activates sympathetic nerve terminals. Thus, BK is likely to release NE in the heart in part by first liberating calcitonin gene-related peptide and Substance P from sensory nerve endings; these neuropeptides then stimulate specific receptors on sympathetic terminals. This action of BK is positively modulated by cyclooxygenase products, attenuated by activation of histamine H(3) receptors, and potentiated at a lower pH. The NE-releasing action of BK is likely to be enhanced in myocardial ischemia, when protons accumulate, C fibers become activated, and the production of prostaglandins and BK increases. Because NE is a major arrhythmogenic agent, the activation of this interneuronal signaling system between sensory and adrenergic neurons may contribute to ischemic dysrhythmias and sudden cardiac death.

  10. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity.

    PubMed

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J V

    2016-12-08

    TMEM16A and TMEM16B are plasma membrane proteins with Ca 2+ -dependent Cl - channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the "activating domain" to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca 2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl - transport.

  11. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    PubMed Central

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-01-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl− channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl− transport. PMID:27929144

  12. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    NASA Astrophysics Data System (ADS)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl- channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl- transport.

  13. Hemorrhagic cystitis and possible neurologic disease from BK virus infection in a patient with AIDS.

    PubMed

    Kinnaird, A N; Anstead, G M

    2010-04-01

    BK virus (BKV)-associated hemorrhagic cystitis occurs in bone marrow transplant recipients but is rare among other immunosuppressed patients. We present a rare case of BKV-associated hemorrhagic cystitis in a 48-year-old man with AIDS and previously diagnosed progressive multifocal leukoencephalopathy.

  14. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  15. Atomic basis for therapeutic activation of neuronal potassium channels

    NASA Astrophysics Data System (ADS)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  16. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    PubMed Central

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance. PMID:26216859

  17. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.

    PubMed Central

    Brown, R L; Snow, S D; Haley, T L

    1998-01-01

    In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the

  18. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation.

    PubMed

    Monet, Michaël; Gkika, Dimitra; Lehen'kyi, V'yacheslav; Pourtier, Albin; Vanden Abeele, Fabien; Bidaux, Gabriel; Juvin, Véronique; Rassendren, François; Humez, Sandrine; Prevarsakaya, Natalia

    2009-03-01

    The physiological role, the mechanisms of activation, as well as the endogenous regulators for the non-selective cationic channel TRPV2 are not known so far. In the present work we report that endogenous lysophospholipids such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) induce a calcium influx via TRPV2 channel. This activation is dependent on the length of the side-chain and the nature of the lysophospholipid head-group. TRPV2-mediated calcium uptake stimulated by LPC and LPI occurred via Gq/Go-protein and phosphatidylinositol-3,4 kinase (PI3,4K) signalling. We have shown that the mechanism of TRPV2 activation induced by LPC and LPI is due to the TRPV2 channel translocation to the plasma membrane. The activation of TRPV2 channel by LPC and LPI leads to an increase in the cell migration of the prostate cancer cell line PC3. We have demonstrated that TRPV2 is directly involved in both steady-state and lysophospholipid-stimulated cancer cell migration. Thus, for the first time, we have identified one of the natural regulators of TRPV2 channel, one of the mechanisms of TRPV2 activation and regulation, as well as its pathophysiological role in cancer.

  19. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  20. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  1. Active Brownian particles escaping a channel in single file

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  2. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    PubMed

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  3. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

    PubMed Central

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir

    2012-01-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190

  4. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    PubMed

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  5. Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels

    PubMed Central

    Nache, Vasilica; Kusch, Jana; Biskup, Christoph; Schulz, Eckhard; Zimmer, Thomas; Hagen, Volker; Benndorf, Klaus

    2008-01-01

    Olfactory-type cyclic nucleotide-gated (CNG) ion channels open by the binding of cyclic nucleotides to a binding domain in the C-terminus. Employing the Eyring rate theory, we performed a thermodynamic analysis of the activation gating in homotetrameric CNGA2 channels. Lowering the temperature shifted the concentration-response relationship to lower concentrations, resulting in a decrease of both the enthalpy ΔH and entropy ΔS upon channel opening, suggesting that the order of an open CNGA2 channel plus its environment is higher than that of the closed channel. Activation time courses induced by cGMP concentration jumps were used to study thermodynamics of the transition state. The activation enthalpies ΔH‡ were positive at all cGMP concentrations. In contrast, the activation entropy ΔS‡ was positive at low cGMP concentrations and became then negative at increasing cGMP concentrations. The enthalpic and entropic parts of the activation energies approximately balance each other at all cGMP concentrations, leaving the free enthalpy of activation in the range between 19 and 21 kcal/mol. We conclude that channel activation proceeds through different pathways at different cGMP concentrations. Compared to the unliganded channel, low cGMP concentrations generate a transitional state of lower order whereas high cGMP concentrations generate a transitional state of higher order. PMID:18567637

  6. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris

    2017-01-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904

  7. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  8. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels

    PubMed Central

    2017-01-01

    TMEM16A and TMEM16B encode for Ca2+-activated Cl− channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B. PMID:28046119

  9. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  10. Different behaviour of BK-virus infection in liver transplant recipients

    PubMed Central

    Umbro, Ilaria; Tinti, Francesca; Muiesan, Paolo; Mitterhofer, Anna Paola

    2016-01-01

    Polyomavirus BK (BKV) infects up to 90% of the general population. After primary infection, occurring early during childhood, a state of non-replicative infection is established in the reno-urinary tract, without complications for immunocompetent hosts. In immunocompromised individuals, particularly transplanted patients, asymptomatic BKV viremia and/or viruria can be observed. Renal grafts may also be sources of infection as BKV prefers kidneys rather than other solid organs for transplantation such as the liver. The mechanism behind the higher incidence of BKV infection in kidney transplant patients, compared to liver or heart transplantation, is unclear and the prevalence of BKV infection in non-renal solid organ transplants has not been yet thoroughly investigated. We evaluated the prevalence of Polyomavirus BK infection among liver transplant recipients. A PubMed search was conducted using the terms BKV infection AND liver transplant recipients; BKV AND non-renal solid organ transplant*; BKV infection AND immunosuppression; the search was limited to title/abstract and English-language articles published from 2000, to March 2015. Eleven relevant studies suggest that the prevalence of BKV viruria and/or viremia among liver transplant recipients is less than that reported in kidney or heart transplant recipients, except when chronic kidney disease (CKD) is present at the same time. Data also suggest that viruric and viremic patients have higher levels of serum creatinine than BKV negative patients. Moreover, no specific immunosuppressive drugs are associated with the onset of BKV nephropathy. The comorbidity of transplantation and CKD could play a major role in promoting BKV replication. PMID:26819520

  11. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    PubMed

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  12. Imaging Large Cohorts of Single Ion Channels and Their Activity

    PubMed Central

    Hiersemenzel, Katia; Brown, Euan R.; Duncan, Rory R.

    2013-01-01

    As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein–protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells. PMID:24027557

  13. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  14. Hyperforin activates nonselective cation channels (NSCCs).

    PubMed

    Treiber, Kristina; Singer, Andrea; Henke, Bettina; Müller, Walter E

    2005-05-01

    A large body of evidence supports the preclinical antidepressant profile of hyperforin including inhibition of the synaptosomal uptake of several neurotransmitters by hyperforin and studies in behavioural models. In contrast to other antidepressants, hyperforin does not directly inhibit neurotransmitter transporters, but instead uptake inhibition seems to be the consequence of an elevated intracellular sodium concentration ([Na+]i). The mechanism of hyperforin-induced elevation of [Na+]i was investigated using two different cell types: human platelets and rat pheochromocytoma cells (PC12 cells). In both cell systems, hyperforin increased both [Na+]i and free intracellular Ca2+ concentration ([Ca2+]i). One pathway for Na+ and Ca2+ entry is mediated by nonselective cation channels (NSCCs), which can be blocked by SK&F 96365 and LOE 908. LOE 908 is a blocker of both NSCC1 and NSCC2 subclasses, while SK&F 96365 blocks NSCC2 only. Both SK&F 96365 and LOE 908 completely inhibited the hyperforin-induced influx of Na+ and Ca2+ into platelets and PC12 cells. This indicates that hyperforin is mainly active upon NSCC2. The effect of hyperforin is inhibited by La3+ and Gd3+, indicating that there is a potential homology with canonical transient receptor potential protein channels (TRPC channels). Moreover, La3+ and Gd3+ attenuate the effect of hyperforin on serotonin uptake in human platelets. Additionally, hyperforin induces barium influx in PC12 cells and this influx can be inhibited by SK&F 96365, LOE 908, Gd3+ and La3+. In summary, these findings suggest that hyperforin represents a new principle for preclinical antidepressant activity, modulating brain neurotransmission by inhibition of neurotransmitter uptake via activation of NSCCs.British Journal of Pharmacology (2005) 145, 75-83. doi:10.1038/sj.bjp.0706155.

  15. Hyperforin activates nonselective cation channels (NSCCs)

    PubMed Central

    Treiber, Kristina; Singer, Andrea; Henke, Bettina; Müller, Walter E

    2005-01-01

    A large body of evidence supports the preclinical antidepressant profile of hyperforin including inhibition of the synaptosomal uptake of several neurotransmitters by hyperforin and studies in behavioural models. In contrast to other antidepressants, hyperforin does not directly inhibit neurotransmitter transporters, but instead uptake inhibition seems to be the consequence of an elevated intracellular sodium concentration ([Na+]i). The mechanism of hyperforin-induced elevation of [Na+]i was investigated using two different cell types: human platelets and rat pheochromocytoma cells (PC12 cells). In both cell systems, hyperforin increased both [Na+]i and free intracellular Ca2+ concentration ([Ca2+]i). One pathway for Na+ and Ca2+ entry is mediated by nonselective cation channels (NSCCs), which can be blocked by SK&F 96365 and LOE 908. LOE 908 is a blocker of both NSCC1 and NSCC2 subclasses, while SK&F 96365 blocks NSCC2 only. Both SK&F 96365 and LOE 908 completely inhibited the hyperforin-induced influx of Na+ and Ca2+ into platelets and PC12 cells. This indicates that hyperforin is mainly active upon NSCC2. The effect of hyperforin is inhibited by La3+ and Gd3+, indicating that there is a potential homology with canonical transient receptor potential protein channels (TRPC channels). Moreover, La3+ and Gd3+ attenuate the effect of hyperforin on serotonin uptake in human platelets. Additionally, hyperforin induces barium influx in PC12 cells and this influx can be inhibited by SK&F 96365, LOE 908, Gd3+ and La3+. In summary, these findings suggest that hyperforin represents a new principle for preclinical antidepressant activity, modulating brain neurotransmission by inhibition of neurotransmitter uptake via activation of NSCCs. PMID:15723093

  16. Store-depletion and hyperforin activate distinct types of Ca(2+)-conducting channels in cortical neurons.

    PubMed

    Gibon, Julien; Tu, Peng; Bouron, Alexandre

    2010-06-01

    Cortical neurons embryos (E13) from murine brain have a wide diversity of plasma membrane Ca(2+)-conducting channels. For instance, they express several types of transient receptor potential channels of C-type (TRPC) and hyperforin, a potent TRPC6-channel activator, controls the activity of TRPC6-like channels. In addition, E13 cortical neurons possess plasma membrane channels activated in response to the depletion of internal Ca(2+) pools. Since some TRPC channels seem to be involved in the activity of store-depletion-activated channels, we investigated whether hyperforin and the depletion of the Ca(2+) stores control similar or distinct Ca(2+) routes. Calcium imaging experiments performed with the fluorescent Ca(2+) indicator Fluo-4 showed that the TRPC3 channel blocker Pyr3 potently inhibits with an IC(50) of 0.5microM the entry of Ca(2+) triggered in response to the thapsigargin-dependent depletion of the Ca(2+) stores. On the other hand, Pyr3 does not block the hyperforin-sensitive Ca(2+) entry. In contrast to the hyperforin responses, the Ca(2+) entry through the store-depletion-activated channels is down-regulated by the competitive tyrosine kinase inhibitors genistein and PP2. In addition, the immunosuppressant FK506, known to modulate several classes of Ca(2+)-conducting channels, strongly attenuates the entry of Ca(2+) through the store-depletion-activated channels, leaving the hyperforin-sensitive responses unaffected. Hence, the Zn(2+) chelator TPEN markedly attenuated the hyperforin-sensitive responses without modifying the thapsigargin-dependent Ca(2+) signals. Pyr3-insensitive channels are key components of the hyperforin-sensitive channels, whereas the thapsigargin-dependent depletion of the Ca(2+) stores of the endoplasmic reticulum activates Pyr3-sensitive channels. Altogether, these data support the notion that hyperforin and the depletion of the Ca(2+) pools control distinct plasma membrane Ca(2+)-conducting channels. This report further

  17. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but notmore » by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.« less

  18. BK virus associated pronounced hemorrhagic cystoureteritis after bone marrow transplantation.

    PubMed

    Haab, Alexander C; Keller, Isabelle S; Padevit, Christian; John, Hubert

    2015-10-01

    Ureteral stenosis due to reactivation of the BK virus (BKV) in a state of immunodeficiency is very rare. More common is the appearance of a hemorrhagic cystitis. This report not only shows bilateral ureteral stenosis after bone marrow transplantation, but also presents severe complications as chronic pelvic pain and impaired kidney function as well as irreparable damage to the whole urinary tract leading to nephroureterectomy, subtrigonal cystectomy and orthotopic ileal neobladder. Finally renal transplantation was required. To our knowledge this is the first case in the literature where such a severe course of BKV associated hemorrhagic cystoureteritis is described.

  19. Channel-forming activity in the venom of the cockroach-hunting wasp, Ampulex compressa.

    PubMed

    Gincel, Dan; Haspel, Gal; Libersat, Frederic

    2004-05-01

    The parasitoid solitary wasp Ampulex compressa uses the cockroach Periplaneta americana as a food supply for its larvae. To subdue its prey, the wasp injects a venom cocktail into the brain of the cockroach. We investigated channel activity of A. compressa venom by collecting venom and incorporating it into a planar lipid bilayer. The venom, reconstituted into the bilayer, showed ion channel activity, forming a fast-fluctuating channel with a small conductance of 20+/-0.1pS, with no voltage sensitivity. These channels were not observed when the venom was digested with proteases before application to the bilayer, but were not affected by exposure to protease after their incorporation into the bilayer, indicating that the active venom component is a peptide. The channels were found to be cation selective with similar selectivity for the monovalent cations K(+), Li(+) and Na(+), but showed high selectivity against anions (Cl(-)) and divalent cations (Ca(2+) and Mg(2+)). This study is the first demonstration and biophysical characterization of channel activity in the venom of A. compressa. The possible functional significance of this channel activity is discussed in light of the unusual nature of the effects of this wasp venom on the behavior of its prey.

  20. Chronic Hypoxia Suppresses Pregnancy-Induced Upregulation of Large-Conductance Ca2+-Activated K+ Channel Activity in Uterine Arteries

    PubMed Central

    Hu, Xiang-Qun; Xiao, Daliao; Zhu, Ronghui; Huang, Xiaohui; Yang, Shumei; Wilson, Sean M.; Zhang, Lubo

    2013-01-01

    Our previous study demonstrated that increased Ca2+-activated K+ (BKCa) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BKCa channel function in uterine arteries. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia during gestation significantly inhibited pregnancy-induced upregulation of BKCa channel activity and suppressed BKCa channel current density in pregnant uterine arteries. This was mediated by a selective downregulation of BKCa channel β1 subunit in the uterine arteries. In accordance, hypoxia abrogated the role of the BKCa channel in regulating pressure-induced myogenic tone of uterine arteries that was significantly elevated in pregnant animals acclimatized to chronic hypoxia. In addition, hypoxia abolished the steroid hormone-mediated increase in the β1 subunit and BKCa channel current density observed in nonpregnant uterine arteries. Although the activation of protein kinase C inhibited BKCa channel current density in pregnant uterine arteries of normoxic sheep, this effect was ablated in the hypoxic animals. The results demonstrate that selectively targeting BKCa channel β1 subunit plays a critical role in the maladaption of uteroplacental circulation caused by chronic hypoxia, which contributes to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia. PMID:22665123

  1. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity

    PubMed Central

    Ader, Christian; Schneider, Robert; Hornig, Sönke; Velisetty, Phanindra; Vardanyan, Vitya; Giller, Karin; Ohmert, Iris; Becker, Stefan; Pongs, Olaf; Baldus, Marc

    2009-01-01

    Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore. PMID:19661921

  2. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones

    PubMed Central

    Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel

    1999-01-01

    Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494

  3. Demonstration of extrapulmonary activity of angiotensin converting enzyme in intact tissue preparations.

    PubMed

    Lembeck, F; Griesbacher, T; Eckhardt, M

    1990-05-01

    1. The activity of angiotensin converting enzyme (ACE) has been studied on functional parameters of intact isolated preparations of extrapulmonary tissues. The conversion of angiotensin I (A I) to angiotensin II (A II) and the cleavage of bradykinin (BK) were used as indicators of ACE activity. Captopril was employed as a specific inhibitor of ACE. 2. Captopril augmented the BK-induced contractions of the rat isolated uterus, the BK- and substance P-induced contractions of the guinea-pig ileum, and the BK-induced venoconstriction in the isolated perfused ear of the rabbit. Degradation of BK by ACE was calculated to be 52% in the rat uterus and 75% in the rabbit perfused ear. 3. Captopril inhibited the A I-induced contractions of the rat isolated colon, the A I-induced vasoconstriction in the isolated perfused ear of the rabbit and the rise in blood pressure induced by i.a. injections of A I in pithed rats. Conversion of A I to A II was calculated to be 13% in the rat colon and 26% in the rabbit perfused ear. 4. From estimations of the A II activity (bioassay on the rat colon) in the effluent of the perfused ear of the rabbit after injections of A I into the arterial inflow cannula it was calculated that approximately one tenth of A I was converted to A II during a single passage through the ear (less than 15 s). 5. The present experiments suggest that the high activity of ACE in endothelium of blood vessels of extrapulmonary tissues may provide an additional (endothelium-dependent) local vasoconstrictor mechanism by the rapid formation of A II and inactivation of BK. The ACE activity in non-vascular smooth muscles, other than those of blood vessels, may also affect the physiological functions of these tissues.

  4. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane.

    PubMed

    Penna, Aubin; Juvin, Véronique; Chemin, Jean; Compan, Vincent; Monet, Michael; Rassendren, François-A

    2006-06-01

    Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.

  5. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  6. The pure anti-oestrogen ICI 182,780 (Faslodex™) activates large conductance Ca2+-activated K+ channels in smooth muscle

    PubMed Central

    Dick, Gregory M

    2002-01-01

    Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095

  7. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.

    PubMed

    Bennekou, P; Kristensen, B I; Christophersen, P

    2003-09-01

    The activation/deactivation kinetics of the human erythrocyte voltage-dependent cation channel was characterized at the single-channel level using inside-out patches. It was found that the time dependence for voltage activation after steps to positive membrane potentials was slow ( t(1/2) about 30 s), whereas the deactivation was fast ( t(1/2) about 15 ms). Both activation and deactivation of this channel were also demonstrated in intact red cells in suspension. At very positive membrane potentials generated by suspension in extracellular low Cl(-) concentrations, the cation conductance switched on with a time constant of about 2 min. Deactivation of the cation channel was clearly demonstrated during transient activation of the Gárdos channel elicited by Ca(2+) influx via the cation channel and ensuing efflux via the Ca(2+) pump. Thus, the voltage-dependent cation channel, the Gárdos channel and the Ca(2+) pump constitute a coupled feedback-regulated system that may become operative under physiological conditions.

  8. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes.

    PubMed

    Maher, Anthony D; Kuchel, Philip W

    2003-08-01

    Ca(2+)-dependent K(+) efflux from human erythrocytes was first described in the 1950s. Subsequent studies revealed that a K(+)-specific membrane protein (the Gárdos channel) was responsible for this phenomenon (the Gárdos effect). In recent years several types of Ca-activated K(+) channel have been identified and studied in a wide range of cells, with the erythrocyte Gárdos channel serving as both a model for a broader physiological perspective, and an intriguing component of erythrocyte function. The existence of this channel has raised a number of questions. For example, what is its role in the establishment and maintenance of ionic distribution across the red cell membrane? What role might it play in erythrocyte development? To what extent is it active in circulating erythrocytes? What are the cell-physiological implications of its dysfunction?This review summarises current knowledge of this membrane protein with respect to its function and structure, its physiological roles (some putative) and its contribution to various disease states, and it provides an introduction to adaptable NMR methods, which is our own area of technical expertise, for such ion transport analysis.

  9. Cytomegalovirus and polyomavirus BK posttransplant.

    PubMed

    Egli, Adrian; Binggeli, Simone; Bodaghi, Sohrab; Dumoulin, Alexis; Funk, Georg A; Khanna, Nina; Leuenberger, David; Gosert, Rainer; Hirsch, Hans H

    2007-09-01

    Virus replication and progression to disease in transplant patients is determined by patient-, graft- and virus-specific factors. This complex interaction is modulated by the net state of immunosuppression and its impact on virus-specific cellular immunity. Due to the increasing potency of immunosuppressive regimens, graft rejections have decreased, but susceptibility to infections has increased. Therefore, cytomegalovirus (CMV) remains the most important viral pathogen posttransplant despite availability of effective antiviral drugs and validated strategies for prophylactic, preemptive and therapeutic intervention. CMV replication can affect almost every organ system, with frequent recurrences and increasing rates of antiviral resistance. Together with indirect long-term effects, CMV significantly reduces graft and patient survival after solid organ and hematopoietic stem cell transplantation. The human polyomavirus called BK virus (BKV), on the other hand, only recently surfaced as pathogen with organ tropism largely limited to the reno-urinary tract, manifesting as polyomavirus-associated nephropathy in kidney transplant and hemorrhagic cystitis in hematopoetic stem cell transplant patients. No licensed anti-polyoma viral drugs are available, and treatment relies mainly on improving immune functions to regain control over BKV replication. In this review, we discuss diagnostic and therapeutic aspects of CMV and BKV replication and disease posttransplantation.

  10. Identification of a pre-active conformation of a pentameric channel receptor

    PubMed Central

    Menny, Anaïs; Lefebvre, Solène N; Schmidpeter, Philipp AM; Drège, Emmanuelle; Fourati, Zaineb; Delarue, Marc; Edelstein, Stuart J; Nimigean, Crina M; Joseph, Delphine; Corringer, Pierre-Jean

    2017-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching. We show that proton application causes a global compaction of the extracellular subunit interface, coupled to an outward motion of the M2-M3 loop near the channel gate. These movements are highly similar in lipid vesicles and detergent micelles. These reorganizations are essentially completed within 2 ms and occur without channel opening at low proton concentration, indicating that they report a pre-active intermediate state in the transition pathway toward activation. This provides a template to investigate the gating of eukaryotic neurotransmitter receptors, for which intermediate states also participate in activation. DOI: http://dx.doi.org/10.7554/eLife.23955.001 PMID:28294942

  11. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels.

    PubMed

    Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta

    2017-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells

    PubMed Central

    Tilley, Drew C.; Eum, Kenneth S.; Fletcher-Taylor, Sebastian; Austin, Daniel C.; Dupré, Christophe; Patrón, Lilian A.; Garcia, Rita L.; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E.; Sack, Jon T.

    2014-01-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX–fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  13. Physiological Maturation of Regenerating Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    2003-01-01

    The bullfrog saccule, a sensor of gravity and substrate-borne vibration, is a model system for hair cell transduction. Saccular hair cells also increase in number throughout adult life and rapidly recover after hair cell damage, making this organ an ideal system for studying hair cell development, repair, and regeneration. We have used of hair cell and supporting cell immunocytochemical markers to identify damaged hair cells and hair cell precursors in organotypic cultures of the bullfrog saccule. We then used an innovative combination of confocal, electron, and time-lapse microscopy to study the fate of damaged hair cells and the origin of new hair cells after gentamicin ototoxicity in normal and mitotically blocked saccular cultures. These studies have shown that gentamicin ototoxicity produces both lethal and sublethal hair cell damage. They have also shown that hair cell recovery in this organ takes place by both the repair of sublethally damaged hair cells and by the replacement of lost hair cells by mitotic regeneration. In parallel studies, we have used biophysical and molecular biological techniques to study the differentiation and innervation of developing, repairing, and regenerating hair cells. More specifically, we have used RT-PCR to obtain the bullfrog homologues of L-type voltage- gated calcium (L-VGCC) and large-conductance Ca(2+)-activated potassium (BK) channel genes. We have then obtained probes for these genes and, using in situ hybridization, begun to examine their expression in the bullfrog saccule and amphibian papilla. We have also used fluorescent-labeled channel toxins and channel toxin derivatives to determine the time of appearance of L-type voltage-gated calcium (L-VGCC) and Ca(2+)-activated potassium (BK) channels and to study dynamic changes in the number, distribution, and co-localization of these proteins in developing, repairing, and regenerating hair cells. Using time-lapse microscopy, we are also studying the dynamic relationship

  14. Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO).

    PubMed

    Barber, David M; Schönberger, Matthias; Burgstaller, Jessica; Levitz, Joshua; Weaver, C David; Isacoff, Ehud Y; Baier, Herwig; Trauner, Dirk

    2016-01-01

    G-protein coupled inwardly rectifying potassium channels (GIRKs) are ubiquitously expressed throughout the human body and are an integral part of inhibitory signal transduction pathways. Upon binding of G βγ subunits released from G-protein coupled receptors (GPCRs), GIRK channels open and reduce the activity of excitable cells via hyperpolarization. As such, they play a role in cardiac output, the coordination of movement and cognition. Due to their involvement in a multitude of pathways, the precision control of GIRK channels is an important endeavour. Here, we describe the development of the photoswitchable agonist LOGO (the L ight O perated G IRK-channel O pener), which activates GIRK channels in the dark and is rapidly deactivated upon exposure to long wavelength UV irradiation. LOGO is the first K + channel opener and selectively targets channels that contain the GIRK1 subunit. It can be used to optically silence action potential firing in dissociated hippocampal neurons and LOGO exhibits activity in vivo , controlling the motility of zebrafish larvae in a light dependent fashion. We envisage that LOGO will be a valuable research tool to dissect the function of GIRK channels from other GPCR dependent signalling pathways.

  15. Activation of KV7 channels stimulates vasodilatation of human placental chorionic plate arteries.

    PubMed

    Mills, T A; Greenwood, S L; Devlin, G; Shweikh, Y; Robinson, M; Cowley, E; Hayward, C E; Cottrell, E C; Tropea, T; Brereton, M F; Dalby-Brown, W; Wareing, M

    2015-06-01

    Potassium (K(+)) channels are key regulators of vascular smooth muscle cell (VSMC) excitability. In systemic small arteries, Kv7 channel expression/activity has been noted and a role in vascular tone regulation demonstrated. We aimed to demonstrate functional Kv7 channels in human fetoplacental small arteries. Human placental chorionic plate arteries (CPAs) were obtained at term. CPA responses to Kv7 channel modulators was determined by wire myography. Presence of Kv7 channel mRNA (encoded by KCNQ1-5) and protein expression were assessed by RT-PCR and immunohistochemistry/immunofluorescence, respectively. Kv7 channel blockade with linopirdine increased CPA basal tone and AVP-induced contraction. Pre-contracted CPAs (AVP; 80 mM K(+) depolarization solution) exhibited significant relaxation to flupirtine, retigabine, the acrylamide (S)-1, and (S) BMS-204352, differential activators of Kv7.1 - Kv7.5 channels. All CPAs assessed expressed KCNQ1 and KCNQ3-5 mRNA; KCNQ2 was expressed only in a subset of CPAs. Kv7 protein expression was confirmed in intact CPAs and isolated VSMCs. Kv7 channels are present and active in fetoplacental vessels, contributing to vascular tone regulation in normal pregnancy. Targeting these channels may represent a therapeutic intervention in pregnancies complicated by increased vascular resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimization, purification, and characterization of L-asparaginase from Actinomycetales bacterium BkSoiiA.

    PubMed

    Dash, Chitrangada; Mohapatra, Sukanti Bala; Maiti, Prasanta Kumar

    2016-01-01

    Actinobacteria are promising source of a wide range of important enzymes, some of which are produced in industrial scale, with others yet to be harnessed. L-Asparaginase is used as an antineoplastic agent. The present work deals with the production and optimization of L-asparaginase from Actinomycetales bacterium BkSoiiA using submerged fermentation in M9 medium. Production optimization resulted in a modified M9 medium with yeast extract and fructose as carbon and nitrogen sources, respectively, at pH 8.0, incubated for 120 hr at 30 ± 2 °C. The crude enzyme was purified to near homogeneity by ammonium sulfate precipitation following dialysis, ion-exchange column chromatography, and finally gel filtration. The sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) revealed an apparent molecular weight of 57 kD. The enzyme was purified 95.06-fold and showed a final specific activity of 204.37 U/mg with 3.49% yield. The purified enzyme showed maximum activity at a pH 10.0 and was stable at pH 7.0 to 9.0. The enzyme was activated by Mn(2+) and strongly inhibited by Ba(2+). All these preliminary characterization suggests that the L-asparaginase from the source may be a tool useful to pharmaceutical industries after further research.

  17. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP-12.

    PubMed

    Hirsch, H H; Yakhontova, K; Lu, M; Manzetti, J

    2016-03-01

    BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV-specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)- and calcineurin-inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR-SP6-kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC-1 kinase inhibitor torin-1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP-12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP-12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.

    PubMed

    Oberhauser, A; Alvarez, O; Latorre, R

    1988-07-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

  19. Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity.

    PubMed

    Jones, Scott L; To, Minh-Son; Stuart, Greg J

    2017-10-23

    Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.

  20. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    PubMed

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  2. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold

    PubMed Central

    Cao, Xu; Ma, Linlin; Yang, Fan

    2014-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247

  3. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  4. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  5. Estradiol-modified prolactin secretion independently of action potentials and Ca2+ and blockade of outward potassium currents in GH3 cells.

    PubMed

    Sánchez, Manuel; Suárez, Lorena; Cantabrana, Begoña; Bordallo, Javier

    2017-01-01

    Estrogens facilitate prolactin (PRL) secretion acting on pituitary cells. In GH 3 cells, estradiol induces acute action potentials and oscillations of intracellular Ca 2+ associated with the secretagogue function. Estradiol modulates several ion channels which may affect the action potential rate and the release of PRL in lactotroph cells, which might depend on its concentration. The aims were to characterize the acute effect of supraphysiological concentrations of estradiol on Ca 2+ and noninactivating K + currents and measure the effect on the spontaneous action potentials and PRL release in the somatolactotroph cell line, GH 3 . Electrophysiological studies were carried out by voltage- and current-clamp techniques and ELISA determination of PRL secretion. Pharmacological concentrations of estradiol (above 1 μM), without a latency period, blocked Ca 2+ channels and noninactivating K + currents, including the large-conductance voltage- and Ca 2+ -activated K + channels (BK), studied in whole-cell nystatin perforated and in excided inside-out patches of GH 3 and CHO cells, transiently transfected with the human α-pore forming subunit of BK. The effect on BK was contrary to the agonist effect associated with the regulatory β 1 -subunits of the BK, which GH 3 cells lack, but its transient transfection did not modify the noninactivating current blockade, suggesting a different mechanism of regulation. Estradiol, at the same concentration range, acutely decreased the frequency of action potentials, an expected effect as consequence of the Ca 2+ channel blockade. Despite this, PRL secretion initially increased, followed by a decrease in long-term incubations. This suggests that, in GH 3 cells, supraphysiological concentrations of estradiol modulating PRL secretion are partially independent of extracellular Ca 2+ influx.

  6. Hemorrhagic cystitis after allogeneic hematopoietic stem cell transplants is the complex result of BK virus infection, preparative regimen intensity and donor type

    PubMed Central

    de Padua Silva, Leandro; Patah, Poliana A.; Saliba, Rima M.; Szewczyk, Nicholas A.; Gilman, Lisa; Neumann, Joyce; Han, Xiang-Yang; Tarrand, Jeffrey; Ribeiro, Rachel; Gulbis, Alison; Shpall, Elizabeth J.; Jones, Roy; Popat, Uday; Walker, Julia A.; Petropoulos, Demetrios; Chiattone, Alexandre; Stewart, John; El-Zimaity, Maha; Anderlini, Paolo; Giralt, Sergio; Champlin, Richard E; de Lima, Marcos

    2010-01-01

    Background Hemorrhagic cystitis is a common cause of morbidity after allogeneic stem cell transplantation, frequently associated with BK virus infection. We hypothesized that patients with positive BK viruria before unrelated or mismatched related donor allogeneic hematopoietic stem cell transplantation have a higher incidence of hemorrhagic cystitis. Design and Methods To test this hypothesis, we prospectively studied 209 patients (median age 49 years, range 19–71) with hematologic malignancies who received bone marrow (n=78), peripheral blood (n=108) or umbilical cord blood (n=23) allogeneic hematopoietic stem cell transplantation after myeloablative (n=110) or reduced intensity conditioning (n=99). Donors were unrelated (n=201) or haploidentical related (n=8). Results Twenty-five patients developed hemorrhagic cystitis. Pre-transplant BK viruria detected by quantitative PCR was positive in 96 patients. The one-year cumulative incidence of hemorrhagic cystitis was 16% in the PCR-positive group versus 9% in the PCR-negative group (P=0.1). The use of umbilical cord blood or a haploidentical donor was the only significant predictor of the incidence of hemorrhagic cystitis on univariate analysis. There was also a trend for a higher incidence after myeloablative conditioning. Multivariate analysis showed that patients who had a positive PCR pre-transplant and received haploidentical or cord blood grafts with myeloablative conditioning had a significantly higher risk of developing hemorrhagic cystitis (58%) than all other recipients (7%, P<0.001). Conclusions Hemorrhagic cystitis is the result of a complex interaction of donor type, preparative regimen intensity, and BK viruria. PMID:20410183

  7. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.

    PubMed

    Kohashi, Tsunehiko; Carlson, Bruce A

    2014-01-01

    Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

  8. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  9. Channel-resolved photo- and Auger-electron spectroscopy of halogenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Kushawaha, R.; Rudenko, A.; Rolles, D.; Xiong, H.; Berrah, N.; Bomme, C.; Savelyev, E.; Kilcoyne, D.

    2016-05-01

    Inner-shell photoelectron and Auger electron spectra of polyatomic molecules such as halogenated hydrocarbons are typically hard to interpret and assign due to many overlapping states that form broad bands even in high-resolution measurements. With the help of electron-ion-ion coincidence measurements performed using the velocity map imaging technique, we are able to detect high-energy (<= 150 eV) photo- and Auger electrons in coincidence with two- or many-body ionic fragmentation channels. Such channel-resolved measurements allow disentangling the overlapping electronic structures and help assigning individual components of the electron spectra to specific potential surfaces and final states. In this work, we present measurements on CH3 I, CH2 IBr, and CH2 ICl molecules in the gas-phase using soft x-ray light provided by the Advanced Light Source at LBNL. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).

  10. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  11. Successful Treatment of BK Virus Hemorrhagic Cystitis (HC) Post Allogenic Hematopoietic Stem Cell Transplantation with Low Dose Cidofovir.

    PubMed

    Arora, R; Jasmita; Singh, M; Garg, A; Gupta, M; Gupta, N

    2017-05-01

    BK virus (BKV) hemorrhagic cystitis (HC) is a serious cause of morbidity and mortality after allogeneic hematopoietic SCT (allo-HSCT) in patients with hematological malignancies. Around half of allogenic HSCT patients present with BKV viruria at some point after HSCT; about 5-40% of these patients subsequently develop active HC. Supportive care including bladder irrigation, blood transfusions and symptomatic pain management remains the mainstay of therapy; the acyclic nucleoside analogue cidofovir is currently the front-line drug for BKV-HC treatment. Here we report the first case of severe hemorrhagic cystitis from India who was successfully treated with low dose cidofovir therapy. © Journal of the Association of Physicians of India 2011.

  12. Pungent products from garlic activate the sensory ion channel TRPA1

    PubMed Central

    Bautista, Diana M.; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E.; Sterner, Olov; Högestätt, Edward D.; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M.

    2005-01-01

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  13. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  14. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  15. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  16. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  17. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  18. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner

    PubMed Central

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David

    2015-01-01

    G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263

  19. Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.

    PubMed

    John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J

    2007-02-01

    Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.

  20. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers

    PubMed Central

    Rosholm, Kadla R.; Baker, Matthew A. B.; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R.; Cuello, Luis G.; Lee, Lawrence K.; Martinac, Boris

    2017-01-01

    The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform. PMID:28345591

  1. Demonstration of extrapulmonary activity of angiotensin converting enzyme in intact tissue preparations.

    PubMed Central

    Lembeck, F.; Griesbacher, T.; Eckhardt, M.

    1990-01-01

    1. The activity of angiotensin converting enzyme (ACE) has been studied on functional parameters of intact isolated preparations of extrapulmonary tissues. The conversion of angiotensin I (A I) to angiotensin II (A II) and the cleavage of bradykinin (BK) were used as indicators of ACE activity. Captopril was employed as a specific inhibitor of ACE. 2. Captopril augmented the BK-induced contractions of the rat isolated uterus, the BK- and substance P-induced contractions of the guinea-pig ileum, and the BK-induced venoconstriction in the isolated perfused ear of the rabbit. Degradation of BK by ACE was calculated to be 52% in the rat uterus and 75% in the rabbit perfused ear. 3. Captopril inhibited the A I-induced contractions of the rat isolated colon, the A I-induced vasoconstriction in the isolated perfused ear of the rabbit and the rise in blood pressure induced by i.a. injections of A I in pithed rats. Conversion of A I to A II was calculated to be 13% in the rat colon and 26% in the rabbit perfused ear. 4. From estimations of the A II activity (bioassay on the rat colon) in the effluent of the perfused ear of the rabbit after injections of A I into the arterial inflow cannula it was calculated that approximately one tenth of A I was converted to A II during a single passage through the ear (less than 15 s).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2164861

  2. Tonantzitlolone is a Nanomolar Potency Activator of TRPC1/4/5 Channels.

    PubMed

    Rubaiy, Hussein N; Ludlow, Melanie J; Siems, Karsten; Norman, Katherine; Foster, Richard; Wolf, Dietmar; Beutler, John A; Beech, David J

    2018-06-02

    The diterpene ester tonantzitlonone (TZL) is a natural product which displays cytotoxicity towards certain types of cancer cell such as renal cell carcinoma cells. The effect is similar to that of (-)-Englerin A (EA) and so, although it is chemically distinct, we investigated whether TZL also targets transient receptor potential canonical (TRPC) channels of the TRPC1, TRPC4 and TRPC5 type (TRPC1/4/5 channels). Renal cell carcinoma A498 cells natively expressing TRPC1 and TRPC4, modified HEK 293 cells over expressing TRPC4, TRPC5, TRPC4-TRPC1 or TRPC5-TRPC1 concatemer, TRPC3 or TRPM2 or CHO cells over expressing TRPV4 were studied by intracellular Ca 2+ measurement or whole-cell or excised membrane patch-clamp electrophysiology. TZL evoked intracellular Ca 2+ elevation in A498 cells, similar to that evoked by EA. TZL activated overexpressed channels with concentration for 50% activation (EC 50 ) at 123 nM (TRPC4), 83 nM (TRPC5), 140 nM (TRPC4-TRPC1) and 61 nM (TRPC5-TRPC1). Effects of TZL were reversible on wash-out and potently inhibited by the TRPC1/4/5 inhibitor Pico145. TZL activated TRPC5 channels when bath-applied to excised outside-out but not inside-out patches. TZL failed to activate endogenous store-operated Ca 2+ entry in HEK 293 cells or overexpressed TRPC3, TRPV4 or TRPM2 channels. TZL is a novel potent agonist for TRPC1/4/5 channels which should be useful for testing the functionality of this type of ion channel and understanding how TRPC1/4/5 agonists achieve selective cytotoxicity against certain types of cancer cell. This article is protected by copyright. All rights reserved.

  3. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    PubMed

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  4. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability

    PubMed Central

    Dell'Orco, James M.; Wasserman, Aaron H.; Chopra, Ravi; Ingram, Melissa A. C.; Hu, Yuan-Shih; Singh, Vikrant; Wulff, Heike; Opal, Puneet; Orr, Harry T.

    2015-01-01

    Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated

  5. Mechanism of activation at the selectivity filter of the KcsA K+ channel

    PubMed Central

    Heer, Florian T; Posson, David J; Wojtas-Niziurski, Wojciech

    2017-01-01

    Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary. PMID:28994652

  6. Characteristics of camel-gate structures with active doping channel profiles

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau

    1996-03-01

    In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.

  7. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels

    PubMed Central

    Ufret-Vincenty, Carmen A.; Klein, Rebecca M.; Collins, Marcus D.; Rosasco, Mario G.; Martinez, Gilbert Q.

    2015-01-01

    Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide. PMID:25918361

  8. A novel type of ATP block on a Ca(2+)-activated K(+) channel from bullfrog erythrocytes.

    PubMed

    Shindo, M; Imai, Y; Sohma, Y

    2000-07-01

    Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.

  9. Complex role of STIM1 in the activation of store-independent Orai1/3 channels

    PubMed Central

    Zhang, Wei; González-Cobos, José C.; Jardin, Isaac; Romanin, Christoph; Matrougui, Khalid

    2014-01-01

    Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. PMID:24567509

  10. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  11. Design, synthesis and structure-activity relationship of indoxacarb analogs as voltage-gated sodium channel blocker.

    PubMed

    Hao, Wenbo; Fu, Chunling; Yu, Huijuan; Chen, Jian; Xu, Hanhong; Shao, Guang; Jiang, Dingxin

    2015-10-15

    Indoxacarb, the first commercialized pyrazoline-type sodium-channel blocker, is a commonly used insecticide because of high selectivity. To discover sodium-channel blocker with high insecticidal activity, a series of novel indoxacarb analogs were designed and synthesized by judicious structural modifications of the substituent group of C5, C6 in indenone and C'4 in benzene ring. Some analogs exhibited significant insecticidal activities against Spodoptera litura F. and excellent BgNav1-1a channel inhibitory activity. The structure-activity analysis indicated that the presence of strong electron-withdrawing group and decreased steric hindrance of indenone ring (R(1), R(2)) in 5- and 6-position could enhance larvicidal activity and BgNav1-1a channel inhibitory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels

    PubMed Central

    Santarelli, Lindsey Ciali; Chen, Jianguo; Heinemann, Stefan H.; Hoshi, Toshinori

    2004-01-01

    Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage

  13. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    PubMed

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  14. Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP.

    PubMed Central

    Serysheva, I I; Schatz, M; van Heel, M; Chiu, W; Hamilton, S L

    1999-01-01

    The functional state of the skeletal muscle Ca2+ release channel is modulated by a number of endogenous molecules during excitation-contraction. Using electron cryomicroscopy and angular reconstitution techniques, we determined the three-dimensional (3D) structure of the skeletal muscle Ca2+ release channel activated by a nonhydrolyzable analog of ATP in the presence of Ca2+. These ligands together produce almost maximum activation of the channel and drive the channel population toward a predominately open state. The resulting 30-A 3D reconstruction reveals long-range conformational changes in the cytoplasmic region that might affect the interaction of the Ca2+ release channel with the t-tubule voltage sensor. In addition, a central opening and mass movements, detected in the transmembrane domain of both the Ca(2+)- and the Ca2+/nucleotide-activated channels, suggest a mechanism for channel opening similar to opening-closing of the iris in a camera diaphragm. PMID:10512814

  15. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q

    PubMed Central

    Yow, Tin T; Pera, Elena; Absalom, Nathan; Heblinski, Marika; Johnston, Graham AR; Hanrahan, Jane R; Chebib, Mary

    2011-01-01

    BACKGROUND G protein-coupled inwardly rectifying potassium (KIR3) channels are important proteins that regulate numerous physiological processes including excitatory responses in the CNS and the control of heart rate. Flavonoids have been shown to have significant health benefits and are a diverse source of compounds for identifying agents with novel mechanisms of action. EXPERIMENTAL APPROACH The flavonoid glycoside, naringin, was evaluated on recombinant human KIR3.1–3.4 and KIR3.1–3.2 expressed in Xenopus oocytes using two-electrode voltage clamp methods. In addition, we evaluated the activity of naringin alone and in the presence of the KIR3 channel blocker tertiapin-Q (0.5 nM, 1 nM and 3 nM) at recombinant KIR3.1–3.4 channels. Site-directed mutagenesis was used to identify amino acids within the M1–M2 loop of the KIR3.1F137S mutant channel important for naringin's activity. KEY RESULTS Naringin (100 µM) had minimal effect on uninjected oocytes but activated KIR3.1–3.4 and KIR3.1–3.2 channels. The activation by naringin of KIR3.1–3.4 channels was inhibited by tertiapin-Q in a competitive manner. An alanine-scan performed on the KIR3.1F137S mutant channel, replacing one by one aromatic amino acids within the M1–M2 loop, identified tyrosines 148 and 150 to be significantly contributing to the affinity of naringin as these mutations reduced the activity of naringin by 20- and 40-fold respectively. CONCLUSIONS AND IMPLICATIONS These results show that naringin is a direct activator of KIR3 channels and that tertiapin-Q shares an overlapping binding site on the KIR3.1–3.4. This is the first example of a ligand that activates KIR3 channels by binding to the extracellular M1–M2 linker of the channel. PMID:21391982

  16. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    PubMed

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  17. Statistical mechanics of an ideal active fluid confined in a channel

    NASA Astrophysics Data System (ADS)

    Wagner, Caleb; Baskaran, Aparna; Hagan, Michael

    The statistical mechanics of ideal active Brownian particles (ABPs) confined in a channel is studied by obtaining the exact solution of the steady-state Smoluchowski equation for the 1-particle distribution function. The solution is derived using results from the theory of two-way diffusion equations, combined with an iterative procedure that is justified by numerical results. Using this solution, we quantify the effects of confinement on the spatial and orientational order of the ensemble. Moreover, we rigorously show that both the bulk density and the fraction of particles on the channel walls obey simple scaling relations as a function of channel width. By considering a constant-flux steady state, an effective diffusivity for ABPs is derived which shows signatures of the persistent motion that characterizes ABP trajectories. Finally, we discuss how our techniques generalize to other active models, including systems whose activity is modeled in terms of an Ornstein-Uhlenbeck process.

  18. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    DOE PAGES

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; ...

    2015-09-28

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primarymore » amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.« less

  19. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    PubMed Central

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  20. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  1. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    PubMed

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Viral drug sensitivity testing using quantitative PCR: effect of tyrosine kinase inhibitors on polyomavirus BK replication.

    PubMed

    Randhawa, Parmjeet S; Farasati, Noush A; Huang, Yuchen; Mapara, Markus Y; Shapiro, Ron

    2010-12-01

    Our objective was to determine whether quantitative polymerase chain reaction (PCR) can be used to measure the effect of tyrosine kinase (TK) inhibition on polyomavirus BK (BKV) replication. The BKV was grown in a cell culture system. The rate of viral replication in the presence or absence of the drug being tested was assessed by amplifying the viral genome using primers directed against the viral capsid 1 protein. Dasatinib, erlotinib, gefitinib, imatinib, sunitinib, and sorafenib all showed antiviral activity at micromolar concentrations. The 50% effective concentration for erlotinib and sorafenib was within blood concentrations readily achieved in human subjects. Quantitative PCR is a convenient method for viral drug sensitivity testing for slow-growing viruses that do not readily produce cytopathic effect. TK inhibitors deserve further consideration as a potential therapeutic option for BKV-associated nephropathy and hemorrhagic cystitis.

  3. Voltage activation and hysteresis of the non-selective voltage-dependent channel in the intact human red cell.

    PubMed

    Bennekou, Poul; Barksmann, Trine L; Jensen, Lars R; Kristensen, Berit I; Christophersen, Palle

    2004-05-01

    Suspension of intact human red cells in media with low chloride and sodium concentrations (isotonic sucrose substitution) results in strongly inside positive membrane potentials, which activate the voltage-dependent non-selective cation (NSVDC) channel. By systematic variation of the initial Nernst potentials for chloride (degree of ion substitution) as well as the chloride conductance (block by NS1652), and by exploiting the interplay between the Ca(2+)-permeable NSVDC channel, the Ca(2+)-activated K+ channel (the Gárdos channel) and the Ca(2+)-pump, a graded activation of the NSVDC channel was achieved. Under these conditions, it was shown that the NSVDC channels exist in two states of activation depending on the initial conditions for the activation. The hysteretic behaviour, which in patch clamp experiments has been found for the individual channel unit, is thus retained at the cellular level and can be demonstrated with red cells in suspension.

  4. Inhibition of Rat 5α-Reductase Activity and Testosterone-Induced Sebum Synthesis in Hamster Sebocytes by an Extract of Quercus acutissima Cortex

    PubMed Central

    Koseki, Junichi; Matsumoto, Takashi; Matsubara, Yosuke; Tsuchiya, Kazuaki; Mizuhara, Yasuharu; Sekiguchi, Kyoji; Nishimura, Hiroaki; Watanabe, Junko; Kaneko, Atsushi; Hattori, Tomohisa; Maemura, Kazuya; Kase, Yoshio

    2015-01-01

    Objective. Bokusoku (BK) is an extract from the Quercus cortex used in folk medicine for treatment of skin disorders and convergence, and is present in jumihaidokuto, a traditional Japanese medicine that is prescribed for purulent skin diseases like acne vulgaris. The excess of sebum production induced by androgen is involved in the development of acne. Our aim is to examine whether BK and its constituents inhibit testosterone metabolism and testosterone-induced sebum synthesis. Methods. Measurements of 5α-reductase activity and lipogenesis were performed using rat liver microsomes and hamster sebocytes, respectively. Results. BK dose-dependently reduced the conversion of testosterone to a more active androgen, dihydrotestosterone in a 5α-reductase enzymatic reaction. Twenty polyphenols in BK categorized as gallotannin, ellagitannin, and flavonoid were identified by LC-MS/MS. Nine polyphenols with gallate group, tetragalloyl glucose, pentagalloyl glucose, eugeniin, 1-desgalloyl eugeniin, casuarinin, castalagin, stenophyllanin C, (−)-epicatechin gallate, and (−)-epigallocatechin gallate, inhibited testosterone metabolism. In particular, pentagalloyl glucose showed the strongest activity. BK and pentagalloyl glucose suppressed testosterone-induced lipogenesis, whereas they weakly inhibited the lipogenic action of insulin. Conclusions. BK inhibited androgen-related pathogenesis of acne, testosterone conversion, and sebum synthesis, partially through 5α-reductase inhibition, and has potential to be a useful agent in the therapeutic strategy of acne. PMID:25709710

  5. Activation gating kinetics of GIRK channels are mediated by cytoplasmic residues adjacent to transmembrane domains.

    PubMed

    Sadja, Rona; Reuveny, Eitan

    2009-01-01

    G-protein-coupled inwardly rectifying potassium channels (GIRK/Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K(+) ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein betagamma subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast activation gating. This result suggests that there is a cooperative movement of either one of these domains to allow fast and efficient activation gating of GIRK channels.

  6. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole.

    PubMed

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R

    2007-10-01

    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  7. Vascular Reactivity Profile of Novel KCa3.1-Selective Positive-Gating Modulators in the Coronary Vascular Bed

    PubMed Central

    Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M.; Murillo, Ma Divina; Gálvez, José A.; Díaz-de-Villegas, María D.; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf

    2017-01-01

    Opening of intermediate-conductance calcium-activated potassium channels (KCa3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KCa3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KCa3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KCa currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KCa3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KCa3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KCa3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KCa3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. PMID:26821335

  8. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  9. Ethanol-Sensitive Pacemaker Neurons in the Mouse External Globus Pallidus

    PubMed Central

    Abrahao, Karina P; Chancey, Jessica H; Chan, C Savio; Lovinger, David M

    2017-01-01

    Although ethanol is one of the most widely used drugs, we still lack a full understanding of which neuronal subtypes are affected by this drug. Pacemaker neurons exert powerful control over brain circuit function, but little is known about ethanol effects on these types of neurons. Neurons in the external globus pallidus (GPe) generate pacemaker activity that controls basal ganglia, circuitry associated with habitual and compulsive drug use. We performed patch-clamp recordings from GPe neurons and found that bath application of ethanol dose-dependently decreased the firing rate of low-frequency GPe neurons, but did not alter the firing of high-frequency neurons. GABA or glutamate receptor antagonists did not block the ethanol effect. The GPe is comprised of a heterogeneous population of neurons. We used Lhx6-EGFP and Npas1-tdTm mice strains to identify low-frequency neurons. Lhx6 and Npas1 neurons exhibited decreased firing with ethanol, but only Npas1 neurons were sensitive to 10 mM ethanol. Large-conductance voltage and Ca2+-activated K+ (BK) channel have a key role in the ethanol effect on GPe neurons, as the application of BK channel inhibitors blocked the ethanol-induced firing decrease. Ethanol also increased BK channel open probability measured in single-channel recordings from Npas1-tdTm neurons. In addition, in vivo electrophysiological recordings from GPe showed that ethanol decreased the firing of a large subset of low-frequency neurons. These findings indicate how selectivity of ethanol effects on pacemaker neurons can occur, and enhance our understanding of the mechanisms contributing to acute ethanol effects on the basal ganglia. PMID:27827370

  10. Conversion from tacrolimus-mycophenolate mofetil to tacrolimus-mTOR immunosuppression after kidney-pancreas transplantation reduces the incidence of both BK and CMV viremia.

    PubMed

    Knight, Richard J; Graviss, Edward A; Nguyen, Duc T; Kuten, Samantha A; Patel, Samir J; Gaber, Lillian; Gaber, A Osama

    2018-04-19

    We sought to determine whether conversion from tacrolimus/mycophenolate mofetil (TAC-MMF) into tacrolimus/mTOR inhibitor (TAC-mTOR) immunosuppression would reduce the incidences of BK and CMV viremia after kidney/pancreas (KP) transplantation. In this single-center review, the TAC-mTOR cohort (n = 39) was converted at 1 month post-transplant to an mTOR inhibitor and reduced-dose tacrolimus. Outcomes were compared to a cohort of KP recipients (n = 40) maintained on TAC-MMF. At 3 years post-transplant, KP survivals and incidences of kidney/pancreas rejection were equivalent between mTOR and MMF-treated cohorts. (P = ns). BK viremia-free survival was better for the mTOR vs MMF-treated group (P = .004). In multivariate analysis, MMF vs mTOR immunosuppression was an independent risk factor for BK viremia (hazard ratio 12.27, P = .02). Similarly, mTOR-treated recipients displayed better CMV infection-free survival compared to the MMF-treated cohort (P = .01). MMF vs mTOR immunosuppression (hazard ratio 18.77, P = .001) and older recipient age (hazard ratio 1.13 per year, P = .006) were independent risk factors for CMV viremia. Mean estimated GFR and HgbA1c levels were equivalent between groups at 1, 2, and 3 years post-transplantation. Conversion from TAC/MMF into TAC/mTOR immunosuppression after KP transplantation reduced the incidences of BK and CMV viremia with an equivalent risk of acute rejection and similar renal/pancreas function. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Interleukin-4 activates large-conductance, calciumactivated potassium (BKCa) channels in human airway smooth muscle cells

    PubMed Central

    Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark

    2014-01-01

    Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443

  12. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  13. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  14. PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks

    PubMed Central

    Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  15. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels.

    PubMed

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-03-01

    Retinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ , is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. We performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. LE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. This blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. © 2013 The British Pharmacological Society.

  16. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus

    PubMed Central

    Aponte, Yexica; Lien, Cheng-Chang; Reisinger, Ellen; Jonas, Peter

    2006-01-01

    Hyperpolarization-activated channels (Ih or HCN channels) are widely expressed in principal neurons in the central nervous system. However, Ih in inhibitory GABAergic interneurons is less well characterized. We examined the functional properties of Ih in fast-spiking basket cells (BCs) of the dentate gyrus, using hippocampal slices from 17- to 21-day-old rats. Bath application of the Ih channel blocker ZD 7288 at a concentration of 30 μm induced a hyperpolarization of 5.7 ± 1.5 mV, an increase in input resistance and a correlated increase in apparent membrane time constant. ZD 7288 blocked a hyperpolarization-activated current in a concentration-dependent manner (IC50, 1.4 μm). The effects of ZD 7288 were mimicked by external Cs+. The reversal potential of Ih was −27.4 mV, corresponding to a Na+ to K+ permeability ratio (PNa/PK) of 0.36. The midpoint potential of the activation curve of Ih was −83.9 mV, and the activation time constant at −120 mV was 190 ms. Single-cell expression analysis using reverse transcription followed by quantitative polymerase chain reaction revealed that BCs coexpress HCN1 and HCN2 subunit mRNA, suggesting the formation of heteromeric HCN1/2 channels. ZD 7288 increased the current threshold for evoking antidromic action potentials by extracellular stimulation, consistent with the expression of Ih in BC axons. Finally, ZD 7288 decreased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal granule cells, the main target cells of BCs, to 70 ± 4% of the control value. In contrast, the amplitude of mIPSCs was unchanged, consistent with the presence of Ih in inhibitory terminals. In conclusion, our results suggest that Ih channels are expressed in the somatodendritic region, axon and presynaptic elements of fast-spiking BCs in the hippocampus. PMID:16690716

  17. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats.

    PubMed

    Ribeiro Junior, Rogério Faustino; Fiorim, Jonaina; Marques, Vinicius Bermond; de Sousa Ronconi, Karoline; Botelho, Tatiani; Grando, Marcella D; Bendhack, Lusiane M; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2017-12-01

    The goal of the present study was to evaluate vascular potassium channels and Na + -K + -ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K + channels and Na + -K + -ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100μM) and K + channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5μM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na + -K + ATPase activity evaluated by K + -induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na + -K + ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K + channels and increased Na + -K + ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Detection of BK virus and adenovirus in the urine from children after allogeneic stem cell transplantation.

    PubMed

    Hatakeyama, Naoki; Suzuki, Nobuhiro; Yamamoto, Masaki; Kuroiwa, Yuki; Hori, Tsukasa; Mizue, Nobuo; Tsutsumi, Hiroyuki

    2006-01-01

    The development of hemorrhagic cystitis (HC) and urinary excretion of polyoma BK virus (BKV) and adenovirus (ADV) was investigated by polymerase chain reaction in 20 children undergoing allogeneic stem cell transplantation. Five children developed HC, and all of them excreted BKV; however, only 1 excreted ADV, suggesting that BKV is more significant cause of HC than ADV in children undergoing stem cell transplantation.

  19. Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W

    2012-02-14

    Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.

  20. The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism

    PubMed Central

    Gessner, Guido; Macianskiene, Regina; Starkus, John G.; Schönherr, Roland; Heinemann, Stefan H.

    2010-01-01

    Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing IKr current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages. The activating effect has an apparent EC50 value of 12 μM and is brought about by an about 4-fold acceleration of activation kinetics and a shift in voltage-dependent activation by −16 mV. Channel activation was not use-dependent and was independent of inactivation gating. KB130015 presumably binds to the hERG1 pore from the cytosolic side and functionally competes with hERG1 block by amiodarone, E4031 (N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl] -4-piperidinyl] carbonyl] phenyl] methanesulfonamide dihydrochloride), and sertindole. Vice versa, amiodarone attenuates hERG1 activation by KB130015. Based on synergic channel activation by mallotoxin and KB130015 we conclude that the hERG1 pore contains at least two sites for activators that are functionally coupled among each other and to the cavity-blocker site. KB130015 and amiodarone may serve as lead structures for the identification of hERG1 pore-interacting drugs favoring channel activation vs. block. PMID:20097192

  1. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel.

    PubMed

    Jensen, B S; Strobaek, D; Christophersen, P; Jorgensen, T D; Hansen, C; Silahtaroglu, A; Olesen, S P; Ahring, P K

    1998-09-01

    The human intermediate-conductance, Ca2+-activated K+ channel (hIK) was identified by searching the expressed sequence tag database. hIK was found to be identical to two recently cloned K+ channels, hSK4 and hIK1. RNA dot blot analysis showed a widespread tissue expression, with the highest levels in salivary gland, placenta, trachea, and lung. With use of fluorescent in situ hybridization and radiation hybrid mapping, hIK mapped to chromosome 19q13.2 in the same region as the disease Diamond-Blackfan anemia. Stable expression of hIK in HEK-293 cells revealed single Ca2+-activated K+ channels exhibiting weak inward rectification (30 and 11 pS at -100 and +100 mV, respectively). Whole cell recordings showed a noninactivating, inwardly rectifying K+ conductance. Ionic selectivity estimated from bi-ionic reversal potentials gave the permeability (PK/PX) sequence K+ = Rb+ (1.0) > Cs+ (10.4) > Na+, Li+, N-methyl-D-glucamine (>51). NH+4 blocked the channel completely. hIK was blocked by the classical inhibitors of the Gardos channel charybdotoxin (IC50 28 nM) and clotrimazole (IC50 153 nM) as well as by nitrendipine (IC50 27 nM), Stichodactyla toxin (IC50 291 nM), margatoxin (IC50 459 nM), miconazole (IC50 785 nM), econazole (IC50 2.4 microM), and cetiedil (IC50 79 microM). Finally, 1-ethyl-2-benzimidazolinone, an opener of the T84 cell IK channel, activated hIK with an EC50 of 74 microM.

  2. Molecular mechanism underlying ethanol activation of G-protein–gated inwardly rectifying potassium channels

    PubMed Central

    Bodhinathan, Karthik; Slesinger, Paul A.

    2013-01-01

    Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein–gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction. PMID:24145411

  3. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root.

    PubMed

    Haswell, Elizabeth S; Peyronnet, Rémi; Barbier-Brygoo, Hélène; Meyerowitz, Elliot M; Frachisse, Jean-Marie

    2008-05-20

    In bacterial and animal systems, mechanosensitive (MS) ion channels are thought to mediate the perception of pressure, touch, and sound [1-3]. Although plants respond to a wide variety of mechanical stimuli, and although many mechanosensitive channel activities have been characterized in plant membranes by the patch-clamp method, the molecular nature of mechanoperception in plant systems has remained elusive [4]. Likely candidates are relatives of MscS (Mechanosensitive channel of small conductance), a well-characterized MS channel that serves to protect E. coli from osmotic shock [5]. Ten MscS-Like (MSL) proteins are found in the genome of the model flowering plant Arabidopsis thaliana[4, 6, 7]. MSL2 and MSL3, along with MSC1, a MscS family member from green algae, are implicated in the control of organelle morphology [8, 9]. Here, we characterize MSL9 and MSL10, two MSL proteins found in the plasma membrane of root cells. We use a combined genetic and electrophysiological approach to show that MSL9 and MSL10, along with three other members of the MSL family, are required for MS channel activities detected in protoplasts derived from root cells. This is the first molecular identification and characterization of MS channels in plant membranes.

  4. Pharmacology of the human red cell voltage-dependent cation channel; Part I. Activation by clotrimazole and analogues.

    PubMed

    Barksmann, Trine L; Kristensen, Berit I; Christophersen, Palle; Bennekou, Poul

    2004-01-01

    The activation and pharmacological modulation of the nonselective voltage-dependent cation (NSVDC) channel from human erythrocytes were studied. Basic channel activation was achieved by suspending red cells in a low Cl(-) Ringer (2 mM), where a positive membrane potential (V(m) = E(Cl)) immediately developed. Voltage- and time-dependent activation of the NSVDC channel occurred, reaching a cation conductance (g+) of 1.5-2.0 microS cm(-2). In the presence of the classical Gárdos channel blocker clotrimazole (0-50 microM), activation occurred faster, and g+ saturated dose-dependently (EC50 = 14 microM) at a value of about 4 microS cm(-2). The clotrimazole analogues TRAM-34, econazole, and miconazole also stimulated the channel, whereas the chemically more distant Gárdos channel inhibitors nitrendipine and cetiedil had no effects. Although the potency for modulation of the NSVDC channel is much lower than the IC50 value for Gárdos channel inhibition, clotrimazole (and its analogues) constitutes the first chemical class of positive modulators of the NSVDC channel. This may be an important pharmacological "fingerprint" in the identification of the cloned equivalent of the erythrocyte channel.

  5. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed

  6. Characterization of the Body-to-Body Propagation Channel for Subjects during Sports Activities.

    PubMed

    Mohamed, Marshed; Cheffena, Michael; Moldsvor, Arild

    2018-02-18

    Body-to-body wireless networks (BBWNs) have great potential to find applications in team sports activities among others. However, successful design of such systems requires great understanding of the communication channel as the movement of the body components causes time-varying shadowing and fading effects. In this study, we present results of the measurement campaign of BBWN during running and cycling activities. Among others, the results indicated the presence of good and bad states with each state following a specific distribution for the considered propagation scenarios. This motivated the development of two-state semi-Markov model, for simulation of the communication channels. The simulation model was validated using the available measurement data in terms of first and second order statistics and have shown good agreement. The first order statistics obtained from the simulation model as well as the measured results were then used to analyze the performance of the BBWNs channels under running and cycling activities in terms of capacity and outage probability. Cycling channels showed better performance than running, having higher channel capacity and lower outage probability, regardless of the speed of the subjects involved in the measurement campaign.

  7. Cl- channels of the gastric parietal cell that are active at low pH.

    PubMed

    Cuppoletti, J; Baker, A M; Malinowska, D H

    1993-06-01

    HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 m

  8. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  9. An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis.

    PubMed

    Bönigk, Wolfgang; Loogen, Astrid; Seifert, Reinhard; Kashikar, Nachiket; Klemm, Clementine; Krause, Eberhard; Hagen, Volker; Kremmer, Elisabeth; Strünker, Timo; Kaupp, U Benjamin

    2009-10-27

    Sperm of the sea urchin Arbacia punctulata can respond to a single molecule of chemoattractant released by an egg. The mechanism underlying this extreme sensitivity is unknown. Crucial signaling events in the response of A. punctulata sperm to chemoattractant include the rapid synthesis of the intracellular messenger guanosine 3',5'-monophosphate (cGMP) and the ensuing membrane hyperpolarization that results from the opening of potassium-selective cyclic nucleotide-gated (CNGK) channels. Here, we use calibrated photolysis of caged cGMP to show that approximately 45 cGMP molecules are generated during the response to a single molecule of chemoattractant. The CNGK channel can respond to such small cGMP changes because it is exquisitely sensitive to cGMP and activated in a noncooperative fashion. Like voltage-activated Ca(v) and Na(v) channels, the CNGK polypeptide consists of four homologous repeat sequences. Disabling each of the four cyclic nucleotide-binding sites through mutagenesis revealed that binding of a single cGMP molecule to repeat 3 is necessary and sufficient to activate the CNGK channel. Thus, CNGK has developed a mechanism of activation that is different from the activation of other CNG channels, which requires the cooperative binding of several ligands and operates in the micromolar rather than the nanomolar range.

  10. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    PubMed

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Slack Sodium-activated Potassium Channel Membrane Expression Requires p38 Mitogen-Activated Protein Kinase Phosphorylation

    PubMed Central

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-01-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  12. The relevance of kalikrein-kinin system via activation of B2 receptor in LPS-induced fever in rats.

    PubMed

    Soares, Denis de Melo; Santos, Danielle R; Rummel, Christoph; Ott, Daniela; Melo, Míriam C C; Roth, Joachim; Calixto, João B; Souza, Glória E P

    2017-11-01

    This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B 1 and B 2 receptors on LPS- induced fever and the POA cells involved in this response. Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B 2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B 1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca ++ signaling in POA cells was performed in rat pup brain tissue microcultures. Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE 2 concentration. Effect abolished by indomethacin (i.p.). LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B 2 -receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B 2 -receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Predictive value of serum bradykinin and desArg9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series.

    PubMed

    Qian, Xu; Nguyen, Duc T M; Li, Yaojun; Lyu, Jianxin; Graviss, Edward A; Hu, Tony Y

    2016-12-01

    There is an urgent need for methods that can rapidly and accurately assess therapeutic responses in patients with active tuberculosis (TB) in order to predict treatment outcomes. Exposure to bacterial pathogens can rapidly activate the plasma contact system, triggering the release of bradykinin (BK) and its metabolite desArg 9 -bradykinin (DABK) to induce inflammation and innate immune responses. We hypothesized that serum BK and DABK levels might act as sensitive immune response signatures for changes in Mycobacterium tuberculosis (Mtb) burden, and therefore examined how serum levels of these markers corresponded with anti-TB therapy in a small cohort of active TB cases. Nanotrap Mass-Spectrometry (MS) was used to analyze serial blood specimens from 13 HIV-negative adults with microbiologically confirmed active TB who were treated with first-line anti-TB chemotherapy. MS signal for BK (m/z 1060.5) and DABK (m/z 904.5) serum peptides were evaluated at multiple time-points (before, during, and after treatment) to evaluate how BK and DABK levels corresponded with disease status. Serum BK levels declined from pretreatment baseline levels during the early stage anti-TB therapy (induction phase) and tended to remain below baseline levels during extended treatment (consolidation phase) and after therapy completion. BK levels were consistent with induction phase sputum culture conversions indicative of decreased Mtb burden reflecting good treatment responses. Serum DABK levels tended to increase during the induction phase and decrease at consolidation and post-therapy time points, which may indicate a shift from active disease to chronic inflammation to a disease free state. Elevated BK and DABK levels after treatment completion in one patient may be related to the subsequent recurrent TB disease. Our pilot data suggests that changes in the circulating BK and DABK levels in adult TB patients can be used as potential surrogate markers of the host response both early and

  14. Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel

    PubMed Central

    Teramoto, Takayuki; Sternick, Laura A.; Kage-Nakadai, Eriko; Sajjadi, Shirine; Siembida, Jakub; Mitani, Shohei; Iwasaki, Kouichi; Lambie, Eric J.

    2010-01-01

    Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1. PMID:20221407

  15. Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals

    PubMed Central

    Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.

    2011-01-01

    We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687

  16. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    PubMed Central

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  17. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  18. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    PubMed

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  19. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  20. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

    PubMed Central

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-01-01

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010

  1. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    PubMed

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  2. Symptomatic BK Virus Infection Is Associated with Kidney Function Decline and Poor Overall Survival in Allogeneic Hematopoietic Stem Cell Recipients

    PubMed Central

    Abudayyeh, Ala; Hamdi, Amir; Lin, Heather; Abdelrahim, Maen; Rondon, Gabriela; Andersson, Borje S; Afrough, Aimaz; Martinez, Charles S; Tarrand, Jeffrey J; Kontoyiannis, Dimitrios P.; Marin, David; Gaber, A. Osama; Salahudeen, Abdulla; Oran, Betul; Chemaly, Roy F.; Olson, Amanda; Jones, Roy; Popat, Uday; Champlin, Richard E; Shpall, Elizabeth J.; Winkelmayer, Wolfgang C.; Rezvani, Katayoun

    2017-01-01

    Nephropathy due to BK virus infection is an evolving challenge in patients undergoing hematopoietic stem cell transplantation. We hypothesized that BKV infection was a marker of Kidney Function Decline and a poor prognostic factor in HSCT recipients who experience this complication. In this retrospective study, we analyzed all patients who underwent their first allogeneic hematopoietic stem cell transplantation at our institution between 2004 and 2012. We evaluated the incidence of persistent kidney function decline, which was defined as a confirmed reduction in estimated glomerular filtration rate of at least 25% from baseline using the CKD-EPI equation. Cox proportional hazard regression was used to model the cause-specific hazard of kidney function decline and Fine and Gray’s method was used to account for the competing risks of death. Among 2477 recipients of a first allogeneic hematopoietic stem cell transplantation, BK viruria was detected in 25% (n=629) and kidney function decline in 944 (38.1%). On multivariate analysis, after adjusting for age, sex, acute graft-versus-host disease, chronic graft versus host disease, preparative conditioning regimen, and graft source, BK viruria remained a significant risk factor for kidney function decline (P <0.001). In addition, patients with BKV infection and kidney function decline experienced worse overall survival. Post-allogeneic hematopoietic stem cell transplantation, BKV infection was strongly and independently associated with subsequent kidney function decline and worse patient survival after HSCT. PMID:26608093

  3. A combination of genistein and magnesium enhances the vasodilatory effect via an eNOS pathway and BK(Ca) current amplification.

    PubMed

    Sun, Lina; Hou, Yunlong; Zhao, Tingting; Zhou, Shanshan; Wang, Xiaoran; Zhang, Liming; Yu, Guichun

    2015-04-01

    The phytoestrogen genistein (GST) and magnesium have been independently shown to regulate vascular tone; however, their individual vasodilatory effects are limited. The aim of this study was to examine the combined effects of GST plus magnesium on vascular tone in mesenteric arteries. The effects of pretreatment with GST (0-200 μmol/L), MgCl2 (0-4.8 mmol/L) and GST plus MgCl2 on 10 μmol/L phenylephrine (PE) precontracted mesenteric arteries in rats were assessed by measuring isometric force. BK(Ca) currents were detected by the patch clamp method. GST caused concentration- and partial endothelium-dependent relaxation. Magnesium resulted in dual adjustment of vascular tone. Magnesium-free solution eliminated the vasodilatation of GST in both endothelium-intact and denuded rings. GST (50 μmol/L) plus magnesium (4.8 mmol/L) caused stronger relaxation in both endothelium-intact and denuded rings. Pretreatment with the nitric oxide synthase (NOS) inhibitor L-N-nitroarginine methyl ester (L-NAME, 100 μmol/L) significantly inhibited the effects of GST, high magnesium, and the combination of GST and magnesium. BK(Ca) currents were amplified to a greater extent when GST (50 μmol/L) was combined with 4.8 versus 1.2 mmol/L Mg(2+). Our data suggest that GST plus magnesium provides enhanced vasodilatory effects in rat mesenteric arteries compared with that observed when either is used separately, which was related to an eNOS pathway and BK(Ca) current amplification.

  4. Cryogenic Temperature-dependent Refractive Index Measurements of N-BK7, BaLKN3, and SF15 for NOTES PDI

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas F.; Madison, Timothy J.

    2007-01-01

    In order to enable high quality lens designs using N-BK7, BaLKN3, and SF15 at cryogenic temperatures, we have measured the absolute refractive index of prisms of these three materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For N-BK7, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 50 to 300 K at wavelengths from 0.45 to 2.7 micrometers; for BaLKN3 we cover temperatures ranging from 40 to 300 K and wavelengths from 0.4 to 2.6 micrometers; for SF15 we cover temperatures ranging from 50 to 300 K and wavelengths from 0.45 to 2.6 micrometers. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. While we generally find good agreement (plus or minus 2 x 10(exp -4) for N-BK7, less than 1 x 10(exp -4) for the other materials) at room temperature between our measured values and those provided by the vendor, there is some variation between the datasheets provided with the prisms we measured and the catalog values published by the vendor. This underlines the importance of measuring the absolute refractive index of the material when precise knowledge of the refractive index is required.

  5. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation.

    PubMed

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J

    2012-12-07

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.

  6. Voltage-dependent calcium channel involvement in NMDA-induced activation of NOS.

    PubMed

    Alagarsamy, S; Johnson, K M

    1995-11-13

    We have previously shown that N-methyl-D-aspartate (NMDA) increases nitric oxide synthase (NOS) activity in rat frontal cortex; however, the actual mechanism of this activation has not been addressed. Tetrodotoxin (TTX; 0.05 microM) inhibited NMDA-activated NOS, suggesting that TTX-sensitive Na+ channels are interposed between the NMDA receptors and the NOS cellular compartment. The NMDA response was also blocked by voltage-dependent Ca2+ channel (VDCC) blockers including Cd2+, Co2+, funnel web spider toxin (FTX) and omega-Aga IVa, but not by nifedipine or omega-conotoxin. These data suggest that Ca2+ flux through P- and/or Q-type VDCC subsequent to NMDA-induced depolarization may be at least as important for NOS activation as Ca2+ entry through the NMDA receptor.

  7. The Natural Plant Product Rottlerin Activates Kv7.1/KCNE1 Channels.

    PubMed

    Matschke, Veronika; Piccini, Ilaria; Schubert, Janina; Wrobel, Eva; Lang, Florian; Matschke, Johann; Amedonu, Elsie; Meuth, Sven G; Strünker, Timo; Strutz-Seebohm, Nathalie; Greber, Boris; Scherkenbeck, Jürgen; Seebohm, Guiscard

    2016-01-01

    Acquired as well as inherited channelopathies are disorders that are caused by altered ion channel function. A family of channels whose malfunction is associated with different channelopathies is the Kv7 K+ channel family; and restoration of normal Kv7 channel function by small molecule modulators is a promising approach for treatment of these often fatal diseases. Here, we show the modulation of Kv7 channels by the natural compound Rottlerin heterologously expressed in Xenopus laevis oocytes and on iPSC cardiomyocytes overexpressing Kv7.1 channels. We show that currents carried by Kv7.1 (EC50 = 1.48 μM), Kv7.1/KCNE1 (EC50 = 4.9 μM), and Kv7.4 (EC50 = 0.148 μM) are strongly enhanced by the compound, whereas Kv7.2, Kv7.2/Kv7.3, and Kv7.5 are not sensitive to Rottlerin. Studies on Kv7.1/KCNE1 mutants and in silico modelling indicate that Rottlerin binds to the R-L3-activator site. Rottlerin mediated activation of Kv7.1/KCNE1 channels might be a promising approach in long QT syndrome. As a proof of concept, we show that Rottlerin shortens cardiac repolarisation in iPSC-derived cardiomyocytes expressing Kv7.1. Rottlerin or an optimized derivative holds a potential as QT interval correcting drug. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  9. Comparative evaluation of laboratory developed real-time PCR assays and RealStar(®) BKV PCR Kit for quantitative detection of BK polyomavirus.

    PubMed

    Hasan, Mohammad R; Tan, Rusung; Al-Rawahi, Ghada; Thomas, Eva; Tilley, Peter

    2016-08-01

    Quantitative, viral load monitoring for BK virus (BKV) by real-time PCR is an important tool in the management of polyomavirus associated nephropathy in renal transplant patients. However, variability in PCR results has been reported because of polymorphisms in viral genes among different subtypes of BKV, and lack of standardization of the PCR assays among different laboratories. In this study we have compared the performance of several laboratory developed PCR assays that target highly conserved regions of BKV genome with a commercially available, RealStar(®) BKV PCR Kit. Three real-time PCR assays (i) VP1 assay: selected from the literature that targets the major capsid protein (VP1) gene (ii) VP1MOD assay: VP1 assay with a modified probe, and (iii) BKLTA assay: newly designed assay that targets the large T antigen gene were assessed in parallel, using controls and clinical specimens that were previously tested using RealStar(®) BKV PCR Kit (Altona Diagnostics GmbH, Hamburg, Germany). Nucleic acid from all samples were extracted using the QIA symphony virus/bacteria kit on an automated DNA extraction platform QIA symphony SP (Qiagen). Primer and probe concentration, and reaction conditions for laboratory developed assays were optimized and the limit of detection of different assays was determined. Positive control for laboratory developed BK assays was prepared through construction of a plasmid carrying respective amplicon sequences. The 95% detection limit of VP1, VP1MOD and BKLTA assays were 1.8×10(2), 3×10(3) and 3.5×10(2) genomic copies/ml, respectively, as determined by Probit regression analysis of data obtained by testing a dilution series of a titered patient specimen, using RealStar(®) BKV PCR Kit. The inter-assay and intra-assay, coefficient of variations of these assays using calibrated, plasmid standards were <1%. All assays, including the RealStar(®) BKV PCR assay, were highly specific when tested against a panel of external proficiency

  10. BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies.

    PubMed

    Ambalathingal, George R; Francis, Ross S; Smyth, Mark J; Smith, Corey; Khanna, Rajiv

    2017-04-01

    BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications. Copyright © 2017 American Society for Microbiology.

  11. BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies

    PubMed Central

    Ambalathingal, George R.; Francis, Ross S.; Smyth, Mark J.; Smith, Corey

    2017-01-01

    SUMMARY BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications. PMID:28298471

  12. Enzymatic activity in the surface microlayer and subsurface water in the harbour channel

    NASA Astrophysics Data System (ADS)

    Perliński, Piotr; Mudryk, Zbigniew J.; Antonowicz, Józef

    2017-09-01

    Hydrolytic activity of eight extracellular enzymes was determined spectrofluorimetric method in the surface microlayer and subsurface water in the harbour channel in Ustka. The ranking order of the potential enzyme activity rates in the studied water layers was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > xylanase > cellulase > chitinase. The level of activity of all studied hydrolases was higher in the surface microlayer than subsurface water. No clear gradients in the level of enzymatic activity were determined along the horizontal profile of the studied channel. Activity of extracellular enzymes was strongly influenced by the season.

  13. DCEBIO facilitates myogenic differentiation via intermediate conductance Ca2+ activated K+ channel activation in C2C12 myoblasts.

    PubMed

    Tanaka, Shoko; Ono, Yuko; Sakamoto, Kazuho

    2017-04-01

    Membrane hyperpolarization is suggested to be a trigger for skeletal muscle differentiation. We investigated whether DCEBIO, an opener of the small/intermediate conductance Ca 2+ activated K + (SK Ca /IK Ca ) channels, increase myogenic differentiation in C2C12 skeletal myoblasts. DCEBIO significantly increased myotube formation, protein expression level of myosin heavy chain II, and mRNA expression level of myogenin in C2C12 myoblasts cultured in differentiation medium. DCEBIO induced myotube formation and hyperpolarization were reduced by the IK Ca channel blocker TRAM-34, but not by the SK Ca channel blocker apamin. These findings show that DCEBIO increases myogenic differentiation by activating IK Ca channels. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Ca2+ and Mn2+ Influx Through Receptor-Mediated Activation of Nonspecific Cation Channels in Mast Cells

    NASA Astrophysics Data System (ADS)

    Fasolato, Cristina; Hoth, Markus; Matthews, Gary; Penner, Reinhold

    1993-04-01

    Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]_i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]_i and the activity of 50-pS channels. The changes in [Ca2+]_i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]_i in mast cells following receptor activation.

  15. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  16. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterization of Ryanodine Receptor Type 1 Single Channel Activity Using “On-Nucleus” Patch Clamp

    PubMed Central

    Wagner, Larry E.; Groom, Linda A.; Dirksen, Robert T.; Yule, David I.

    2014-01-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca2+ release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca2+] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ~750 pS or 450 pS in symmetrical 250 mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ~40 % of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca2+, and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation. PMID:24972488

  18. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    PubMed

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  19. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-01-01

    Background and PurposeRetinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ, is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. Experimental ApproachWe performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. Key ResultsLE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. Conclusions and ImplicationsThis blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. PMID:24308840

  20. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  1. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  2. Molecular basis of slow activation of the human ether-á-go-go related gene potassium channel

    PubMed Central

    Subbiah, Rajesh N; Clarke, Catherine E; Smith, David J; Zhao, JingTing; Campbell, Terence J; Vandenberg, Jamie I

    2004-01-01

    The human ether-á-go-go related gene (HERG) encodes the pore forming α-subunit of the rapid delayed rectifier K+ channel which is central to the repolarization phase of the cardiac action potential. HERG K+ channels have unusual kinetics characterized by slow activation and deactivation, yet rapid inactivation. The fourth transmembrane domain (S4) of HERG, like other voltage-gated K+ channels, contains multiple positive charges and is the voltage sensor for activation. In this study, we mutated each of the positively charged residues in this region to glutamine (Q), expressed the mutant and wild-type (WT) channels in Xenopus laevis oocytes and studied them using two-electrode voltage clamp methods. K525Q channels activated at more hyperpolarized potentials than WT, whereas all the other mutant channels activated at more depolarized potentials. All mutants except for R531Q also had a reduction in apparent gating charge associated with activation. Mutation of K525 to cysteine (C) resulted in a less dramatic phenotype than K525Q. The addition of the positively charged MTSET to K525C altered the phenotype to one more similar to K525Q than to WT. Therefore it is not charge per se, but the specific lysine side chain at position 525, that is crucial for stabilizing the closed state. When rates of activation and deactivation for WT and mutant channels were compared at equivalent total (chemical + electrostatic) driving forces, K525Q and R528Q accelerated activation but had no effect on deactivation, R531Q slowed activation and deactivation, R534Q accelerated activation but slowed deactivation and R537Q accelerated deactivation but had no effect on activation. The main conclusions we can draw from these data are that in WT channels K525 stabilizes the closed state, R531 stabilizes the open state and R534 participates in interactions that stabilize pre-open closed states. PMID:15181157

  3. Purification, structural characterization, and myotropic activity of a peptide related to des-Arg(9)-bradykinin from an elasmobranch fish, the little skate, Leucoraja erinacea.

    PubMed

    Anderson, W Gary; Leprince, Jérôme; Conlon, J Michael

    2008-08-01

    A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.

  4. TNF-R1 and FADD mediate UVB-Induced activation of K+ channels in corneal epithelial cells

    PubMed Central

    Boersma, Peter M.; Haarsma, Loren D.; Schotanus, Mark P.; Ubels, John L.

    2017-01-01

    The goal of this study was to elucidate the role of Fas, TNF-R1, FADD and cytochrome c in UVB-induced K+ channel activation, an early step in UVB-induced apoptosis, in human corneal limbal epithelial (HCLE) cells. HCLE cells were treated with Fas, TNF-R1 or FADD siRNA and exposed to 80 or 150 mJ/cm2 UVB. K+ channel activation and loss of intracellular K+ were measured using whole-cell patch-clamp recording and ion chromatography, respectively. Cytochrome c was measured with an ELISA kit. Cells in which Fas was knocked down exhibited identical UVB-induced K+ channel activation and loss of intracellular K+ to control cells. Cells in which TNF-R1 or FADD were knocked down demonstrated reduced K+ channel activation and decreased loss of intracellular K+ following UVB, relative to control cells. Application of TNF-α, the natural ligand of TNF-R1, to HCLE cells induced K+ channel activation and loss of intracellular K+. Cytochrome c was translocated to the cytosol by 2 h after exposure to 150 mJ/cm2 UVB. However, there was no release by 10 min post-UVB. The data suggest that UVB activates TNF-R1, which in turn may activate K+ channels via FADD. This conclusion is supported by the observation that TNF-α also causes loss of intracellular K+. This signaling pathway appears to be integral to UVB-induced K+ efflux, since knockdown of TNF-R1 or FADD inhibits the UVB-induced K+ efflux. The lack of rapid cytochrome c translocation indicates cytochrome c does not play a role in UVB-induced K+ channel activation. PMID:27818316

  5. BK virus encephalitis with thrombotic microangiopathy in an allogeneic hematopoietic stem cell transplant recipient.

    PubMed

    Lopes da Silva, R; Ferreira, I; Teixeira, G; Cordeiro, D; Mafra, M; Costa, I; Bravo Marques, J M; Abecasis, M

    2011-04-01

    BK virus (BKV) infection occurs most often in immunocompromised hosts, in the setting of renal or bone marrow transplantation. Hemorrhagic cystitis is the commonest manifestation but in recent years infections in other organ systems have been reported. We report an unusual case of biopsy-proven BKV encephalitis in a hematopoietic stem cell transplant patient who subsequently developed thrombotic microangiopathy. As far as we know, this is the first report of such an association in a transplant patient. © 2010 John Wiley & Sons A/S.

  6. Transformation of primary human embryonic kidney cells to anchorage independence by a combination of BK virus DNA and the Harvey-ras oncogene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, A.; Pater, M.M.

    Primary human embryonic kidney (HEK) cells were transformed by a focus assay with BK virus (BKV) DNA molecularly cloned at its unique EcoRI site. Both viral DNA sequences and viral tumor antigens were present and expressed in all the foci that the authors examined. However, cells isolated from foci were incapable of growth in soft agar. They then examined the transformation of HEK cells after their transfection with a combination of BKV DNA and either the normal or the activated form of the human Ha-ras oncogene (EJ c-Ha-ras-1). Only the cells transfected with a combination of BKV DNA and themore » activated form of Ha-ras DNAs were present in the transformed colonies. BKV tumor antigens and the Ha-ras p21 protein were also expressed.« less

  7. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    PubMed

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  8. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons

    PubMed Central

    Senning, Eric N; Gordon, Sharona E

    2015-01-01

    TRPV1 channels are gated by a variety of thermal, chemical, and mechanical stimuli. We used optical recording of Ca2+ influx through TRPV1 to measure activity and mobility of single TRPV1 molecules in isolated dorsal root ganglion neurons and cell lines. The opening of single TRPV1 channels produced sparklets, representing localized regions of elevated Ca2+. Unlike sparklets reported for L-type Ca2+ channels, TRPV4 channels, and AchR channels, TRPV1 channels diffused laterally in the plasma membrane as they gated. Mobility was highly variable from channel-to-channel and, to a smaller extent, from cell to cell. Most surprisingly, we found that mobility decreased upon channel activation by capsaicin, but only in the presence of extracellular Ca2+. We propose that decreased mobility of open TRPV1 could act as a diffusion trap to concentrate channels in cell regions with high activity. DOI: http://dx.doi.org/10.7554/eLife.03819.001 PMID:25569155

  9. Vascular Reactivity Profile of Novel KCa 3.1-Selective Positive-Gating Modulators in the Coronary Vascular Bed.

    PubMed

    Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M; Murillo, M Divina; Gálvez, José A; Díaz-de-Villegas, María D; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf

    2016-08-01

    Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Tension-activated channels in the mechanism of osmotic fitness in Pseudomonas aeruginosa

    PubMed Central

    Rowe, Ian; Schams, Anthony; Mayhew, Christina

    2017-01-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen with an exceptional ability to adapt to a range of environments. Part of its adaptive potential is the ability to survive drastic osmolarity changes. Upon a sudden dilution of external medium, such as during exposure to rain, bacteria evade mechanical rupture by engaging tension-activated channels that act as osmolyte release valves. In this study, we compare fast osmotic permeability responses in suspensions of wild-type PA and Escherichia coli (EC) strains in stopped-flow experiments and provide electrophysiological descriptions of osmotic-release channels in PA. Using osmotic dilution experiments, we first show that PA tolerates a broader range of shocks than EC. We record the kinetics of cell equilibration reported by light scattering responses to osmotic up- and down-shocks. PA exhibits a lower water permeability and faster osmolyte release rates during large osmotic dilutions than EC, which correlates with better survival. To directly characterize the PA tension-activated channels, we generate giant spheroplasts from this microorganism and record current responses in excised patches. Unlike EC, which relies primarily on two types of channels, EcMscS and EcMscL, to generate a distinctive two-wave pressure ramp response, PA exhibits a more gradual response that is dominated by MscL-type channels. Genome analysis, cloning, and expression reveal that PA possesses one MscL-type (PaMscL) and two MscS-type (PaMscS-1 and 2) proteins. In EC spheroplasts, both PaMscS channels exhibit a slightly earlier activation by pressure compared with EcMscS. Unitary currents reveal that PaMscS-2 has a smaller conductance, higher anionic preference, stronger inactivation, and slower recovery compared with PaMscS-1. We conclude that PA relies on MscL as the major valve defining a high rate of osmolyte release sufficient to curb osmotic swelling under extreme shocks, but it still requires MscS-type channels with a strong

  11. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  12. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells.

    PubMed

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F; Moran, Nava

    2009-02-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.

  13. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  14. Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation*♦

    PubMed Central

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.

    2012-01-01

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050

  15. Quantification of BK polyoma viruria in Japanese children and adults with hemorrhagic cystitis complicating stem cell transplantation.

    PubMed

    Tanaka, Kaori; Hori, Tsukasa; Hatakeyama, Naoki; Yamamoto, Masaki; Takayama, Rumiko; Yoto, Yuko; Suzuki, Nobuhiro; Hayashi, Toshiaki; Ikeda, Yukiho; Ikeda, Hiroshi; Ishida, Tadao; Tsutsumi, Hiroyuki

    2008-12-01

    Polyoma BK virus (BKV) is frequently found in the urine of stem cell transplantation (SCT) patients with hemorrhagic cystitis (HC), but also occurs in SCT patients without HC. How BK viruria relates to the development of HC in SCT patients, especially in children, has not yet been fully evaluated. In the present study, we analyzed the relationship of several factors including urinary BKV load to HC development in children and adults undergoing SCT. We employed a quantitative PCR assay and evaluated 37 patients (aged 9 months-62 years) of whom 12 developed HC and 25 did not. Older age was a risk factor for the development of HC; however, other factors such as sex, primary disease, type of SCT, conditioning regimen and aGVHD were not. Peak urinary BKV values in HC patients were not higher than those in non-HC patients. Severity of HC also did not correlate with urinary BKV loads. However, in some patients who secreted higher urinary BKV loads, the peak loads were closely related with the onset of HC. Higher BKV loads may be a risk factor for the development of HC in conjunction with other coexisting factors.

  16. The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide.

    PubMed

    Yang, Xiao-Na; Niu, You-Ya; Liu, Yan; Yang, Yang; Wang, Jin; Cheng, Xiao-Yang; Liang, Hong; Wang, Heng-Shan; Hu, You-Min; Lu, Xiang-Yang; Zhu, Michael X; Xu, Tian-Le; Tian, Yun; Yu, Ye

    2017-12-29

    The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Ca2+ -activated K+ channel (KCa) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction.

    PubMed

    González-Corrochano, R; La Fuente, Jm; Cuevas, P; Fernández, A; Chen, Mx; Sáenz de Tejada, I; Angulo, J

    2013-05-01

    We have evaluated the influence of calcium-activated potassium channels (KCa ) activation on cGMP-mediated relaxation in human penile tissues from non-diabetic and diabetic patients, and on the effects of PDE5 inhibitors on erectile responses in control and diabetic rats. Cavernosal tissues were collected from organ donors and from patients with erectile dysfunction (ED). Relaxations of corpus cavernosum strips (HCC) and penile resistance arteries (HPRA) obtained from these specimens were evaluated. Intracavernosal pressure (ICP) increases to cavernosal nerve electrical stimulation were determined in anaesthetized diabetic and non-diabetic rats. Concentration-dependent vasodilation to the PDE5 inhibitor, sildenafil, in HPRA was sensitive to endothelium removal, NO/cGMP pathway inhibition and KCa blockade. Accordingly, activation of KCa with NS-8 (10 μM) significantly potentiated sildenafil-induced relaxations in HPRA (EC50 0.49 ± 0.22 vs. 5.21 ± 0.63 μM). In HCC, sildenafil-induced relaxation was unaffected by KCa blockade or activation. Potentiating effects in HPRA were reproduced with an alternative PDE5 inhibitor (tadalafil) and KCa activator (NS1619) and prevented by removing the endothelium. Large-conductance KCa (BK) and intermediate-conductance KCa (IK) contribute to NS-8-induced effects and were immunodetected in human and rat penile arteries. NS-8 potentiated sildenafil-induced enhancement of erectile responses in rats. Activation of KCa recovered the impaired relaxation to sildenafil in diabetic HPRA while sildenafil completely reversed diabetes-induced ED in rats only when combined with KCa activation. Activation of KCa improves vasodilatory capacity of PDE5 inhibitors in diabetic and non-diabetic HPRA, resulting in the recovery of erectile function in diabetic rats. These results suggest a therapeutic potential for KCa activation in diabetic ED. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  18. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. BK Virus-Associated Hemorrhagic Cystitis After Allogeneic Hematopoietic Stem Cell Transplantation in the Pediatric Population.

    PubMed

    Pérez-Huertas, Pablo; Cueto-Sola, Margarita; Escobar-Cava, Paloma; Fernández-Navarro, José María; Borrell-García, Carmela; Albert-Marí, Asunción; López-Briz, Eduardo; Poveda-Andrés, José Luis

    2016-02-22

    To study the incidence, risk factors, and treatment of hemorrhagic cystitis secondary to BK-virus reactivation (HC-BKV) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the pediatric population. Case-control study in which all pediatric patients (0-18 years) who underwent allo-HSCT from September 2009 to January 2014 were followed. Twenty-nine patients underwent an allo-HSCT. The median age was 9 years (range = 6 months to 15 years), 61% male. The primary diagnosis was acute lymphoblastic leukemia (72.4%). Six (20.7%) developed HC-BKV. In a multivariate analysis of risk factors, it was observed that the reactivation of BK virus was associated with age more than 10 years (P = .098) and those with positive serology for Epstein-Barr virus (P = .06). Five of the 6 patients with HC-BKV received cidofovir (CDV) at doses of 3 to 5 mg/kg/week. The treatment lasted a median of 3 cycles (range = 2-5). One of the patients (20%) developed nephrotoxicity. Of the 5 patients treated with CDV, 3 (60%) had a complete response, 1 (20%) partial response, and 1 (20%) no response. We conclude that HC-BKV is a frequent complication after allo-HSCT. CDV therapy can be effective but controlled clinical trials are needed. © 2016 by Association of Pediatric Hematology/Oncology Nurses.

  20. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors.

    PubMed

    Wang, Feifei; Chen, Zhong-Hua; Shabala, Sergey

    2017-07-01

    Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex.

    PubMed

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Bazzy-Asaad, Alia; Lazarus, Lawrence H; Balboni, Gianfranco; Kim, Dong H; Xia, Ying

    2012-08-01

    Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Characterizing muscular activities using non-negative matrix factorization from EMG channels for driver swings in golf.

    PubMed

    Ozaki, Yasunori; Aoki, Ryosuke; Kimura, Toshitaka; Takashima, Youichi; Yamada, Tomohiro

    2016-08-01

    The goal of this study is to propose a data driven approach method to characterize muscular activities of complex actions in sports such as golf from a lot of EMG channels. Two problems occur in a many channel measurement. The first problem is that it takes a lot of time to check the many channel data because of combinatorial explosion. The second problem is that it is difficult to understand muscle activities related with complex actions. To solve these problems, we propose an analysis method of multi EMG channels using Non-negative Matrix Factorization and adopt the method to driver swings in golf. We measured 26 EMG channels about 4 professional coaches of golf. The results show that the proposed method detected 9 muscle synergies and the activation of each synergy were mostly fitted by sigmoid curve (R2=0.85).

  3. Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1): Evidence of a signaling complex

    PubMed Central

    Fan, Jing; Gandini, Maria A.; Zhang, Fang-Xiong; Chen, Lina; Souza, Ivana A.; Zamponi, Gerald W.

    2017-01-01

    ABSTRACT Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels. We found that HCN1 co-immunoprecipitated with Cav3.2 from lysates of either mouse brain or tsA-201 cells, with the HCN1 N-terminus associating with the Cav3.2 N-terminus. Cav3.2 channel activity appeared to be functionally regulated by HCN1. The expression of HCN1 induced a decrease in Cav3.2 Ba2+ influx (IBa2+) along with altered channel kinetics and a depolarizing shift in activation gating. However, a reciprocal regulation of HCN1 by Cav3.2 was not observed. This study highlights a regulatory role of HCN1 on Cav3.2 voltage-dependent properties, which are expected to affect physiologic functions such as synaptic transmission and cellular excitability. PMID:28467171

  4. BK virus-associated renal problems--clinical implications.

    PubMed

    Pahari, Amitava; Rees, Lesley

    2003-08-01

    BK virus (BKV), a human polyomavirus, infects most of the human population, but clinically relevant infections are usually limited to individuals who are immunosuppressed. After primary infection, BKV remains latent in the kidneys and can be reactivated in immune deficiency conditions, including transplantation. As primary infection occurs in childhood, BKV may be particularly important in the pediatric transplant population. BKV is associated with tubulointerstitial nephritis and ureteric stenosis in renal transplant recipients and hemorrhagic cystitis in bone marrow transplant recipients. There are increasing reports of BKV causing nephropathy and cystitis in non-renal solid organ transplant recipients and other immunodeficiency diseases. This might be related to the use of more potent immunosuppressive regimens or increasing awareness of BKV as an important pathogen. Diagnosis of BKV disease is by biopsy. Histopathological changes in renal biopsy specimens may mimic rejection or drug toxicity, but BKV nuclear inclusions can be seen. Treatment is by reduction of immunosuppression. Antiviral agents such as cidofovir are showing promise. BKV DNA polymerase chain reaction in blood or biopsy may be helpful in monitoring therapy. The impact of BKV disease in children is not well understood and prospective studies are needed to elucidate this further. This article reviews the current understanding of BKV-associated renal problems.

  5. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    PubMed

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  6. Current statins show calcium channel blocking activity through voltage gated channels.

    PubMed

    Ali, Niaz; Begum, Robina; Faisal, Muhammad Saleh; Khan, Aslam; Nabi, Muhammad; Shehzadi, Gulfam; Ullah, Shakir; Ali, Waqar

    2016-09-21

    Statins are used for treatment of hypercholestremia. Common adverse reports associated with use of statins are generalized bodyache, rhabdomyolysis, muscles weakness and gastrointestinal disorders. The current work is an attempt to explain how smooth muscles of gastrointestinal tissues are affected by the current statins (Simvastatin, atorvastatin, fluvastatin and rosuvastatin). Effects of the current statins were studied on spontaneous activity of isolated rabbits' jejunal preparations. Different molar concentrations (10(-12)-10(-2)M) of the statins were applied on spontaneously contracting rabbits' jejunal preparations. As statins relaxed spontaneous activity, so we tested the statins on KCl (80 mM) induced contractions in similar test concentrations. Positive relaxant statins were tested again through construction of Calcium Concentration Response Curves (CCRCs) in the absence and presence of the statins using verapamil, a standard calcium channel blocker. CCRCs of statins were compared with CCRCs of verapamil. Simvastatin, atorvastatin, fluvastatin and rosuvastatin relaxed the spontaneous and KCl-induced contractions. IC50 for simvastatin on spontaneous rabbit's jejunal preparations is -5.08 ± 0.1 Log 10 M. Similarly, IC50 for KCl-induced contractions is -4.25 ± 0.01 Log 10 M. Mean IC50 (Log 10 M) for atorvastatin on spontaneous rabbit's jejunal preparations and KCl-induced contractions are -5.19 ± 0.07 and -4.37 ± 0.09, respectively. Fluvastatin relaxed spontaneous activity of rabbits' jejunal preparations with an IC50 (Log 10 M) -4.5 ± 0.03. Rosuvastatin relaxed spontaneous as well as KCl (80 mM) induced contractions with respective IC50 (Log 10 M) -3.62 ± 0.04 and -4.57 ± 0.06. In case of CCRCs, tissues pre-treated with 4.6 μg/ml of simvastatin, have IC50 = -1.84 ± 0.03 [log (Ca(++)) M] vs control IC50 = -2.54 ± 0.04 [log (Ca(++)) M]. Similarly, atorvastatin, fluvastatin and rosuvastatin produced

  7. Rheological properties of magnetorheological fluid and its finishing application on large aperture BK7 glass

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wei, Q. L.; Huang, W.; Luo, Q.; He, J. G.; Tang, G. P.

    2013-07-01

    The CeO2 nanoparticles with modified surface and mean sizes distribution during 107.0 nm - 127.7 nm are used as abrasive in magnetorheological finishing (MRF) fluid. The slow rotation dispersion without shearing thinning is better than fast emulsification dispersion. Steady D-shaped finishing spots and high quality precise processing surface with PV=0.1λ, GRMS=0.002λ/cm, Rq=0.83 nm are obtained on a 435 mm x 435 mm BK7 glass under self-developed MRF apparatus.

  8. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  9. Exploring the biophysical evidence that mammalian two‐pore channels are NAADP‐activated calcium‐permeable channels

    PubMed Central

    Reilly‐O'Donnell, Benedict; Sitsapesan, Rebecca

    2016-01-01

    Abstract Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca2+ from acidic intracellular endolysosomal Ca2+ stores. It is widely accepted that two types of two‐pore channels, termed TPC1 and TPC2, are responsible for the NAADP‐mediated Ca2+ release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca2+. Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca2+ over K+ than TPC1 and hence capable of releasing greater quantities of Ca2+ from acidic stores. TPC1 is also permeable to H+ and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca2+‐release channels of the endolysosomal system. PMID:26872338

  10. A Voltage Dependent Non-Inactivating Na+ Channel Activated during Apoptosis in Xenopus Oocytes

    PubMed Central

    Englund, Ulrika H.; Gertow, Jens; Kågedal, Katarina; Elinder, Fredrik

    2014-01-01

    Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na+ current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na+-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca2+-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na+ concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na+ whith either K+ or Choline+. Prevention of this influx of Na+ also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na+ increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na+ channel is up-regulated during apoptosis and that influx of Na+ is a crucial step in the apoptotic process in Xenopus oocytes. PMID:24586320

  11. Polyomavirus BK: possibly associated skin eruption in a patient with hemorrhagic cystitis.

    PubMed

    Medeiros, Patricia V; Abagge, Kerstin T; Carvalho, Vânia O; Bonfim, Carmem M; Raboni, Sonia M

    2011-01-01

    A 14-year-old girl with Fanconi anemia was submitted to allogeneic hematopoietic stem cell transplantation. After 17 days she developed hemorrhagic cystitis due to polyoma BK virus (BKV), confirmed by PCR (polymerase chain reaction). Two weeks after the appearance of the urinary symptoms the patient presented numerous papules and vesicles on both hands and feet. PCR of the skin lesions and plasma was positive for BKV. The relationship of BKV with frequent infections in immunocompromised patients is well established. The positive PCR of vesicular fluid suggests that this was the causative agent of the skin lesion in this case. There are no reports of skin lesions with positive PCR for BKV. © 2011 Wiley Periodicals, Inc.

  12. Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA

    PubMed Central

    Linder, Tobias; de Groot, Bert L.; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating. PMID:23658510

  13. Effect of activators and inhibitors of K+ channels on insulin secretion in the amphibian pancreas.

    PubMed

    Francini, F; Pirotte, B; Gagliardino, J J

    1997-02-01

    The aim of this study was to obtain pharmacological evidence for the presence and participation of K+ channels in amphibian pancreatic islets. Pancreases from the toad Bufo arenarum were thus incubated with activators or blockers of K+ channels and the immunoreactive insulin released into the medium was measured by radioimmunoassay. Two K(+)-ATP channel openers (diazoxide and BPDZ44) inhibited; while a K(+)-ATP channel blocker (tolbutamide) and metabolizable sugars (glucose, glyceraldehyde) significantly stimulated the output of insulin. Although a nonmetabolizable sugar (galactose) failed to increase insulin release, dinitrophenol decreased the secretagogue effect of glucose. By contrast, although somatostatin and clonidine blocked the release of insulin, tetraethylammonium significantly stimulated secretion. For each compound tested, the effects on both insulin secretion and B-cell K+ channel activity were similar to those observed in the mammalian pancreas. These findings point to the existence of mammalian-like K+ channels in the B-cells of some amphibians.

  14. Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes.

    PubMed

    Rivera, A; Rotter, M A; Brugnara, C

    1999-10-01

    Cell dehydration mediated by Ca(2+)-activated K(+) channels plays an important role in the pathogenesis of sickle cell disease. CD-1 mouse erythrocytes possess a Ca(2+)-activated K(+) channel (Gardos channel) with maximal velocity (V(max)) of 0.154 +/- 0.02 mmol. l cells(-1). min(-1) and an affinity constant (K(0.5)) for Ca(2+) of 286 +/- 83 nM in the presence of A-23187. Cells pretreated with 500 nM endothelin-1 (ET-1) increased their V(max) by 88 +/- 9% (n = 8) and decreased their K(0.5) for Ca(2+) to 139 +/- 63 nM (P < 0.05; n = 4). Activation of the Gardos channel resulted in an EC(50) of 75 +/- 20 nM for ET-1 and 374 +/- 97 nM for ET-3. Analysis of the affinity of unlabeled ET-1 for its receptor showed two classes of binding sites with apparent dissociation constants of 167 +/- 51 and 785 +/- 143 nM and with capacity of binding sites of 298 +/- 38 and 1,568 +/- 211 sites/cell, respectively. The Gardos channel was activated by the endothelin B (ET(B)) receptor agonist IRL 1620 and inhibited by BQ-788, demonstrating the involvement of ET(B) receptors. Calphostin C inhibited 73% of ET-1-induced Gardos activation and 84% of the ET-1-induced membrane protein kinase C activity. Thus endothelins regulate erythrocyte Gardos channels via ET(B) receptors and a calphostin-sensitive mechanism.

  15. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia.

    PubMed

    Tomasello, Danielle L; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin

    2017-01-01

    The Slick (Kcnt2) sodium-activated potassium (K Na ) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene-related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  16. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel.

    PubMed Central

    Schumaker, M F

    1992-01-01

    Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism. PMID:1420923

  17. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective

  18. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  19. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  20. Unusual presentations of BK virus infections in pediatric renal transplant recipients.

    PubMed

    Drake, Keri A; Najera, Lydia; Reed, Robyn C; Verghese, Priya S

    2013-02-01

    BKV has emerged as a significant pathogen in the field of transplantation, predominantly causing BKV nephropathy in renal transplant recipients and hemorrhagic cystitis in HSCT recipients. However, case reports describe more diverse complications, and we too present three unusual cases of BKV infections in pediatric renal transplant recipients. First, we describe a case of biopsy-proven renal damage secondary to BKV prior to the onset of viremia, demonstrating that BKV nephropathy can occur without preceding viremia. We also present two renal transplant recipients with persistent BK viruria, one with BKV-associated hemorrhagic cystitis and the other with microscopic hematuria. Therefore, we conclude that BKV manifestations may be more diverse than previously thought and suggest clinical utility in urine BKV qPCR testing in specific transplant recipients. © 2012 John Wiley & Sons A/S.

  1. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  2. Fatal BK virus pneumonia following stem cell transplantation.

    PubMed

    Akazawa, Y; Terada, Y; Yamane, T; Tanaka, S; Aimoto, M; Koh, H; Nakane, T; Koh, K-R; Nakamae, H; Ohsawa, M; Wakasa, K; Hino, M

    2012-12-01

    We report the case of a 39-year-old male patient who died of severe BK virus (BKV) pneumonia 168 days after hematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukemia. After suffering from BKV-associated late-onset hemorrhagic cystitis (HC) with long-term sustained BKV viremia, he died of rapidly progressive pneumonia. On autopsy, numerous viral intranuclear inclusions were seen in his lungs and bladder. An immunohistochemical examination of his lungs was positive for simian virus 40. Based on these pathological results and the high sustained BKV viral load in his blood, we reached a diagnosis of BKV pneumonia. Viral infection can occasionally become life threatening among HSCT recipients. It is widely known that BKV can cause late-onset HC, but BKV-associated pneumonia is rare. Because of its rapid progression and poor prognosis, it is difficult to make an antemortem diagnosis of BKV pneumonia. A treatment strategy for BKV pneumonia also needs to be formulated. Similar to other viral pathogens, BKV can cause pneumonia and the clinician should therefore be aware of it in immunocompromised patients. © 2012 John Wiley & Sons A/S.

  3. Unfolding of a temperature-sensitive domain controls voltage-gated channel activation

    PubMed Central

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.

    2016-01-01

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429

  4. Distance constraints on activation of TRPV4 channels by AKAP150-bound PKCα in arterial myocytes

    PubMed Central

    Moreno, Claudia M.; O’Dwyer, Samantha; Woods, Sean

    2017-01-01

    TRPV4 (transient receptor potential vanilloid 4) channels are Ca2+-permeable channels that play a key role in regulating vascular tone. In arterial myocytes, opening of TRPV4 channels creates local increases in Ca2+ influx, detectable optically as “TRPV4 sparklets.” TRPV4 sparklet activity can be enhanced by the action of the vasoconstrictor angiotensin II (AngII). This modulation depends on the activation of subcellular signaling domains that comprise protein kinase C α (PKCα) bound to the anchoring protein AKAP150. Here, we used super-resolution nanoscopy, patch-clamp electrophysiology, Ca2+ imaging, and mathematical modeling approaches to test the hypothesis that AKAP150-dependent modulation of TRPV4 channels is critically dependent on the distance between these two proteins in the sarcolemma of arterial myocytes. Our data show that the distance between AKAP150 and TRPV4 channel clusters varies with sex and arterial bed. Consistent with our hypothesis, we further find that basal and AngII-induced TRPV4 channel activity decays exponentially as the distance between TRPV4 and AKAP150 increases. Our data suggest a maximum radius of action of ∼200 nm for local modulation of TRPV4 channels by AKAP150-associated PKCα. PMID:28507079

  5. Endothelium-dependent vasorelaxant effect of procyanidin B2 on human internal mammary artery.

    PubMed

    Novakovic, Aleksandra; Marinko, Marija; Jankovic, Goran; Stojanovic, Ivan; Milojevic, Predrag; Nenezic, Dragoslav; Kanjuh, Vladimir; Yang, Qin; He, Guo-Wei

    2017-07-15

    The aim of the present study was to investigate and characterize vasorelaxant effect of procyanidin B2 on human internal mammary artery (HIMA) as one of the mechanisms of its protective effect against vascular risk. Procyanidin B2 induced strong concentration-dependent relaxation of HIMA rings pre-contracted by phenylephrine. Pretreatment with L-NAME, a NO synthase inhibitor, hydroxocobalamin, a NO scavenger, and ODQ, an inhibitor of soluble guanylate cyclase, significantly inhibited procyanidin B2-induced relaxation of HIMA, while indomethacin, a cyclooxygenase inhibitor, considerably reduced effects of low concentrations. Among K + channel blockers, iberiotoxin, a selective blocker of large conductance Ca 2+ -activated K + channels (BK Ca ), abolished procyanidin B2-induced relaxation, glibenclamide, a selective ATP-sensitive K + (K ATP ) channels blocker, induced partial inhibition, while 4-aminopyridine, a blocker of voltage-gated K + (K V ) channels, and TRAM-34, an inhibitor of intermediate-conductance Ca 2+ -activated K + (IK Ca ) channels, slightly reduced maximal relaxation of HIMA. Further, procyanidin B2 relaxed contraction induced by phenylephrine in Ca 2+ -free Krebs solution, but had no effect on contraction induced by caffeine. Finally, thapsigargin, a sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, significantly reduced relaxation of HIMA produced by procyanidin B2. These results demonstrate that procyanidin B2 produces endothelium-dependent relaxation of HIMA pre-contracted by phenylephrine. This effect is primarily the result of an increased NO synthesis and secretion by endothelial cells and partially of prostacyclin, although it involves activation of BK Ca and K ATP , as well as K V and IK Ca channels in high concentrations of procyanidin B2. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of proline position upon the ion channel activity of alamethicin.

    PubMed Central

    Kaduk, C; Duclohier, H; Dathe, M; Wenschuh, H; Beyermann, M; Molle, G; Bienert, M

    1997-01-01

    Alamethicin, a 20-residue peptaibol, induces voltage-dependent ion channels in lipid bilayers according to the barrel-stave model. To study relationships between the proline-14-induced kink region and the channel-forming behavior of the peptide, a set of alamethicin analogs with proline incorporated at positions 11, 12, 13, 14, 15, 16, and 17, respectively, as well as an analog with alanine instead of proline at position 14 were synthesized. Macroscopic conductance experiments show that the voltage dependence of the peptides is conserved although slightly influenced, but the apparent mean number of monomers forming the channels is significantly reduced when proline is not located at position 14. This is confirmed in single-channel experiments. The analogs with proline next to position 14 (i.e., 13, 15, 16) show stable conductance levels, but of reduced number, which follows the order Alam-P14 > Alam-P15 > Alam-P16 > Alam-P13. This reduction in the number of levels is connected with changes in the lifetime of the channels. Analogs with proline at position 11, 12, or 17 produce erratic, extremely short-lived current events that could not be resolved. The changes in functional properties are related to structural properties as probed by circular dichroism. The results indicate that proline at position 14 results in optimal channel activity, whereas channels formed by the analogs bearing proline at different positions are considerably less stable. PMID:9129817

  7. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    PubMed Central

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  8. TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes

    PubMed Central

    Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing

    2012-01-01

    Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126

  9. Role of the S4-S5 linker in CNG channel activation.

    PubMed

    Kusch, Jana; Zimmer, Thomas; Holschuh, Jascha; Biskup, Christoph; Schulz, Eckhard; Nache, Vasilica; Benndorf, Klaus

    2010-10-20

    Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Modulation of channel activity and gadolinium block of MscL by static magnetic fields.

    PubMed

    Petrov, Evgeny; Martinac, Boris

    2007-02-01

    The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd(3+) ions from the membrane bilayer and thus remove the MscL channel block.

  11. Angioedema attacks in patients with hereditary angioedema: Local manifestations of a systemic activation process.

    PubMed

    Hofman, Zonne L M; Relan, Anurag; Zeerleder, Sacha; Drouet, Christian; Zuraw, Bruce; Hack, C Erik

    2016-08-01

    Hereditary angioedema (HAE) caused by a deficiency of functional C1-inhibitor (C1INH) becomes clinically manifest as attacks of angioedema. C1INH is the main inhibitor of the contact system. Poor control of a local activation process of this system at the site of the attack is believed to lead to the formation of bradykinin (BK), which increases local vasopermeability and mediates angioedema on interaction with BK receptor 2 on the endothelium. However, several observations in patients with HAE are difficult to explain from a pathogenic model claiming a local activation process at the site of the angioedema attack. Therefore we postulate an alternative model for angioedema attacks in patients with HAE, which assumes a systemic, fluid-phase activation of the contact system to generate BK and its breakdown products. Interaction of these peptides with endothelial receptors that are locally expressed in the affected tissues rather than with receptors constitutively expressed by the endothelium throughout the whole body explains that such a systemic activation process results in local manifestations of an attack. In particular, BK receptor 1, which is induced on the endothelium by inflammatory stimuli, such as kinins and cytokines, meets the specifications of the involved receptor. The pathogenic model discussed here also provides an explanation for why angioedema can occur at multiple sites during an attack and why HAE attacks respond well to modest increases of circulating C1INH activity levels because inhibition of fluid-phase Factor XIIa and kallikrein requires lower C1INH levels than inhibition of activator-bound factors. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties.

    PubMed

    Wiener, H; Turnheim, K

    1990-10-26

    Using differential sedimentation, isopycnic and Ficoll-400 barrier centrifugation, basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon were enriched 34- and 9-fold, respectively. 86Rb(+)-uptake into these vesicles, driven by an electrical potential difference, was stimulated by submicromolar Ca2+ activities and inhibited by Ba2+. These findings indicate the presence of Ca2(+)-activated K+ channels. The K+ channels in surface and crypt cell membranes differed with respect to inhibition by the bee venom apamin, the scorpion venom charybdotoxin and tetraethylammonium and exhibited a different pH dependence. Fusion of basolateral membrane vesicles with planar phospholipid bilayers revealed the presence of high-conductance Ba2(+)-sensitive K+ channels which were activated by micromolar Ca2+ and inhibited by crude scorpion venom and trifluoperazine. These K+ channels may be involved in the coupling of apical and basolateral membrane conductances during Na+ absorption and Cl- secretion, but they may also play a role in cell volume regulation.

  13. BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients.

    PubMed

    Varella, Rafael B; Zalona, Ana Carolina J; Diaz, Nuria C; Zalis, Mariano G; Santoro-Lopes, Guilherme

    2018-01-02

    BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  15. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities

    NASA Technical Reports Server (NTRS)

    Sukharev, S. I.; Blount, P.; Martinac, B.; Kung, C.

    1997-01-01

    Although mechanosensory responses are ubiquitous and diverse, the molecular bases of mechanosensation in most cases remain mysterious MscL, a mechanosensitive channel of large conductance of Escherichia coli and its bacterial homologues are the first and currently only channel molecules shown to directly sense mechanical stretch of the membrane. In response to the tension conveyed via the lipid bilayer, MscL increases its open probability by several orders of magnitude. In the present review we describe the identification, cloning, and first sets of biophysical and structural data on this simplest mechanosensory molecule. We discovered a 2.5-ns mechanosensitive conductance in giant E. coli spheroplasts. Using chromatographies to enrich the target and patch clamp to assay the channel activity in liposome-reconstituted fractions, we identified the MscL protein and cloned the mscL gene. MscL comprises 136 amino acid residues (15 kDa), with two highly hydrophobic regions, and resides in the inner membrane of the bacterium. PhoA-fusion experiments indicate that the protein spans the membrane twice with both termini in the cytoplasm. Spectroscopic techniques show that it is highly helical. Expression of MscL tandems and covalent cross-linking suggest that the active channel complex is a homo-hexamer. We have identified several residues, which when deleted or substituted, affect channel kinetics or mechanosensitivity. Although unique when discovered, highly conserved MscL homologues in both gram-negative and gram-positive bacteria have been found, suggesting their ubiquitous importance among bacteria.

  16. Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum.

    PubMed

    Cavarra, M S; del Mónaco, S M; Kotsias, B A

    2004-07-01

    A two-electrode, voltage-clamp technique was used to measure the effect of the Cl(-) channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K(+) solution than in standard (2 mmol l(-1)) or high (20 mmol l(-1)) K(+) solutions, indicating that a K(+) conductance is activated. The effect of the Cl(-) channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl(-) that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl(-) channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.

  17. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S

    2018-01-01

    Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.

  18. Diffuse gastrointestinal bleeding and BK polyomavirus replication in a pediatric allogeneic haematopoietic stem cell transplant patient.

    PubMed

    Koskenvuo, M; Lautenschlager, I; Kardas, P; Auvinen, E; Mannonen, L; Huttunen, P; Taskinen, M; Vettenranta, K; Hirsch, H H

    2015-01-01

    Patients undergoing haematopoietic stem cell transplantation (HSCT) are at high risk of severe gastrointestinal bleeding caused by infections, graft versus host disease, and disturbances in haemostasis. BK polyomavirus (BKPyV) is known to cause hemorrhagic cystitis, but there is also evidence of BKV shedding in stool and its association with gastrointestinal disease. We report putative association of BKPyV replication with high plasma viral loads in a pediatric HSCT patient developing hemorrhagic cystitis and severe gastrointestinal bleeding necessitating intensive care. The observation was based on chart review and analysis of BKPyV DNA loads in plasma and urine as well as retrospective BKPyV-specific IgM and IgG measurements in weekly samples until three months post-transplant. The gastrointestinal bleeding was observed after a >100-fold increase in the plasma BKPyV loads and the start of hemorrhagic cystitis. The BKPyV-specific antibody response indicated past infection prior to transplantation, but increasing IgG titers were seen following BKPyV replication. The gastrointestinal biopsies were taken at a late stage of the episode and were no longer informative of BK polyomavirus involvement. In conclusion, gastrointestinal complications with bleeding are a significant problem after allogeneic HSCT to which viral infections including BKPyV may contribute. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    PubMed

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  20. The polyomavirus BK agnoprotein co-localizes with lipid droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unterstab, Gunhild; Gosert, Rainer; Leuenberger, David

    Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66more » were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.« less