Science.gov

Sample records for bk channel activity

  1. BK channels: multiple sensors, one activation gate.

    PubMed

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca(2+) activated BK channels, a K(+) channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.

  2. BK channels: multiple sensors, one activation gate

    PubMed Central

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate. PMID:25705194

  3. The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators

    PubMed Central

    Almassy, Janos

    2012-01-01

    Large conductance, Ca2+-activated K channel proteins are involved in a wide range of physiological activities, so there is considerable interest in the pharmacology of large conductance calcium-activated K (BK) channels. One potent activator of BK channels is mallotoxin (MTX), which produces a very large hyperpolarizing shift of the voltage gating of heterologously expressed BK channels and causes a dramatic increase in the activity of BK channels in human smooth muscle cells. However, we found that MTX shifted the steady-state activation of BK channels in native parotid acinar cells by only 6 mV. This was not because the parotid BK isoform (parSlo) is inherently insensitive to MTX as MTX shifted the activation of heterologously expressed parSlo channels by 70 mV. Even though MTX had a minimal effect on steady-state activation of parotid BK channels, it produced an approximate 2-fold speeding of the channel-gating kinetics. The BK channels in parotid acinar cells have a much more hyperpolarized voltage activation range than BK channels in most other cell types. We found that this is probably attributable to an accessory protein, LRRC26, which is expressed in parotid glands: expressed parSlo + LRRC26 channels were resistant to the actions of MTX. Another class of BK activators is the benzimidazalones that includes 1,3-dihydro-1-(2-hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). Although the LRRC26 accessory protein strongly inhibited the ability of MTX to activate BK channels, we found that it had only a small effect on the action of NS-1619 on BK channels. Thus, the LRRC26 BK channel accessory protein selectively alters the pharmacology of BK channels. PMID:21984254

  4. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  5. Modulation of BK channel activities by calcium-sensing receptor in rat bronchopulmonary sensory neurons.

    PubMed

    Vysotskaya, Zhanna V; Moss, Charles R; Gilbert, Carolyn A; Gabriel, Sabry A; Gu, Qihai

    2014-11-01

    This study was carried out to investigate the expression of large-conductance Ca(2+)-activated potassium (BK) channels and to explore the possible modulation of BK channel activities by calcium-sensing receptors (CaSR) in rat bronchopulmonary sensory neurons. The expression of BK channels was demonstrated by immunohistochemistry and RT-PCR. Results from whole-cell patch-clamp recordings demonstrated that activation of CaSR with its agonist spermine or NPS R-568 showed a dual regulating effect on BK channel activities: it potentiated BK currents in cells exhibiting low baseline BK activity while slightly inhibited BK currents in cells with high baseline BK activity. Blocking CaSR with its antagonist NPS 2143 significantly inhibited BK currents. Our results further showed that the modulation of BK currents by CaSR activation or blockade was completely abolished when the intracellular Ca(2+) was chelated by BAPTA-AM. In summary, our data suggest that CaSR plays an integrative role in bronchopulmonary afferent signaling, at least partially through the regulation of BK channel activities.

  6. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.

  7. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  8. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  9. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  10. Altered L-type Ca2+ channel activity contributes to exacerbated hypoperfusion and mortality in smooth muscle cell BK channel-deficient septic mice.

    PubMed

    Xu, Hui; Garver, Hannah; Fernandes, Roxanne; Galligan, James J; Fink, Gregory D

    2014-07-15

    We determined the contribution of vascular large conductance Ca2+-activated K+ (BK) and L-type Ca2+ channel dysregulation to exaggerated mortality in cecal ligation/puncture (CLP)-induced septic BK channel β1-subunit knockout (BK β1-KO, smooth muscle specific) mice. CLP-induced hemodynamic changes and mortality were assessed over 7 days in wild-type (WT) and BK β1-KO mice that were either untreated, given volume resuscitation (saline), or saline + calcium channel blocker nicardipine. Some mice were euthanized 24 h post-CLP to measure tissue injury and vascular and immune responses. CLP-induced hypotension was similar in untreated WT and BK β1-KO mice, but BK β1-KO mice died sooner. At 24 h post-CLP (mortality latency in BK β1-KO mice), untreated CLP-BK β1-KO mice showed more severe hypothermia, lower tissue perfusion, polymorphonuclear neutrophil infiltration-independent severe intestinal necrosis, and higher serum cytokine levels than CLP-WT mice. Saline resuscitation improved survival in CLP-WT but not CLP-BK β1-KO mice. Saline + nicardipine-treated CLP-BK β1-KO mice exhibited longer survival times, higher tissue perfusion, less intestinal injury, and lower cytokines versus untreated CLP-BK β1-KO mice. These improvements were absent in treated CLP-WT mice, although saline + nicardipine improved blood pressure similarly in both septic mice. At 24 h post-CLP, BK and L-type Ca2+ channel functions in vitro were maintained in mesenteric arteries from WT mice. Mesenteric arteries from BK β1-KO mice had blunted BK/enhanced L-type Ca2+ channel function. We conclude that vascular BK channel deficiency exaggerates mortality in septic BK β1-KO mice by activating L-type Ca2+ channels leading to blood pressure-independent tissue ischemia.

  11. Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation.

    PubMed

    Davis, S J; Scott, L L; Ordemann, G; Philpo, A; Cohn, J; Pierce-Shimomura, J T

    2015-07-01

    Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca(2+) bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca(2+) bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.

  12. Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Matthews, Elizabeth A.; Disterhoft, John F.

    2009-01-01

    Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…

  13. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate.

  14. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. PMID:27238270

  15. β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel.

    PubMed

    Castillo, Juan P; Sánchez-Rodríguez, Jorge E; Hyde, H Clark; Zaelzer, Cristian A; Aguayo, Daniel; Sepúlveda, Romina V; Luk, Louis Y P; Kent, Stephen B H; Gonzalez-Nilo, Fernando D; Bezanilla, Francisco; Latorre, Ramón

    2016-06-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are involved in a large variety of physiological processes. Regulatory β-subunits are one of the mechanisms responsible for creating BK channel diversity fundamental to the adequate function of many tissues. However, little is known about the structure of its voltage sensor domain. Here, we present the external architectural details of BK channels using lanthanide-based resonance energy transfer (LRET). We used a genetically encoded lanthanide-binding tag (LBT) to bind terbium as a LRET donor and a fluorophore-labeled iberiotoxin as the LRET acceptor for measurements of distances within the BK channel structure in a living cell. By introducing LBTs in the extracellular region of the α- or β1-subunit, we determined (i) a basic extracellular map of the BK channel, (ii) β1-subunit-induced rearrangements of the voltage sensor in α-subunits, and (iii) the relative position of the β1-subunit within the α/β1-subunit complex.

  16. Peptide toxins and small-molecule blockers of BK channels

    PubMed Central

    Yu, Mu; Liu, San-ling; Sun, Pei-bei; Pan, Hao; Tian, Chang-lin; Zhang, Long-hua

    2016-01-01

    Large conductance, Ca2+-activated potassium (BK) channels play important roles in the regulation of neuronal excitability and the control of smooth muscle contractions. BK channels can be activated by changes in both the membrane potential and intracellular Ca2+ concentrations. Here, we provide an overview of the structural and pharmacological properties of BK channel blockers. First, the properties of different venom peptide toxins from scorpions and snakes are described, with a focus on their characteristic structural motifs, including their disulfide bond formation pattern, the binding interface between the toxin and BK channel, and the functional consequence of the blockage of BK channels by these toxins. Then, some representative non-peptide blockers of BK channels are also described, including their molecular formula and pharmacological effects on BK channels. The detailed categorization and descriptions of these BK channel blockers will provide mechanistic insights into the blockade of BK channels. The structures of peptide toxins and non-peptide compounds could provide templates for the design of new channel blockers, and facilitate the optimization of lead compounds for further therapeutic applications in neurological disorders or cardiovascular diseases. PMID:26725735

  17. Peptide toxins and small-molecule blockers of BK channels.

    PubMed

    Yu, Mu; Liu, San-ling; Sun, Pei-bei; Pan, Hao; Tian, Chang-lin; Zhang, Long-hua

    2016-01-01

    Large conductance, Ca(2+)-activated potassium (BK) channels play important roles in the regulation of neuronal excitability and the control of smooth muscle contractions. BK channels can be activated by changes in both the membrane potential and intracellular Ca(2+) concentrations. Here, we provide an overview of the structural and pharmacological properties of BK channel blockers. First, the properties of different venom peptide toxins from scorpions and snakes are described, with a focus on their characteristic structural motifs, including their disulfide bond formation pattern, the binding interface between the toxin and BK channel, and the functional consequence of the blockage of BK channels by these toxins. Then, some representative non-peptide blockers of BK channels are also described, including their molecular formula and pharmacological effects on BK channels. The detailed categorization and descriptions of these BK channel blockers will provide mechanistic insights into the blockade of BK channels. The structures of peptide toxins and non-peptide compounds could provide templates for the design of new channel blockers, and facilitate the optimization of lead compounds for further therapeutic applications in neurological disorders or cardiovascular diseases. PMID:26725735

  18. Intrinsic Disorder in the BK Channel and Its Interactome

    PubMed Central

    Peng, Zhenling; Sakai, Yoshihisa; Kurgan, Lukasz; Sokolowski, Bernd; Uversky, Vladimir

    2014-01-01

    The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal and smooth muscles, exocrine cells, and sensory cells of the inner ear. Previous studies suggest that BK channels are promiscuous binders involved in a multitude of protein-protein interactions. To gain a better understanding of the potential mechanisms underlying BK interactions, we analyzed the abundance, distribution, and potential mechanisms of intrinsic disorder in 27 BK channel variants from mouse cochlea, 104 previously reported BK-associated proteins (BKAPS) from cytoplasmic and membrane/cytoskeletal regions, plus BK β- and γ-subunits. Disorder was evaluated using the MFDp algorithm, which is a consensus-based predictor that provides a strong and competitive predictive quality and PONDR, which can determine long intrinsically disordered regions (IDRs). Disorder-based binding sites or molecular recognition features (MoRFs) were found using MoRFpred and ANCHOR. BKAP functions were categorized based on Gene Ontology (GO) terms. The analyses revealed that the BK variants contain a number of IDRs. Intrinsic disorder is also common in BKAPs, of which ∼5% are completely disordered. However, intrinsic disorder is very differently distributed within BK and its partners. Approximately 65% of the disordered segments in BK channels are long (IDRs) (>50 residues), whereas >60% of the disordered segments in BKAPs are short IDRs that range in length from 4 to 30 residues. Both α and γ subunits showed various amounts of disorder as did hub proteins of the BK interactome. Our analyses suggest that intrinsic disorder is important for the function of BK and its BKAPs. Long IDRs in BK are engaged in protein-protein and protein-ligand interactions, contain multiple post-translational modification sites, and are subjected to alternative splicing. The disordered structure of BK and its BKAPs suggests one of the underlying mechanisms of

  19. BK Channels in the Vertebrate Inner Ear.

    PubMed

    Pyott, S J; Duncan, R K

    2016-01-01

    The perception of complex acoustic stimuli begins with the deconstruction of sound into its frequency components. This spectral processing occurs first and foremost in the inner ear. In vertebrates, two very different strategies of frequency analysis have evolved. In nonmammalian vertebrates, the sensory hair cells of the inner ear are intrinsically electrically tuned to a narrow band of acoustic frequencies. This electrical tuning relies on the interplay between BK channels and voltage-gated calcium channels. Systematic variations in BK channel density and kinetics establish a gradient in electrical resonance that enables the coding of a broad range of acoustic frequencies. In contrast, mammalian hair cells are extrinsically tuned by mechanical properties of the cochlear duct. Even so, mammalian hair cells also express BK channels. These BK channels play critical roles in various aspects of mammalian auditory signaling, from developmental maturation to protection against acoustic trauma. This review summarizes the anatomical localization, biophysical properties, and functional contributions of BK channels in vertebrate inner ears. Areas of future research, based on an updated understanding of the biology of both BK channels and the inner ear, are also highlighted. Investigation of BK channels in the inner ear continues to provide fertile research grounds for examining both BK channel biophysics and the molecular mechanisms underlying signal processing in the auditory periphery. PMID:27238269

  20. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties

    PubMed Central

    Goldklang, Monica P.; Perez-Zoghbi, Jose F.; Trischler, Jordis; Nkyimbeng, Takwi; Zakharov, Sergey I.; Shiomi, Takayuki; Zelonina, Tina; Marks, Andrew R.; D'Armiento, Jeanine M.; Marx, Steven O.

    2013-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are highly expressed in airway smooth muscle (ASM). Utilizing the ovalbumin (OVA) and house dust mite (HDM) models of asthma in C57BL/6 mice, we demonstrate that systemic administration of the BK channel agonist rottlerin (5 μg/g) during the challenge period reduced methacholine-induced airway hyperreactivity (AHR) in OVA- and HDM-sensitized mice (47% decrease in peak airway resistance in OVA-asthma animals, P<0.01; 54% decrease in HDM-asthma animals, P<0.01) with a 35–40% reduction in inflammatory cells and 20–35% reduction in Th2 cytokines in bronchoalveolar lavage fluid. Intravenous rottlerin (5 μg/g) reduced AHR within 5 min in the OVA-asthma mice by 45% (P<0.01). With the use of an ex vivo lung slice technique, rottlerin relaxed acetylcholine-stimulated murine airway lumen area to 87 ± 4% of the precontracted area (P<0.01 vs. DMSO control). Rottlerin increased BK channel activity in human ASM cells (V50 shifted by 73.5±13.5 and 71.8±14.6 mV in control and asthmatic cells, respectively, both P<0.05 as compared with pretreatment) and reduced the frequency of acetylcholine-induced Ca2+ oscillations in murine ex vivo lung slices. These findings suggest that rottlerin, with both anti-inflammatory and ASM relaxation properties, may have benefit in treating asthma.—Goldklang, M. P., Perez-Zoghbi, J. F., Trischler, J., Nkyimbeng, T., Zakharov, S. I., Shiomi, T., Zelonina, T., Marks, A. R., D'Armiento, J. M., Marx, S. O. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. PMID:23995289

  1. Activation of BK and SK channels by efferent synapses on outer hair cells in high-frequency regions of the rodent cochlea.

    PubMed

    Rohmann, Kevin N; Wersinger, Eric; Braude, Jeremy P; Pyott, Sonja J; Fuchs, Paul Albert

    2015-02-01

    Cholinergic neurons of the brainstem olivary complex project to and inhibit outer hair cells (OHCs), refining acoustic sensitivity of the mammalian cochlea. In all vertebrate hair cells studied to date, cholinergic inhibition results from the combined action of ionotropic acetylcholine receptors and associated calcium-activated potassium channels. Although inhibition was thought to involve exclusively small conductance (SK potassium channels), recent findings have shown that BK channels also contribute to inhibition in basal, high-frequency OHCs after the onset of hearing. Here we show that the waveform of randomly timed IPSCs (evoked by high extracellular potassium) in high-frequency OHCs is altered by blockade of either SK or BK channels, with BK channels supporting faster synaptic waveforms and SK channels supporting slower synaptic waveforms. Consistent with these findings, IPSCs recorded from high-frequency OHCs that express BK channels are briefer than IPSCs recorded from low-frequency (apical) OHCs that do not express BK channels and from immature high-frequency OHCs before the developmental onset of BK channel expression. Likewise, OHCs of BKα(-/-) mice lacking the pore-forming α-subunit of BK channels have longer IPSCs than do the OHCs of BKα(+/+) littermates. Furthermore, serial reconstruction of electron micrographs showed that postsynaptic cisterns of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs, and immunofluorescent quantification showed that efferent presynaptic terminals of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs. Together, these findings indicate that BK channels contribute to postsynaptic function, and influence the structural maturation of efferent-OHC synapses. PMID:25653344

  2. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes

    PubMed Central

    Stimers, Joseph R.; Song, Li; Rusch, Nancy J.; Rhee, Sung W.

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome. PMID:26091273

  3. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes. PMID:27574914

  4. A BK (Slo1) channel journey from molecule to physiology.

    PubMed

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.

  5. A BK (Slo1) channel journey from molecule to physiology

    PubMed Central

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517

  6. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  7. Structure of the Human BK Channel Ca[superscript 2+]-Activation Apparatus at 3.0 Å Resolution

    SciTech Connect

    Yuan, Peng; Leonetti, Manuel D.; Pico, Alexander R.; Hsiung, Yichun; MacKinnon, Roderick

    2010-08-30

    High-conductance voltage- and Ca{sup 2+}-activated K{sup +} (BK) channels encode negative feedback regulation of membrane voltage and Ca{sup 2+} signaling, playing a central role in numerous physiological processes. We determined the x-ray structure of the human BK Ca{sup 2+} gating apparatus at a resolution of 3.0 angstroms and deduced its tetrameric assembly by solving a 6 angstrom resolution structure of a Na{sup +}-activated homolog. Two tandem C-terminal regulator of K{sup +} conductance (RCK) domains from each of four channel subunits form a 350-kilodalton gating ring at the intracellular membrane surface. A sequence of aspartic amino acids that is known as the Ca{sup 2+} bowl, and is located within the second of the tandem RCK domains, creates four Ca{sup 2+} binding sites on the outer perimeter of the gating ring at the 'assembly interface' between RCK domains. Functionally important mutations cluster near the Ca{sup 2+} bowl, near the 'flexible interface' between RCK domains, and on the surface of the gating ring that faces the voltage sensors. The structure suggests that the Ca{sup 2+} gating ring, in addition to regulating the pore directly, may also modulate the voltage sensor.

  8. Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway.

    PubMed

    Hoang, L M; Mathers, D A

    1998-01-01

    1. In this study the role of nitric oxide synthase (NOS) in the acute activation of large conductance, Ca2+-activated K+ channels (BK channels) by internally applied E. coli lipopolysaccharide (LPS, endotoxin) was examined in vascular smooth muscle cells. 2. Cerebrovascular smooth muscle cells (CVSMCs) were enzymatically dispersed from the middle, posterior communicating and posterior cerebral arteries of adult Wistar rats and maintained at 4 degrees C for 2-4 days before recording with standard patch-clamp techniques. 3. Acute application of LPS (100 microg ml(-1)) to inside-out patches of CVSMC membrane isolated in a cell-free environment rapidly and reversibly increased the open probability, Po of BK channels in these patches by 3.3+/-0.30 fold. 4. Acute application of the nitric oxide (NO) donor sodium nitroprusside (SNP, 100 microM) to inside-out patches of CVSMC membrane, studied in the presence of intact cells, also reversibly increased Po, by some 1.8+/-0.2 fold over control. 5. Kinetic analysis showed that both LPS and SNP increased Po by accelerating the rate of BK channel reopening, rather than by retarding the closure of open channels. 6. Neither LPS nor SNP altered the reversal potential or conductance of BK channels. 7. The NOS substrate L-arginine (1 microM) potentiated the acute activation of BK channels by LPS, while the synthetic enantiomer D-arginine (1 microM) inhibited the action of LPS on BK channels. 8. The acute activation of BK channels by LPS was suppressed by pre-incubation of cells with N(omega)-nitro-L-arginine (50 microM) or N(omega)-nitro-L-arginine methyl ester (1 mM), two competitive antagonists of nitric oxide synthases. N(omega)-nitro-D-arginine (50 microM), a poor inhibitor of NOS in in vitro assays, had no effect on BK channel activation by LPS. 9. These results indicate that excised, inside-out patches of CVSMC membrane exhibit a NOS-like activity which is acutely activated when LPS is present at the cytoplasmic membrane

  9. Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway

    PubMed Central

    Hoang, L M; Mathers, D A

    1998-01-01

    In this study the role of nitric oxide synthase (NOS) in the acute activation of large conductance, Ca2+-activated K+ channels (BK channels) by internally applied E. coli lipopolysaccharide (LPS, endotoxin) was examined in vascular smooth muscle cells.Cerebrovascular smooth muscle cells (CVSMCs) were enzymatically dispersed from the middle, posterior communicating and posterior cerebral arteries of adult Wistar rats and maintained at 4°C for 2–4 days before recording with standard patch-clamp techniques.Acute application of LPS (100 μg ml−1) to inside-out patches of CVSMC membrane isolated in a cell-free environment rapidly and reversibly increased the open probability, Po of BK channels in these patches by 3.3±0.30 fold.Acute application of the nitric oxide (NO) donor sodium nitroprusside (SNP, 100 μM) to inside-out patches of CVSMC membrane, studied in the presence of intact cells, also reversibly increased Po, by some 1.8±0.2 fold over control.Kinetic analysis showed that both LPS and SNP increased Po by accelerating the rate of BK channel reopening, rather than by retarding the closure of open channels.Neither LPS nor SNP altered the reversal potential or conductance of BK channels.The NOS substrate L-arginine (1 μM) potentiated the acute activation of BK channels by LPS, while the synthetic enantiomer D-arginine (1 μM) inhibited the action of LPS on BK channels.The acute activation of BK channels by LPS was suppressed by pre-incubation of cells with Nω-nitro-L-arginine (50 μM) or Nω-nitro-L-arginine methyl ester (1  mM), two competitive antagonists of nitric oxide synthases. Nω-nitro-D-arginine (50 μM), a poor inhibitor of NOS in in vitro assays, had no effect on BK channel activation by LPS.These results indicate that excised, inside-out patches of CVSMC membrane exhibit a NOS-like activity which is acutely activated when LPS is present at the cytoplasmic membrane surface. Possible relationships between this novel mechanism

  10. Effect of Phosphatidylserine on Unitary Conductance and Ba2+ Block of the BK Ca2+–activated K+ Channel

    PubMed Central

    Park, Jin Bong; Kim, Hee Jeong; Ryu, Pan Dong; Moczydlowski, Edward

    2003-01-01

    Incorporation of BK Ca2+–activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273–282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 Å) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms

  11. Synthesis of a Biotin Derivative of Iberiotoxin: Binding Interactions with Streptavidin and the BK Ca2+-activated K+ Channel Expressed in a Human Cell Line

    PubMed Central

    Bingham, Jon-Paul; Bian, Shumin; Tan, Zhi-Yong; Takacs, Zoltan; Moczydlowski, Edward

    2008-01-01

    Iberiotoxin (IbTx) is a scorpion venom peptide that inhibits BK Ca2+-activated K+ channels with high affinity and specificity. Automated solid phase synthesis was used to prepare a biotin-labeled derivative (IbTx-LC-biotin) of IbTx by substitution of Asp19 of the native 37-residue peptide with N-ε-(d-biotin-6-amidocaproate)-l-lysine. Both IbTx-LC-biotin and its complex with streptavidin (StrAv) block single BK channels from rat skeletal muscle with nanomolar affinity, indicating that the biotin-labeled residue, either alone or in complex with StrAv, does not obstruct the toxin binding interaction with the BK channel. IbTx-LC-biotin exhibits high affinity (KD = 26 nM) and a slow dissociation rate (koff = 5.4 × 10-4 s-1) in a macroscopic blocking assay of whole-cell current of the cloned human BK channel. Titration of IbTx-LC-biotin with StrAv monitored by high performance size exclusion chromatography is consistent with a stoichiometry of two binding sites for IbTx-LC-biotin per StrAv tetramer, indicating that steric interference hinders simultaneous binding of two toxin molecules on each of the two biotin-binding faces of StrAv. In combination with fluorescent conjugates of StrAv or anti-biotin antibody, IbTx-LC-biotin was used to image the surface distribution of BK channels on a transfected cell line. Fluorescence microscopy revealed a patch-like surface distribution of BK channel protein. The results support the feasibility of using IbTx-LC-biotin and similar biotin-tagged K+ channel toxins for diverse applications in cellular neurobiology. PMID:16704206

  12. A role for BK channels in heart rate regulation in rodents.

    PubMed

    Imlach, Wendy L; Finch, Sarah C; Miller, John H; Meredith, Andrea L; Dalziel, Julie E

    2010-01-14

    The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+) and Ca(2+) and outward K(+) currents. There are a number of K(+) channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK) ion channels are not thought to be directly involved in heart function. Here we present evidence that heart rate can be significantly reduced by inhibiting the activity of BK channels. Agents that specifically inhibit BK channel activity, including paxilline and lolitrem B, slowed heart rate in conscious wild-type mice by 30% and 42%, respectively. Heart rate of BK channel knock-out mice (Kcnma1(-/-)) was not affected by these BK channel inhibitors, suggesting that the changes to heart rate were specifically mediated through BK channels. The possibility that these effects were mediated through BK channels peripheral to the heart was ruled out with experiments using isolated, perfused rat hearts, which showed a significant reduction in heart rate when treated with the BK channel inhibitors paxilline (1 microM), lolitrem B (1 microM), and iberiotoxin (0.23 microM), of 34%, 60%, and 42%, respectively. Furthermore, paxilline was shown to decrease heart rate in a dose-dependent manner. These results implicate BK channels located in the heart to be directly involved in the regulation of heart rate.

  13. Increased Expression of the Large Conductance, Calcium-Activated K+ (BK) Channel in Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Donnelier, Julien; Braun, Samuel T.; Dolzhanskaya, Natalia; Ahrendt, Eva; Braun, Andrew P.; Velinov, Milen; Braun, Janice E. A.

    2015-01-01

    Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer’s disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer’s specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL. PMID:25905915

  14. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol

    PubMed Central

    Dopico, Alejandro M.; Bukiya, Anna N.; Singh, Aditya K.

    2012-01-01

    Cholesterol (CLR) is an essential component of eukaryotic plasma membranes. CLR regulates the membrane physical state, microdomain formation and the activity of membrane-spanning proteins, including ion channels. Large conductance, voltage- and Ca2+-gated K+ (BK) channels link membrane potential to cell Ca2+ homeostasis. Thus, they control many physiological processes and participate in pathophysiological mechanisms leading to human disease. Because plasmalemma BK channels cluster in CLR-rich membrane microdomains, a major driving force for studying BK channel-CLR interactions is determining how membrane CLR controls the BK current phenotype, including its pharmacology, channel sorting, distribution, and role in cell physiology. Since both BK channels and CLR tissue levels play a pathophysiological role in human disease, identifying functional and structural aspects of the CLR-BK channel interaction may open new avenues for therapeutic intervention. Here, we review the studies documenting membrane CLR-BK channel interactions, dissecting out the many factors that determine the final BK current response to changes in membrane CLR content. We also summarize work in reductionist systems where recombinant BK protein is studied in artificial lipid bilayers, which documents a direct inhibition of BK channel activity by CLR and builds a strong case for a direct interaction between CLR and the BK channel-forming protein. Bilayer lipid-mediated mechanisms in CLR action are also discussed. Finally, we review studies of BK channel function during hypercholesterolemia, and underscore the many consequences that the CLR-BK channel interaction brings to cell physiology and human disease. PMID:22584144

  15. Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits

    PubMed Central

    Li, Q.; Yan, J.

    2016-01-01

    The large-conductance, Ca2+- and voltage-activated K+ (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1–β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings. PMID:27238261

  16. Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels.

    PubMed

    Roy, Subhrangsu; Large, Roddy J; Akande, Adebola Morayo; Kshatri, Aravind; Webb, Tim I; Domene, Carmen; Sergeant, Gerard P; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2014-03-21

    We have designed, synthesised and characterised the effects of a number of novel anthraquinone derivatives and assessed their effects on large conductance, Ca(2+) activated K(+) (BK) channels recorded from rabbit bladder smooth muscle cells using the excised, inside/out configuration of the patch clamp technique. These compounds are members of the GoSlo-SR family of compounds, which potently open BK channels and shift the voltage required for half maximal activation (V1/2) negatively. The efficacy of the anilinoanthraquinone derivatives was enhanced when the size of ring D was increased, since the cyclopentane and cyclohexane derivatives shifted the V1/2, by -24 ± 6 mV and -54 ± 8 mV, respectively, whereas the cycloheptane and cyclooctane derivatives shifted the V1/2 by -61 ± 6 mV and -106 ± 6 mV. To examine if a combination of hydrophobicity and steric bulking of this region further enhanced their ability to open BK channels, we synthesised a number of naphthalene and tetrahydro-naphthalene derivatives. The tetrahydro-2-naphthalene derivative GoSlo-SR-5-69 was the most potent and efficacious of the series since it was able to shift the activation V1/2 by greater than -100 mV when applied at a concentration of 1 μM and had an EC50 of 251 nM, making it one of the most potent and efficacious BK channel openers synthesised to date. PMID:24561672

  17. BK channel inactivation gates daytime excitability in the circadian clock.

    PubMed

    Whitt, Joshua P; Montgomery, Jenna R; Meredith, Andrea L

    2016-03-04

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K(+) channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal 'ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime 'upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm.

  18. BK channel inactivation gates daytime excitability in the circadian clock

    PubMed Central

    Whitt, Joshua P.; Montgomery, Jenna R.; Meredith, Andrea L.

    2016-01-01

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. PMID:26940770

  19. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  20. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca(2+)-activated K(+) (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5'-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  1. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo.

    PubMed

    Lai, Michael H; Wu, Yuejin; Gao, Zhan; Anderson, Mark E; Dalziel, Julie E; Meredith, Andrea L

    2014-11-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.

  2. Unique inner pore properties of BK channels revealed by quaternary ammonium block.

    PubMed

    Li, Weiyan; Aldrich, Richard W

    2004-07-01

    Potassium channels have a very wide distribution of single-channel conductance, with BK type Ca(2+)-activated K(+) channels having by far the largest. Even though crystallographic views of K(+) channel pores have become available, the structural basis underlying BK channels' large conductance has not been completely understood. In this study we use intracellularly applied quaternary ammonium compounds to probe the pore of BK channels. We show that molecules as large as decyltriethylammonium (C(10)) and tetrabutylammonium (TBA) have much faster block and unblock rates in BK channels when compared with any other tested K(+) channel types. Additionally, our results suggest that at repolarization large QA molecules may be trapped inside blocked BK channels without slowing the overall process of deactivation. Based on these findings we propose that BK channels may differ from other K(+) channels in its geometrical design at the inner mouth, with an enlarged cavity and inner pore providing less spatially restricted access to the cytoplasmic solution. These features could potentially contribute to the large conductance of BK channels. PMID:15197222

  3. Closed state-coupled C-type inactivation in BK channels.

    PubMed

    Yan, Jiusheng; Li, Qin; Aldrich, Richard W

    2016-06-21

    Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel's activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K(+) together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K(+) channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca(2+)]i) and recovered with depolarized membrane potentials or elevated [Ca(2+)]i Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel's normal closing may represent an early conformational stage of C-type inactivation.

  4. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases

    PubMed Central

    Zhong, Xi Zoë; Sun, Xue; Cao, Qi; Dong, Gaofeng; Schiffmann, Raphael; Dong, Xian-Ping

    2016-01-01

    Efficient lysosomal Ca2+ release plays an essential role in lysosomal trafficking. We have recently shown that lysosomal big conductance Ca2+-activated potassium (BK) channel forms a physical and functional coupling with the lysosomal Ca2+ release channel Transient Receptor Potential Mucolipin-1 (TRPML1). BK and TRPML1 forms a positive feedback loop to facilitate lysosomal Ca2+ release and subsequent lysosome membrane trafficking. However, it is unclear whether the positive feedback mechanism is common for other lysosomal storage diseases (LSDs) and whether BK channel agonists rescue abnormal lysosomal storage in LSDs. In this study, we assessed the effect of BK agonist, NS1619 and NS11021 in a number of LSDs including NPC1, mild cases of mucolipidosis type IV (ML4) (TRPML1-F408∆), Niemann-Pick type A (NPA) and Fabry disease. We found that TRPML1-mediated Ca2+ release was compromised in these LSDs. BK activation corrected the impaired Ca2+ release in these LSDs and successfully rescued the abnormal lysosomal storage of these diseases by promoting TRPML1-mediated lysosomal exocytosis. Our study suggests that BK channel activation stimulates the TRPML1-BK positive reinforcing loop to correct abnormal lysosomal storage in LSDs. Drugs targeting BK channel represent a potential therapeutic approach for LSDs. PMID:27670435

  5. Interacting influence of diuretics and diet on BK channel-regulated K homeostasis

    PubMed Central

    Wen, Donghai; Cornelius, Ryan J.; Sansom, Steven C.

    2014-01-01

    Large conductance, Ca-activated K channels are abundantly located in cells of vasculature, glomerulus and distal nephron, where they are involved in maintaining blood volume, blood pressure and K homeostasis. In mesangial cells and smooth muscle cells of vessels, the BK-α pore associates with BK-β1 subunits and regulates contraction in a Ca-mediated feedback manner. The BK-β1 also resides in connecting tubule cells of the nephron. BK-β1 knockout mice (β1KO) exhibit fluid retention, hypertension, and compromised K handling. The BK-α/β4resides in acid/base transporting intercalated cells (IC) of the distal nephron, where they mediate K secretion in mammals on a high K, alkaline diet. BK-α expression in IC is increased by a high K diet via aldosterone. The BK-β4 subunit and alkaline urine are necessary for the luminal expression and function of BK-α in mouse IC. In distal nephron cells, membrane BK-α expression is inhibited by WNK4 in in vitro expression systems, indicating a role in the hyperkalemic phenotype in patients with familial hyperkalemic hypertension type 2 (FHHt2). β1KO and BK-β4 knockout mice (β4KO) are hypertensive because of exaggerated ENaC-mediated Na retention in an effort to secrete K via only ROMK. BK hypertension is resistant to thiazides and furosemide, and would be more amenable to ENaC and aldosterone inhibiting drugs. Activators of BK-α/β1 or BK-α/β4 might be effective blood pressure lowering agents for a subset of hypertensive patients. Inhibitors of renal BK would effectively spare K in patients with Bartter Syndrome, a renal K wasting disease. PMID:24721651

  6. The Impact of BK Channels on Cellular Excitability Depends on their Subcellular Location

    PubMed Central

    Bock, Tobias; Stuart, Greg J.

    2016-01-01

    Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have also been shown to be present in the dendrites of some neurons where they can regulate the magnitude and duration of dendritic spikes. Here, we investigate the impact of modulating the activation of BK channels at different locations on the cellular excitability of cortical layer 5 pyramidal neurons. We find that while somatic BK channels help to repolarize APs at the soma and mediate the fast after-hyperpolarization, dendritic BK channels are responsible for repolarization of dendritic calcium spikes and thereby regulate somatic AP burst firing. We found no evidence for a role of dendritic BK channels in the regulation of backpropagating AP amplitude or duration. These experiments highlight the diverse roles of BK channels in regulating neuronal excitability and indicate that their functional impact depends on their subcellular location.

  7. The Impact of BK Channels on Cellular Excitability Depends on their Subcellular Location

    PubMed Central

    Bock, Tobias; Stuart, Greg J.

    2016-01-01

    Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have also been shown to be present in the dendrites of some neurons where they can regulate the magnitude and duration of dendritic spikes. Here, we investigate the impact of modulating the activation of BK channels at different locations on the cellular excitability of cortical layer 5 pyramidal neurons. We find that while somatic BK channels help to repolarize APs at the soma and mediate the fast after-hyperpolarization, dendritic BK channels are responsible for repolarization of dendritic calcium spikes and thereby regulate somatic AP burst firing. We found no evidence for a role of dendritic BK channels in the regulation of backpropagating AP amplitude or duration. These experiments highlight the diverse roles of BK channels in regulating neuronal excitability and indicate that their functional impact depends on their subcellular location. PMID:27630543

  8. The Impact of BK Channels on Cellular Excitability Depends on their Subcellular Location.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-01-01

    Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have also been shown to be present in the dendrites of some neurons where they can regulate the magnitude and duration of dendritic spikes. Here, we investigate the impact of modulating the activation of BK channels at different locations on the cellular excitability of cortical layer 5 pyramidal neurons. We find that while somatic BK channels help to repolarize APs at the soma and mediate the fast after-hyperpolarization, dendritic BK channels are responsible for repolarization of dendritic calcium spikes and thereby regulate somatic AP burst firing. We found no evidence for a role of dendritic BK channels in the regulation of backpropagating AP amplitude or duration. These experiments highlight the diverse roles of BK channels in regulating neuronal excitability and indicate that their functional impact depends on their subcellular location. PMID:27630543

  9. Downregulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy

    PubMed Central

    Pacheco Otalora, Luis F.; Hernandez, Eder F.; Arshadmansab, Massoud F.; rancisco, Sebastian F; Willis, Michael; Ermolinsky, Boris; Zarei, Masoud; Knaus, Hans-Guenther; Garrido-Sanabria, Emilio R.

    2008-01-01

    In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immunohistochemistry, laser scanning confocal microscopy (LSCM), western immunoblotting and RT-PCR to investigate the expression pattern of the alpha-pore forming subunit of BK channels in the hippocampus and cortex of chronically epileptic rats obtained by the pilocarpine model of MTLE. All epileptic rats experiencing recurrent spontaneous seizures exhibited a significant down-regulation of BK channel immunostaining in the mossy fibers at the hilus and stratum lucidum of the CA3 area. Quantitative analysis of immunofluorescence signals by LSCM revealed a significant 47% reduction in BK channel in epileptic rats when compared to age-matched non-epileptic control rats. These data correlate with a similar reduction in BK channel protein levels and transcripts in the cortex and hippocampus. Our data indicate a seizure-related down-regulation of BK channels in chronically epileptic rats. Further functional assays are necessary to determine whether altered BK channel expression is an acquired channelopathy or a compensatory mechanism affecting the network excitability in MTLE. Moreover, seizure-mediated BK down-regulation may disturb neuronal excitability and presynaptic control at glutamatergic terminals triggering exaggerated glutamate release and seizures. PMID:18295190

  10. TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons.

    PubMed

    Wu, Ying; Liu, Yongfeng; Hou, Panpan; Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+)). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+) influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system. PMID:24147119

  11. Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.

    PubMed

    Pantazis, Antonios; Kohanteb, Azadeh P; Olcese, Riccardo

    2010-12-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BK(Ca) voltage-sensing apparatus. To assess the role of S0 in voltage sensitivity, we optically tracked protein conformational rearrangements from its extracellular flank by site-specific labeling with an environment-sensitive fluorophore, tetramethylrhodamine maleimide (TMRM). The structural transitions resolved from the S0 region exhibited voltage dependence similar to that of charge-bearing transmembrane domains S2 and S4. The molecular determinant of the fluorescence changes was identified in W203 at the extracellular tip of S4: at hyperpolarized potential, W203 quenches the fluorescence of TMRM labeling positions at the N-terminal flank of S0. We provide evidence that upon depolarization, W203 (in S4) moves away from the extracellular region of S0, lifting its quenching effect on TMRM fluorescence. We suggest that S0 acts as a pivot component against which the voltage-sensitive S4 moves upon depolarization to facilitate channel activation.

  12. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  13. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney

    PubMed Central

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B.; Tian, Jin-Bin; Zhu, Michael X.; O’Neil, Roger G.

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which

  14. BK channels in microglia are required for morphine-induced hyperalgesia

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Zhang, Jing; Satoh, Yasushi; Meredith, Andrea L.; Nakata, Takahiro; Wu, Zhou; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2016-01-01

    Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca2+-activated K+ (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance. PMID:27241733

  15. BK channels in microglia are required for morphine-induced hyperalgesia.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Zhang, Jing; Satoh, Yasushi; Meredith, Andrea L; Nakata, Takahiro; Wu, Zhou; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2016-05-31

    Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca(2+)-activated K(+) (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance.

  16. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    PubMed

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria; Hattel, Helle; Thrush, A Brianne; Harper, Mary-Ellen; Qvortrup, Klaus; Larsen, Filip J; Schiffer, Tomas A; Losa-Reyna, Jose; Straubinger, Julia; Kniess, Angelina; Thomsen, Morten Bækgaard; Brüggemann, Andrea; Fenske, Stefanie; Biel, Martin; Ruth, Peter; Wahl-Schott, Christian; Boushel, Robert Christopher; Olesen, Søren-Peter; Lukowski, Robert

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at

  17. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle.

    PubMed

    Tao, Xiaoxiao; Lin, Mike T; Thorington, Glyne U; Wilson, Sean M; Longo, Lawrence D; Hessinger, David A

    2015-04-01

    Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K(+) channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca(2+) activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca(2+) set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca(2+) and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus.

  18. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology

    PubMed Central

    2014-01-01

    The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca2+-activated K+ (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K+ channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K+ channel that is activated by increases in both voltage and intracellular Ca2+. The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca2+ signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity. PMID:24990859

  19. Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability.

    PubMed

    Montgomery, Jenna R; Meredith, Andrea L

    2012-11-13

    Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.

  20. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study

    PubMed Central

    González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima

    2013-01-01

    Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851

  1. Extrapolating microdomain Ca2+ dynamics using BK channels as a Ca2+ sensor

    PubMed Central

    Hou, Panpan; Xiao, Feng; Liu, Haowen; Yuchi, Ming; Zhang, Guohui; Wu, Ying; Wang, Wei; Zeng, Wenping; Ding, Mingyue; Cui, Jianming; Wu, Zhengxing; Wang, Lu-Yang; Ding, Jiuping

    2016-01-01

    Ca2+ ions play crucial roles in mediating physiological and pathophysiological processes, yet Ca2+ dynamics local to the Ca2+ source, either from influx via calcium permeable ion channels on plasmic membrane or release from internal Ca2+ stores, is difficult to delineate. Large-conductance calcium-activated K+ (BK-type) channels, abundantly distribute in excitable cells and often localize to the proximity of voltage-gated Ca2+ channels (VGCCs), spatially enabling the coupling of the intracellular Ca2+ signal to the channel gating to regulate membrane excitability and spike firing patterns. Here we utilized the sensitivity and dynamic range of BK to explore non-uniform Ca2+ local transients in the microdomain of VGCCs. Accordingly, we applied flash photolysis of caged Ca2+ to activate BK channels and determine their intrinsic sensitivity to Ca2+. We found that uncaging Ca2+ activated biphasic BK currents with fast and slow components (time constants being τf ≈ 0.2 ms and τs ≈ 10 ms), which can be accounted for by biphasic Ca2+ transients following light photolysis. We estimated the Ca2+-binding rate constant kb (≈1.8 × 108 M−1s−1) for mSlo1 and further developed a model in which BK channels act as a calcium sensor capable of quantitatively predicting local microdomain Ca2+ transients in the vicinity of VGCCs during action potentials. PMID:26776352

  2. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    PubMed

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism

  3. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    PubMed

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism.

  4. Essential role for smooth muscle BK channels in alcohol-induced cerebrovascular constriction

    NASA Astrophysics Data System (ADS)

    Liu, Pengchong; Xi, Qi; Ahmed, Abu; Jaggar, Jonathan H.; Dopico, Alejandro M.

    2004-12-01

    Binge drinking is associated with increased risk for cerebrovascular spasm and stroke. Acute exposure to ethanol at concentrations obtained during binge drinking constricts cerebral arteries in several species, including humans, but the mechanisms underlying this action are largely unknown. In a rodent model, we used fluorescence microscopy, patch-clamp electrophysiology, and pharmacological studies in intact cerebral arteries to pinpoint the molecular effectors of ethanol cerebrovascular constriction. Clinically relevant concentrations of ethanol elevated wall intracellular Ca2+ concentration and caused a reversible constriction of cerebral arteries (EC50 = 27 mM; Emax = 100 mM) that depended on voltage-gated Ca2+ entry into myocytes. However, ethanol did not directly increase voltage-dependent Ca2+ currents in isolated myocytes. Constriction occurred because of an ethanol reduction in the frequency (-53%) and amplitude (-32%) of transient Ca2+-activated K+ (BK) currents. Ethanol inhibition of BK transients was caused by a reduction in Ca2+ spark frequency (-49%), a subsarcolemmal Ca2+ signal that evokes the BK transients, and a direct inhibition of BK channel steady-state activity (-44%). In contrast, ethanol failed to modify Ca2+ waves, a major vasoconstrictor mechanism. Selective block of BK channels largely prevented ethanol constriction in pressurized arteries. This study pinpoints the Ca2+ spark/BK channel negative-feedback mechanism as the primary effector of ethanol vasoconstriction.

  5. Intrinsic Electrostatic Potential in the BK Channel Pore: Role in Determining Single Channel Conductance and Block

    PubMed Central

    Carvacho, Ingrid; Gonzalez, Wendy; Torres, Yolima P.; Brauchi, Sebastian; Alvarez, Osvaldo; Gonzalez-Nilo, Fernando D.; Latorre, Ramon

    2008-01-01

    The internal vestibule of large-conductance Ca2+ voltage-activated K+ (BK) channels contains a ring of eight negative charges not present in K+ channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017–9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K+ was 18% lower than the control. Current–voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K+ (30 mM) and vanished at high K+ (1 M K+). We determine the electrostatic potential change, Δφ, caused by the charge neutralization using TEA+ block for the extracellular charges and Ba2+ for intracellular charges. We measured 13 ± 2 mV for Δφ at the TEA+ site when turning off the extracellular charges, and 17 ± 2 mV for the Δφ at the Ba2+ site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Δφ using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329. PMID:18227273

  6. Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish

    PubMed Central

    Rohmann, Kevin N.; Tripp, Joel A.; Genova, Rachel M.; Bass, Andrew H.

    2014-01-01

    Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes. PMID:24803460

  7. Convergent evolution of alternative splices at domain boundaries of the BK channel.

    PubMed

    Fodor, Anthony A; Aldrich, Richard W

    2009-01-01

    Alternative splicing is a widespread mechanism for generating transcript diversity in higher eukaryotic genomes. The alternative splices of the large-conductance calcium-activated potassium (BK) channel have been the subject of a good deal of experimental functional characterization in the Arthropoda, Chordata, and Nematoda phyla. In this review, we examine a list of splices of the BK channel by manual curation of Unigene clusters mapped to mouse, human, chicken, Drosophila, and Caenorhabditis elegans genomes. We find that BK alternative splices do not appear to be conserved across phyla. Despite this lack of conservation, splices occur in both vertebrates and invertebrates at identical regions of the channel at experimentally established domain boundaries. The fact that, across phyla, unique splices occur at experimentally established domain boundaries suggests a prominent role for the convergent evolution of alternative splices that produce functional changes via changes in interdomain communication. PMID:18694345

  8. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J.

    2015-09-01

    High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca2+-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, β and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four β2-subunits can coexist in the same functional BK complex, with the gating shift caused by β2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of β:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits.

  9. Cerebrovascular Dilation via Selective Targeting of the Cholane Steroid-Recognition Site in the BK Channel β1-Subunit by a Novel Nonsteroidal Agent

    PubMed Central

    Bukiya, Anna N.; McMillan, Jacob E.; Fedinec, Alexander L.; Patil, Shivaputra A.; Miller, Duane D.; Leffler, Charles W.; Parrill, Abby L.

    2013-01-01

    The Ca2+/voltage-gated K+ large conductance (BK) channel β1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK β1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK β1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate β1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 + β1) channels cloned from rat cerebral artery myocytes with a potency (EC50 = 53 μM) similar to and an efficacy (×2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv1 + β2, β3, β4, or β1T169A, indicating that this drug selectively targets β1-containing BK channels via the BK β1 steroid-sensing site. HENA (3–45 μM) dilated the rat and C57BL/6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK β1’s role in HENA action. Finally, carotid artery-infusion of HENA (45 μM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates β1-containing BK channels by targeting the steroid-sensing site in BK β1, rendering vasodilation. PMID:23455312

  10. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.

    PubMed

    Bao, Guobin; de Jong, Daniëlle; Alevra, Mihai; Schild, Detlev

    2015-12-01

    Olfactory receptor neurons (ORNs) have high-voltage-gated Ca(2+) channels whose physiological impact has remained enigmatic since the voltage-gated conductances in this cell type were first described in the 1980s. Here we show that in ORN somata of Xenopus laevis tadpoles these channels are clustered and co-expressed with large-conductance potassium (BK) channels. We found approximately five clusters per ORN and twelve Ca(2+) channels per cluster. The action potential-triggered activation of BK channels accelerates the repolarization of action potentials and shortens interspike intervals during odour responses. This increases the sensitivity of individual ORNs to odorants. At the level of mitral cells of the olfactory bulb, odour qualities have been shown to be coded by first-spike-latency patterns. The system of Ca(2+) and BK channels in ORNs appears to be important for correct odour coding because the blockage of BK channels not only affects ORN spiking patterns but also changes the latency pattern representation of odours in the olfactory bulb.

  11. Contribution of coupling between human myometrial beta2-adrenoreceptor and the BK(Ca) channel to uterine quiescence.

    PubMed

    Chanrachakul, Boonsri; Broughton Pipkin, Fiona; Khan, Raheela N

    2004-12-01

    The beta(2)-adrenergic receptor (beta(2)-AR) and the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel have been shown, separately, to be involved in mediating uterine relaxation. Our recent studies reveal that the levels of both beta(2)-AR and BK(Ca) channel proteins in pregnant human myometrium decrease by approximately 50% after the onset of labor. We present direct evidence in support of a structural and functional association between the beta(2)-AR and the BK(Ca) channel in pregnant human myometrium. Localization of both proteins is predominantly plasmalemmal, with 60% of beta(2)-AR colocalizing with the BK(Ca) channel. Coimmunoprecipitation studies indicate that BK(Ca) and beta(2)-AR are structurally linked by direct protein-protein interactions. Functional correlation was confirmed by experiments of human myometrial contractility in which the BK(Ca) channel blocker, paxilline, significantly antagonized the relaxant effect of the beta(2)-AR agonist ritodrine. These novel findings provide an insight into the coupling between the beta(2)-AR and BK(Ca) channel and may have utility in the application of this signaling cascade for therapeutic potential in the management of preterm labor.

  12. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction

    PubMed Central

    Leo, M. Dennis; Bulley, Simon; Bannister, John P.; Kuruvilla, Korah P.; Narayanan, Damodaran

    2015-01-01

    Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated K+ (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction. PMID:26179602

  13. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  14. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  15. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    PubMed Central

    Dopico, Alex M.; Bukiya, Anna N.; Martin, Gilles E.

    2014-01-01

    In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca2+i), BK subunit composition and post-translational modifications, and the channel's lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction. PMID:25538625

  16. KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury

    PubMed Central

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria; Hattel, Helle; Thrush, A. Brianne; Harper, Mary-Ellen; Qvortrup, Klaus; Larsen, Filip J.; Schiffer, Tomas A.; Losa-Reyna, Jose; Straubinger, Julia; Kniess, Angelina; Thomsen, Morten Bækgaard; Brüggemann, Andrea; Fenske, Stefanie; Biel, Martin; Ruth, Peter; Wahl-Schott, Christian

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK−/− cardiomyocytes. Transmission electron microscopy of BK−/− ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK−/− permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK−/− hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK−/− hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK−/− hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply

  17. Adenosine A1 receptor signaling inhibits BK channels through a PKCα-dependent mechanism in mouse aortic smooth muscle.

    PubMed

    Kunduri, Ss; Dick, Gm; Nayeem, Ma; Mustafa, Sj

    2013-09-01

    Adenosine receptors (AR; A1, A2A, A2B, and A3) contract and relax smooth muscle through different signaling mechanisms. Deciphering these complex responses remains difficult because relationships between AR subtypes and various end-effectors (e.g., enzymes and ion channels) remain to be identified. A1AR stimulation is associated with the production of 20-hydroxyeicosatetraenoic acid (20-HETE) and activation of protein kinase C (PKC). 20-HETE and PKC can inhibit large conductance Ca(2+)/voltage-sensitive K(+) (BK) channels that regulate smooth muscle contraction. We tested the hypothesis that activation of A1AR inhibits BK channels via a PKC-dependent mechanism. Patch clamp recordings and Western blots were performed using aortae of wild type (WT) and A1AR knockout (A1KO) mice. There were no differences in whole-cell K(+) current or α and β1 subunits expression between WT and A1KO. 20-HETE (100 nM) inhibited BK current similarly in WT and A1KO mice. NECA (5'-N-ethylcarboxamidoadenosine; 10 μM), a non-selective AR agonist, increased BK current in myocytes from both WT and A1KO mice, but the increase was greater in A1KO (52±15 vs. 17±3%; p<0.05). This suggests that A1AR signaling negatively regulates BK channel activity. Accordingly, CCPA (2-chloro-N(6)-cyclopentyladenosine; 100 nM), an A1AR-selective agonist, inhibited BK current in myocytes from WT but not A1KO mice (81±4 vs. 100±7% of control; p<0.05). Gö6976 (100 nM), a PKCα inhibitor, abolished the effect of CCPA to inhibit BK current (99±3% of control). These data lead us to conclude that, in aortic smooth muscle, A1AR inhibits BK channel activity and that this occurs via a mechanism involving PKCα.

  18. Bimane Fluorescence Scanning Suggests Secondary Structure near the S3-S4 Linker of BK Channels*

    PubMed Central

    Semenova, Nina P.; Abarca-Heidemann, Karin; Loranc, Eva; Rothberg, Brad S.

    2009-01-01

    Gating of large conductance Ca2+-activated K+ channels (BK or maxi-K channels) is controlled by a Ca2+-sensor, formed by the channel cytoplasmic C-terminal domain, and a voltage sensor, formed by its S0-S4 transmembrane helices. Here we analyze structural properties of a portion of the BK channel voltage sensing domain, the S3-S4 linker, using fluorescence lifetime spectroscopy. Single residues in the S3-S4 linker region were substituted with cysteine, and the cysteine-substituted mutants were expressed in CHO cells and covalently labeled with the sulfhydryl-reactive fluorophore monobromo-trimethylammonio-bimane (qBBr). qBBr fluorescence is quenched by tryptophan and, to a lesser extent, tyrosine side chains. We found that qBBr fluorescence in several of the labeled cysteine-substituted channels shows position-specific quenching, as indicated by increase of the brief lifetime component of the qBBr fluorescence decay. Quenching was reduced with the mutation W203F (in the S4 segment), suggesting that Trp-203 acts as a quenching group. Our results suggest a working hypothesis for the secondary structure of the BK channel S3-S4 region, and places residues Leu-204, Gly-205, and Leu-206 within the extracellular end of the S4 helix. PMID:19244238

  19. Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels.

    PubMed

    Semenova, Nina P; Abarca-Heidemann, Karin; Loranc, Eva; Rothberg, Brad S

    2009-04-17

    Gating of large conductance Ca(2+)-activated K(+) channels (BK or maxi-K channels) is controlled by a Ca(2+)-sensor, formed by the channel cytoplasmic C-terminal domain, and a voltage sensor, formed by its S0-S4 transmembrane helices. Here we analyze structural properties of a portion of the BK channel voltage sensing domain, the S3-S4 linker, using fluorescence lifetime spectroscopy. Single residues in the S3-S4 linker region were substituted with cysteine, and the cysteine-substituted mutants were expressed in CHO cells and covalently labeled with the sulfhydryl-reactive fluorophore monobromo-trimethylammonio-bimane (qBBr). qBBr fluorescence is quenched by tryptophan and, to a lesser extent, tyrosine side chains. We found that qBBr fluorescence in several of the labeled cysteine-substituted channels shows position-specific quenching, as indicated by increase of the brief lifetime component of the qBBr fluorescence decay. Quenching was reduced with the mutation W203F (in the S4 segment), suggesting that Trp-203 acts as a quenching group. Our results suggest a working hypothesis for the secondary structure of the BK channel S3-S4 region, and places residues Leu-204, Gly-205, and Leu-206 within the extracellular end of the S4 helix.

  20. Role of BK channels in the apoptotic volume decrease in native eel intestinal cells.

    PubMed

    Lionetto, Maria Giulia; Giordano, Maria Elena; Calisi, Antonio; Caricato, Roberto; Hoffmann, Else; Schettino, Trifone

    2010-01-01

    High conductance Ca(+)-activated K(+) channels (BK channels) have previously been demonstrated in the eel intestine. They are specifically activated following a hypotonic stress and sustain Regulatory Volume Decrease (RVD). The aim of the present work was to address the possible role of these channels in the Apoptotic Volume Decrease (AVD) of isolated eel enterocytes, and the possible interaction between BK channels and the progression of apoptosis. The detection of apoptosis was performed by confocal microscopy and annexin V and propidium iodide labelling; cell volume changes were monitored by video imaging. Within a few hours after isolation, enterocytes underwent anoikis (apoptosis induced by detachment from the extracellular matrix). They showed an early normotonic volume decrease (AVD) preceding the appearance of annexin V positivity. AVD occurred in correspondence with an increase in the [Ca(2+)](i), measured with Fura-2. When the cells were resuspended in high K(+) solution or treated with iberiotoxin, AVD was completely abolished. In addition, treatment with high K(+) or iberiotoxin significantly inhibited apoptosis progression. It was demonstrated for the first time in native enterocytes that BK channels, which are involved in RVD in these cells, plays also a crucial role in the AVD process and in the progression of apoptosis.

  1. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop

    SciTech Connect

    Shi, Pan; Li, Dong; Lai, Chaohua; Zhang, Longhua; Tian, Changlin

    2013-08-02

    Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. The intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.

  2. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.

    PubMed

    Krishnamoorthy, Gayathri; Sonkusare, Swapnil K; Heppner, Thomas J; Nelson, Mark T

    2014-04-01

    In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation by electrical field stimulation. Inhibition of BK channels with paxilline increased both myogenic and nerve-induced constrictions of pressurized, resistance-sized mesenteric arteries from mice. Inhibition of RyRs with ryanodine increased myogenic constriction, but it decreased nerve-evoked constriction along with a reduction in the amplitude of nerve-evoked increases in global intracellular Ca2+. In the presence of L-type voltage-dependent Ca2+ channel (VDCC) antagonists, nerve stimulation failed to evoke a change in arterial diameter, and BK channel and RyR inhibitors were without effect, suggesting that nerve- induced constriction is dependent on activation of VDCCs. Collectively, these results indicate that BK channels and RyRs have different roles in the regulation of myogenic versus neurogenic tone: whereas BK channels and RyRs act in concert to oppose myogenic vasoconstriction, BK channels oppose neurogenic vasoconstriction and RyRs augment it. A scheme for neurogenic vasoregulation is proposed in which RyRs act in conjunction with VDCCs to regulate nerve-evoked constriction in mesenteric resistance arteries.

  3. Frequency encoding of cholinergic- and purinergic-mediated signaling to mouse urinary bladder smooth muscle: modulation by BK channels.

    PubMed

    Werner, Matthias E; Knorn, Anna-Maria; Meredith, Andrea L; Aldrich, Richard W; Nelson, Mark T

    2007-01-01

    In the urinary bladder, contractions of the detrusor muscle and urine voiding are induced by the neurotransmitters ACh and ATP, released from parasympathetic nerves. Activation of K(+) channels, in particular the large-conductance Ca(2+)-activated K(+) (BK) channels, opposes increases in excitability and contractility of urinary bladder smooth muscle (UBSM). We have shown that deleting the gene mSlo1 in mice (Slo(-/-)), encoding the BK channel, leads to enhanced nerve-mediated and neurotransmitter-dependent contractility of UBSM (38). Here, we examine the location of the BK channel in urinary bladder strips from mouse. Immunohistochemical analysis revealed that the channel is expressed in UBSM but not in nerves that innervate the smooth muscle. The relationship between electrical field stimulation and force generation of the cholinergic and purinergic pathways was examined by applying blockers of the respective receptors in UBSM strips from wild-type and from Slo(-/-) (knockout) mice. In wild-type strips, the stimulation frequency required to obtain a half-maximal force was significantly lower for the purinergic (7.2 +/- 0.3 Hz) than the cholinergic pathway (19.1 +/- 1.5 Hz), whereas the maximum force was similar. Blocking BK channels with iberiotoxin or ablation of the Slo gene increased cholinergic- and purinergic-mediated force at low frequencies, i.e., significantly decreased the frequency for a half-maximal force. Our results indicate that the BK channel has a very significant role in reducing both cholinergic- and purinergic-induced contractility and suggest that alterations in BK channel expression or function could contribute to pathologies such as overactive detrusor.

  4. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel.

    PubMed

    Bukiya, Anna N; Kuntamallappanavar, Guruprasad; Edwards, Justin; Singh, Aditya K; Shivakumar, Bangalore; Dopico, Alex M

    2014-06-24

    Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.

  5. Mis-expression of the BK K(+) channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior.

    PubMed

    Montgomery, Jenna R; Whitt, Joshua P; Wright, Breanne N; Lai, Michael H; Meredith, Andrea L

    2013-02-15

    In mammals, almost all aspects of circadian rhythmicity are attributed to activity in a discrete neural circuit of the hypothalamus, the suprachiasmatic nucleus (SCN). A 24-h rhythm in spontaneous firing is the fundamental neural intermediary to circadian behavior, but the ionic mechanisms that pattern circuit rhythmicity, and the integrated impact on behavior, are not well studied. Here, we demonstrate that daily modulation of a major component of the nighttime-phased suppressive K(+) current, encoded by the BK Ca(2+)-activated K(+) current channel (K(Ca)1.1 or Kcnma1), is a critical arbiter of circadian rhythmicity in the SCN circuit. Aberrant induction of BK current during the day in transgenic mice using a Per1 promoter (Tg-BK(R207Q)) reduced SCN firing or silenced neurons, decreasing the circadian amplitude of the ensemble circuit rhythm. Changes in cellular and circuit excitability in Tg-BK(R207Q) SCNs were correlated with elongated behavioral active periods and enhanced responses to phase-shifting stimuli. Unexpectedly, despite the severe reduction in circuit amplitude, circadian behavioral amplitudes in Tg-BK(R207Q) mice were relatively normal. These data demonstrate that downregulation of the BK current during the day is essential for the high amplitude neural activity pattern in the SCN that restricts locomotor activity to the appropriate phase and maintains the clock's robustness against perturbation. However, a residually rhythmic subset prevails over the ensemble circuit to drive the fundamental circadian behavioral rhythm.

  6. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel

    PubMed Central

    Bukiya, Anna N.; Kuntamallappanavar, Guruprasad; Edwards, Justin; Singh, Aditya K.; Shivakumar, Bangalore; Dopico, Alex M.

    2014-01-01

    Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol–BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel’s physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function. PMID:24927535

  7. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra

  8. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity.

    PubMed

    Martinez-Espinosa, Pedro L; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J

    2014-10-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.

  9. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S)

    PubMed Central

    Sitdikova, Guzel F.; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M.; Hermann, Anton

    2014-01-01

    Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S. PMID:25429270

  10. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder.

    PubMed

    Isogai, Ayu; Lee, Ken; Mitsui, Retsu; Hashitani, Hikaru

    2016-09-01

    We investigated the role of TRPV4 channels (TRPV4) in regulating the contractility of detrusor smooth muscle (DSM) and muscularis mucosae (MM) of the urinary bladder. Distribution of TRPV4 in DSM and MM of guinea-pig bladders was examined by fluorescence immunohistochemistry. Changes in the contractility of DSM and MM bundles were measured using isometric tension recording. Intracellular Ca(2+) dynamics were visualized by Cal-520 fluorescent Ca(2+) imaging, while membrane potential changes were recorded using intracellular microelectrode technique. DSM and MM expressed TRPV4 immunoreactivity. GSK1016790A (GSK, 1 nM), a TRPV4 agonist, evoked a sustained contraction in both DSM and MM associated with a cessation of spontaneous phasic contractions in a manner sensitive to HC-067047 (10 μM), a TRPV4 antagonist. Iberiotoxin (100 nM) and paxilline (1 μM), large conductance Ca(2+)-activated K(+) (BK) channel blockers restored the spontaneous contractions in GSK. The sustained contractions in DSM and MM were reduced by nifedipine (10 μM), a blocker of L-type voltage-dependent Ca(2+) channels (LVDCCs) by about 40 % and by nominally Ca(2+)-free solution by some 90 %. GSK (1 nM) abolished spontaneous Ca(2+) transients, increased basal Ca(2+) levels and also prevented spontaneous action potential discharge associated with DSM membrane hyperpolarization. In conclusion, Ca(2+) influx through TRPV4 appears to activate BK channels to suppress spontaneous contractions and thus a functional coupling of TRPV4 with BK channels may act as a self-limiting mechanism for bladder contractility during its storage phase. Despite the membrane hyperpolarization in GSK, Ca(2+) entry mainly through TRPV4 develops the tonic contraction. PMID:27497848

  11. Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix

    PubMed Central

    Zhou, Yu; Tang, Qiong-Yao; Xia, Xiao-Ming

    2010-01-01

    The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline. PMID:20421373

  12. Recombinant expression and functional characterization of martentoxin: a selective inhibitor for BK channel (α + β4).

    PubMed

    Tao, Jie; Zhou, Zhi Lei; Wu, Bin; Shi, Jian; Chen, Xiao Ming; Ji, Yong Hua

    2014-04-01

    Martentoxin (MarTX), a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch), was capable of blocking large-conductance Ca2+-activated K+ (BK) channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cleavage site by PCR. The fusion protein (GST-rMarTX) was digested by enterokinase to release hetero-expressed toxin and further purified via reverse-phase HPLC. The molecular weight of the hetero-expressed rMarTX was 4059.06 Da, which is identical to that of the natural peptide isolated from scorpion venom. Functional characterization through whole-cell patch clamp showed that rMarTX selectively and potently inhibited the currents of neuronal BK channels (α + β4) (IC50 = 186 nM), partly inhibited mKv1.3, but hardly having any significant effect on hKv4.2 and hKv3.1a even at 10 μM. Successful expression of martentoxin lays basis for further studies of structure-function relationship underlying martentoxin or other potassium-channel specific blockers.

  13. A novel auxiliary subunit critical to BK channel function in C. elegans

    PubMed Central

    Chen, Bojun; Ge, Qian; Xia, Xiao-Ming; Liu, Ping; Wang, Sijie J.; Zhan, Haiying; Eipper, Betty A.; Wang, Zhao-Wen

    2010-01-01

    The BK channel is a Ca2+- and voltage-gated potassium channel with many important physiological functions. To identify proteins important to its function in vivo, we screened for C. elegans mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of the BK channel α-subunit SLO-1. BKIP-1, a small peptide with no significant homology to any previously characterized molecules was thus identified. BKIP-1 and SLO-1 showed similar expression and subcellular localization patterns, and appeared to interact physically through discrete domains. bkip-1 loss-of-function (lf) mutants phenocopied slo-1(lf) mutants in behavior and synaptic transmission, and suppressed the lethargy, egg-laying defect, and deficient neurotransmitter release caused by SLO-1(gf). In heterologous expression systems, BKIP-1 decreased the activation rate and shifted the conductance-voltage (G-V) relationship of SLO-1 in a Ca2+-dependent manner, and increased SLO-1 surface expression. Thus, BKIP-1 is a novel auxiliary subunit critical to SLO-1 function in vivo. PMID:21148004

  14. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  15. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.

    PubMed

    Edalat, Lena; Stegen, Benjamin; Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M

    2016-03-22

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  16. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.

    PubMed

    Edalat, Lena; Stegen, Benjamin; Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M

    2016-03-22

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy.

  17. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory.

    PubMed

    Typlt, Marei; Mirkowski, Magdalena; Azzopardi, Erin; Ruettiger, Lukas; Ruth, Peter; Schmid, Susanne

    2013-01-01

    Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels) have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.

  18. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  19. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  20. Charge substitution for a deep-pore residue reveals structural dynamics during BK channel gating.

    PubMed

    Chen, Xixi; Aldrich, Richard W

    2011-08-01

    The pore-lining amino acids of ion channel proteins reside on the interface between a polar (the pore) and a nonpolar environment (the rest of the protein). The structural dynamics of this region, which physically controls ionic flow, are essential components of channel gating. Using large-conductance, Ca(2+)-dependent K(+) (BK) channels, we devised a systematic charge-substitution method to probe conformational changes in the pore region during channel gating. We identified a deep-pore residue (314 in hSlo1) as a marker of structural dynamics. We manipulated the charge states of this residue by substituting amino acids with different valence and pKa, and by adjusting intracellular pH. We found that the charged states of the 314 residues stabilized an open state of the BK channel. With models based on known structures of related channels, we postulate a dynamic rearrangement of the deep-pore region during BK channel opening/closing, which involves a change of the degree of pore exposure for 314.

  1. Properties of BK-type Ca(+) (+)-dependent K(+) channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages.

    PubMed

    Książek, Aneta; Ladno, Wioletta; Szulczyk, Bartłomiej; Grzelka, Katarzyna; Szulczyk, Paweł

    2013-01-01

    The medial prefrontal cortex (PFC) is involved in cognitive functions, which undergo profound changes during adolescence. This alteration of the PFC function derives from neuron activity, which, in turn, may depend on age-dependent properties and the expression of neuronal ion channels. BK-type channels are involved in controlling both the Ca(+) (+) ion concentration in the cell interior and cell excitability. The purpose of this study was to test the properties of BK currents in the medial PFC pyramidal neurons of young (18- to 22-day-old), adolescent (38- to 42-day-old), and adult (60- to 65-day-old) rats. Whole-cell currents evoked by depolarizing voltage steps were recorded from dispersed medial PFC pyramidal neurons. A selective BK channel blocker - paxilline (10 μM) - irreversibly decreased the non-inactivating K(+) current in neurons that were isolated from the young and adult rats. This current was not significantly affected by paxilline in the neurons obtained from adolescent rats. The properties of single-channel K(+) currents were recorded from the soma of dispersed medial PFC pyramidal neurons in the cell-attached configuration. Of the K(+) channel currents that were recorded, ~90% were BK and leak channel currents. The BK-type channel currents were dependent on the Ca(+) (+) concentration and the voltage and were inhibited by paxilline. The biophysical properties of the BK channel currents did not differ among the pyramidal neurons isolated from young, adolescent, and adult rats. Among all of the recorded K(+) channel currents, 38.9, 12.7, and 21.1% were BK-type channel currents in the neurons isolated from the young, adolescent, and adult rats, respectively. Furthermore, application of paxilline effectively prolonged the half-width of the action potential in pyramidal neurons in slices isolated from young and adult rats but not in neurons isolated from adolescent rats. We conclude that the availability of BK channel currents decreases in medial PFC

  2. Properties of BK-type Ca++-dependent K+ channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages

    PubMed Central

    Książek, Aneta; Ładno, Wioletta; Szulczyk, Bartłomiej; Grzelka, Katarzyna; Szulczyk, Paweł

    2013-01-01

    The medial prefrontal cortex (PFC) is involved in cognitive functions, which undergo profound changes during adolescence. This alteration of the PFC function derives from neuron activity, which, in turn, may depend on age-dependent properties and the expression of neuronal ion channels. BK-type channels are involved in controlling both the Ca++ ion concentration in the cell interior and cell excitability. The purpose of this study was to test the properties of BK currents in the medial PFC pyramidal neurons of young (18- to 22-day-old), adolescent (38- to 42-day-old), and adult (60- to 65-day-old) rats. Whole-cell currents evoked by depolarizing voltage steps were recorded from dispersed medial PFC pyramidal neurons. A selective BK channel blocker – paxilline (10 μM) – irreversibly decreased the non-inactivating K+ current in neurons that were isolated from the young and adult rats. This current was not significantly affected by paxilline in the neurons obtained from adolescent rats. The properties of single-channel K+ currents were recorded from the soma of dispersed medial PFC pyramidal neurons in the cell-attached configuration. Of the K+ channel currents that were recorded, ~90% were BK and leak channel currents. The BK-type channel currents were dependent on the Ca++ concentration and the voltage and were inhibited by paxilline. The biophysical properties of the BK channel currents did not differ among the pyramidal neurons isolated from young, adolescent, and adult rats. Among all of the recorded K+ channel currents, 38.9, 12.7, and 21.1% were BK-type channel currents in the neurons isolated from the young, adolescent, and adult rats, respectively. Furthermore, application of paxilline effectively prolonged the half-width of the action potential in pyramidal neurons in slices isolated from young and adult rats but not in neurons isolated from adolescent rats. We conclude that the availability of BK channel currents decreases in medial PFC pyramidal

  3. Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death.

    PubMed

    McFerrin, Michael B; Turner, Kathryn L; Cuddapah, Vishnu Anand; Sontheimer, Harald

    2012-11-15

    An important event during apoptosis is regulated cell condensation known as apoptotic volume decrease (AVD). Ion channels have emerged as essential regulators of this process mediating the release of K(+) and Cl(-), which together with osmotically obliged water, results in the condensation of cell volume. Using a Grade IV human glioblastoma cell line, we examined the contribution of calcium-activated K(+) channels (K(Ca) channels) to AVD after the addition of either staurosporine (Stsp) or TNF-α-related apoptosis-inducing ligand (TRAIL) to activate the intrinsic or extrinsic pathway of apoptosis, respectively. We show that AVD can be inhibited in both pathways by high extracellular K(+) or the removal of calcium. However, BAPTA-AM was only able to inhibit Stsp-initiated AVD, whereas TRAIL-induced AVD was unaffected. Specific K(Ca) channel inhibitors revealed that Stsp-induced AVD was dependent on K(+) efflux through intermediate-conductance calcium-activated potassium (IK) channels, while TRAIL-induced AVD was mediated by large-conductance calcium-activated potassium (BK) channels. Fura-2 imaging demonstrated that Stsp induced a rapid and modest rise in calcium that was sustained over the course of AVD, while TRAIL produced no detectable rise in global intracellular calcium. Inhibition of IK channels with clotrimazole or 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) blocked downstream caspase-3 activation after Stsp addition, while paxilline, a specific BK channel inhibitor, had no effect. Treatment with ionomycin also induced an IK-dependent cell volume decrease. Together these results show that calcium is both necessary and sufficient to achieve volume decrease and that the two major pathways of apoptosis use unique calcium signaling to efflux K(+) through different K(Ca) channels.

  4. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R.; Trimmer, James S.

    2015-01-01

    In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. PMID:25948259

  5. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    PubMed

    Chen, Qijing; Tao, Jie; Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  6. Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals.

    PubMed

    Martire, Maria; Barrese, Vincenzo; D'Amico, Monia; Iannotti, Fabio Arturo; Pizzarelli, Rocco; Samengo, Irene; Viggiano, Davide; Ruth, Peter; Cherubini, Enrico; Taglialatela, Maurizio

    2010-10-01

    In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.

  7. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission.

    PubMed

    Fernandes, Vítor S; Xin, Wenkuan; Petkov, Georgi V

    2015-07-15

    Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca(2+) imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na(+) channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca(2+) channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca(2+) transients and basal Ca(2+) levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels.

  8. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  9. Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume.

    PubMed

    Geng, Yanyan; Niu, Xiaowei; Magleby, Karl L

    2011-06-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels have the largest conductance (250-300 pS) of all K(+)-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA(-) increased currents and MTSET(+) decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K(+)](i). Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger. PMID:21576375

  10. Lack of negative slope in I-V plots for BK channels at positive potentials in the absence of intracellular blockers.

    PubMed

    Geng, Yanyan; Wang, Xiaoyu; Magleby, Karl L

    2013-04-01

    Large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels display near linear current-voltage (I-V) plots for voltages between -100 and +100 mV, with an increasing sublinearity for more positive potentials. As is the case for many types of channels, BK channels are blocked at positive potentials by intracellular Ca(2+) and Mg(2+). This fast block progressively reduces single-channel conductance with increasing voltage, giving rise to a negative slope in the I-V plots beyond about +120 mV, depending on the concentration of the blockers. In contrast to these observations of pronounced differences in the magnitudes and shapes of I-V plots in the absence and presence of intracellular blockers, Schroeder and Hansen (2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) have reported identical I-V plots in the absence and presence of blockers for BK channels, with both plots having reduced conductance and negative slopes, as expected for blockers. Schroeder and Hansen included both Ca(2+) and Mg(2+) in the intracellular solution rather than a single blocker, and they also studied BK channels expressed from α plus β1 subunits, whereas most previous studies used only α subunits. Although it seems unlikely that these experimental differences would account for the differences in findings between previous studies and those of Schroeder and Hansen, we repeated the experiments using BK channels comprised of α plus β1 subunits with joint application of 2.5 mM Ca(2+) plus 2.5 mM Mg(2+), as Schroeder and Hansen did. In contrast to the findings of Schroeder and Hansen of identical I-V plots, we found marked differences in the single-channel I-V plots in the absence and presence of blockers. Consistent with previous studies, we found near linear I-V plots in the absence of blockers and greatly reduced currents and negative slopes in the presence of blockers. Hence, studies of conductance mechanisms for BK channels should exclude intracellular Ca(2+)/Mg(2

  11. The effect of single cerebroside compounds on activation of BKCa channels.

    PubMed

    Xu, Huina; Qi, Jianhua; Wang, Guangfa; Deng, Hongwen; Qi, Zhi

    2011-02-01

    We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside compounds, termitomycesphins A and B, on the BK(Ca) channel activation. Both termitomycesphins A and B activated the BK(Ca) channels at micromole concentration without significant difference. Termitomycesphin A increased the single channel open probability of the BK(Ca) channels in a dose-dependent manner without modifying the single channel conductance. Termitomycesphin A activated BK(Ca) channel more efficiently when it was applied to the cytoplasmic face of the membrane, suggesting that binding site for termitomycesphin A is located at the cytoplasmic side. Termitomycesphin A shifted the voltage-dependent activation curve to less positive membrane potentials and the Ca(2+)-dependent activation curve of the channel upwards, suggesting that termitomycesphin A could activate the channels even without intracellular free Ca(2+). Furthermore, STREX-deleted BK(Ca) channels were completely insensitive to termitomycesphin A, indicating that STREX domain is required for the activation of the BK(Ca) channel. These data provide evidence that termitomycesphins are potent in stimulating the activity of the BK(Ca) channels. As BK(Ca) channels are associated with pathology of many diseases, termitomycesphins might be used as therapeutic agents for treating these diseases through its regulatory effect on the BK(Ca) channels.

  12. Ca2+ block and flickering both contribute to the negative slope of the IV curve in BK channels.

    PubMed

    Schroeder, Indra; Thiel, Gerhard; Hansen, Ulf-Peter

    2013-04-01

    Single-channel current-voltage (IV) curves of human large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels are quite linear in 150 mM KCl. In the presence of Ca(2+) and/or Mg(2+), they show a negative slope conductance at high positive potentials. This is generally explained by a Ca(2+)/Mg(2+) block as by Geng et al. (2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210955) in this issue. Here, we basically support this finding but add a refinement: the analysis of the open-channel noise by means of β distributions reveals what would be found if measurements were done with an amplifier of sufficient temporal resolution (10 MHz), namely that the block by 2.5 mM Ca(2+) and 2.5 mM Mg(2+) per se would only cause a saturating curve up to +160 mV. Further bending down requires the involvement of a second process related to flickering in the microsecond range. This flickering is hardly affected by the presence or absence of Ca(2+)/Mg(2+). In contrast to the experiments reported here, previous experiments in BK channels (Schroeder and Hansen. 2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) showed saturating IV curves already in the absence of Ca(2+)/Mg(2+). The reason for this discrepancy could not be identified so far. However, the flickering component was very similar in the old and new experiments, regardless of the occurrence of noncanonical IV curves. PMID:23530139

  13. Identification and localization of BK-beta subunits in the distal nephron of the mouse kidney.

    PubMed

    Grimm, P Richard; Foutz, Ruth M; Brenner, Robert; Sansom, Steven C

    2007-07-01

    Large-conductance, Ca(2+)-activated K(+) channels (BK), comprised of pore-forming alpha- and accessory beta-subunits, secrete K(+) in the distal nephron under high-flow and high-K(+) diet conditions. BK channels are detected by electrophysiology in many nephron segments; however, the accessory beta-subunit associated with these channels has not been determined. We performed RT-PCR, Western blotting, and immunohistochemical staining to determine whether BK-beta1 is localized to the connecting tubule's principal-like cells (CNT) or intercalated cells (ICs), and whether BK-beta2-4 are present in other distal nephron segments. RT-PCR and Western blots revealed that the mouse kidney expresses BK-beta1, BK-beta2, and BK-beta4. Available antibodies in conjunction with BK-beta1(-/-) and BK-beta4(-/-) mice allowed the specific localization of BK-beta1 and BK-beta4 in distal nephron segments. Immunohistochemical staining showed that BK-beta1 is localized in the CNT but not ICs of the connecting tubule. The localization of BK-beta4 was discerned using an anti-BK-beta4 antibody on wild-type tissue and anti-GFP on GFP-replaced BK-beta4 mouse (BK-beta4(-/-)) tissue. Both antibodies (anti-BK-beta4 and anti-GFP) localized BK-beta4 to the thick ascending limb (TAL), distal convoluted tubule (DCT), and ICs of the distal nephron. It is concluded that BK-beta1 is narrowly confined to the apical membrane of CNTs in the mouse, whereas BK-beta4 is expressed in the TAL, DCT, and ICs.

  14. Pharmacological Activities and Hydrolysis by Peptidases of [Phospho-Ser(6)]-Bradykinin (pS(6)-BK).

    PubMed

    Assis, Diego M; Juliano, Luiz; Paschoalin, Thaysa; Kouyoumdjian, Maria; Calixto, Joao B; Santos, Robson A S; Pertinhez, Thelma A; Gauthier, Francis; Moreau, Thierry; Blaber, Michael; Juliano, Maria A

    2015-09-15

    Phosphorylated kininogen and some of its fragments containing serine phosphorylated bradykinin ([pS(6)]-Bk) were identified in human serum and plasma by a phosphoproteomic approach. We report the kininogenase ability of human tissue and plasma kallikreins and tryptase to generate [pS(6)]-Bk or Lys-[pS(6)]-Bk having as substrate the synthetic human kininogen fluorescent fragment Abz-MISLMKRPPGF[pS(386)]PFRSSRI-NH2. The pharmacological assays of [pS(6)]-Bk showed it as a full B2 bradykinin receptor agonist in smooth muscle, it produces a portal liver hypertensive response in rat and mouse paw edema that lasts longer than Bk. The rat hypotensive response to infusions of Bk is greater than that of [pS(6)]Bk, both if injected through femoral vein or aorta. [pS(6)]-Bk was more resistant than Bk to kininase digestion performed with angiotensin converting enzyme, neprilysin, thimet oligopeptidase, aminopeptidase P and carboxypeptidase M. (1)H-NMR experiments indicated that [pS(6)]-Bk has lower flexibility, with the pS(6)-P(7) bond restricted to the trans conformation, and can explain [pS(6)]-Bk resistance to hydrolysis. In conclusion, [pS(6)]-Bk presenting lower activity than Bk, with longer lasting effects and being slowly released by kininogenases from synthetic Abz-MISLMKRPPGF[pS(386)]PFRSSRI-NH2, suggests that phosphorylation of the kininogens can be an efficient kallikrein-kinin system regulator.

  15. BK-Type K(Ca) channels in two parasympathetic cell types: differences in kinetic properties and developmental expression.

    PubMed

    Cameron, J S; Dryer, S E

    2000-12-01

    The intrinsic electrical properties of identified choroid and ciliary neurons of the chick ciliary ganglion were examined by patch-clamp recording methods. These neurons are derived from a common pool of mesencephalic neural crest precursor cells but innervate different target tissues and have markedly different action potential waveforms and intrinsic patterns of repetitive spike discharge. Therefore it is important to determine whether these cell types express different types of plasma membrane ionic channels, and to ascertain the developmental stages at which these cell types begin to diverge. This study has focused on large-conductance Ca(2+)-activated K(+) channels (K(Ca)), which are known to regulate spike waveform and repetitive firing in many cell types. Both ciliary ganglion cell types, identified on the basis of size and somatostatin immunoreactivity, express a robust macroscopic K(Ca) carried by a kinetically homogeneous population of large-conductance (BK-type) K(Ca) channels. However, the kinetic properties of these channels are different in the two cell types. Steady-state fluctuation analyses of macroscopic K(Ca) produced power spectra that could be fitted with a single Lorentzian curve in both cell types. However, the resulting corner frequency was significantly lower in choroid neurons than in ciliary neurons, suggesting that the underlying K(Ca) channels have a longer mean open-time in choroid neurons. Consistent with fluctuation analyses, significantly slower gating of K(Ca) channels in choroid neurons was also observed during macroscopic activation and deactivation at membrane potentials positive to -30 mV. Differences in the kinetic properties of K(Ca) channels could also be observed directly in single-channel recordings from identified embryonic day 13 choroid and ciliary neurons. The mean open-time of large-conductance K(Ca) channels was significantly greater in choroid neurons than in ciliary neurons in excised inside-out patches. The

  16. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  17. Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: involvement of the S4/S5 linker and the S6 segment.

    PubMed

    Webb, Timothy I; Kshatri, Aravind Singh; Large, Roddy J; Akande, Adebola Morayo; Roy, Subhrangsu; Sergeant, Gerard P; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2015-02-17

    GoSlo-SR-5-6 is a novel large-conductance Ca(2+)-activated K(+) (BK) channel agonist that shifts the activation V1/2 of these channels in excess of -100 mV when applied at a concentration of 10 μM. Although the structure-activity relationship of this family of molecules has been established, little is known about how they open BK channels. To help address this, we used a combination of electrophysiology, mutagenesis, and mathematical modeling to investigate the molecular mechanisms underlying the effect of GoSlo-SR-5-6. Our data demonstrate that the effects of this agonist are practically abolished when three point mutations are made: L227A in the S4/S5 linker in combination with S317R and I326A in the S6C region. Our data suggest that GoSlo-SR-5-6 interacts with the transmembrane domain of the channel to enhance pore opening. The Horrigan-Aldrich model suggests that GoSlo-SR-5-6 works by stabilizing the open conformation of the channel and the activated state of the voltage sensors, yet decouples the voltage sensors from the pore gate.

  18. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  19. Kidney retransplantation for BK virus nephropathy with active viremia without allograft nephrectomy.

    PubMed

    Huang, Jingbo; Danovitch, Gabriel; Pham, Phuong-Thu; Bunnapradist, Suphamai; Huang, Edmund

    2015-12-01

    BK virus nephropathy is an important cause of kidney allograft failure. Retransplantation has been successfully performed for patients with previous allograft loss due to BK virus nephropathy; however, whether allograft nephrectomy and viral clearance are required prior to retransplantation is controversial. Some recent studies have suggested that retransplantion can be successfully achieved without allograft nephrectomy if viremia is cleared prior to retransplant. The only published experience of successful retransplantation in the presence of active viremia occurred in the presence of concomitant allograft nephrectomy of the failing kidney. In this report, we describe a case of successful repeat kidney transplant in a patient with high-grade BK viremia and fulminant hepatic failure without concomitant allograft nephrectomy performed under the setting of a simultaneous liver-kidney transplant.

  20. Long-term increases in BK potassium channel underlie increased action potential firing in dentate granule neurons following pilocarpine-induced status epilepticus in rats.

    PubMed

    Mehranfard, Nasrin; Gholamipour-Badie, Hamid; Motamedi, Fereshteh; Janahmadi, Mahyar; Naderi, Nima

    2015-01-12

    Temporal lobe epilepsy (TLE) is the most common form of acquired epilepsy in adult. Since dentate gyrus granule cells (GCs) play a critical role in hippocampal seizure generation, it is, therefore, important to understand changes in intrinsic properties of GCs in TLE. In this study, the electrophysiological properties of GCs obtained from epileptic rates were compared with the control group using whole cell patch-clamp recording. Results indicated a significant increase in the number of action potentials (APs) in depolarizing currents of 150 pA, 200 pA, and 250 pA. In addition, there was a significant decrease in AP half-width of GCs. The amplitude of fast afterhyperpolarization (fAHP) in epileptic group significantly decreased compared to control group. Blockade of large conductance calcium activated potassium channel (BK), channels with paxilline and iberiotoxin reversed pilocarpine-induced changes in electrophysiological properties of GCs in epileptic group. These results suggest that the BK channel blockers by reversing the firing properties of GCs might have beneficial preventative effects on pilocarpine-induced electrophysiological changes.

  1. Distribution of High-Conductance Calcium-Activated Potassium Channels in Rat Vestibular Epithelia

    PubMed Central

    Schweizer, Felix E.; Savin, David; Luu, Cindy; Sultemeier, David R.; Hoffman, Larry F.

    2011-01-01

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development. PMID:19731297

  2. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries.

    PubMed

    Hu, Xiang-Qun; Xiao, Daliao; Zhu, Ronghui; Huang, Xiaohui; Yang, Shumei; Wilson, Sean M; Zhang, Lubo

    2012-07-01

    Our previous study demonstrated that increased Ca(2+)-activated K(+) (BK(Ca)) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BK(Ca) channel function in uterine arteries. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈ 300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia during gestation significantly inhibited pregnancy-induced upregulation of BK(Ca) channel activity and suppressed BK(Ca) channel current density in pregnant uterine arteries. This was mediated by a selective downregulation of BK(Ca) channel β1 subunit in the uterine arteries. In accordance, hypoxia abrogated the role of the BK(Ca) channel in regulating pressure-induced myogenic tone of uterine arteries that was significantly elevated in pregnant animals acclimatized to chronic hypoxia. In addition, hypoxia abolished the steroid hormone-mediated increase in the β1 subunit and BK(Ca) channel current density observed in nonpregnant uterine arteries. Although the activation of protein kinase C inhibited BK(Ca) channel current density in pregnant uterine arteries of normoxic sheep, this effect was ablated in the hypoxic animals. The results demonstrate that selectively targeting BK(Ca) channel β1 subunit plays a critical role in the maladaption of uteroplacental circulation caused by chronic hypoxia, which contributes to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia. PMID:22665123

  3. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel.

    PubMed

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F; Sepúlveda, Romina V; Aguayo, Daniel; González-Nilo, Fernando; González, Carlos; Latorre, Ramón

    2015-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channel (BK) open probability is enhanced by depolarization, increasing Ca(2+) concentration, or both. These stimuli activate modular voltage and Ca(2+) sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca(2+), profoundly hinders channel opening while showing only minor effects on the voltage sensor active-resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca(2+) binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open-closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open-closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  4. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel.

    PubMed

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F; Sepúlveda, Romina V; Aguayo, Daniel; González-Nilo, Fernando; González, Carlos; Latorre, Ramón

    2015-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channel (BK) open probability is enhanced by depolarization, increasing Ca(2+) concentration, or both. These stimuli activate modular voltage and Ca(2+) sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca(2+), profoundly hinders channel opening while showing only minor effects on the voltage sensor active-resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca(2+) binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open-closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open-closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations.

  5. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    PubMed Central

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  6. Gentamicin blocks the ACh-induced BK current in guinea pig type II vestibular hair cells by competing with Ca²⁺ at the L-type calcium channel.

    PubMed

    Yu, Hong; Guo, Chang-Kai; Wang, Yi; Zhou, Tao; Kong, Wei-Jia

    2014-04-22

    Type II vestibular hair cells (VHCs II) contain big-conductance Ca²⁺-dependent K⁺ channels (BK) and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh) evoked the BK current by triggering the influx of Ca²⁺ ions through L-type Ca²⁺ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs). Aminoglycoside antibiotics, such as gentamicin (GM), are known to have vestibulotoxicity, including damaging effects on the efferent nerve endings on VHCs II. This study used the whole-cell patch clamp technique to determine whether GM affects the vestibular efferent system at postsynaptic M2-mAChRs or the membrane ion channels. We found that GM could block the ACh-induced BK current and that inhibition was reversible, voltage-independent, and dose-dependent with an IC₅₀ value of 36.3 ± 7.8 µM. Increasing the ACh concentration had little influence on GM blocking effect, but increasing the extracellular Ca²⁺ concentration ([Ca²⁺]₀) could antagonize it. Moreover, 50 µM GM potently blocked Ca²⁺ currents activated by (-)-Bay-K8644, but did not block BK currents induced by NS1619. These observations indicate that GM most likely blocks the M2 mAChR-mediated response by competing with Ca²⁺ at the L-type calcium channel. These results provide insights into the vestibulotoxicity of aminoglycoside antibiotics on mammalian VHCs II.

  7. Orientations and proximities of the extracellular ends of transmembrane helices S0 and S4 in open and closed BK potassium channels.

    PubMed

    Niu, Xiaowei; Liu, Guoxia; Wu, Roland S; Chudasama, Neelesh; Zakharov, Sergey I; Karlin, Arthur; Marx, Steven O

    2013-01-01

    The large-conductance potassium channel (BK) α subunit contains a transmembrane (TM) helix S0 preceding the canonical TM helices S1 through S6. S0 lies between S4 and the TM2 helix of the regulatory β1 subunit. Pairs of Cys were substituted in the first helical turns in the membrane of BK α S0 and S4 and in β1 TM2. One such pair, W22C in S0 and W203C in S4, was 95% crosslinked endogenously. Under voltage-clamp conditions in outside-out patches, this crosslink was reduced by DTT and reoxidized by a membrane-impermeant bis-quaternary ammonium derivative of diamide. The rate constants for this reoxidation were not significantly different in the open and closed states of the channel. Thus, these two residues are approximately equally close in the two states. In addition, 90% crosslinking of a second pair, R20C in S0 and W203C in S4, had no effect on the V50 for opening. Taken together, these findings indicate that separation between residues at the extracellular ends of S0 and S4 is not required for voltage-sensor activation. On the contrary, even though W22C and W203C were equally likely to form a disulfide in the activated and deactivated states, relative immobilization by crosslinking of these two residues favored the activated state. Furthermore, the efficiency of recrosslinking of W22C and W203C on the cell surface was greater in the presence of the β1 subunit than in its absence, consistent with β1 acting through S0 to stabilize its immobilization relative to α S4.

  8. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  9. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.

    PubMed

    Hu, H; Shao, L R; Chavoshy, S; Gu, N; Trieb, M; Behrens, R; Laake, P; Pongs, O; Knaus, H G; Ottersen, O P; Storm, J F

    2001-12-15

    Large-conductance Ca(2+)-activated K(+) channels (BK, also called Maxi-K or Slo channels) are widespread in the vertebrate nervous system, but their functional roles in synaptic transmission in the mammalian brain are largely unknown. By combining electrophysiology and immunogold cytochemistry, we demonstrate the existence of functional BK channels in presynaptic terminals in the hippocampus and compare their functional roles in somata and terminals of CA3 pyramidal cells. Double-labeling immunogold analysis with BK channel and glutamate receptor antibodies indicated that BK channels are targeted to the presynaptic membrane facing the synaptic cleft in terminals of Schaffer collaterals in stratum radiatum. Whole-cell, intracellular, and field-potential recordings from CA1 pyramidal cells showed that the presynaptic BK channels are activated by calcium influx and can contribute to repolarization of the presynaptic action potential (AP) and negative feedback control of Ca(2+) influx and transmitter release. This was observed in the presence of 4-aminopyridine (4-AP, 40-100 microm), which broadened the presynaptic compound action potential. In contrast, the presynaptic BK channels did not contribute significantly to regulation of action potentials or transmitter release under basal experimental conditions, i.e., without 4-AP, even at high stimulation frequencies. This is unlike the situation in the parent cell bodies (CA3 pyramidal cells), where BK channels contribute strongly to action potential repolarization. These results indicate that the functional role of BK channels depends on their subcellular localization.

  10. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel.

    PubMed

    Brown, Sean M; Bentcheva-Petkova, Lilia M; Liu, Lei; Hristov, Kiril L; Chen, Muyan; Kellett, Whitney F; Meredith, Andrea L; Aldrich, Richard W; Nelson, Mark T; Petkov, Georgi V

    2008-10-01

    In urinary bladder smooth muscle (UBSM), stimulation of beta-adrenergic receptors (beta-ARs) leads to activation of the large-conductance Ca2+-activated K+ (BK) channel currents (Petkov GV and Nelson MT. Am J Physiol Cell Physiol 288: C1255-C1263, 2005). In this study we tested the hypothesis that the BK channel mediates UBSM relaxation in response to beta-AR stimulation using the highly specific BK channel inhibitor iberiotoxin (IBTX) and a BK channel knockout (BK-KO) mouse model in which the gene for the pore-forming subunit was deleted. UBSM strips isolated from wild-type (WT) and BK-KO mice were stimulated with 20 mM K+ or 1 microM carbachol to induce phasic and tonic contractions. BK-KO and WT UBSM strips pretreated with IBTX had increased overall contractility, and UBSM BK-KO cells were depolarized with approximately 12 mV. Isoproterenol, a nonspecific beta-AR agonist, and forskolin, an adenylate cyclase activator, decreased phasic and tonic contractions of WT UBSM strips in a concentration-dependent manner. In the presence of IBTX, the concentration-response curves to isoproterenol and forskolin were shifted to the right in WT UBSM strips. Isoproterenol- and forskolin-mediated relaxations were enhanced in BK-KO UBSM strips, and a leftward shift in the concentration-response curves was observed. The leftward shift was eliminated upon PKA inhibition with H-89, suggesting upregulation of the beta-AR-cAMP pathway in BK-KO mice. These results indicate that the BK channel is a key modulator in beta-AR-mediated relaxation of UBSM and further suggest that alterations in BK channel expression or function could contribute to some pathophysiological conditions such as overactive bladder and urinary incontinence.

  11. Transcriptional Regulation of BK Virus by Nuclear Factor of Activated T Cells▿

    PubMed Central

    Jordan, Joslynn A.; Manley, Kate; Dugan, Aisling S.; O'Hara, Bethany A.; Atwood, Walter J.

    2010-01-01

    The human polyomavirus BK virus (BKV) is a common virus for which 80 to 90% of the adult population is seropositive. BKV reactivation in immunosuppressed patients or renal transplant patients is the primary cause of polyomavirus-associated nephropathy (PVN). Using the Dunlop strain of BKV, we found that nuclear factor of activated T cells (NFAT) plays an important regulatory role in BKV infection. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NFAT4 bound to the viral promoter and regulated viral transcription and infection. The mutational analysis of the NFAT binding sites demonstrated complex functional interactions between NFAT, c-fos, c-jun, and the p65 subunit of NF-κB that together influence promoter activity and viral growth. These data indicate that NFAT is required for BKV infection and is involved in a complex regulatory network that both positively and negatively influences promoter activity and viral infection. PMID:19955309

  12. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    PubMed

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. PMID:26687710

  13. Cilostazol induces vasodilation through the activation of Ca(2+)-activated K(+) channels in aortic smooth muscle.

    PubMed

    Li, Hongliang; Hong, Da Hye; Son, Youn Kyoung; Na, Sung Hun; Jung, Won-Kyo; Bae, Young Min; Seo, Eun Young; Kim, Sung Joon; Choi, Il-Whan; Park, Won Sun

    2015-07-01

    We investigated the vasorelaxant effect of cilostazol and related signaling pathways in phenylephrine (Phe)-induced pre-contracted aortic rings. Cilostazol induced vasorelaxation in a concentration-dependent manner when aortic rings were pre-contracted with Phe. Application of the voltage-dependent K(+) (Kv) channel inhibitor 4-AP, the ATP-sensitive K(+) (K(ATP)) channel inhibitor glibenclamide, and the inwardly rectifying K(+) (Kir) channel inhibitor Ba(2+) did not alter the vasorelaxant effect of cilostazol; however, pre- and post-treatment with the big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel inhibitor paxilline inhibited the vasorelaxant effect of cilostazol. This vasorelaxant effect of cilostazol was reduced in the presence of an adenylyl cyclase or a protein kinase A (PKA) inhibitor, but not a protein kinase G inhibitor. Inside-out single channel recordings revealed that cilostazol induced the activation of BK(Ca) channel activity. The vasorelaxant effect of cilostazol was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor and a small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel inhibitor did not affect cilostazol-induced vasorelaxation. We conclude that cilostazol induced vasorelaxation of the aorta through activation of BK(Ca) channel via a PKA-dependent signaling mechanism independent of endothelium.

  14. BK virus infection activates the TNFα/TNF receptor system in Polyomavirus-associated nephropathy.

    PubMed

    Ribeiro, Andrea; Merkle, Monika; Motamedi, Nasim; Nitschko, Hans; Köppel, Simone; Wörnle, Markus

    2016-01-01

    Polyomavirus-associated nephropathy due to BK virus infection (BKVAN) is recognized as an important cause of significant kidney transplant dysfunction often leading to renal graft loss. The activation of innate immune defense mechanisms during BKVAN is still poorly understood and an altered regulation of inflammatory mediators by resident kidney cells upon viral infection can be expected to contribute to the onset and progression of disease. TNFα interacting with its receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), is largely accepted to be involved in viral responses, exhibiting both proinflammatory and immunosuppressive effects. Our aim was to examine the expressions of TNFα and TNFR1 and 2 in human collecting duct epithelial cells (HCDC) after infection with BKV as well as to study the effect of TNFα and poly(I:C), a synthetic analog of viral RNA, on the expressions of TNF receptors and proinflammatory cytokines and chemokines in HCDC. Quantitative RT-PCR analyses showed a downregulation of TNFα and an upregulation of both TNFR1 and 2 upon exposure of HCDC to the BK virus. TNFα stimulation induced the expressions of IL-6, IL-8, RANTES, and TNFR2. Poly(I:C) upregulated the expressions of both TNFR1 and TNFR2, a response that could be effectively blocked by siRNA to TLR3 and RIG-I, two double-stranded (ds) RNA receptors of the innate immune system. Poly(I:C)-dependent expression of TNFR2 but not TNFR1 was enhanced by TNFα. Taken together, our results suggest an involvement of TNF/TNFR system in virus-associated nephropathy.

  15. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design.

    PubMed

    Huang, Jian-Wen; Chen, Chun-Chi; Huang, Chun-Hsiang; Huang, Ting-Yung; Wu, Tzu-Hui; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Liu, Je-Ruei; Guo, Rey-Ting

    2014-03-01

    β-Mannanase has found various biotechnological applications because it is capable of degrading mannans into smaller sugar components. A highly potent example is the thermophilic β-mannanase from Aspergillus niger BK01 (ManBK), which can be efficiently expressed in industrial yeast strains and is thus an attractive candidate for commercial utilizations. In order to understand the molecular mechanism, which helps in strategies to improve the enzyme's performance that would meet industrial demands, 3D-structural information is a great asset. Here, we present the 1.57Å crystal structure of ManBK. The protein adopts a typical (β/α)8 fold that resembles the other GH5 family members. Polysaccharides were subsequently modeled into the substrate binding groove to identify the residues and structural features that may be involved in the catalytic reaction. Based on the structure, rational design was conducted to engineer ManBK in an attempt to enhance its enzymatic activity. Among the 23 mutants that we constructed, the most promising Y216W showed an 18±2.7% increase in specific activity by comparison with the wild type enzyme. The optimal temperature and heat tolerance profiles of Y216W were similar to those of the wild type, manifesting a preserved thermostability. Kinetic studies showed that Y216W has higher kcat values than the wild type enzyme, suggesting a faster turnover rate of catalysis. In this study we applied rational design to ManBK by using its crystal structure as a basis and identified the Y216W mutant that shows great potentials in industrial applications.

  16. BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

    PubMed Central

    Hei, Hongya; Gao, Jianjun; Dong, Jibin; Tao, Jie; Tian, Lulu; Pan, Wanma; Wang, Hongyu; Zhang, Xuemei

    2016-01-01

    Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BK-knockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases. PMID:27329042

  17. BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts.

    PubMed

    Hei, Hongya; Gao, Jianjun; Dong, Jibin; Tao, Jie; Tian, Lulu; Pan, Wanma; Wang, Hongyu; Zhang, Xuemei

    2016-07-01

    Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BK-knockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.

  18. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  19. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice.

    PubMed

    Shirazi-zand, Zahra; Ahmad-Molaei, Leila; Motamedi, Fereshteh; Naderi, Nima

    2013-07-01

    Cannabidiol is a nonpsychoactive member of phytocannabinoids that produces various pharmacological effects that are not mediated through putative CB1/CB2 cannabinoid receptors and their related effectors. In this study, we examined the effect of the i.c.v. administration of potassium BK channel blocker paxilline alone and in combination with cannabidiol in protection against pentylenetetrazol (PTZ)- and maximal electroshock (MES)-induced seizure in mice. In the PTZ-induced seizure model, i.c.v. administration of cannabidiol caused a significant increase in seizure threshold compared with the control group. Moreover, while i.c.v. administration of various doses of paxilline did not produce significant change in the PTZ-induced seizure threshold in mice, coadministration of cannabidiol and paxilline attenuated the antiseizure effect of cannabidiol in PTZ-induced tonic seizures. In the MES model of seizure, both cannabidiol and paxilline per se produced significant increase in percent protection against electroshock-induced seizure. However, coadministration of cannabidiol and paxilline did not produce significant interaction in their antiseizure effect in the MES test. The results of the present study showed a protective effect of cannabidiol in both PTZ and MES models of seizure. These results suggested a BK channel-mediated antiseizure action of cannabidiol in PTZ model of seizure. However, such an interaction might not exist in MES-induced convulsion.

  20. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  1. Effects of amyloid β-peptide fragment 31-35 on the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration of hippocampal CA1 neurons.

    PubMed

    Zhang, Yu; Shi, Zhi-Gang; Wang, Zhi-Hua; Li, Jian-Guo; Chen, Jin-Yuan; Zhang, Ce

    2014-05-01

    The present study characterizes the effects of Aβ31-35, a short active fragment of amyloid β-peptide (Aβ), upon the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration ([Ca²⁺]i) of freshly dissociated pyramidal cells from rat CA1 hippocampus by using whole-cell patch-clamp recording and single cell Ca²⁺ imaging techniques. The results show that: (1) in the presence of voltage- and ATP-gated K⁺ channel blockers application of 5.0 μM Aβ31-35 significantly diminished transient outward K⁺ current amplitudes at clamped voltages between 0 and 45mV; (2) under the same conditions [Ca²⁺]i was minimally affected by 5.0 μM but significantly increased by 12.5 μM and 25 μM Aβ31-35; and (3) when 25 μM of a larger fragment of the amyloid β-peptide, Aβ25-35, was applied, the results were similar to those obtained with the same concentration of Aβ31-35. These results indicate that Aβ31-35 is likely to be the shortest active fragment of the full Aβ sequence, and can be as effectively as the full-length Aβ peptide in suppressing BK-channel mediated K⁺ currents and significantly elevating [Ca²⁺]i in hippocampal CA1 neurons.

  2. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits.

    PubMed

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-06-13

    Large conductance Ca(2+)- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca(2+) sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca(2+) and Mg(2+) concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca(2+) bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg(2+) sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  3. Activation of peripheral KCNQ channels relieves gout pain

    PubMed Central

    Zheng, Yueming; Xu, Haiyan; Zhan, Li; Zhou, Xindi; Chen, Xueqin; Gao, Zhaobing

    2015-01-01

    Abstract Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout. PMID:25735002

  4. Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells.

    PubMed

    Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2013-07-01

    Recent studies have demonstrated the importance of large-conductance Ca(2+)-activated K(+) (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K(+) symmetrical solution (containing 140 mM KCl and ~300 nM free Ca(2+)) showed single-channel conductance of 215-220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca(2+)] from ~300 nM to Ca(2+)-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca(2+)] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.

  5. Effects of trimebutine maleate on colonic motility through Ca²+-activated K+ channels and L-type Ca²+ channels.

    PubMed

    Tan, Wei; Zhang, Hong; Luo, He-Sheng; Xia, Hong

    2011-06-01

    The effects of trimebutine maleate (TM) on spontaneous contractions of colonic longitudinal muscle were investigated in guinea pigs. The contractile responses of smooth muscle strips were recorded by an isometric force transducer. Membrane and action potentials were detected by an intracellular microelectrode technique. The whole-cell patch clamp recording technique was used to record the changes in large conductance Ca(2+)-activated K(+) (BK(ca)) and L-type Ca(2+) currents in colonic smooth muscle cells. At high concentrations (30, 100, and 300 μM), TM inhibited the amplitude of spontaneous contractions. At low concentrations (1 and 10 μM), TM attenuated the frequency and tone of smooth muscle strips, whereas TM had no influence on the amplitude of spontaneous contractions. TM depolarized the membrane potentials, but decreased the amplitude and frequency of action potentials at high concentrations. TM inhibited BK(ca) and L-type Ca(2+) currents in a dose-dependent manner. In the presence of the BK(ca) channel opener, NS1619, TM also inhibited BK(ca) currents. Bayk8644, a L-type Ca(2+) channel opener, increased L-type Ca(2+) currents. This augmentation was also attenuated by TM. These results suggest that TM attenuates intestinal motility through inhibition of L-type Ca(2+) currents, and depolarizes membrane potentials by reducing BK(ca) currents. Thus, TM may be a multiple-ion channel regulator in the gastrointestinal tract. PMID:21725819

  6. Innate Immunity and BK Virus: Prospective Strategies.

    PubMed

    Kariminik, Ashraf; Yaghobi, Ramin; Dabiri, Shahriar

    2016-03-01

    Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.

  7. Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Calzolaro, Sara; Cannone, Gianluigi; Camerino, Giulia Maria; Dinardo, Maria Maddalena; Latorre, Ramon; Conte Camerino, Diana

    2013-01-01

    Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing

  8. Shear stress-induced volume decrease in C11-MDCK cells by BK-α/β4

    PubMed Central

    Holtzclaw, J. David; Liu, Liping; Grimm, P. Richard

    2010-01-01

    Large-conductance, calcium-activated potassium channels (BK) are expressed in principal cells (PC) and intercalated cells (IC) in mammalian nephrons as BK-α/β1 and BK-α/β4, respectively. IC, which protrude into the lumens of tubules, express substantially more BK than PC despite lacking sufficient Na-K-ATPase to support K secretion. We previously showed in mice that IC exhibit size reduction when experiencing high distal flows induced by a high-K diet. We therefore tested the hypothesis that BK-α/β4 are regulators of IC volume via a shear stress (τ)-induced, calcium-dependent mechanism, resulting in a reduction in intracellular K content. We determined by Western blot and immunocytochemical analysis that C11-Madin-Darby canine kidney cells contained a predominance of BK-α/β4. To determine the role of BK-α/β4 in τ-induced volume reduction, we exposed C11 cells to τ and measured K efflux by flame photometry and cell volume by calcein staining, which changes inversely to cell volume. With 10 dynes/cm2, calcein intensity significantly increased 39% and monovalent cationic content decreased significantly by 37% compared with static conditions. Furthermore, the shear-induced K loss from C11 was abolished by the reduction of extracellular calcium, addition of 5 mM TEA, or BK-β4 small interfering (si) RNA, but not by addition of nontarget siRNA. These results show that BK-α/β4 plays a role in shear-induced K loss from IC, suggesting that BK-α/β4 regulate IC volume during high-flow conditions. Furthermore, these results support the use of C11 cells as in vitro models for studying BK-related functions in IC of the kidney. PMID:20576683

  9. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice.

    PubMed

    Wang, Furong; Zhang, Yu; Wang, Li; Sun, Peng; Luo, Xianwen; Ishigaki, Yasuhito; Sugai, Tokio; Yamamoto, Ryo; Kato, Nobuo

    2015-10-01

    Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice.

  10. Ca2+-Activated K+ Channels in Gonadotropin-Releasing Hormone-Stimulated Mouse Gonadotrophs

    PubMed Central

    Waring, Dennis W.; Turgeon, Judith L.

    2009-01-01

    GnRH receptor activation elicits release of intracellular Ca2+, which leads to secretion and also activates Ca2+-activated ion channels underlying membrane voltage changes. The predominant Ca2+-activated ion channels in rat and mouse gonadotrophs are Ca2+-activated K+ channels. To establish the temporal relationship between GnRH-induced changes in intracellular [Ca2+] ([Ca2+]i) and membrane current (Im), and to identify specific Ca2+-activated K+ channels linking GnRH-induced increase in [Ca2+]i to changes in plasma membrane electrical activity, we used single female mouse gonadotrophs in the perforated patch configuration of the patch-clamp technique, which preserves signaling pathways. Simultaneous measurement of [Ca2+]i and Im in voltage-clamped gonadotrophs revealed that GnRH stimulates an increase in [Ca2+]i that precedes outward Im, and that activates two kinetically distinct currents identified, using specific toxin inhibitors, as small conductance Ca2+-activated K+ (SK) current (ISK) and large (big) conductance voltage- and Ca2+-activated K+ (BK) current (IBK). We show that the apamin-sensitive current has an IC50 of 69 pM, consistent with the SK2 channel subtype and confirmed by immunocytochemistry. The magnitude of the SK current response to GnRH was attenuated by 17β-estradiol (E2) pretreatment. Iberiotoxin, an inhibitor of BK channels, completely blocked the residual apamin-insensitive outward Im, substantiating that IBK is a component of the GnRH-induced outward Im. In contrast to its suppression of ISK, E2 pretreatment augmented peak IBK. SK or BK channel inhibition modulated GnRH-stimulated LH secretion, implicating a role for these channels in gonadotroph function. In summary, in mouse gonadotrophs the GnRH-stimulated increase in [Ca2+]i activates ISK and IBK, which are differentially regulated by E2 and which may be targets for E2 positive feedback in LH secretion. PMID:19106218

  11. A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells.

    PubMed

    Vo, Theodore; Tabak, Joël; Bertram, Richard; Wechselberger, Martin

    2014-04-01

    The electrical activity of endocrine pituitary cells is mediated by a plethora of ionic currents and establishing the role of a single channel type is difficult. Experimental observations have shown however that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. We also examine how the interplay between the activation rate and conductance of the BK current shapes the bursting activity. We use the multiple timescale structure of the model to our advantage and employ geometric singular perturbation theory to demonstrate the origin of the bursting behaviour. In particular, we show that the bursting can arise from either canard dynamics or slow passage through a dynamic Hopf bifurcation. We then compare our theoretical predictions with experimental data using the dynamic clamp technique and find that the data is consistent with a burst mechanism due to a slow passage through a Hopf. PMID:23820858

  12. Large conductance calcium-activated potassium channels: their expression and modulation of glutamate release from nerve terminals isolated from rat trigeminal caudal nucleus and cerebral cortex.

    PubMed

    Samengo, Irene; Currò, Diego; Barrese, Vincenzo; Taglialatela, Maurizio; Martire, Maria

    2014-05-01

    Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and

  13. Low Na, High K Diet and the Role of Aldosterone in BK-Mediated K Excretion

    PubMed Central

    Cornelius, Ryan J.; Wen, Donghai; Li, Huaqing; Yuan, Yang; Wang-France, Jun; Warner, Paige C.; Sansom, Steven C.

    2015-01-01

    A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/β4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-β4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-β4 knockout (β4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of β4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in β4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/β4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease. PMID:25607984

  14. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids.

    PubMed

    Yuan, Chunbo; Chen, Maohui; Covey, Douglas F; Johnston, Linda J; Treistman, Steven N

    2011-01-01

    In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK) has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE)/sphingomyelin (SPM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio) supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS). We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM) images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein. Finally, our

  15. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    PubMed

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-07-15

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    PubMed Central

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-01-01

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 4 Figure 6 PMID:7473208

  17. The amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) opens large-conductance Ca2+-activated K+ channels and relaxes vascular smooth muscle.

    PubMed

    Gessner, Guido; Heller, Regine; Hoshi, Toshinori; Heinemann, Stefan H

    2007-01-26

    2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) has been developed to retain the antiarrhythmic properties of the parent molecule amiodarone but to eliminate its undesired side effects. In patch-clamp experiments, KB130015 activated large-conductance, Ca2+-activated BK(Ca) channels formed by hSlo1 (alpha) subunits in HEK 293 cells. Channels were reversibly activated by shifting the open-probability/voltage (P(o)/V) relationship by about -60 mV in 3 muM intracellular free Ca2+ ([Ca2+]in). No effect on the single-channel conductance was observed. KB130015-mediated activation of BK(Ca) channels was half-maximal at 20 microM with a Hill coefficient of 2.8. BK(Ca) activation by KB130015 did not require the presence of Ca2+ and still occurred with saturating (100 microM) [Ca2+]in. Effects of the prototypic BK(Ca) activator NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one) and those of KB130015 were not additive suggesting that both activators may at least partially share a common mechanism of action. KB130015-mediated activation was observed also for BK(Ca) channels from insects and for human BK(Ca) channels with already profoundly left-shifted voltage-dependence. In contrast, human intermediate conductance Ca2+-activated channels were inhibited by KB130015. Using segments of porcine pulmonary arteries, KB130015 induced endothelium-independent vasorelaxation, half-maximal at 43 microM KB130015. Relaxation was inhibited by 1 mM tetraethylammonium, suggesting that KB130015 can activate vascular smooth muscle type BK(Ca) channels under physiological conditions. Interestingly, the shift in the P(o)/V relationship was considerably stronger (-90 mV in 3 microM [Ca2+]in) for BK(Ca) channels containing Slo-beta1 subunits. Thus, KB130015 belongs to a novel class of BK(Ca) channel openers that exert an effect depending on the subunit composition of the channel complex.

  18. Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels

    PubMed Central

    Zhong, Ling; Guo, Xiying; Weng, Anxi; Xiao, Feng; Zeng, Wenping; Zhang, Yan; Ding, Jiuping; Hou, Panpan

    2016-01-01

    Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits “paralyzed”-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn’t have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes. PMID:27755549

  19. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    PubMed

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  20. Enhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats.

    PubMed

    Pabbidi, Mallikarjuna R; Mazur, Olga; Fan, Fan; Farley, Jerry M; Gebremedhin, Debebe; Harder, David R; Roman, Richard J

    2014-04-01

    Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX; BK inhibitor)-sensitive outward potassium (K+) channel current densities are four- to fivefold greater in FHH than in FHH.1(BN) congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1(BN) rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared with FHH.1(BN) rats. The frequency and amplitude of spontaneous transient outward currents are significantly greater in VSMCs isolated from FHH than in FHH.1(BN) rats. However, the expression of the BK-α and -β-subunit proteins in cerebral vessels as determined by Western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR, and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity.

  1. Effects of sodium metabisulfite on the expression of BK(Ca), K(ATP), and L-Ca(2+) channels in rat aortas in vivo and in vitro.

    PubMed

    Zhang, Quanxi; Bai, Yunlong; Tian, Jingjing; Lei, Xiaodong; Li, Mei; Yang, Zhenhua; Meng, Ziqiang

    2015-03-01

    Sodium metabisulfite (SMB) is most commonly used as the preservative in many food preparations and drugs. So far, few studies about its negative effects were reported. The purpose of this study was to investigate the effect of SMB on the expression of big-conductance Ca(2+)-activated K(+) (BKCa), ATP-sensitive K(+) (KATP), and L-type calcium (L-Ca(2+)) channels in rat aorta in vivo and in vitro. The results showed that the mRNA and protein levels of the BKCa channel subunits α and β1 of aorta in rats were increased by SMB in vivo and in vitro. Similarly, the expression of the KATP channel subunits Kir6.1, Kir6.2, and SUR2B were increased by SMB. However, SMB at the highest concentration significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. These results suggest that SMB can activate BKCa and KATP channels by increasing the expression of α, β1, and Kir6.1, Kir6.2, SUR2B respectively, while also inhibit L-Ca(2+) channels by decreasing the expression of Cav1.2 and Cav1.3 of aorta in rats. The molecular mechanism of SMB-induced vasorelaxant effect might be related to the expression changes of BKCa, KATP, and L-Ca(2+) channels subunits. Further work is needed to determine the relative contribution of each channel in SMB-mediated vasorelaxant effect.

  2. Effects of sodium metabisulfite on the expression of BK(Ca), K(ATP), and L-Ca(2+) channels in rat aortas in vivo and in vitro.

    PubMed

    Zhang, Quanxi; Bai, Yunlong; Tian, Jingjing; Lei, Xiaodong; Li, Mei; Yang, Zhenhua; Meng, Ziqiang

    2015-03-01

    Sodium metabisulfite (SMB) is most commonly used as the preservative in many food preparations and drugs. So far, few studies about its negative effects were reported. The purpose of this study was to investigate the effect of SMB on the expression of big-conductance Ca(2+)-activated K(+) (BKCa), ATP-sensitive K(+) (KATP), and L-type calcium (L-Ca(2+)) channels in rat aorta in vivo and in vitro. The results showed that the mRNA and protein levels of the BKCa channel subunits α and β1 of aorta in rats were increased by SMB in vivo and in vitro. Similarly, the expression of the KATP channel subunits Kir6.1, Kir6.2, and SUR2B were increased by SMB. However, SMB at the highest concentration significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. These results suggest that SMB can activate BKCa and KATP channels by increasing the expression of α, β1, and Kir6.1, Kir6.2, SUR2B respectively, while also inhibit L-Ca(2+) channels by decreasing the expression of Cav1.2 and Cav1.3 of aorta in rats. The molecular mechanism of SMB-induced vasorelaxant effect might be related to the expression changes of BKCa, KATP, and L-Ca(2+) channels subunits. Further work is needed to determine the relative contribution of each channel in SMB-mediated vasorelaxant effect. PMID:25463229

  3. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection.

    PubMed

    Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H

    2016-09-24

    Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research. PMID:27683628

  4. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection

    PubMed Central

    Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H

    2016-01-01

    Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research. PMID:27683628

  5. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection.

    PubMed

    Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H

    2016-09-24

    Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.

  6. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection

    PubMed Central

    Vigil, Darlene; Konstantinov, Nikifor K; Barry, Marc; Harford, Antonia M; Servilla, Karen S; Kim, Young Ho; Sun, Yijuan; Ganta, Kavitha; Tzamaloukas, Antonios H

    2016-01-01

    Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.

  7. Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in Ca-activated K Channels.

    PubMed

    Kim, Yangmi; Kim, Wun-Jae; Cha, Eun-Jong

    2011-10-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance Ca(2+)-activated K(+) (BK(Ca)) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased BK(Ca) current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration (IC(50)) of quercetin was 45.5±7.2 µM. The quercetin-evoked BK(Ca) current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific BK(Ca) blocker and iberiotoxin (IBX; 100 nM) a BK(Ca)-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC(4)(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect (30.3±13.5%) which was recovered to 53.3±10.5% and 72.9±3.7% by TEA and IBX, respectively. Taken together our results indicate that activation of BK(Ca) channels may be considered an important target related to the action of quercetin on human bladder cancer cells.

  8. Adverse Effects, Expression of the Bk-CYP3045C1 Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer.

    PubMed

    Won, Eun-Ji; Kim, Ryeo-Ok; Kang, Hye-Min; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Young Hwan; Hwang, Un-Ki; Zhou, Bingsheng; Lee, Su-Jae; Lee, Jae-Seong

    2016-06-01

    To examine the deleterious effects of the water accommodated fraction (WAF) of crude oil, the growth curve, fecundity, and lifespan of the monogonont rotifer (Brachionus koreanus) were measured for 24 h in response to three different doses (0.2×, 0.4×, and 0.8×) of WAFs. A higher dose of WAFs significantly reduced the fecundity and lifespan. A rotifer 32K microarray chip showed that the Bk-CYP3045C1 gene had the highest expression. Of the 25 entire CYP genes, the Bk-CYP3045C1 gene showed a significant expression for different doses and times in response to WAFs and chemical components of WAFs (naphthalene and phenanthrene); also, glutathione S-transferase genes, ABC transporter, and other genes showed dose responses upon exposure to 80% WAF over time. Different doses of WAFs increased the oxidative stress with an induction of reactive oxygen species (ROS) and a depletion of glutathione (GSH). Exposure to WAFs did not show toxic effects on survivability in B. koreanus; however, toxicity to WAFs was shown when piperonyl butoxide, a potent inhibitor of cytochrome P450 (CYP) enzymes, was added. This toxicity was dose-dependent. After WAFs exposure, p-ERK was activated over time in response to WAFs, which suggests that WAFs can be activated by the p-ERK signaling pathway.

  9. APE1/Ref-1 promotes the effect of angiotensin II on Ca2+ -activated K+ channel in human endothelial cells via suppression of NADPH oxidase.

    PubMed

    Park, Won Sun; Ko, Eun A; Jung, In Duk; Son, Youn Kyoung; Kim, Hyoung Kyu; Kim, Nari; Park, So Youn; Hong, Ki Whan; Park, Yeong-Min; Choi, Tae-Hoon; Han, Jin

    2008-10-01

    The effects of angiotensin II (Ang II) on whole-cell large conductance Ca(2+)-activated K(+) (BK(Ca)) currents was investigated in control and Apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1/Ref-1)-overexpressing human umbilical vein endothelial cells (HUVECs). Ang II blocked the BK(Ca) current in a dose-dependent fashion, and this inhibition was greater in APE1/Ref-1-overexpressing HUVECs than in control HUVECs (half-inhibition values of 102.81+/-9.54 nM and 11.34+/-0.39 nM in control and APE1/Ref-1-overexpressing HUVECs, respectively). Pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) or knock down of NADPH oxidase (p22 phox) using siRNA increased the inhibitory effect of Ang II on the BK(Ca) currents, similar to the effect of APE1/Ref-1 overexpression. In addition, application of Ang II increased the superoxide and hydrogen peroxide levels in the control HUVECs but not in APE1/Ref-1-overexpressing HUVECs. Furthermore, direct application of hydrogen peroxide increased BK(Ca) channel activity. Finally, the inhibitory effect of Ang II on the BK(Ca) current was blocked by an antagonist of the Ang II type 1 (AT(1)) receptor in both control and APE1/Ref-1-overexpressing HUVECs. From these results, we conclude that the inhibitory effect of Ang II on BK(Ca) channel function is NADPH oxidase-dependent and may be promoted by APE1/Ref-1.

  10. The activation effect of hainantoxin-I, a peptide toxin from the Chinese spider, Ornithoctonus hainana, on intermediate-conductance Ca2+-activated K+ channels.

    PubMed

    Huang, Pengfei; Zhang, Yiya; Chen, Xinyi; Zhu, Li; Yin, Dazhong; Zeng, Xiongzhi; Liang, Songping

    2014-08-21

    Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.

  11. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.

    PubMed

    Albiñana, Elisa; Segura-Chama, Pedro; Baraibar, Andres M; Hernández-Cruz, Arturo; Hernández-Guijo, Jesus M

    2015-05-01

    We characterized the ionic currents underlying the cellular excitability and the Ca(2+) -channel subtypes involved in action potential (AP) firing of rat adrenal chromaffin cells (RCCs) preserved in their natural environment, the adrenal gland slices, through the perforated patch-clamp recording technique. RCCs prepared from adrenal slices exhibit a resting potential of -54 mV, firing spontaneous APs (2-3 spikes/s) generated by the opening of Na(+) and Ca(2+) -channels, and terminated by the activation of voltage and Ca(2+) -activated K(+) -channels (BK). Ca(2+) influx via L-type Ca(2+) -channels is involved in reaching threshold potential for AP firing, and is responsible for activation of BK-channels contributing to AP-repolarization and afterhyperpolarization, whereas P/Q-type Ca(2+) -channels are involved only in the repolarization phase. BK-channels carry total outward current during AP-repolarization. Blockade of L-type Ca(2+) -channels reduces BK-current ~60%, whereas blockade of N- or P/Q-type produces little effect. This study demonstrates that Ca(2+) influx through L-type Ca(2+) -channels plays a key role in modulating the threshold potential from RCCs in situ. This study demonstrates that Ca(2+) influx through L-type Ca(2+) channels plays a key role in modulating the threshold potential for action potential firing and activating BK channels contributing to repolarization and afterhyperpolarization from rat adrenal chromaffin cells in situ.

  12. Abdominal Surgical Incision Induces Remote Preconditioning of Trauma (RPCT) via Activation of Bradykinin Receptors (BK2R) and the Cytochrome P450 Epoxygenase Pathway in Canine Hearts

    PubMed Central

    Gross, Garrett J.; Baker, John E.; Moore, Jeannine; Falck, John R.; Nithipatikom, Kasem

    2012-01-01

    Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT. Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol. In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P<0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH. These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT. PMID:21786213

  13. Cerivastatin activates endothelial calcium-activated potassium channels and thereby modulates endothelial nitric oxide production and cell proliferation.

    PubMed

    Kuhlmann, Christoph Rüdiger Wolfram; Gast, Christine; Li, Fang; Schäfer, Matthias; Tillmanns, Harald; Waldecker, Bernd; Wiecha, Johannes

    2004-04-01

    Statins are known to counteract the process of arteriosclerosis by exerting direct pleiotropic effects on vascular endothelium. The aim of this study was to investigate a possible effect of cerivastatin on endothelial Ca(2+)-activated K+ channels (BK(Ca)) and to assess their contribution to cerivastatin-mediated changes of endothelial nitric oxide (NO) production and proliferation. Membrane potential was measured using bis-1,3-dibutylbarbituric acid-trimethine oxonol-fluorescence imaging. Patch-clamp recordings of BK(Ca) were performed on cultured human umbilical vein endothelial cells. NO production was measured using 4,5-diaminofluorescein-fluorescence imaging and a [(3)H]cGMP RIA. Proliferation was analyzed by means of cell counts and [(3)H]thymidine incorporation (TI). Cerivastatin (0.001 to 0.05 micromol/L) caused a significant membrane hyperpolarization (n = 30; P < 0.05). This effect was abolished using the BK(Ca) inhibitor iberiotoxin (IBX; 100 nmol/L). The addition of mevalonate (500 micromol/L) blocked the BK(Ca) activation induced by cerivastatin (n = 19; P < 0.05). Endothelial cGMP level was increased by acetylcholine (ACh; 1 micromol/L). The combination of ACh and cerivastatin additionally increased cGMP levels, with a maximum at 0.03 micromol/L cerivastatin (84%; n = 10, P < 0.01). ACh-induced increase of cGMP-level was significantly reduced by IBX (n = 10, P < 0.01) as it was with all combined administrations of ACh and cerivastatin. 4,5-Diaminofluorescein-fluorescence measurements revealed a significant increase of NO levels by cerivastatin, which was abolished by IBX (n = 30; P < 0.05). Cell counts and TI demonstrated significant inhibition of human umbilical vein endothelial cell proliferation with a maximum at 0.03 micro mol/L (cell count, -32.2%; TI, -70%; n = 12; P < 0.01). These data show that cerivastatin activates endothelial BK(Ca), which plays an important role in the signaling of cerivastatin-mediated endothelial NO production and

  14. BK polyomavirus: emerging pathogen.

    PubMed

    Bennett, Shauna M; Broekema, Nicole M; Imperiale, Michael J

    2012-08-01

    BK polyomavirus (BKPyV) is a small double-stranded DNA virus that is an emerging pathogen in immunocompromised individuals. BKPyV is widespread in the general population, but primarily causes disease when immune suppression leads to reactivation of latent virus. Polyomavirus-associated nephropathy and hemorrhagic cystitis in renal and bone marrow transplant patients, respectively, are the most common diseases associated with BKPyV reactivation and lytic infection. In this review, we discuss the clinical relevance, effects on the host, virus life cycle, and current treatment protocols. PMID:22402031

  15. Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus.

    PubMed

    He, Shan; Wang, Ya-Xian; Petralia, Ronald S; Brenowitz, Stephan D

    2014-04-01

    Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs.

  16. Cholinergic Modulation of Large-Conductance Calcium-Activated Potassium Channels Regulates Synaptic Strength and Spine Calcium in Cartwheel Cells of the Dorsal Cochlear Nucleus

    PubMed Central

    He, Shan; Wang, Ya-Xian; Petralia, Ronald S.

    2014-01-01

    Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs. PMID:24719104

  17. Lysophosphatidylcholine-induced modulation of Ca(2+)-activated K(+)channels contributes to ROS-dependent proliferation of cultured human endothelial cells.

    PubMed

    Wolfram Kuhlmann, Christoph Rüdiger; Wiebke Lüdders, Dörte; Schaefer, Christian Alexander; Kerstin Most, Astrid; Backenköhler, Ulrich; Neumann, Thomas; Tillmanns, Harald; Erdogan, Ali

    2004-05-01

    Proliferation of endothelial cells plays a crucial role in the process of atherosclerotic plaque destabilization. The major component of oxidized low-density lipoprotein lysophosphatidylcholine (LPC) has been shown to promote endothelial proliferation by increasing the production of reactive oxygen species (ROS). Since K(+) channels are known to control the cell cycle, we investigated the role of Ca(2+)-activated K(+) channels (BK(Ca)) in the regulation of LPC-induced endothelial proliferation and ROS generation. A significant increase of cell growth induced by LPC (20 micromol/l; cell counts (CCs): +87%, thymidin incorporation: +89%; n = 12, P < 0.01) was observed, which was inhibited by the BK(Ca) inhibitor iberiotoxin (IBX; 100 nmol/l), by the NAD(P)H-oxidase inhibitor diphenyleneiodonium (5 micromol/l) and by transfection with antisense (AS) oligonucleotides against NAD(P)H oxidase, whereas N(G)-monomethyl-l-arginine (l-NMMA) further increased LPC-induced cell growth. Using the patch-clamp technique a significant increase of BK(Ca) open-state probability (control: 0.004 +/- 0.002; LPC: 0.104 +/- 0.035; n = 21, P < 0.05) by LPC was observed. Using dichlorofluorescein fluorescence microscopy a significant increase of ROS induced by LPC was reported, that was blocked by IBX and Ca(2+) antagonists. Intracellular Ca(2+) measurements revealed a capacitative Ca(2+) influx caused by LPC. Bioactivity of nitric oxide (NO) was measured using a [(3)H]-cGMP radioimmunoassay. LPC significantly decreased acetylcholine-induced NO synthesis. LPC significantly increased cGMP levels in endothelial cells transfected with AS, which was blocked by IBX. In conclusion, our results demonstrate that LPC activates BK(Ca) thereby increasing ROS production which induces endothelial proliferation. In addition LPC-induced BK(Ca)-activation contributes to increased cGMP levels, if ROS production is prevented by AS.

  18. A Screen for Modulators of Large T Antigen's ATPase Activity Uncovers Novel Inhibitors of Simian Virus 40 and BK Virus Replication

    PubMed Central

    Seguin, Sandlin P.; Ireland, Alex W.; Gupta, Tushar; Wright, Christine M.; Miyata, Yoshinari; Wipf, Peter; Pipas, James M.; Gestwicki, Jason E.; Brodsky, Jeffrey L.

    2012-01-01

    New polyomaviruses are continually being identified, and it is likely that links between this virus family and disease will continue to emerge. Unfortunately, a specific treatment for polyomavirus-associated disease is lacking. Because polyomaviruses express large Tumor Antigen, TAg, we hypothesized that small molecule inhibitors of the essential ATPase activity of TAg would inhibit viral replication. Using a new screening platform, we identified inhibitors of TAg's ATPase activity. Lead compounds were moved into a secondary assay, and ultimately two FDA approved compounds, bithionol and hexachlorophene, were identified as the most potent TAg inhibitors known to date. Both compounds inhibited Simian Virus 40 replication as assessed by plaque assay and quantitative PCR. Moreover, these compounds inhibited BK virus, which causes BKV Associated Nephropathy. In neither case was host cell viability compromised at these concentrations. Our data indicate that directed screening for TAg inhibitors is a viable method to identify polyomavirus inhibitors, and that bithionol and hexachlorophene represent lead compounds that may be further modified and/or ultimately used to combat diseases associated with polyomavirus infection. PMID:22898086

  19. Relation between BK-α/β4-mediated potassium secretion and ENaC-mediated sodium reabsorption.

    PubMed

    Wen, Donghai; Cornelius, Ryan J; Rivero-Hernandez, Dianelys; Yuan, Yang; Li, Huaqing; Weinstein, Alan M; Sansom, Steven C

    2014-07-01

    The large-conductance, calcium-activated BK-α/β4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high-potassium, alkaline diets. Here we determine whether BK-α/β4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron by feeding mice a low-sodium, high-potassium diet. Wild-type and BK-β4 knockout mice were maintained on a low-sodium, high-potassium, alkaline diet or a low-sodium, high-potassium, acidic diet for 7-10 days. Wild-type mice maintained potassium homeostasis on the alkaline, but not acid, diet. BK-β4 knockout mice could not maintain potassium homeostasis on either diet. During the last 12 h of diet, wild-type mice on either a regular, alkaline, or an acid diet, or knockout mice on an alkaline diet, were administered amiloride (an ENaC inhibitor). Amiloride enhanced sodium excretion in all wild-type and knockout groups to similar values; however, amiloride diminished potassium excretion by 59% in wild-type but only by 33% in knockout mice on an alkaline diet. Similarly, amiloride decreased the trans-tubular potassium gradient by 68% in wild-type but only by 42% in knockout mice on an alkaline diet. Amiloride treatment equally enhanced sodium excretion and diminished potassium secretion in knockout mice on an alkaline diet and wild-type mice on an acid diet. Thus, the enhanced effect of amiloride on potassium secretion in wild-type compared to knockout mice on the alkaline diet clarify a BK- α/β4-mediated potassium secretory pathway in intercalated cells driven by ENaC-mediated sodium reabsorption linked to bicarbonate secretion.

  20. Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses

    PubMed Central

    Jacobson, David A; Mendez, Felipe; Thompson, Michael; Torres, Jacqueline; Cochet, Olivia; Philipson, Louis H

    2010-01-01

    Glucose-induced β-cell action potential (AP) repolarization is regulated by potassium efflux through voltage gated (Kv) and calcium activated (KCa) potassium channels. Thus, ablation of the primary Kv channel of the β-cell, Kv2.1, causes increased AP duration. However, Kv2.1−/− islet electrical activity still remains sensitive to the potassium channel inhibitor tetraethylammonium. Therefore, we utilized Kv2.1−/− islets to characterize Kv and KCa channels and their respective roles in modulating the β-cell AP. The remaining Kv current present in Kv2.1−/−β-cells is inhibited with 5 μm CP 339818. Inhibition of the remaining Kv current in Kv2.1−/− mouse β-cells increased AP firing frequency by 39.6% but did not significantly enhance glucose stimulated insulin secretion (GSIS). The modest regulation of islet AP frequency by CP 339818 implicates other K+ channels, possibly KCa channels, in regulating AP repolarization. Blockade of the KCa channel BK with slotoxin increased β-cell AP amplitude by 28.2%, whereas activation of BK channels with isopimaric acid decreased β-cell AP amplitude by 30.6%. Interestingly, the KCa channel SK significantly contributes to Kv2.1−/− mouse islet AP repolarization. Inhibition of SK channels decreased AP firing frequency by 66% and increased AP duration by 67% only when Kv2.1 is ablated or inhibited and enhanced GSIS by 2.7-fold. Human islets also express SK3 channels and their β-cell AP frequency is significantly accelerated by 4.8-fold with apamin. These results uncover important repolarizing roles for both Kv and KCa channels and identify distinct roles for SK channel activity in regulating calcium- versus sodium-dependent AP firing. PMID:20643768

  1. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron.

    PubMed

    Cornelius, Ryan J; Wen, Donghai; Hatcher, Lori I; Sansom, Steven C

    2012-12-01

    Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.

  2. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP‐12

    PubMed Central

    Yakhontova, K.; Lu, M.; Manzetti, J.

    2015-01-01

    BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV‐specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)‐ and calcineurin‐inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR–SP6‐kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC‐1 kinase inhibitor torin‐1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP‐12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP‐12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation. PMID:26639422

  3. Palmitoylation of the β4-subunit regulates surface expression of large conductance calcium-activated potassium channel splice variants.

    PubMed

    Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J

    2013-05-01

    Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels.

  4. Functional Upregulation of Ca2+ -Activated K+ Channels in the Development of Substantia Nigra Dopamine Neurons

    PubMed Central

    Ramírez-Latorre, José A.

    2012-01-01

    Many connections in the basal ganglia are made around birth when animals are exposed to a host of new affective, cognitive, and sensori-motor stimuli. It is thought that dopamine modulates cortico-striatal synapses that result in the strengthening of those connections that lead to desired outcomes. We propose that there must be a time before which stimuli cannot be processed into functional connections, otherwise it would imply an effective link between stimulus, response, and reward in uterus. Consistent with these ideas, we present evidence that early in development dopamine neurons are electrically immature and do not produce high-frequency firing in response to salient stimuli. We ask first, what makes dopamine neurons immature? and second, what are the implications of this immaturity for the basal ganglia? As an answer to the first question, we find that at birth the outward current is small (3nS-V), insensitive to , TEA, BK, and SK blockers. Rapidly after birth, the outward current increases to 15nS-V and becomes sensitive to , TEA, BK, and SK blockers. We make a detailed analysis of the kinetics of the components of the outward currents and produce a model for BK and SK channels that we use to reproduce the outward current, and to infer the geometrical arrangement of BK and channels in clusters. In the first cluster, T-type and BK channels are coupled within distances of 20 nm (200 Å). The second cluster consists of L-type and BK channels that are spread over distances of at least 60 nm. As for the second question, we propose that early in development, the mechanism of action selection is in a “locked-in” state that would prevent dopamine neurons from reinforcing cortico-striatal synapses that do not have a functional experiential-based value. PMID:23284723

  5. AN ECHO OF SUPERNOVA 2008bk

    SciTech Connect

    Van Dyk, Schuyler D.

    2013-08-01

    I have discovered a prominent light echo around the low-luminosity Type II-plateau supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located Almost-Equal-To 15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A{sub V} Almost-Equal-To 0.05 mag in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.

  6. TRPC channel activation by extracellular thioredoxin

    PubMed Central

    Xu, Shang-Zhong; Sukumar, Piruthivi; Zeng, Fanning; Li, Jing; Jairaman, Amit; English, Anne; Naylor, Jacqueline; Ciurtin, Coziana; Majeed, Yasser; Milligan, Carol J; Bahnasi, Yahya M; AL-Shawaf, Eman; Porter, Karen E; Jiang, Lin-Hua; Emery, Paul; Sivaprasadarao, Asipu; Beech, David J

    2009-01-01

    Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor1,2. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these novel channels. Here we show activation of TRPC5 homomultimeric and TRPC5-TRPC1 heteromultimeric channels3-5 by extracellular reduced thioredoxin acting by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown6-9. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis8,10-12, an inflammatory joint disease disabling millions of people world-wide13. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and blockade of the channels enhances secretory activity and prevents suppression of secretion by thioredoxin. The data suggest a novel ion channel activation mechanism that couples extracellular thioredoxin to cell function. PMID:18172497

  7. A novel potassium channel in skeletal muscle mitochondria.

    PubMed

    Skalska, Jolanta; Piwońska, Marta; Wyroba, Elzbieta; Surmacz, Liliana; Wieczorek, Rafal; Koszela-Piotrowska, Izabela; Zielińska, Joanna; Bednarczyk, Piotr; Dołowy, Krzysztof; Wilczynski, Grzegorz M; Szewczyk, Adam; Kunz, Wolfram S

    2008-01-01

    In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.

  8. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  9. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  10. Channeling Children's Energy through Vocabulary Activities

    ERIC Educational Resources Information Center

    Schindler, Andrea

    2006-01-01

    In this article, the author shares vocabulary development activities for young learners. These activities channel students' energy and make learning more effective and fun. The author stresses the importance of giving young learners a good language-learning experience, and the challenges of teaching young learners who are not literate in their L1.…

  11. Language Development Activities through the Auditory Channel.

    ERIC Educational Resources Information Center

    Fitzmaurice, Peggy, Comp.; And Others

    Presented primarily for use with educable mentally retarded and learning disabled children are approximately 100 activities for language development through the auditory channel. Activities are grouped under the following three areas: receptive skills (auditory decoding, auditory memory, and auditory discrimination); expressive skills (auditory…

  12. BK virus encoded microRNAs are present in blood of renal transplant recipients with BK viral nephropathy.

    PubMed

    Li, J Y Z; McNicholas, K; Yong, T Y; Rao, N; Coates, P T H; Higgins, G D; Carroll, R P; Woodman, R J; Michael, M Z; Gleadle, J M

    2014-05-01

    BK viral infection is an important cause of renal transplant dysfunction and failure. Current strategies utilize surveillance for infection with DNA polymerase chain reaction assays and modulation of immunosuppression. Many viruses including polyomaviruses encode microRNAs (miRNAs). We have detected BK virus (BKV) encoded miRNAs in the blood of infected renal transplant recipients, and see a strong correlation between BKV encoded miRNA and BKV DNA in blood and a relationship between levels of bkv-miR-B1-5p and the presence of biopsy-proven BK viral nephropathy. Further research is needed to determine whether the detection of this and other virally encoded miRNAs may be useful in the diagnosis of active viral replication.

  13. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone*

    PubMed Central

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S.; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-01-01

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca2+- and voltage-dependent K+ (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  14. The molecular mechanism of "ryegrass staggers," a neurological disorder of K+ channels.

    PubMed

    Imlach, Wendy L; Finch, Sarah C; Dunlop, James; Meredith, Andrea L; Aldrich, Richard W; Dalziel, Julie E

    2008-12-01

    "Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement. Lolitrem B and the structurally related tremor inducer paxilline both act as potent large conductance calcium-activated potassium (BK) channel inhibitors. Using patch clamping, we show that their different apparent affinities correlate with their toxicity in vivo. To investigate whether the motor function deficits produced by lolitrem B and paxilline are due to inhibition of BK ion channels, their ability to induce tremor and ataxia in mice deficient in this ion channel (Kcnma1(-/-)) was examined. Our results show that mice lacking Kcnma1 are unaffected by these neurotoxins. Furthermore, doses of these substances known to be lethal to wild-type mice had no effect on Kcnma1(-/-) mice. These studies reveal the BK channel as the molecular target for the major components of the motor impairments induced by ryegrass neurotoxins. Unexpectedly, when the response to lolitrem B was examined in mice lacking the beta4 BK channel accessory subunit (Kcnmb4(-/-)), only low-level ataxia was observed. Our study therefore reveals a new role for the accessory BK beta4 subunit in motor control. The beta4 subunit could be considered as a potential target for treatment of ataxic conditions in animals and in humans.

  15. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea.

    PubMed

    Liu, Wen-Yu; Chiou, Shu-Jiau; Ko, Chia-Yun; Lin, Tsai-Yun

    2011-03-01

    Three novel ethylene response factor (ERF) genes, BkERF1, BkERF2.1 and BkERF2.2, were isolated from a medicinal plant, Bupleurum kaoi. The deduced BkERFs contain a canonical nuclear localization signal and an ERF/AP2 DNA binding domain. RNA gel blot analysis revealed that BkERF1 and BkERF2.1 were ubiquitously expressed at low levels in all parts of mature plants, and that BkERF2.2 was expressed at moderate levels in vegetative tissues. Exogenous application of methyl jasmonate induced BkERF1/2.1/2.2 transcripts. BkERF2.2 transcript levels were slightly increased by addition of ethephon and salicylic acid. BkERFs were localized in the plant nucleus and functioned as transcriptional activators. In B. kaoi cells overexpressing BKERFs, inoculation with Botrytis cinerea increased expression of some defense genes which are associated with enhanced disease resistance. Similarly, overexpression of BkERFs in transgenic Arabidopsis thaliana resulted in elevated mRNA levels of the defense gene PDF1.2, and in enhanced resistance to B. cinerea. Collectively, these results provide evidence that BkERFs mediate the expression of defense-related genes in plants.

  16. Targeting the Channel Activity of Viroporins.

    PubMed

    To, Janet; Surya, Wahyu; Torres, Jaume

    2016-01-01

    Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.

  17. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.

    PubMed Central

    Farley, J.; Rudy, B.

    1988-01-01

    K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could

  18. Synthetic modulators of TRP channel activity.

    PubMed

    Harteneck, Christian; Klose, Chihab; Krautwurst, Dietmar

    2011-01-01

    In humans, 27 TRP channels from 6 related families contribute to a broad spectrum of cellular functions, such as thermo-, pressure-, volume-, pain- and chemosensation. Pain and inflammation-inducing compounds represent potent plant and animal defense mechanisms explaining the great variety of the naturally occurring, TRPV1-, TRPM8-, and TRPA1-activating ligands. The discovery of the first vanilloid receptor (TRPV1) and its involvement in nociception triggered the euphoria and the hope in novel therapeutic strategies treating pain, and this clear-cut indication inspired the development of TRPV1-selective ligands. On the other hand the nescience in the physiological role and putative clinical indication hampered the development of a selective drug in the case of the other TRP channels. Therefore, currently only a handful of mostly un-selective blocker is available to target TRP channels. Nevertheless, there is an ongoing quest for new, natural or synthetic ligands and modulators. In this chapter, we will give an overview on available broad-range blocker, as well as first TRP channel-selective compounds. PMID:21290290

  19. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity

    PubMed Central

    Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D

    2013-01-01

    Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426

  20. Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells.

    PubMed

    Vandael, David H F; Zuccotti, Annalisa; Striessnig, Joerg; Carbone, Emilio

    2012-11-14

    Mouse chromaffin cells (MCCs) fire spontaneous action potentials (APs) at rest. Ca(v)1.3 L-type calcium channels sustain the pacemaker current, and their loss results in depolarized resting potentials (V(rest)), spike broadening, and remarkable switches into depolarization block after BayK 8644 application. A functional coupling between Ca(v)1.3 and BK channels has been reported but cannot fully account for the aforementioned observations. Here, using Ca(v)1.3(-/-) mice, we investigated the role of Ca(v)1.3 on SK channel activation and how this functional coupling affects the firing patterns induced by sustained current injections. MCCs express SK1-3 channels whose tonic currents are responsible for the slow irregular firing observed at rest. Percentage of frequency increase induced by apamin was found inversely correlated to basal firing frequency. Upon stimulation, MCCs build-up Ca(v)1.3-dependent SK currents during the interspike intervals that lead to a notable degree of spike frequency adaptation (SFA). The major contribution of Ca(v)1.3 to the subthreshold Ca(2+) charge during an AP-train rather than a specific molecular coupling to SK channels accounts for the reduced SFA of Ca(v)1.3(-/-) MCCs. Low adaptation ratios due to reduced SK activation associated with Ca(v)1.3 deficiency prevent the efficient recovery of Na(V) channels from inactivation. This promotes a rapid decline of AP amplitudes and facilitates early onset of depolarization block following prolonged stimulation. Thus, besides serving as pacemaker, Ca(v)1.3 slows down MCC firing by activating SK channels that maintain Na(V) channel availability high enough to preserve stable AP waveforms, even upon high-frequency stimulation of chromaffin cells during stress responses. PMID:23152617

  1. Epithelial sodium channel modulates platelet collagen activation.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation.

  2. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.

  3. B.K. virus haemagglutinin.

    PubMed

    Kende, M; Uj, M; Szücs, G

    1979-01-01

    Among the widely applied buffered media, the HSAG (hepes-salt-albumin-gelatin) medium at pH 5.75--6.25 was found to be the most favourable for B.K. virus haemagglutinin titration. The optimum temperature was at 4 degrees C. The haemagglutinin was not affected by temperatures up to 37 degrees C, pHs between 5.5 and 9.5, and NaCl concentrations between 0.063 M and 2.56 M. When incubated at 56 degrees C, the haemagglutinin shows a time and pH dependent decline in titre. No significant time dependent titre fall occurred at 56 degrees C if NaCl molarity was varied between 1.31 and 2.56.

  4. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  5. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+).

  6. BK Viremia among Iranian Renal Transplant Candidates

    PubMed Central

    Jozpanahi, Manizheh; Ramezani, Amitis; Ossareh, Shahrzad; Banifazl, Mohammad; Bavand, Anahita; Mamishi, Setareh; Aghakhani, Arezoo

    2016-01-01

    Background: Primary infection with BK virus (BKV) is occurred during childhood and usually asymptomatic, but after initial infection, BKV may persist lifelong in the kidney and genitourinary tract. Reactivation may occur in individuals with compromised immunity such as renal transplant recipients. Due to the role of BKV in BK virus-associated nephropathy (BKVAN) and potentially renal allograft rejection, the detection of BKV in renal transplant candidates is very important. The aim of this study was to evaluate the frequency of BK viremia in end stage renal disease cases who were candidates for renal transplantation. Methods: In this cross-sectional study, 50 cases with end stage renal disease who were candidates for renal transplantation were recruited from the main dialysis unit in Tehran, Iran. Presence of BK viremia was determined in plasma samples of cases using real time PCR. Results: A total of 50 renal transplant candidates with mean age 37.8±13 yr were enrolled in the study. Fifty two percent of subjects were male. Forty six (92%) of them were under HD and 4 (8%) were on PD. BK virus was not detected in any plasma samples of renal transplant candidates. Conclusion: This study showed absence of BK viremia in our renal transplant candidates. However, due to the important role of BKV in BKVAN and renal graft failure and rejection, further studies involving larger number of cases are required to elucidate the rate of the BKV in renal transplant candidates. PMID:27799969

  7. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  8. Polyomavirus BK Induces Inflammation via Up-regulation of CXCL10 at Translation Levels in Renal Transplant Patients with Nephropathy.

    PubMed

    Kariminik, Ashraf; Dabiri, Shahriar; Yaghobi, Ramin

    2016-08-01

    Polyomavirus BK-associated nephropathy (BKAN) is an important mechanism for renal losing after kidney transplantation. It seems that Polyomavirus BK can induce nephropathy by direct cell lysis and stimulation of the immune system and induction of inflammation. CXCL10 is a pro-inflammatory cytokine which stimulates the migration and activation of immune cells to the infected sites. Therefore, the aim of the current study was to evaluate the messenger RNA (mRNA) and protein levels of CXCL10 in the Polyomavirus BK-infected and Polyomavirus BK-non-infected post renal transplanted nephropathic patients in comparison to healthy controls. In this cross-sectional study, Polyomavirus BK-infected post renal transplanted nephropathic patients, Polyomavirus BK-non-infected post renal transplanted nephropathic patients, and healthy controls were enrolled to evaluate mRNA and protein levels of CXCL10 by real-time PCR and ELISA techniques, respectively. mRNA levels of CXCL10 were not significantly different among participants, while serum levels of CXCL10 were significantly elevated in the Polyomavirus BK-infected patients when compared to non-infected patients as well as controls and in non-infected patients when compared to healthy controls. Due to the results, it seems that Polyomavirus BK may potentially induce renal losing through stimulation of inflammation via increasing translation of CXCL10, as a pro-inflammatory chemokine.

  9. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells

    SciTech Connect

    Han Xiaobing; Xi Ling; Wang Hui; Huang Xiaoyuan; Ma Xiangyi; Han Zhiqiang; Wu Peng; Ma Xiaoli; Lu Yunping; Wang, Gang Zhou Jianfeng; Ma Ding

    2008-10-17

    Diverse types of voltage-gated potassium (K{sup +}) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca{sup 2+}-activated K{sup +} channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC{sub 50} = 31.1 {mu}M, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21{sup Cip1} expression in a p53-dependent manner.

  10. BK virus infection: an update on diagnosis and treatment.

    PubMed

    Sawinski, Deirdre; Goral, Simin

    2015-02-01

    BK virus, first isolated in 1971, is a significant risk factor for renal transplant dysfunction and allograft loss. Unfortunately, treatment options for BK virus infection are limited, and there is no effective prophylaxis. Although overimmunosuppression remains the primary risk factor for BK infection after transplantation, male gender, older recipient age, prior rejection episodes, degree of human leukocyte antigen mismatching, prolonged cold ischemia time, BK serostatus and ureteral stent placement have all been implicated as risk factors. Routine screening for BK has been shown to be effective in preventing allograft loss in patients with BK viruria or viremia. Reduction of immunosuppression remains the mainstay of BK nephropathy treatment and is the best studied intervention. Laboratory-based methods such as ELISPOT assays have provided new insights into the immune response to BK and may help guide therapy in the future. In this review, we will discuss the epidemiology of BK virus infection, screening strategies, treatment options and future research directions.

  11. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  12. Effective treatment of severe BK virus-associated hemorrhagic cystitis with leflunomide in children after hematopoietic stem cell transplantation: a pilot study.

    PubMed

    Wu, Kang-Hsi; Weng, Tefu; Wu, Han-Ping; Peng, Ching-Tien; Sheu, Ji-Nan; Chao, Yu-Hua

    2014-11-01

    Leflunomide, an immunosuppressant with antiviral activity, was used to treat 5 children with severe BK virus-associated hemorrhagic cystitis after hematopoietic stem cell transplantation. Without severe side effects, BK viral loads in blood and urine decreased significantly after leflunomide treatment. Compared with 7 historical controls, duration of BK virus-associated hemorrhagic cystitis was significantly shorter in patients receiving leflunomide therapy (P < 0.01).

  13. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  14. [BK virus infections in kidney transplantation].

    PubMed

    Lanot, Antoine; Bouvier, Nicolas; Chatelet, Valérie; Dina, Julia; Béchade, Clémence; Ficheux, Maxence; Henri, Patrick; Lobbedez, Thierry; Hurault de Ligny, Bruno

    2016-04-01

    BK virus is near ubiquitous, with a seroprevalence of around 80% in the general population. Subsequent to an asymptomatic primary infection, BK virus then remains dormant in healthy subjects. Reactivation occurs in immunocompromised people. BKv is pathogenic mainly among patients who have received a kidney transplant, in whom the virus can cause specific tubulo-interstitial nephritis and even result in graft failure among approximately 20 to 30% of nephritic cases. Since the mid 90 s, incidence has increased with the use of new powerful immunosuppressor treatments. The cornerstone of BK virus infection or BK virus-associated nephropathy treatment is a decrease of the immunosuppressive regimen, which must then be offset with the risk of rejection. The use of several adjuvant therapies has been submitted (fluoroquinolones, leflunomide, intravenous immunoglobulins, cidofovir), with no sufficient proof enabling the recommendation of first-line prescription. The high frequency of this infection and its potential harmfulness argue for the use of prevention strategies, at least among patients presenting risk factors. Retransplantation is safe after a first kidney allograft loss caused by BK-virus nephropathy, on condition that a screening for viremia is frequently conducted.

  15. BK and JC virus: a review.

    PubMed

    Pinto, Michelle; Dobson, Simon

    2014-01-01

    Polyomaviruses are ubiquitous, species-specific viruses belonging to the family Papovaviridae. The two most commonly known human polyomaviruses, BK virus and JC virus were first described in the 1970s. Newer human polyomaviruses, namely KI polyoma virus, WU polyoma virus and Merkel cell polyoma virus were identified in the last five years. Most humans encounter BK and JC virus during childhood, causing mild illness. However, when reactivated or acquired in the immunocompromised host, BK and JC virus have been implicated in a number of human clinical disease states. BK is most commonly associated with renal involvement, such as ureteral stenosis, hemorrhagic cystitis and nephropathy. Less commonly, it is associated with pneumonitis, retinitis, liver disease and meningoencephalitis. JC virus is most well known for its association with progressive multifocal leukoencephalopathy, and is possibly implicated in the development of various human neoplasms. The following chapter will outline the basic virology, epidemiology and clinical manifestations of BK and JC virus and discuss relevant diagnostic and treatment options.

  16. [BK virus infections in kidney transplantation].

    PubMed

    Lanot, Antoine; Bouvier, Nicolas; Chatelet, Valérie; Dina, Julia; Béchade, Clémence; Ficheux, Maxence; Henri, Patrick; Lobbedez, Thierry; Hurault de Ligny, Bruno

    2016-04-01

    BK virus is near ubiquitous, with a seroprevalence of around 80% in the general population. Subsequent to an asymptomatic primary infection, BK virus then remains dormant in healthy subjects. Reactivation occurs in immunocompromised people. BKv is pathogenic mainly among patients who have received a kidney transplant, in whom the virus can cause specific tubulo-interstitial nephritis and even result in graft failure among approximately 20 to 30% of nephritic cases. Since the mid 90 s, incidence has increased with the use of new powerful immunosuppressor treatments. The cornerstone of BK virus infection or BK virus-associated nephropathy treatment is a decrease of the immunosuppressive regimen, which must then be offset with the risk of rejection. The use of several adjuvant therapies has been submitted (fluoroquinolones, leflunomide, intravenous immunoglobulins, cidofovir), with no sufficient proof enabling the recommendation of first-line prescription. The high frequency of this infection and its potential harmfulness argue for the use of prevention strategies, at least among patients presenting risk factors. Retransplantation is safe after a first kidney allograft loss caused by BK-virus nephropathy, on condition that a screening for viremia is frequently conducted. PMID:26827190

  17. Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons.

    PubMed

    Pérez, Guillermo J; Desai, Mayurika; Anderson, Seth; Scornik, Fabiana S

    2013-02-01

    We studied principal neurons from canine intracardiac (IC) ganglia to determine whether large-conductance calcium-activated potassium (BK) channels play a role in their excitability. We performed whole cell recordings in voltage- and current-clamp modes to measure ion currents and changes in membrane potential from isolated canine IC neurons. Whole cell currents from these neurons showed fast- and slow-activated outward components. Both current components decreased in the absence of calcium and following 1-2 mM tetraethylammonium (TEA) or paxilline. These results suggest that BK channels underlie these current components. Single-channel analysis showed that BK channels from IC neurons do not inactivate in a time-dependent manner, suggesting that the dynamic of the decay of the fast current component is akin to that of intracellular calcium. Immunohistochemical studies showed that BK channels and type 2 ryanodine receptors are coexpressed in IC principal neurons. We tested whether BK current activation in these neurons occurred via a calcium-induced calcium release mechanism. We found that the outward currents of these neurons were not affected by the calcium depletion of intracellular stores with 10 mM caffeine and 10 μM cyclopiazonic acid. Thus, in canine intracardiac neurons, BK currents are directly activated by calcium influx. Membrane potential changes elicited by long (400 ms) current injections showed a tonic firing response that was decreased by TEA or paxilline. These data strongly suggest that the BK current present in canine intracardiac neurons regulates action potential activity and could increase these neurons excitability.

  18. Mechanisms of Activation of Voltage-Gated Potassium Channels

    PubMed Central

    Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S.

    2014-01-01

    Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date. PMID:25558391

  19. BK virus nephropathy in renal transplant recipients.

    PubMed

    Jamboti, Jagadish S

    2016-08-01

    BK virus nephropathy (BKVN) occurs in up to 10% of renal transplant recipients and can result in graft loss. The reactivation of BK virus in renal transplant recipients is largely asymptomatic, and routine surveillance especially in the first 12-24 months after transplant is necessary for early recognition and intervention. Reduced immunosuppression and anti-viral treatment in the early stages may be effective in stopping BK virus replication. Urinary decoy cells, although highly specific, lack sensitivity to diagnose BKVN. Transplant biopsy remains the gold standard to diagnose BKVN, good surrogate markers for surveillance using quantitative urinary decoy cells, urinary SV40 T immunochemical staining or polyoma virus-Haufen bodies are offered by recent studies. Advanced BKVN results in severe tubulo-interstitial damage and graft failure. Retransplantation after BKVN is associated with good outcomes. Newer treatment modalities are emerging.

  20. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  1. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study.

    PubMed

    Marabelli, Alessandro; Lape, Remigijus; Sivilotti, Lucia

    2015-01-01

    Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist

  2. Serine protease activation of near-silent epithelial Na+ channels.

    PubMed

    Caldwell, Ray A; Boucher, Richard C; Stutts, M Jackson

    2004-01-01

    The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels. PMID:12967915

  3. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  4. Evaluating the BK 21 Program. Research Brief

    ERIC Educational Resources Information Center

    Seong, Somi; Popper, Steven W.; Goldman, Charles A.; Evans, David K.; Grammich, Clifford A.

    2008-01-01

    The Brain Korea 21 program (BK21), an effort to improve Korean universities and research, has attracted a great deal of attention in Korea, producing the need to understand how well the program is meeting its goals. RAND developed a logic model for identifying program goals and dynamics, suggested quantitative and qualitative evaluation methods,…

  5. [BK virus nephropathy after kidney transplantation].

    PubMed

    Bröcker, V; Schwarz, A; Becker, J U

    2011-09-01

    JC and BK viruses are strains of the polyomavirus group with pathogenic potential in humans. BK is the most frequent pathogenic agent of polyomavirus nephropathy (BKVN) in kidney transplant patients, which is only exceptionally caused by JC virus. Asymptomatic BK virus infection is often acquired in childhood and the virus persists in urothelium and kidneys of healthy individuals, where it can be reactivated under immunosuppression. Up to 10% of transplanted kidneys are affected by BKVN, while the risk of transplant failure due to BKVN exceeds 50% in some publications. In kidney biopsies BKVN leads to tubulointerstitial nephritis, which may be difficult to distinguish from acute cellular rejection without additional use of immunohistochemistry for a polyomavirus antigen. Typical hallmarks of BKVN include cytopathic effects caused by the virus with cell lysis, denudation of tubular basement membranes and nuclear inclusion bodies. An early diagnosis is essential for transplant survival, making screening of blood and urine for BK virus after kidney transplantation part of the standard care of renal transplant patients today. In the case of significant viremia or biopsy-proven BKVN immunosuppression is reduced to allow clearing of the virus.

  6. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    PubMed

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.

  7. Open-channel block by internally applied amines inhibits activation gate closure in batrachotoxin-activated sodium channels.

    PubMed Central

    Zamponi, G W; French, R J

    1994-01-01

    We have studied the action of several pore-blocking amines on voltage-dependent activation gating of batrachotoxin(BTX)-activated sodium channels, from bovine heart and rat skeletal muscle, incorporated into planar lipid bilayers. Although structurally simpler, the compounds studied show general structural features and channel-inhibiting actions that resemble those of lidocaine. When applied to the cytoplasmic end of the channel, these compounds cause a rapid, voltage-dependent, open-channel block seen as a reduction in apparent single-channel amplitude (companion paper). Internal application of phenylpropanolamine, phenylethylamine, phenylmethylamine, and diethylamine, as well as causing open-channel block, reduces the probability of channel closure, producing a shift of the steady-state activation curve toward more hyperpolarizing potentials. These gating effects were observed for both cardiac and skeletal muscle channels and were not evoked by addition of equimolar N-Methyl-D-Glucamine, suggesting a specific interaction of the blockers with the channel rather than a surface charge effect. Kinetic analysis of phenylpropanolamine action on skeletal muscle channels indicated that phenylpropanolamine reduced the closed probability via two separate mechanisms. First, mean closed durations were slightly abbreviated in its presence. Second, and more important, the frequency of the gating closures was reduced. This action was correlated with the degree, and the voltage dependence, of open-channel block, suggesting that the activation gate cannot close while the pore is occluded by the blocker. Such a mechanism might underlie the previously reported immobilization of gating charge associated with local anesthetic block of unmodified sodium channels. PMID:7811914

  8. Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution.

    PubMed

    Abiraman, Krithika; Sah, Megha; Walikonis, Randall S; Lykotrafitis, George; Tzingounis, Anastasios V

    2016-06-01

    Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades. PMID:27107637

  9. Small Conductance Ca2+-Activated K+ Channels and Cardiac Arrhythmias

    PubMed Central

    Zhang, Xiao-Dong; Lieu, Deborah K.; Chiamvimonvat, Nipavan

    2015-01-01

    Small conductance Ca2+-activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, SK channel as a possible novel therapeutic target in atrial arrhythmias and up-regulation of SK channels in heart failure (HF) in animal models and human HF. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both anti-arrhythmic and proarrhythmic. This contemporary review will provide an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and to serve as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic target in the treatment of atrial fibrillation and the possible pro-arrhythmic effects merit further considerations and investigations. PMID:25956967

  10. Indirect activation of the epithelial Na+ channel by trypsin.

    PubMed

    Bengrine, Abderrahmane; Li, Jinqing; Hamm, L Lee; Awayda, Mouhamed S

    2007-09-14

    We tested the hypothesis that the serine protease trypsin can indirectly activate the epithelial Na(+) channel (ENaC). Experiments were carried out in Xenopus oocytes and examined the effects on the channel formed by all three human ENaC subunits and that formed by Xenopus epsilon and human beta and gamma subunits (epsilonbetagammaENaC). Low levels of trypsin (1-10 ng/ml) were without effects on the oocyte endogenous conductances and were specifically used to test the effects on ENaC. Addition of 1 ng/ml trypsin for 60 min stimulated the amiloride-sensitive human ENaC conductance (g(Na)) by approximately 6-fold. This effect on the g(Na) was [Na(+)]-independent, thereby ruling out an interaction with channel feedback inhibition by Na(+). The indirect nature of this activation was confirmed in cell-attached patch clamp experiments with trypsin added to the outside of the pipette. Trypsin was comparatively ineffective at activating epsilonbetagammaENaC, a channel that exhibited a high spontaneous open probability. These observations, in combination with surface binding experiments, indicated that trypsin indirectly activated membrane-resident channels. Activation by trypsin was also dependent on catalytic activity of this protease but was not accompanied by channel subunit proteolysis. Channel activation was dependent on downstream activation of G-proteins and was blocked by G-protein inhibition by injection of guanyl-5'-yl thiophosphate and by pre-stimulation of phospholipase C. These data indicate a receptor-mediated activation of ENaC by trypsin. This trypsin-activated receptor is distinct from that of protease-activated receptor-2, because the response to trypsin was unaffected by protease-activated receptor-2 overexpression or knockdown. PMID:17627947

  11. Chloride dependence of hyperpolarization-activated chloride channel gates.

    PubMed

    Pusch, M; Jordt, S E; Stein, V; Jentsch, T J

    1999-03-01

    1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the

  12. The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor.

    PubMed

    Filippelli-Silva, Rafael; Martin, Renan P; Rodrigues, Eliete S; Nakaie, Clovis R; Oliveira, Laerte; Pesquero, João B; Shimuta, Suma I

    2016-04-01

    Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues.

  13. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  14. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  15. BK Virus Nephropathy in Heart Transplant Recipients.

    PubMed

    Joseph, Alin; Pilichowska, Monika; Boucher, Helen; Kiernan, Michael; DeNofrio, David; Inker, Lesley A

    2015-06-01

    Polyomavirus-associated nephropathy (PVAN) has become an important cause of kidney failure in kidney transplant recipients. PVAN is reported to affect 1% to 7% of kidney transplant recipients, leading to premature transplant loss in approximately 30% to 50% of diagnosed cases. PVAN occurring in the native kidneys of solid-organ transplant recipients other than kidney only recently has been noted. We report 2 cases of PVAN in heart transplant recipients, which brings the total of reported cases to 7. We briefly review the literature on the hypothesized causes of PVAN in kidney transplant recipients and comment on whether these same mechanisms also may cause PVAN in other solid-organ transplant recipients. PVAN should be considered in the differential diagnosis when evaluating worsening kidney function. BK viremia surveillance studies of nonkidney solid-organ recipients should be conducted to provide data to assist the transplantation community in deciding whether regular monitoring of nonkidney transplant recipients for BK viremia is indicated.

  16. Multi-channel fiber photometry for population neuronal activity recording.

    PubMed

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-10-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.

  17. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  18. Exposing the Molecular Machinery of BK Polyomavirus.

    PubMed

    Buck, Christopher B

    2016-04-01

    BK polyomavirus (BKV) is an opportunistic pathogen that poses a serious threat to organ transplant recipients. In this issue of Structure, Hurdiss and colleagues' (Hurdiss et al., 2016) beautiful new high-resolution cryo-EM reconstruction of BKV provides a structural roadmap for the ongoing development of therapeutic antibodies and vaccines targeting this potentially deadly virus. The study also serves as a platform for exploring the basic biology of virion assembly and infectious entry. PMID:27050683

  19. Total and free plasma concentrations of the active metabolite of leflunomide in relation to therapeutic outcome in kidney transplant recipients with BK-virus nephropathy.

    PubMed

    Hüttemann, M; Shipkova, M; Klett, C; Hasche, G; Wilhelm, J; Bolley, R; Olbricht, C; Wieland, E

    2013-05-01

    Plasma concentrations of A771726, the active moiety of leflunomide, have been suggested to be associated with antiviral efficacy and/or an increased risk of toxicity. A771726 is >99% bound to serum albumin, which can be relevant in kidney transplant recipients (KTRs) displaying impaired function, which leads to increased pharmacologically active free drug concentrations. This study investigated the relationship of total (t-) and free (f-) A771726 concentrations with clinical outcomes. The 20 KTRs displayed a median daily dose and time on leflunomide of 20 mg (range, 10-50) and 16.5 months (range, 2-28), respectively. A median of 6 (range, 1-15) trough concentrations were measured in each patient. All patients received steroids and a calcineurin inhibitor (CNI) as well as 4 of them, cidofovir. To evaluate therapeutic efficacy, we monitored viral loads in the urine and blood, serum creatinine, and kidney histology. To detect toxicity, we recorded blood and platelet counts, hematocrit, hemoglobin concentrations, liver enzymes (alanine aminotransferase [ALT], and aspartate aminotransferase [AST]), and skin diseases. The median t-A771726 concentration was 31.5 mg/L (interindividual range, 11.0-56.4); the median f-A771726 concentration and fraction were 55.8 μg/L and 0.19% (interindividual ranges, 27.9-148.4 μg/L and 0.12%-0.50%), respectively. A weak but significant inverse correlation was observed between the free drug fraction and both the glomerular filtration rate estimated by the Modification of Diet in Renal Disease formula (MDRD-GFR) (r = -0.202) and serum albumin (r = -0.358). Higher MDRD-GFRs were associated with greater t-A771726 concentrations. There were no significant associations between efficacy parameters and either the t- or f-A771726 concentration or between the t-A771726 concentration and toxicity parameters. In contrast, the f-A771726 concentration was significantly associated with leukopenia. These results indicated that f-A771726 concentrations

  20. Single Channel Activity from Ion Channels in Engineered Tethered Bilayer Membrane Arrays

    NASA Astrophysics Data System (ADS)

    Keizer, Henk; Fine, Daniel; K"{O}Per, Ingo; Anderson, Peter

    2005-11-01

    The demand for rapid in situ detection of chemical and biological analytes at high sensitivity has increased interest in the development of biosensors like the commercially available compact glucose sensor. Engineered membrane bound ion channels are promising biological receptors since they would allow for the stochastic detection of analytes at high sensitivity, they can be mutated to alter sensitivity, and they produce a well-defined read-out that is inherently suitable for digitization. In order to perform stochastic sensing it is necessary to be able to measure the ion currents associated with single ion channel opening and closing events. Although sensors based on supported bilayers containing various pore forming proteins have been described, none of these systems have recorded single channel activity. Here we describe the measurement of stochastic activity from synthetic single ion channels, based on the nicotinic acetylcholine receptor (nAChR) from Torpedo californica, inserted into individual pixels of a microelectrode array device. The limited size of the gold sense pad surface, 100x100 μm, and the electrical stability of the overlying lipid bilayer membrane make each pixel sensitive enough to measure single ion channel currents in the picoampere range.

  1. An upgraded 32-channel heterodyne electron cyclotron emission radiometer on Tore Supra

    SciTech Connect

    Segui, J.L.; Molina, D.; Giruzzi, G.; Goniche, M.; Huysmans, G.; Maget, P.; Ottaviani, M.

    2005-12-15

    A 32-channel, 1 GHz spaced heterodyne radiometer is used on the Tore Supra tokamak to measure electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O:E parallel B,k perpendicular B) and 94-126 GHz for the extraordinary mode (X:E perpendicular B,k perpendicular B). The radial resolution is essentially limited by ECE relativistic effects, depending on electron temperature and density, and not by the channels' frequency spacing. The time resolution depends on the acquisition scheme: the system allows for both 1 ms and 10 {mu}s acquisition. For example, this leads to precise electron temperature mapping during MHD activity. First experimental results obtained with this upgraded 32-channel radiometer are presented.

  2. Selective activation of mechanosensitive ion channels using magnetic particles.

    PubMed

    Hughes, Steven; McBain, Stuart; Dobson, Jon; El Haj, Alicia J

    2008-08-01

    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg-Gly-Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction.

  3. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    PubMed

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  4. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    PubMed

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  5. Fusion and quasifission dynamics in the reactions 48Ca+249Bk and 50Ti+249Bk using a time-dependent Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Simenel, C.

    2016-08-01

    Background: Synthesis of superheavy elements (SHEs) with fusion-evaporation reactions is strongly hindered by the quasifission (QF) mechanism which prevents the formation of an equilibrated compound nucleus and which depends on the structure of the reactants. New SHEs have been recently produced with doubly-magic 48Ca beams. However, SHE synthesis experiments with single-magic 50Ti beams have so far been unsuccessful. Purpose: In connection with experimental searches for Z =117 ,119 superheavy elements, we perform a theoretical study of fusion and quasifission mechanisms in 48Ca,50Ti+249Bk reactions in order to investigate possible differences in reaction mechanisms induced by these two projectiles. Methods: The collision dynamics and the outcome of the reactions are studied using unrestricted time-dependent Hartree-Fock (TDHF) calculations as well as the density-constrained TDHF method to extract the nucleus-nucleus potentials and the excitation energy in each fragment. Results: Nucleus-nucleus potentials, nuclear contact times, masses and charges of the fragments, as well as their kinetic and excitation energies strongly depend on the orientation of the prolate 249Bk nucleus. Long contact times associated with fusion are observed in collisions of both projectiles with the side of the 249Bk nucleus, but not on collisions with its tip. The energy and impact parameter dependencies of the fragment properties, as well as their mass-angle and mass-total kinetic energy correlations are investigated. Conclusions: Entrance channel reaction dynamics are similar with both 48Ca and 50Ti projectiles. Both are expected to lead to the formation of a compound nucleus by fusion if they have enough energy to get in contact with the side of the 249Bk target.

  6. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery.

    PubMed

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-10-15

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 μM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) μm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 μM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and

  7. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  8. Active Brownian particles escaping a channel in single file

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  9. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  10. River Elongation as a Proxy for Lateral Channel Activity

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.

    2009-12-01

    Lateral channel movement is a process that is tightly linked to both channel hydraulics and sediment transport, strongly influences floodplain ecology, and also has great relevance for banktop property owners. The correlation between channel migration rate and channel curvature usually causes meandering river channels to elongate as they migrate laterally. Over the long term, the increase in sinuosity is compensated by a rapid decrease in sinuosity where and when river bends shorten through cutoff processes. However, the elongation for most meander bends in systems free to migrate across wide floodplains often occurs relatively uniformly throughout the system. Consequently, the rate of elongation of individual river bends, integrated across a river reach, offers a simple mechanism for characterizing the reach’s lateral activity. Spatial series of accumulated elongation can also be used to delineate reaches with similar properties. We use aerial imagery pairs to compare rates of lateral channel centerline shifting with channel centerline elongation for reaches many bends long along eight different rivers with widths ranging from 12 to 584 m. Except where bends translate downstream without changing form, elongation rates are closely linked to lateral shifting. In several cases, a change in elongation rate corresponds closely with a change in channel width, discharge, and/or bed material. For reaches free to migrate across a wide, unconfined floodplain and where lateral migration measurements are likely of high quality, the average ratio between the reach average migration rate normalized by channel width and the rate of sinuosity increase (excluding bends that experienced a cutoff between imagery dates) is approximately 5.6. Since elongation rate measurements can be made accurately even from photos that are poorly aligned, the relationship between sinuosity increase and lateral migration potentially provides a means of bypassing time-consuming georeferencing

  11. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  12. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  13. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  14. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.

    PubMed

    DiFrancesco, D; Tortora, P

    1991-05-01

    Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.

  15. Anion homeostasis is important for non-lytic release of BK polyomavirus from infected cells

    PubMed Central

    Evans, Gareth L.; Caller, Laura G.; Foster, Victoria; Crump, Colin M.

    2015-01-01

    BK polyomavirus (BKPyV) is a member of a family of potentially oncogenic viruses, whose reactivation can cause severe pathological conditions in transplant patients, leading to graft rejection. As with many non-enveloped viruses, it is assumed that virus release occurs through lysis of the host cell. We now show the first evidence for a non-lytic release pathway for BKPyV and that this pathway can be blocked by the anion channel inhibitor DIDS. Our data show a dose-dependent effect of DIDS on the release of BKPyV virions. We also observed an accumulation of viral capsids in large LAMP-1-positive acidic organelles within the cytoplasm of cells upon DIDS treatment, suggesting potential late endosome or lysosome-related compartments are involved in non-lytic BKPyV release. These data highlight a novel mechanism by which polyomaviruses can be released from infected cells in an active and non-lytic manner, and that anion homeostasis regulation is important in this pathway. PMID:26246492

  16. Physiological mechanisms for the modulation of pannexin 1 channel activity

    PubMed Central

    Sandilos, Joanna K; Bayliss, Douglas A

    2012-01-01

    It is widely recognized that ATP, along with other nucleotides, subserves important intercellular signalling processes. Among various nucleotide release mechanisms, the relatively recently identified pannexin 1 (Panx1) channel is gaining prominence by virtue of its ability to support nucleotide permeation and release in a variety of different tissues. Here, we review recent advances in our understanding of the factors that control Panx1 channel activity. By using electrophysiological and biochemical approaches, diverse mechanisms that dynamically regulate Panx1 channel function have been identified in various settings; these include, among others, activation by caspase-mediated channel cleavage in apoptotic immune cells, by G protein-coupled receptors in vascular smooth muscle, by low oxygen tension in erythrocytes and neurons, by high extracellular K+ in various cell types and by stretch/strain in airway epithelia. Delineating the distinct mechanisms of Panx1 modulation that prevail in different physiological contexts provides the possibility that these channels, and ATP release, could ultimately be targeted in a context-dependent manner. PMID:23070703

  17. Stretch-Activated Ion Channels: What Are They?

    PubMed Central

    Sachs, Frederick

    2010-01-01

    Mechanosensitive ion channels (MSCs) exist in all cells, but mechanosensitivity is a phenotype not a genotype. Specialized mechanoreceptors such as the hair cells of the cochlea require elaborate mechanical impedance matching to couple the channels to the external stress. In contrast, MSCs in nonspecialized cells appear activated by stress in the bilayer local to the channel—within about three lipids. Local mechanical stress can be produced by far-field tension, amphipaths, phase separations, the cytoskeleton, the extracellular matrix, and the adhesion energy between the membrane and a patch pipette. Understanding MSC function requires understanding the stimulus. PMID:20134028

  18. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  19. BK virus replication following kidney transplant: does the choice of immunosuppressive regimen influence outcomes?

    PubMed

    Acott, Phillip; Babel, Nina

    2012-01-01

    The increasing prevalence of BK virus nephropathy (BKVN) observed in recent years, with its consequent impact on kidney allograft survival rates, has focused attention on the relationship between immunosuppression regimens and risk of BK virus reactivation. The adoption of more potent immunosuppressive regimens over the last two decades, notably tacrolimus with mycophenolic acid and corticosteroids, appears to be associated with higher rates of BK activation. There is also evidence of a specific increase in risk for tacrolimus-based immunosuppression vs. cyclosporine, which in vitro data suggest may be at least partly due to differences in antiviral activity. Early concerns that mammalian target of rapamycin (mTOR) inhibitor use was associated with development of BKVN do not appear to have been borne out. Protocol-driven BK virus screening is recommended to facilitate early diagnosis and intervention, which primarily comprises the controlled reduction or discontinuation of immunosuppressive drugs. Although a consensus on the optimal strategy for immunosuppression modification is still lacking, early diagnosis of BK reactivation and pre-emptive modification of immunosuppression has resulted in a marked improvement in graft outcomes. Typically, intervention consists of reducing calcineurin inhibitor exposure before or after antimetabolite dose reduction, withdrawal of one agent from a triple therapy regimen, or switching between agents within a therapeutic class. A benefit for antiviral therapy is not yet confirmed. While more data are required, the current evidence base is adequate to justify routine screening with early modification of the intensity and nature of the immunosuppression regimen to reduce the toll of BKVN in the kidney transplant population.

  20. Patterned electrical activity modulates sodium channel expression in sensory neurons.

    PubMed

    Klein, Joshua P; Tendi, Elisabetta A; Dib-Hajj, Sulayman D; Fields, R Douglas; Waxman, Stephen G

    2003-10-15

    Peripheral nerve injury induces changes in the level of gene expression for sodium channels Nav1.3, Nav1.8, and Nav1.9 within dorsal root ganglion (DRG) neurons, which may contribute to the development of hyperexcitability, ectopic neuronal discharge, and neuropathic pain. The mechanism of this change in sodium channel expression is unclear. Decreased availability of neurotrophic factors following axotomy contributes to these changes in gene transcription, but the question of whether changes in intrinsic neuronal activity levels alone can trigger changes in the expression of these sodium channels has not been addressed. We examined the effect of electrical stimulation on the expression of Nav1.3, Nav1.8, and Nav1.9 by using cultured embryonic mouse sensory neurons under conditions in which nerve growth factor (NGF) was not limiting. Expression of Nav1.3 was not significantly changed following stimulation. In contrast, we observed activity-dependent down-regulation of Nav1.8 and Nav1.9 mRNA and protein levels after stimulation, as demonstrated by quantitative polymerase chain reaction and immunocytochemistry. These results show that a change in neuronal activity can alter the expression of sodium channel genes in a subtype-specific manner, via a mechanism independent of NGF withdrawal. PMID:14515348

  1. Positions of the cytoplasmic end of BK α S0 helix relative to S1-S6 and of β1 TM1 and TM2 relative to S0-S6.

    PubMed

    Liu, Guoxia; Zakharov, Sergey I; Yao, Yongneng; Marx, Steven O; Karlin, Arthur

    2015-03-01

    The large-conductance, voltage- and Ca(2+)-gated K(+) (BK) channel consists of four α subunits, which form a voltage- and Ca(2+)-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance-voltage (G-V) curve to the left at [Ca(2+)] > 2 µM. In addition to the six transmembrane (TM) helices, S1-S6, conserved in all voltage-dependent K(+) channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2-S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2-S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2-S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2-S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50.

  2. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  3. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  4. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  5. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  6. Chemical activation of the mechanotransduction channel Piezo1

    PubMed Central

    Syeda, Ruhma; Xu, Jie; Dubin, Adrienne E; Coste, Bertrand; Mathur, Jayanti; Huynh, Truc; Matzen, Jason; Lao, Jianmin; Tully, David C; Engels, Ingo H; Petrassi, H Michael; Schumacher, Andrew M; Montal, Mauricio; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. DOI: http://dx.doi.org/10.7554/eLife.07369.001 PMID:26001275

  7. Divergence in Endothelin-1- and Bradykinin-Activated Store-Operated Calcium Entry in Afferent Sensory Neurons

    PubMed Central

    Szteyn, Kalina; Gomez, Ruben; Berg, Kelly A

    2015-01-01

    Endothelin-1 (ET-1) and bradykinin (BK) are endogenous peptides that signal through Gαq/11-protein coupled receptors (GPCRs) to produce nociceptor sensitization and pain. Both peptides activate phospholipase C to stimulate Ca2+ accumulation, diacylglycerol production, and protein kinase C activation and are rapidly desensitized via a G-protein receptor kinase 2-dependent mechanism. However, ET-1 produces a greater response and longer lasting nocifensive behavior than BK in multiple models, indicating a potentially divergent signaling mechanism in primary afferent sensory neurons. Using cultured sensory neurons, we demonstrate significant differences in both Ca2+ influx and Ca2+ release from intracellular stores following ET-1 and BK treatments. As intracellular store depletion may contribute to the regulation of other signaling cascades downstream of GPCRs, we concentrated our investigation on store-operated Ca2+ channels. Using pharmacological approaches, we identified transient receptor potential canonical channel 3 (TRPC3) as a dominant contributor to Ca2+ influx subsequent to ET-1 treatment. On the other hand, BK treatment stimulated Orai1 activation, with only minor input from TRPC3. Taken together, data presented here suggest that ET-1 signaling targets TRPC3, generating a prolonged Ca2+ signal that perpetuates nocifensive responses. In contrast, Orai1 dominates as the downstream target of BK receptor activation and results in transient intracellular Ca2+ increases and abridged nocifensive responses. PMID:25873305

  8. Atomic basis for therapeutic activation of neuronal potassium channels

    NASA Astrophysics Data System (ADS)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  9. Atomic basis for therapeutic activation of neuronal potassium channels

    PubMed Central

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. PMID:26333338

  10. Structural aspects of calcium-release activated calcium channel function

    PubMed Central

    Stathopulos, Peter B; Ikura, Mitsuhiko

    2013-01-01

    Store-operated calcium (Ca2+) entry is the process by which molecules located on the endo/sarcoplasmic reticulum (ER/SR) respond to decreased luminal Ca2+ levels by signaling Ca2+ release activated Ca2+ channels (CRAC) channels to open on the plasma membrane (PM). This activation of PM CRAC channels provides a sustained cytosolic Ca2+ elevation associated with myriad physiological processes. The identities of the molecules which mediate SOCE include stromal interaction molecules (STIMs), functioning as the ER/SR luminal Ca2+ sensors, and Orai proteins, forming the PM CRAC channels. This review examines the current available high-resolution structural information on these CRAC molecular components with particular focus on the solution structures of the luminal STIM Ca2+ sensing domains, the crystal structures of cytosolic STIM fragments, a closed Orai hexameric crystal structure and a structure of an Orai1 N-terminal fragment in complex with calmodulin. The accessible structural data are discussed in terms of potential mechanisms of action and cohesiveness with functional observations. PMID:24213636

  11. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    PubMed

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309

  12. Systematic study of spatiotemporal dynamics of intense femtosecond laser pulses in BK-7 glass

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Deepak, V.; Sivaramakrishnan, S.

    2007-04-01

    In this paper we present a systematic study of the spatial and temporal effects of intense femtosecond laser pulses in BK-7 over a broad range of input powers, 1-1000 times the critical power for self-focusing (P_{cr}) by numerically solving the nonlinear Schrödinger equation (NLS). Most numerical studies have not been extended to such high powers. A clear-cut classification of spatio-temporal dynamics up to very high powers into three regimes - the group-velocity dispersion (GVD) regime, the ionization regime and the dominant plasma regime - as done here, is a significant step towards a better understanding. Further, we examine in detail the role of GVD in channel formation by comparing BK-7 to an `artificial' medium. Our investigations bring forth the important observation that diffraction plays a minimal role in the formation of multiple cones and that plasma plays a diffraction-like role at very high powers. A detailed study of the spatio-temporal dynamics in any condensed medium over this range of powers has not been reported hitherto, to the best of our knowledge. We also suggest appropriate operational powers for various applications employing BK-7 on the basis of our results.

  13. Swell activated chloride channel function in human neutrophils

    SciTech Connect

    Salmon, Michael D.; Ahluwalia, Jatinder

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  14. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  15. Molecular networks involved in the immune control of BK polyomavirus.

    PubMed

    Girmanova, Eva; Brabcova, Irena; Klema, Jiri; Hribova, Petra; Wohlfartova, Mariana; Skibova, Jelena; Viklicky, Ondrej

    2012-01-01

    BK polyomavirus infection is the important cause of virus-related nephropathy following kidney transplantation. BK virus reactivates in 30%-80% of kidney transplant recipients resulting in BK virus-related nephropathy in 1%-10% of cases. Currently, the molecular processes associated with asymptomatic infections in transplant patients infected with BK virus remain unclear. In this study we evaluate intrarenal molecular processes during different stages of BKV infection. The gene expression profiles of 90 target genes known to be associated with immune response were evaluated in kidney graft biopsy material using TaqMan low density array. Three patient groups were examined: control patients with no evidence of BK virus reactivation (n = 11), infected asymptomatic patients (n = 9), and patients with BK virus nephropathy (n = 10). Analysis of biopsies from asymptomatic viruria patients resulted in the identification of 5 differentially expressed genes (CD3E, CD68, CCR2, ICAM-1, and SKI) (P < 0.05), and functional analysis showed a significantly heightened presence of costimulatory signals (e.g., CD40/CD40L; P < 0.05). Gene ontology analysis revealed several biological networks associated with BKV immune control in comparison to the control group. This study demonstrated that asymptomatic BK viruria is associated with a different intrarenal regulation of several genes implicating in antiviral immune response.

  16. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  17. Stimulation of epithelial sodium channel activity by the sulfonylurea glibenclamide.

    PubMed

    Chrabi, A; Horisberger, J D

    1999-07-01

    The amiloride-sensitive epithelial sodium channel (ENaC) contributes to the regulation of the sodium balance and blood pressure because it mediates a rate-limiting step in sodium transport across the epithelium of the distal nephron. The activity of ENaC is regulated by hormones, such as aldosterone and vasopressin, and by other intracellular or extracellular factors, but the mechanisms of these regulations are not yet well understood. It has been proposed that ENaC may be regulated by an associated ATP-binding cassette protein such as the cystic fibrosis conductance regulator or the K channel-associated sulfonylurea receptor. Glibenclamide, a known inhibitor of sulfonylurea receptor and cystic fibrosis conductance regulator, induced a dose-dependent and reversible stimulation (of the order of 40-50%) of the amiloride-sensitive current in oocytes expressing Xenopus ENaC, with a K1/2 of 45 +/- 5 microM. A similar effect was observed in oocytes expressing human ENaC, but not rat ENaC. Measurements performed with various combinations of rat and Xenopus subunits indicated that several subunits are involved in this effect. Glibenclamide also increased the transepithelial Na transport by the A6 Xenopus kidney cell line. Single-channel current recordings showed a doubling of the number of the open channels when glibenclamide was applied locally to the extracellular surface of the cell membrane. These results support the hypothesis of the existence of an associated ATP-binding cassette-type regulatory protein associated with the epithelial sodium channel. PMID:10381797

  18. Ca(2+)-activated K+ channels in rat thymic lymphocytes: activation by concanavalin A.

    PubMed Central

    Mahaut-Smith, M P; Mason, M J

    1991-01-01

    1. The role of ion channels in the mitogenic response of rat thymic lymphocytes to concanavalin A (ConA) was studied using single-channel patch-clamp recordings and measurements of membrane potential with the fluorescent probe bis-oxonol. 2. ConA (20 micrograms ml-1) evoked a rapid membrane hyperpolarization; Indo-1 measurements indicated a concurrent increase in [Ca2+]i. The hyperpolarization was blocked by cytoplasmic loading with the Ca2+ buffer BAPTA (bis(O-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid), or charybdotoxin, a component of scorpion venom known to block K+ channels in lymphocytes. 3. Cell-attached patch-clamp recordings showed that both ConA and the Ca2+ ionophore ionomycin activated channels with high selectivity for K+. Two conductance levels were observed -6-7 pS and 17-18 pS-measured as inward chord conductance at 60 mV from reversal potential (Erev) with 140 mM-KCl in the pipette. The current-voltage relationship for the larger channel displayed inward rectification and channel open probability was weakly dependent upon membrane potential. 4. These experiments provide the first direct evidence for mitogen-activated Ca(2+)-gated K+ channels (IK(Ca)) in lymphocytes. This conductance is relatively inactive in unstimulated rat thymocytes but following the intracellular Ca2+ rises induced by ConA, IK(Ca) channels are activated and produce a significant hyperpolarization of the cell potential. PMID:1716678

  19. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

    PubMed Central

    Spassova, Maria A.; Hewavitharana, Thamara; Xu, Wen; Soboloff, Jonathan; Gill, Donald L.

    2006-01-01

    The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue. PMID:17056714

  20. Increased BK viremia and progression to BK-virus nephropathy following high-dose intravenous immunoglobulin for acute cellular rejection.

    PubMed

    Boonyapredee, Maytee; Knight, Kendral; Little, Dustin

    2014-06-01

    BK virus nephropathy and cellular rejection are common causes of allograft dysfunction in renal transplant recipients. The two can be difficult to distinguish on allograft biopsy and can be present simultaneously. Management of the patient with coexistent BK infection and rejection is complicated by the conflicting ideals of decreasing immunosuppression to treat the former and increasing immunosuppression to treat the latter. The authors present the case of a 57-year-old renal transplant recipient who underwent allograft biopsy 8 weeks post-transplant for evaluation of increased serum creatinine in the setting of BK viremia (BKV). Biopsy revealed Banff classification 1b acute cellular rejection, with insufficient evidence to diagnose BK virus-associated nephropathy. The patient was administered intravenous immune globulin (IVIG), with no other changes in immunosuppressive therapy. Plasma and urine BK increased exponentially following IVIG administration, and allograft function further deteriorated. Repeat biopsy showed overt BK viral nephropathy, and BKV and creatinine decreased only after reduction in immunosuppression and initiation of leflunomide. Although case series have suggested a potential role for IVIG in the setting of BK infection, further study is needed to define the safety and efficacy of this approach.

  1. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  2. Regulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) Channel Activity by cCMP*

    PubMed Central

    Zong, Xiangang; Krause, Stefanie; Chen, Cheng-Chang; Krüger, Jens; Gruner, Christian; Cao-Ehlker, Xiaochun; Fenske, Stefanie; Wahl-Schott, Christian; Biel, Martin

    2012-01-01

    Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC50 value of ∼30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ∼0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes. PMID:22715094

  3. Molecular candidates for cardiac stretch-activated ion channels

    PubMed Central

    Reed, Alistair; Kohl, Peter; Peyronnet, Rémi

    2014-01-01

    The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further

  4. Effect of wet chemical treatment on BK-7 substrate

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Ding, Tao; Cheng, Xinbin; Ma, Bin; Shen, Zhengxiang; Zhang, Jinlong; Liu, Huasong; Ji, Yiqin; Wang, Zhanshan

    2012-10-01

    Surface cleanness and roughness to BK-7 substrates are important factors affecting the performance of laser optics. The conventional RCA cleaning method is widely used in removing particles from substrate surface, with high removal efficiency but rough surface. Therefore, more precise control of the chemical cleaning performance of BK-7 substrate is required than what is available today. In this study, four groups of BK-7 samples were dealt with different cleaning treatments to explore the effects of chemical solutions. The influences of chemical solutions on removal efficiency, etching depth and surface roughness were studied. An optimal cleaning method of BK-7 substrates was proposed, which could remove contaminations completely and gets smoother surface.

  5. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  6. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  7. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  8. Glucocorticoids Inhibit CRH/AVP-Evoked Bursting Activity of Male Murine Anterior Pituitary Corticotrophs

    PubMed Central

    Duncan, Peter J.; Tabak, Joël; Ruth, Peter; Bertram, Richard

    2016-01-01

    Corticotroph cells from the anterior pituitary are an integral component of the hypothalamic-pituitary-adrenal (HPA) axis, which governs the neuroendocrine response to stress. Corticotrophs are electrically excitable and fire spontaneous single-spike action potentials and also display secretagogue-induced bursting behavior. The HPA axis function is dependent on effective negative feedback in which elevated plasma glucocorticoids result in inhibition at the level of both the pituitary and the hypothalamus. In this study, we have used an electrophysiological approach coupled with mathematical modeling to investigate the regulation of spontaneous and CRH/arginine vasopressin-induced activity of corticotrophs by glucocorticoids. We reveal that pretreatment of corticotrophs with 100 nM corticosterone (CORT; 90 and 150 min) reduces spontaneous activity and prevents a transition from spiking to bursting after CRH/arginine vasopressin stimulation. In addition, previous studies have identified a role for large-conductance calcium- and voltage-activated potassium (BK) channels in the generation of secretagogue-induced bursting in corticotrophs. Using the dynamic clamp technique, we demonstrated that CRH-induced bursting can be switched to spiking by subtracting a fast BK current, whereas the addition of a fast BK current can induce bursting in CORT-treated cells. In addition, recordings from BK knockout mice (BK−/−) revealed that CORT can also inhibit excitability through BK-independent mechanisms to control spike frequency. Thus, we have established that glucocorticoids can modulate multiple properties of corticotroph electrical excitability through both BK-dependent and BK-independent mechanisms. PMID:27254001

  9. Photochemical activation of TRPA1 channels in neurons and animals

    PubMed Central

    Kokel, David; Cheung, Chung Yan J.; Mills, Robert; Coutinho-Budd, Jaeda; Huang, Liyi; Setola, Vincent; Sprague, Jared; Jin, Shan; Jin, Youngnam N.; Huang, Xi-Ping; Bruni, Giancarlo; Woolf, Clifford; Roth, Bryan L.; Hamblin, Michael R; Zylka, Mark J.; Milan, David J.; Peterson, Randall T.

    2013-01-01

    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans. PMID:23396078

  10. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  11. NSAIDs attenuate hyperalgesia induced by TRP channel activation

    PubMed Central

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz; Tsagareli, Merab G.

    2016-01-01

    Transient receptor potential (TRP) cation channels have been extensively investigated as targets for analgesic drug discovery. Because some non-steroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins (mediators of inflammation) and NSAIDs attenuate heat nociception and mechanical allodynia in models of inflammatory and neuropathic pain, we examined three widely used NSAIDs (diclofenac, ketorolac, and xefocam) on the activation of TRPA1 and TRPV1 channels using thermal paw withdrawal (Hargreaves) test and mechanical paw withdrawal (von Frey) test in male rats. Thermal withdrawal latencies and mechanical thresholds for both hind paws were obtained with 5, 15, 30, 45, 60, and 120 min intraplantar post-injection of TRPA1 agonizts, allyl isothiocyanate (AITC) (a natural compound of mustard oil) and cinnamaldehyde (CA), and TRPV1 agonist capsaicin or vehicle. Twenty minutes prior to the start of the experiment with TRP agonizts, diclofenac, ketorolac or xefocam were pre-injected in the same hindpaw and animals were examined by these two tests. After pretreatment of all three NSAIDs in the ipsilateral (injected) hindpaw that produced strong antinociceptive effects, AITC, CA, and capsaicin caused significant decreases in latency of the thermal withdrawal reflex compared with vehicle or the contralateral hindpaw. The same findings were observed for the paw withdrawal threshold. In approximately 30 min the effects of CA, AITC, and capsaicin returned to baseline. The data are different from our previous evidence, where TRPA1 agonizts AITC and CA and TRPV1 agonist capsaicin produced hyperalgesia for nearly 2 h and resulted in facilitation of these withdrawal reflexes (Tsagareli et al., 2010, 2013). Thus, our data showing that NSAIDs suppress thermal and mechanical hyperalgesia following TRP activation could presumably due to inactivation or desensitization of TRPA1 and TRPV1 channels by NSAIDs. PMID:26909384

  12. Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation.

    PubMed

    Borbouse, Léna; Dick, Gregory M; Payne, Gregory A; Berwick, Zachary C; Neeb, Zachary P; Alloosh, Mouhamad; Bratz, Ian N; Sturek, Michael; Tune, Johnathan D

    2010-04-01

    This investigation tested the hypothesis that metabolic syndrome decreases the relative contribution of specific K(+) channels to coronary reactive hyperemia. Ca(2+)-activated (BK(Ca)), voltage-activated (K(V)), and ATP-dependent (K(ATP)) K(+) channels were investigated. Studies were conducted in anesthetized miniature Ossabaw swine fed a normal maintenance diet (11% kcal from fat) or an excess calorie atherogenic diet (43% kcal from fat, 2% cholesterol, 20% kcal from fructose) for 20 wk. The latter diet induces metabolic syndrome, increasing body weight, fasting glucose, total cholesterol, and triglyceride levels. Ischemic vasodilation was determined by the coronary flow response to a 15-s occlusion before and after cumulative administration of antagonists for BK(Ca) (penitrem A; 10 microg/kg iv), K(V) (4-aminopyridine; 0.3 mg/kg iv) and K(ATP) (glibenclamide; 1 mg/kg iv) channels. Coronary reactive hyperemia was diminished by metabolic syndrome as the repayment of flow debt was reduced approximately 30% compared with lean swine. Inhibition of BK(Ca) channels had no effect on reactive hyperemia in either lean or metabolic syndrome swine. Subsequent inhibition of K(V) channels significantly reduced the repayment of flow debt ( approximately 25%) in both lean and metabolic syndrome swine. Additional blockade of K(ATP) channels further diminished ( approximately 45%) the repayment of flow debt in lean but not metabolic syndrome swine. These data indicate that the metabolic syndrome impairs coronary vasodilation in response to cardiac ischemia via reductions in the contribution of K(+) channels to reactive hyperemia. PMID:20118408

  13. Down-regulation of CaV1.2 channels during hypertension: how fewer CaV1.2 channels allow more Ca2+ into hypertensive arterial smooth muscle

    PubMed Central

    Tajada, Sendoa; Cidad, Pilar; Colinas, Olaia; Santana, L Fernando; López-López, José R; Pérez-García, M Teresa

    2013-01-01

    Hypertension is a clinical syndrome characterized by increased arterial tone. Although the mechanisms are varied, the generally accepted view is that increased CaV1.2 channel function is a common feature of this pathological condition. Here, we investigated the mechanisms underlying vascular dysfunction in a mouse model of genetic hypertension. Contrary to expectation, we found that whole-cell CaV1.2 currents (ICa) were lower in hypertensive (BPH line) than normotensive (BPN line) myocytes. However, local CaV1.2 sparklet activity was higher in BPH cells, suggesting that the relatively low ICa in these cells was produced by a few hyperactive CaV1.2 channels. Furthermore, our data suggest that while the lower expression of the pore-forming α1c subunit of CaV1.2 currents underlies the lower ICa in BPH myocytes, the increased sparklet activity was due to a different composition in the auxiliary subunits of the CaV1.2 complexes. ICa currents in BPN cells were produced by channels composed of α1c/α2δ/β3 subunits, while in BPH myocytes currents were probably generated by the opening of channels formed by α1c/α2δ/β2 subunits. In addition, Ca2+ sparks evoked large conductance, Ca2+-activated K+ (BK) currents of lower magnitude in BPH than in BPN myocytes, because BK channels were less sensitive to Ca2+. Our data are consistent with a model in which a decrease in the global number of CaV1.2 currents coexist with the existence of a subpopulation of highly active channels that dominate the resting Ca2+ influx. The decrease in BK channel activity makes the hyperpolarizing brake ineffective and leads BPH myocytes to a more contracted resting state. PMID:24167226

  14. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.

  15. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  16. BK virus-associated urinary bladder carcinoma in transplant recipients: report of 2 cases, review of the literature, and proposed pathogenetic model.

    PubMed

    Alexiev, Borislav A; Randhawa, Parmjeet; Vazquez Martul, Eduardo; Zeng, Gang; Luo, Chunqing; Ramos, Emilio; Drachenberg, Cinthia B; Papadimitriou, John C

    2013-05-01

    Despite strong experimental evidence, BK polyomavirus involvement in human cancers has been controversial. We report 2 cases of kidney ± pancreas transplant recipients with evidence of BK polyomavirus reactivation, who developed aggressive urinary bladder urothelial carcinomas with adenocarcinomatous and/or micropapillary differentiation. Diffuse strong nuclear positivity for viral T antigen, p53, Ki-67, and p16 was observed in both malignancies. The BK polyomavirus role in promoting urothelial neoplasia in transplant recipients may be partly indirect, based on the demonstration by polymerase chain reaction in both tumors of BK polyomavirus with intact open reading frames and close phylogenetic clustering with known replication-competent strains, and viral capsid protein VP1 messenger RNA and intranuclear virions by electron microscopy in 1 tumor. No unique cancer-associated mutations were found, but some viral T antigen mutations were potentially associated with increased rate of viral replication and risk for "rare" carcinogenic events. The BK polyomavirus-induced profound effects on cell activation, cell cycle shift to proliferation, and apoptosis inhibition, in the context of marked immunosuppression, constitute a potentially ideal background for malignant transformation. The long time lapse between transplantation and tumor manifestation, 7 and 11 years, respectively, further supports the concept of multistep carcinogenesis cascade and long-term risk for these patients. We propose a model of changes ranging from viral reactivation to dysplasia to invasive carcinoma. Clinical vigilance is warranted for early diagnosis of BK polyomavirus-related urothelial malignancies in transplant recipients.

  17. Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium.

    PubMed

    Genewsky, Andreas; Jost, Ingmar; Busch, Catharina; Huber, Christian; Stindl, Julia; Skerka, Christine; Zipfel, Peter F; Rohrer, Bärbel; Strauß, Olaf

    2015-10-01

    Defective regulation of the alternative pathway of the complement system is believed to contribute to damage of retinal pigment epithelial (RPE) cells in age-related macular degeneration. Thus we investigated the effect of complement activation on the RPE cell membrane by analyzing changes in membrane conductance via patch-clamp techniques and Ca(2+) imaging. Exposure of human ARPE-19 cells to complement-sufficient normal human serum (NHS) (25 %) resulted in a biphasic increase in intracellular free Ca(2+) ([Ca(2+)]i); an initial peak followed by sustained Ca(2+) increase. C5- or C7-depleted sera did not fully reproduce the signal generated by NHS. The initial peak of the Ca(2+) response was reduced by sarcoplasmic Ca(2+)-ATPase inhibitor thapsigargin, L-type channel blockers (R)-(+)-BayK8644 and isradipine, transient-receptor-potential (TRP) channel blocker ruthenium-red and ryanodine receptor blocker dantrolene. The sustained phase was carried by CaV1.3 L-type channels via tyrosine-phosphorylation. Changes in [Ca(2+)]I were accompanied by an abrupt hyperpolarization, resulting from a transient increase in membrane conductance, which was absent under extracellular Ca(2+)- or K(+)-free conditions and blocked by (R)-(+)-BayK8644 or paxilline, a maxiK channel inhibitor. Single-channel recordings confirmed the contribution of maxiK channels. Primary porcine RPE cells responded to NHS in a comparable manner. Pre-incubation with NHS reduced H2O2-induced cell death. In summary, in a concerted manner, C3a, C5a and sC5b-9 increased [Ca(2+)]i by ryanodine-receptor-dependent activation of L-type channels in addition to maxi-K channels and TRP channels absent from any insertion of a lytic pore.

  18. MaxiK channel and cell signalling

    PubMed Central

    Toro, Ligia; Li, Min; Zhang, Zhu; Singh, Harpreet; Wu, Yong; Stefani, Enrico

    2013-01-01

    The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but in intracellular organelles including the endoplasmic reticulum, nucleus and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven transmembrane G-protein coupled receptors, and discuss information suggesting that the channel big C-terminus may act as nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including β-adrenergic receptors, G-protein coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding of the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases. PMID:24077696

  19. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  20. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  1. Effects of microgravity on liposome-reconstituted cardiac gap junction channeling activity

    NASA Technical Reports Server (NTRS)

    Claassen, D. E.; Spooner, B. S.

    1989-01-01

    Effects of microgravity on cardiac gap junction channeling activity were investigated aboard NASA zero-gravity aircraft. Liposome-reconstituted gap junctions were assayed for channel function during free-fall, and the data were compared with channeling at 1 g. Control experiments tested for 0 g effects on the structural stability of liposomes, and on the enzyme-substrate signalling system of the assay. The results demonstrate that short periods of microgravity do not perturb reconstituted cardiac gap junction channeling activity.

  2. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities

    SciTech Connect

    Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

    2001-10-19

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

  3. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells.

    PubMed

    Brereton, Melissa F; Wareing, Mark; Jones, Rebecca L; Greenwood, Susan L

    2013-01-01

    Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly isolated CPASMCs of normal pregnancy and investigated K(+) channel expression and function. CPASMCs were isolated from normal human term placentas using enzymatic digestion. Purity and phenotype was confirmed with immunocytochemistry. Whole-cell patch clamp was used to assess K(+) channel currents, and mRNA and protein expression was determined in intact CPAs and isolated SMCs with RT-PCR and immunostaining. Isolated SMCs expressed α-actin but not CD31, a marker of endothelial cells. CPASMCs and intact CPAs expressed h-caldesmon and non-muscle myosin heavy chain-2; phenotypic markers of contractile and synthetic SMCs respectively. Whole-cell currents were inhibited by 4-AP, TEA, charybdotoxin and iberiotoxin implicating functional K(v) and BK(Ca) channels. 1-EBIO enhanced whole cell currents which were abolished by TRAM-34 and reduced by apamin indicating activation of IK(Ca) and SK(Ca) respectively. BK(Ca), IK(Ca) and SK(Ca)3 mRNA and/or protein were expressed in CPASMCs and intact CPAs. This study provides the first direct evidence for functional K(v), BK(Ca,) IK(Ca) and SK(Ca) channels in CPASMCs. These cells display a mixed phenotype implicating a dual role for CPASMCs in controlling both fetoplacental vascular resistance and vasculogenesis. PMID:23437391

  4. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  5. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel.

    PubMed

    Posson, David J; Rusinova, Radda; Andersen, Olaf S; Nimigean, Crina M

    2015-01-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  6. Contribution of potential EF hand motifs to the calcium-dependent gating of a mouse brain large conductance, calcium-sensitive K(+) channel.

    PubMed

    Braun, A P; Sy, L

    2001-06-15

    1. The large conductance, calcium-sensitive K(+) channel (BK(Ca) channel) is a unique member of the K(+)-selective ion channel family in that activation is dependent upon both direct calcium binding and membrane depolarization. Calcium binding acts to dynamically shift voltage-dependent gating in a negative or left-ward direction, thereby adjusting channel opening to changes in cellular membrane potential. 2. We hypothesized that the intrinsic calcium-binding site within the BK(Ca) channel alpha subunit may contain an EF hand motif, the most common, naturally occurring calcium binding structure. Following identification of six potential sites, we introduced a single amino acid substitution (D/E to N/Q or A) at the equivalent of the -z position of a bona fide EF hand that would be predicted to lower calcium binding affinity at each of the six sites. 3. Using macroscopic current recordings of wild-type and mutant BK(Ca) channels in excised inside-out membrane patches from HEK 293 cells, we observed that a single point mutation in the C-terminus (Site 6, FLD(923)QD to N), adjacent to the 'calcium bowl' described by Salkoff and colleagues, shifted calcium-sensitive gating right-ward by 50--65 mV over the range of 2--12 microM free calcium, but had little effect on voltage-dependent gating in the absence of calcium. Combining this mutation at Site 6 with a similar mutation at Site 1 (PVD(81)EK to N) in the N-terminus produced a greater shift (70--90 mV) in calcium-sensitive gating over the same range of calcium. We calculated that these combined mutations decreased the apparent calcium binding affinity approximately 11-fold (129.5 microM vs. 11.3 microm) compared to the wild-type channel. 4. We further observed that a bacterially expressed protein encompassing Site 6 of the BK(Ca) channel C-terminus and bovine brain calmodulin were both able to directly bind (45)Ca(2+) following denaturation and polyacrylamide gel electrophoresis (e.g. SDS-PAGE). 5. Our results suggest

  7. BK virus infection in human immunodeficiency virus-infected patients.

    PubMed

    Ledesma, J; Muñoz, P; Garcia de Viedma, D; Cabrero, I; Loeches, B; Montilla, P; Gijon, P; Rodriguez-Sanchez, B; Bouza, E

    2012-07-01

    The aim of this study is to evaluate the prevalence of BK virus (BKV) infection in HIV-positive patients receiving highly active antiretroviral therapy (HAART) in our hospital. The presence of BKV was analysed in urine and plasma samples from 78 non-selected HIV-infected patients. Clinical data were recorded using a pre-established protocol. We used a nested PCR to amplify a specific region of the BKV T-large antigen. Positive samples were quantified using real-time PCR. Mean CD4 count in HIV-infected patients was 472 cells/mm3 and median HIV viral load was <50 copies/mL. BKV viraemia was detected in only 1 HIV-positive patient, but 57.7% (45 out of 78) had BKV viruria, which was more common in patients with CD4 counts>500 cells/mm3 (74.3% vs 25.7%; p=0.007). Viruria was present in 21.7% of healthy controls (5 out of 23 samples, p=0.02). All viral loads were low (<100 copies/mL), and we could not find any association between BKV infection and renal or neurological manifestations. We provide an update on the prevalence of BKV in HIV-infected patients treated with HAART. BKV viruria was more common in HIV-infected patients; however, no role for BKV has been demonstrated in this population.

  8. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Acute exposure of methylglyoxal leads to activation of KATP channels expressed in HEK293 cells

    PubMed Central

    Yang, Yang; Konduru, Anuhya S; Cui, Ningren; Yu, Lei; Trower, Timothy C; Shi, Weiwei; Shi, Yun; Jiang, Chun

    2014-01-01

    Aim: Highly reactive carbonyl methylglyoxal (MGO) is one of the metabolites excessively produced in diabetes. We have showed that prolonged exposure of vascular smooth muscle cells to MGO leads to instability of the mRNA encoding ATP-sensitive potassium (KATP) channel. In the present study we investigated the effects of MGO on the activity of KATP channels. Methods: Kir6.1/ SUR2B, Kir6.2/SUR2B or Kir6.2Δ36 (a truncated Kir6.2 isoform) alone was expressed in HEK293 cells. Whole-cell currents were recorded in the cells with an Axopatch 200B amplifier. Macroscopic currents and single-channel currents were recorded in giant inside-out patches and normal inside-out patches, respectively. Data were analyzed using Clampfit 9 software. Results: The basal activity of Kir6.1/SUR2B channels was low. The specific KATP channel opener pinacidil (10 μmol/L) could fully activate Kir6.1/SUR2B channels, which was inhibited by the specific KATP channel blocker glibenclamide (10 μmol/L). MGO (0.1-10 mmol/L) dose-dependently activated Kir6.1/SUR2B channels with an EC50 of 1.7 mmol/L. The activation of Kir6.1/SUR2B channels by MGO was reversible upon washout, and could be inhibited completely by glibenclamide. Kir6.2Δ36 channels expressed in HEK293 cells could open automatically, and the channel activity was enhanced in the presence of MGO (3 mmol/L). Single channel recordings showed that MGO (3 mmol/L) markedly increased the open probability of Kir6.1/SUR2B channels, leaving the channel conductance unaltered. Conclusion: Acute application of MGO activates KATP channels through direct, non-covalent and reversible interactions with the Kir6 subunits. PMID:24122011

  10. Identification and Characterization of Stretch-Activated Ion Channels in Pollen Protoplasts1

    PubMed Central

    Dutta, Rajiv; Robinson, Kenneth R.

    2004-01-01

    Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have never been reported in either pollen grains or pollen tubes. We have identified and characterized stretch-activated Ca2+ channels from Lilium longiflorum pollen grain and tube tip protoplasts. The channels were localized to a small region of the grain protoplasts associated with the site of tube germination. In addition, we find a stretch-activated K+ channel as well as a spontaneous K+ channel distributed over the entire grain surface, but neither was present at the germination site or at the tip. Neither stretch-activated channel was detected in the grain protoplasts unless the grains were left in germination medium for at least 1 h before protoplast preparation. The stretch-activated channels were inhibited by a spider venom that is known to block stretch-activated channels in animal cells, but the spontaneous channel was unaffected by the venom. The venom also stopped pollen tube germination and elongation and blocked Ca2+ entry into the growing tip, suggesting that channel function is necessary for growth. PMID:15247410

  11. Efficacy of Intravenous Immunoglobulin in the Treatment of Persistent BK Viremia and BK Virus Nephropathy in Renal Transplant Recipients.

    PubMed

    Shah, Tariq; Vu, Don; Naraghi, Robert; Campbell, Annabelle; Min, David

    2014-01-01

    BK virus associated nephropathy (BKVN) can cause clinically significant viral infections in renal transplant recipients, leading to allograft dysfunction and loss. The usual management of BKVN involves reduction of immunosuppression and the addition of leflunomide, quinolones, and cidofovir, but the rate of graft loss remains high. The aim of this study was to assess the impact of treatment with intravenous immunoglobulin (IVIG) on the outcome of BKVN in renal transplant recipients. Upon diagnosis of BKVN, patients remained on anti-polyomavirus treatment consisting of reduction of immunosuppression and the use of leflunomide therapy. Treatment with IVIG was given only to patients who did not respond to 8 weeks of the adjustment of immunosuppression and leflunomide. All 30 patients had persistent BK viremia and BKVN with their mean BK viral loads higher than the baseline (range 15,000 - 2 millions copies/mL). Mean peak BK load was 205,314 copies/mL compared to 697 copies/mL after one year follow-up. Twenty-seven patients (90%) had positive responses in clearing viremia. The actuarial patient and graft survival rates after 12 months were 100% and 96.7%, respectively. IVIG administration appeared to be safe and effective in treating BK viremia and BKVN and in preventing graft loss in patients who had inadequate response to immunosuppression reduction and leflunomide therapy.

  12. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency

    PubMed Central

    Chen, Zaixing; Zhao, Runzhen; Zhao, Meimi; Liang, Xinrong; Bhattarai, Deepa; Dhiman, Rohan; Shetty, Sreerama; Idell, Steven

    2014-01-01

    Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na+ flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na+-K+-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA−/− mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na+-K+-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function. PMID:25172911

  13. Possible antiviral effect of ciprofloxacin treatment on polyomavirus BK replication and analysis of non-coding control region sequences

    PubMed Central

    2013-01-01

    Acute renal dysfunction (ARD) is a common complication in renal transplant recipients. Multiple factors contribute to ARD development, including acute rejection and microbial infections. Many viral infections after kidney transplantation result from reactivation of “latent” viruses in the host or from the graft, such as the human Polyomavirus BK (BKV). We report the case of a 39 year-old recipient of a 2nd kidney graft who experienced BKV reactivation after a second episode of acute humoral rejection. A 10-day treatment with the quinolone antibiotic ciprofloxacin was administered with an increase of immunosuppressive therapy despite the active BKV replication. Real Time PCR analysis performed after treatment with ciprofloxacin, unexpectedly showed clearance of BK viremia and regression of BK viruria. During the follow-up, BK viremia persisted undetectable while viruria decreased further and disappeared after 3 months. BKV non-coding control region sequence analysis from all positive samples always showed the presence of archetypal sequences, with two single-nucleotide substitutions and one nucleotide deletion that, interestingly, were all representative of the subtype/subgroup I/b-1 we identified by the viral protein 1 sequencing analysis. We report the potential effect of the quinolone antibiotic ciprofloxacin in the decrease of the BKV load in both blood and urine. PMID:24004724

  14. Possible antiviral effect of ciprofloxacin treatment on polyomavirus BK replication and analysis of non-coding control region sequences.

    PubMed

    Umbro, Ilaria; Anzivino, Elena; Tinti, Francesca; Zavatto, Assunta; Bellizzi, Anna; Rodio, Donatella Maria; Mancini, Carlo; Pietropaolo, Valeria; Mitterhofer, Anna Paola

    2013-01-01

    Acute renal dysfunction (ARD) is a common complication in renal transplant recipients. Multiple factors contribute to ARD development, including acute rejection and microbial infections. Many viral infections after kidney transplantation result from reactivation of "latent" viruses in the host or from the graft, such as the human Polyomavirus BK (BKV). We report the case of a 39 year-old recipient of a 2nd kidney graft who experienced BKV reactivation after a second episode of acute humoral rejection. A 10-day treatment with the quinolone antibiotic ciprofloxacin was administered with an increase of immunosuppressive therapy despite the active BKV replication. Real Time PCR analysis performed after treatment with ciprofloxacin, unexpectedly showed clearance of BK viremia and regression of BK viruria. During the follow-up, BK viremia persisted undetectable while viruria decreased further and disappeared after 3 months.BKV non-coding control region sequence analysis from all positive samples always showed the presence of archetypal sequences, with two single-nucleotide substitutions and one nucleotide deletion that, interestingly, were all representative of the subtype/subgroup I/b-1 we identified by the viral protein 1 sequencing analysis.We report the potential effect of the quinolone antibiotic ciprofloxacin in the decrease of the BKV load in both blood and urine.

  15. Possible antiviral effect of ciprofloxacin treatment on polyomavirus BK replication and analysis of non-coding control region sequences.

    PubMed

    Umbro, Ilaria; Anzivino, Elena; Tinti, Francesca; Zavatto, Assunta; Bellizzi, Anna; Rodio, Donatella Maria; Mancini, Carlo; Pietropaolo, Valeria; Mitterhofer, Anna Paola

    2013-01-01

    Acute renal dysfunction (ARD) is a common complication in renal transplant recipients. Multiple factors contribute to ARD development, including acute rejection and microbial infections. Many viral infections after kidney transplantation result from reactivation of "latent" viruses in the host or from the graft, such as the human Polyomavirus BK (BKV). We report the case of a 39 year-old recipient of a 2nd kidney graft who experienced BKV reactivation after a second episode of acute humoral rejection. A 10-day treatment with the quinolone antibiotic ciprofloxacin was administered with an increase of immunosuppressive therapy despite the active BKV replication. Real Time PCR analysis performed after treatment with ciprofloxacin, unexpectedly showed clearance of BK viremia and regression of BK viruria. During the follow-up, BK viremia persisted undetectable while viruria decreased further and disappeared after 3 months.BKV non-coding control region sequence analysis from all positive samples always showed the presence of archetypal sequences, with two single-nucleotide substitutions and one nucleotide deletion that, interestingly, were all representative of the subtype/subgroup I/b-1 we identified by the viral protein 1 sequencing analysis.We report the potential effect of the quinolone antibiotic ciprofloxacin in the decrease of the BKV load in both blood and urine. PMID:24004724

  16. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  17. Pharmacodynamics of potassium channel openers in cultured neuronal networks.

    PubMed

    Wu, Calvin; V Gopal, Kamakshi; Lukas, Thomas J; Gross, Guenter W; Moore, Ernest J

    2014-06-01

    A novel class of drugs - potassium (K(+)) channel openers or activators - has recently been shown to cause anticonvulsive and neuroprotective effects by activating hyperpolarizing K(+) currents, and therefore, may show efficacy for treating tinnitus. This study presents measurements of the modulatory effects of four K(+) channel openers on the spontaneous activity and action potential waveforms of neuronal networks. The networks were derived from mouse embryonic auditory cortices and grown on microelectrode arrays. Pentylenetetrazol was used to create hyperactivity states in the neuronal networks as a first approximation for mimicking tinnitus or tinnitus-like activity. We then compared the pharmacodynamics of the four channel activators, retigabine and flupirtine (voltage-gated K(+) channel KV7 activators), NS1619 and isopimaric acid ("big potassium" BK channel activators). The EC50 of retigabine, flupirtine, NS1619, and isopimaric acid were 8.0, 4.0, 5.8, and 7.8µM, respectively. The reduction of hyperactivity compared to the reference activity was significant. The present results highlight the notion of re-purposing the K(+) channel activators for reducing hyperactivity of spontaneously active auditory networks, serving as a platform for these drugs to show efficacy toward target identification, prevention, as well as treatment of tinnitus.

  18. Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2).

    PubMed

    Hou, Panpan; Zeng, Wenping; Gan, Geliang; Lv, Caixia; Guo, Xiying; Zhang, Zheng; Liu, Haowen; Wu, Ying; Yao, Jing; Wei, Aguan D; Wang, Sheng; Ding, Jiuping

    2013-01-01

    Large-conductance calcium-activated potassium (BK) channels regulate the electric properties and neurotransmitter release in excitable cells. Its auxiliary β2 subunits not only enhance gating, but also confer inactivation via a short-lived preinactivated state. However, the mechanism of enhancement and preinactivation of BK channels by β2 remains elusive. Using our newly developed methods, we demonstrated that electrostatic forces played a crucial role in forming multiple complementary pairs of binding sites between α and β subunits including a "PI site" required for channel preinactivation, an "E site" enhancing calcium sensitivity and an "ECaB" coupling site transferring force to gate from the Ca(2+)-bowl via the β2(K33, R34, K35), E site and S6-C linker, independent of another Ca(2+) binding site mSlo1(D362,D367). A comprehensive structural model of the BK(β2) complex was reconstructed based on these functional studies, which paves the way for a clearer understanding of the structural mechanisms of activation and preinactivation of other BK(β) complexes. PMID:23588888

  19. Forcing Open TRP channels: mechanical gating as a unifying activation mechanism

    PubMed Central

    Liu, Chao; Montell, Craig

    2015-01-01

    Transient receptor potential (TRP) proteins are cation channels that comprise a superfamily of molecular sensors that enable animals to detect a wide variety of environmental stimuli. This versatility enables vertebrate and invertebrate TRP channels to function in a diversity of senses, ranging from vision to taste, smell, touch, hearing, proprioception and thermosensation. Moreover, many individual TRP channels are activated through a surprising range of sensory stimuli. The multitasking nature of TRP channels raises the question as to whether seemingly disparate activators gate TRPs through common strategies. In this regard, a recent major advance is the discovery that a phospholipase C (PLC)-dependent signaling cascade activates the TRP channels in Drosophila photoreceptor cells through generation of force in the lipid-bilayer. The premise of this review is that mechanical force is a unifying, common strategy for gating TRP channels. In addition to several TRP channels that function in mechanosensation and are gated by force applied to the cells, changes in temperature and in the concentration of lipophilic second messengers through stimulation of signaling cascades, cause architectural modifications of the cell membrane, which in turn activate TRP channels through mechanical force. Consequently, TRPs are capable of functioning as stretch-activated channels, even in cases in which the stimuli that initiate the signaling cascades are not mechanical. We propose that most TRPs are actually mechanosensitive channels (MSCs), which undergo conformational changes in response to tension imposed on the lipid bilayer, resulting in channel gating. PMID:25998730

  20. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  1. Activation and deactivation of vibronic channels in intact phycocyanin rods.

    PubMed

    Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C

    2014-02-28

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration. PMID:24588198

  2. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  3. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  4. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma

    PubMed Central

    Gaurav, Rohit; Bewtra, Againdra K.

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β– and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma. PMID:25514499

  5. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  6. Progressive renal failure due to renal infiltration by BK polyomavirus and leukaemic cells: which is the culprit?

    PubMed

    Sangala, Nicholas; Dewdney, Alex; Marley, Nicholas; Cranfield, Tanya; Venkat-Raman, Gopalakrishnan

    2011-02-01

    Renal infiltration with leukaemic cells is a common finding in patients suffering with chronic lymphocytic leukaemia (CLL) but rarely does it lead to significant renal dysfunction. Similarly, BK nephropathy is a recognized cause of graft failure in renal transplant recipients but rarely causes significant disease in native kidneys. In the few reports where leukaemic infiltration of the kidney has led to significant renal impairment, the pathological process causing renal dysfunction is not identified on biopsy. In these cases, it is unclear whether BK polyomavirus (BKV) nephropathy has been excluded. We describe a case of dual pathologies in a patient with Binet stage C CLL and deteriorating renal function where renal biopsy reveals leukaemic infiltration of the kidney occurring alongside BKV nephropathy. The relative importance of each pathology in relation to the rapid decline to end-stage renal failure remains unclear, but the presence of both pathologies appears to impart a poor prognosis. Additionally, we describe the novel histological finding of loss of tubular integrity resulting in tubular infiltration and occlusion by leukaemic cells. It is possible that the patient with advanced CLL is at particular risk of BK activation, and the presence of BK nephropathy may compromise tubular integrity allowing leukaemic cell infiltration and obstruction of tubules. This case bares remarkable resemblance to the first and only other report of its kind in the literature. It is not clear how available immunocytochemistry for polyoma infection is outside transplant centres, and it is possible that BK nephropathy is being under-diagnosed in patients with CLL in the context of declining renal function. At present, the combination of BKV nephropathy and leukaemic infiltration represents a management conundrum and the prognosis is poor. Further research is required in order to better understand the pathological process and therefore develop management strategies.

  7. Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism

    PubMed Central

    Lee, C-H; Tsai, T-S; Liou, H-H

    2008-01-01

    Background and purpose: Gabapentin is an effective anticonvulsant. The major physiological function of renal outer medullary potassium (ROMK1) channels is to maintain the resting membrane potential (RMP). We investigated the effect of gabapentin on ROMK1 channels and the mechanism involved. Experimental approach: Xenopus oocytes were injected with mRNA coding for wild-type or mutant ROMK1 channels and giant inside-out patch-clamp recordings were performed. Key results: Gabapentin increased the activity of ROMK1 channels, concentration-dependently and enhanced the activity of wild-type and an intracellular pH (pHi)-gating residue mutant (K80M) channels over a range of pHi. Gabapentin also increased activity of channels mutated at phosphatidylinositol 4,5-bisphosphate (PIP2)-binding sites (R188Q, R217A and K218A). However, gabapentin failed to enhance channel activity in the presence of protein kinase A (PKA) inhibitors and did not activate phosphorylation site mutants (S44A, S219A or S313A), mutants that mimicked the negative charge carried by a phosphate group bound to a serine (S44D, S219D or S313D), or a mutated channel with a positive charge (S219R). These findings show that gabapentin activates ROMK1 channels independently of the pHi and not via a PIP2-dependent pathway. The effects of gabapentin on ROMK1 channels may be due to a PKA-mediated phosphorylation-induced conformational change, but not to charge–charge interactions. Conclusions and implications: ROMK1 channels are the main channels responsible for maintaining the RMP during cellular excitation. Gabapentin increased the activity of ROMK1 channels by a PKA-dependent mechanism, reducing neuronal excitability, and this may play an important role in its antiepileptic effect. PMID:18311184

  8. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    NASA Astrophysics Data System (ADS)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  9. A structural view of ligand-dependent activation in thermoTRP channels

    PubMed Central

    Steinberg, Ximena; Lespay-Rebolledo, Carolyne; Brauchi, Sebastian

    2014-01-01

    Transient Receptor Potential (TRP) proteins are a large family of ion channels, grouped into seven sub-families. Although great advances have been made regarding the activation and modulation of TRP channel activity, detailed molecular mechanisms governing TRP channel gating are still needed. Sensitive to electric, chemical, mechanical, and thermal cues, TRP channels are tightly associated with the detection and integration of sensory input, emerging as a model to study the polymodal activation of ion channel proteins. Among TRP channels, the temperature-activated kind constitute a subgroup by itself, formed by Vanilloid receptors 1–4, Melastatin receptors 2, 4, 5, and 8, TRPC5, and TRPA1. Some of the so-called “thermoTRP” channels participate in the detection of noxious stimuli making them an interesting pharmacological target for the treatment of pain. However, the poor specificity of the compounds available in the market represents an important obstacle to overcome. Understanding the molecular mechanics underlying ligand-dependent modulation of TRP channels may help with the rational design of novel synthetic analgesics. The present review focuses on the structural basis of ligand-dependent activation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection of ligand-binding sites within TRPV1, PIP2-dependent modulation of TRP channels, and the structure of natural and synthetic ligands. PMID:24847275

  10. The activity of the TRP-like channel depends on its expression system

    PubMed Central

    Lev, Shaya; Katz, Ben; Minke, Baruch

    2012-01-01

    The Drosophila light activated TRP and TRPL channels have been a model for TRPC channel gating. Several gating mechanisms have been proposed following experiments conducted on photoreceptor and tissue cultured cells. However, conclusive evidence for any mechanism is still lacking. Here, we show that the Drosophila TRPL channel expressed in tissue cultured cells is constitutively active in S2 cells but is silent in HEK cells. Modulations of TRPL channel activity in different expression system by pharmacology or specific enzymes, which change the lipid content of the plasma membrane, resulted in conflicting effects. These findings demonstrate the difficulty in elucidating TRPC gating, as channel behavior is expression system dependent. However, clues on the gating mechanism may arise from understanding how different expression systems affect TRPC channel activation. PMID:22627924

  11. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    PubMed Central

    Zhao, Xiaoqi; Gu, Tianxiang

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP) or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions. PMID:27556324

  12. [BK virus infection in a pediatric renal transplant recipient].

    PubMed

    Bonaventura, R; Vázquez, A; Exeni, A; Rivero, K; Freire, M C

    2005-01-01

    BK Human Polyomavirus causes an asymptomatic primary infection in children, then establishing latency mainly in the urinary tratt. Viral reactivation can lead to renal pathology in individuals with impaired cellular immune response. This is particularly important in pediatric transplant recipients, who can suffer a primary infection when immunosupressed. We followed up the case of a 5 years old patient who received a renal transplant in October 2003, and presented damaged graft 45 days after the intervention. The patient suffered 3 episodes of renal function failure between October 2003 and June 2004. Blood, urine, renal biopsy and lymphocele liquid samples were analyzed. A differential diagnosis between acute rejection and infectious causes was established by testing for BK, CMV and ADV viruses, and the cytological study of renal tissue. Laboratory findings together with clinical signs suggest the patient was infected by BK virus. As a final consideration, the great importance of differentiating between acute rejection and BK infection is emphasized, since immunosuppressant management is opposite in each case.

  13. Classical-quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2016-08-01

    We establish the Ahlswede dichotomy for arbitrarily varying classical-quantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as resources are very helpful for achieving a positive secrecy capacity. We prove the phenomenon "super-activation" for arbitrarily varying classical-quantum wiretap channels, i.e., two channels, both with zero deterministic secrecy capacity, if used together allow perfect secure transmission.

  14. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal.

    PubMed

    Kwon, Young; Kim, Sang Hoon; Ronderos, David S; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M; Guggino, William B; Smith, Dean P; Montell, Craig

    2010-09-28

    Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria.

  15. Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell lines.

    PubMed

    So, Edmund Cheung; Huang, Yan-Ming; Hsing, Chung-Hsi; Liao, Yu-Kai; Wu, Sheng-Nan

    2015-07-01

    Arecoline (ARE) is an alkaloid-type natural product from areca nut. This compound has numerous pharmacological and toxicological effects. Whether this agent interacts with ion channels to perturb functional activity of cells remains unknown. The effects of ARE on ionic currents were studied in glioma cell lines (U373 and U87MG) using patch-clamp technique. Like TRAM-34(1-[(2-chlorophenyl)-diphenylmethyl]pyrazole), ARE suppressed the amplitude of whole-cell voltage-gated K(+) currents in U373 cells elicited by a ramp voltage clamp. In cell-attached configuration, ARE did not modify the single-channel conductance of intermediate-conductance Ca(2+)-activated K(+) (IKCa) channels; however, it did reduce channel activity. Its inhibition of IKCa channels was accompanied by a significant lengthening in the slow component of mean closed time of IKCa channels. Based on minimal kinetic scheme, the dissociation constant (KD) required for ARE-mediated prolongation of mean closed time was 11.2µM. ARE-induced inhibition of IKCa channels was voltage-dependent. Inability of ARE to perturb the activity of large-conductance Ca(2+)-activated K(+) (BKCa) channels was seen. Under current-clamp recordings, ARE depolarized the membrane of U373 cells and DCEBIO reversed ARE-induced depolarization. Similarly, ARE suppressed IKCa-channel activities in oral keratinocytes. This study provides the evidence that ARE block IKCa channels in a concentration, voltage and state-dependent manner. ARE-induced block of IKCa channels is unrelated to the binding of muscarinic receptors. The effects of ARE on these channels may partially be responsible for the underlying cellular mechanisms by which it influences the functional activities of glioma cells or oral keratinocytes, if similar findings occur in vivo.

  16. Investigating neuronal activity by SPYCODE multi-channel data analyzer.

    PubMed

    Bologna, Luca Leonardo; Pasquale, Valentina; Garofalo, Matteo; Gandolfo, Mauro; Baljon, Pieter Laurens; Maccione, Alessandro; Martinoia, Sergio; Chiappalone, Michela

    2010-08-01

    Multi-channel acquisition from neuronal networks, either in vivo or in vitro, is becoming a standard in modern neuroscience in order to infer how cell assemblies communicate. In spite of the large diffusion of micro-electrode-array-based systems, researchers usually find it difficult to manage the huge quantity of data routinely recorded during the experimental sessions. In fact, many of the available open-source toolboxes still lack two fundamental requirements for treating multi-channel recordings: (i) a rich repertoire of algorithms for extracting information both at a single channel and at the whole network level; (ii) the capability of autonomously repeating the same set of computational operations to 'multiple' recording streams (also from different experiments) and without a manual intervention. The software package we are proposing, named SPYCODE, was mainly developed to respond to the above constraints and generally to offer the scientific community a 'smart' tool for multi-channel data processing. PMID:20554151

  17. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal.

    PubMed

    Lees-Green, Rachel; Gibbons, Simon J; Farrugia, Gianrico; Sneyd, James; Cheng, Leo K

    2014-04-15

    Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca(2+) oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca(2+) entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl(-) current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca(2+) channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca(2+) current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl(-) equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl(-) dynamics in ICC.

  18. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    PubMed Central

    Smith, Ryan C; McClure, Marisa C; Smith, Margaret A; Abel, Peter W; Bradley, Michael E

    2007-01-01

    Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium

  19. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  20. [Effects of calcium-activated chloride channels on vascular activity of rat cerebral basilar artery].

    PubMed

    Wang, Rui; Li, Li; Ma, Ke-Tao; Si, Jun-Qiang

    2014-06-25

    This study investigated the role of calcium-activated Cl⁻ channels (CaCCs) in mediating vasomotor activity of cerebral basilar artery (BA) of Wistar rat. Pressure myograph was used to examine the changes in diameter of isolated BA to vasoactive reagents. The results showed that (1) The rate of pressure-induced vasomotor activity was 78.6% (n = 28) in BA from 0 to 100 mmHg working pressure. The contractile phase of the response was faster than the relaxation phase; (2) The amplitude of contraction was (62.6 ± 6.4) µm (n = 22), the frequency of contraction was variable and the highest value was 8.0 ± 2.3 per 5 min at 60 mmHg working pressure (n = 22); (3) The pressure-induced vasomotor activity of BA was markedly attenuated when Ca²⁺ was removed from medium; (4) The pressure-induced vasomotor activity was blocked by voltage dependent Ca²⁺ channel blocker nimodipine; (5) The pressure-induced vasomotor was inhibited by CaCC antagonists NFA and NPPB. These results suggest that the pressure-induced vasomotor activity of isolated BA is associated with Ca²⁺ influx that activates CaCCs.

  1. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  2. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    PubMed

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  3. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst

    SciTech Connect

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I{sub e}. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 {mu}M), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  4. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress.

    PubMed

    Koliwad, S K; Elliott, S J; Kunze, D L

    1996-08-15

    1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced by oxidized glutathione (GSSG), a cytosolic product of oxidant metabolism. 2. When recording pipettes contained GSSG (2 mM), whole-cell zero-current potential measured immediately following pipette break-in was not different from control values (-57 mV). However, within 20 min of break-in, zero-current potential was depolarized to -7 mV. The time course of depolarization was dependent on the concentration of GSSG and was accelerated by inhibition of GSSG metabolism. 3. In excised membrane patches, channels were activated by internal GSSG, but not by internal tBuOOH, reduced glutathione (GSH), or external GSSG. Channels were equal in size (28 pS) and in ionic selectivity to those activated by incubation of intact cells with tBuOOH. As little as 20 microM GSSG was sufficient to maximally activate channels. However, the time course of channel activation was concentration dependent between 20 microM and 2 mM GSSG. 4. Channel activation by GSSG was reversed by GSH and by increasing the [GSH]:[GSSG] ratio. Likewise, channel activation by pre-incubation of intact cells with tBuOOH was reversed by GSH applied after patch excision. 5. These results strongly suggest that GSSG is an endogenous intracellular mediator of channel activation and depolarization during oxidant stress. PMID:8866350

  5. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  6. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle.

  7. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  8. Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the {sup 50}Ti+{sup 249}Bk hot fusion reaction

    SciTech Connect

    Liu Zuhua; Bao, Jing-Dong

    2011-09-15

    The evaporation residue (ER) cross sections for 3n and 4n evaporation channels in the {sup 50}Ti + {sup 249}Bk reaction leading the formation of {sup 296}119 and {sup 295}119 isotopes are evaluated by means of a modified fusion-by-diffusion model. In the model, the dynamic evolution from dinucleus to mononucleus is taken into account with the two-dimensional coupled Langenvin equations. The calculated maximum ER cross sections in 3n and 4n evaporation channels of the {sup 50}Ti + {sup 249}Bk reaction are 0.17 and 0.57 pb, respectively. The cross section of 0.57 pb is close to the present experimental limit for the registration of the evaporation residual nuclei. Therefore, superheavy element 119 may be the most hopeful new element with Z>118 to be synthesized under somehow improved experimental conditions in the near future.

  9. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    PubMed

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter.

  10. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    PubMed

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter. PMID:23312295

  11. γ-Band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice

    PubMed Central

    Llinás, Rodolfo R.; Choi, Soonwook; Urbano, Francisco J.; Shin, Hee-Sup

    2007-01-01

    Thalamocortical in vivo and in vitro function was studied in mice lacking P/Q-type calcium channels (CaV2.1), in which N-type calcium channels (CaV2.2) supported central synaptic transmission. Unexpectedly, in vitro patch recordings from thalamic neurons demonstrated no γ-band subthreshold oscillation, and voltage-sensitive dye imaging demonstrated an absence of cortical γ-band-dependent columnar activation involving cortical inhibitory interneuron activity. In vivo electroencephalogram recordings showed persistent absence status and a dramatic reduction of γ-band activity. Pharmacological block of T-type calcium channels (CaV3), although not noticeably affecting normal control animals, left the knockout mice in a coma-like state. Hence, although N-type calcium channels can rescue P/Q-dependent synaptic transmission, P/Q calcium channels are essential in the generation of γ-band activity and resultant cognitive function. PMID:17968008

  12. Mechanosensitive channel activation by diffusio-osmotic force.

    PubMed

    Bonthuis, Douwe Jan; Golestanian, Ramin

    2014-10-01

    For ion channel gating, the appearance of two distinct conformational states and the discrete transitions between them are essential, and therefore of crucial importance to all living organisms. We show that the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive channels--namely, a charged vestibule and a hydrophobic constriction--creates two distinct conformational states, open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck equations, extended to include a molecular potential of mean force, and show that a first order transition between the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and the water inside the channel and the elastic restoring force from the membrane. PMID:25325663

  13. Lifetime and conductance of acetylcholine-activated channels in normal and denervated toad sartorius muscle.

    PubMed Central

    Gage, P W; Hamill, O P

    1980-01-01

    1. The average lifetime and conductance of acetylcholine-activated channels were measured in normal and denervated, voltage-clamped toad sartorius muscle fibres at 10 degrees C. 2. The null potential was -4 +/- 1 mV for subsynaptic channels in normal fibres and -6 +/- 3 mV for extrasynaptic channels in denervated fibres. 3. There was a linear relationship between variance of conductance fluctuations and mean conductance for acetylcholine-induced currents up to 50 nA, in denervated fibres clamped at -50 mV. The ratio gave a channel conductance of 14 pS. 4. At the same membrane potential, the average lifetime of extrasynaptic channels in denervated fibres was approximately double, whereas channel conductance was approximately half, that of subsynaptic channels in normal fibres: there was little difference in net charge transfer through the two types of channel under similar conditions. 5. Single channel conductance increased, whereas average channel lifetime decreased, as the membrane potential became more positive (depolarized). The effect of potential on channel lifetime and conductance was more pronounced in denervated than in normal fibres. PMID:6767026

  14. Structure of the gating ring from the human large-conductance Ca[superscript 2+]-gated K[superscript +] channel

    SciTech Connect

    Wu, Yunkun; Yang, Yi; Ye, Sheng; Jiang, Youxing

    2010-11-12

    Large-conductance Ca{sup 2+}-gated K{sup +} (BK) channels are essential for many biological processes such as smooth muscle contraction and neurotransmitter release. This group of channels can be activated synergistically by both voltage and intracellular Ca{sup 2+}, with the large carboxy-terminal intracellular portion being responsible for Ca{sup 2+} sensing. Here we present the crystal structure of the entire cytoplasmic region of the human BK channel in a Ca{sup 2+}-free state. The structure reveals four intracellular subunits, each comprising two tandem RCK domains, assembled into a gating ring similar to that seen in the MthK channel and probably representing its physiological assembly. Three Ca{sup 2+} binding sites including the Ca{sup 2+} bowl are mapped onto the structure based on mutagenesis data. The Ca{sup 2+} bowl, located within the second RCK domain, forms an EF-hand-like motif and is strategically positioned close to the assembly interface between two subunits. The other two Ca{sup 2+} (or Mg{sup 2+}) binding sites, Asp367 and Glu374/Glu399, are located on the first RCK domain. The Asp367 site has high Ca{sup 2+} sensitivity and is positioned in the groove between the amino- and carboxy-terminal subdomains of RCK1, whereas the low-affinity Mg{sup 2+}-binding Glu374/Glu399 site is positioned on the upper plateau of the gating ring and close to the membrane. Our structure also contains the linker connecting the transmembrane and intracellular domains, allowing us to dock a voltage-gated K{sup +} channel pore of known structure onto the gating ring with reasonable accuracy and generate a structural model for the full BK channel.

  15. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  16. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    PubMed

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block. PMID:7514038

  17. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells.

    PubMed

    Ypey, D L; Weidema, A F; Höld, K M; Van der Laarse, A; Ravesloot, J H; Van Der Plas, A; Nijweide, P J

    1992-12-01

    Embryonic chick bone cells express various types of ionic channels in their plasma membranes for as yet unresolved functions. Chick osteoclasts (OCL) have the richest spectrum of channel types. Specific for OCL is a K+ channel, which activates (opens) when the inside negative membrane potential (Vm) becomes more negative (hyperpolarization). This is consistent with findings of others on rat OCL. The membrane conductance constituted by these channels is called the inward rectifying K+ conductance (GKi), or inward rectifier, because the hyperpolarization-activated channels cause cell-inward K+ current to pass more easily through the membrane than outward K+ current. Besides GKi channels, OCL may express two other types of voltage-activated K+ channels. One constitutes the transient outward rectifying K+ conductance (GKto), which is activated upon making the membrane potential less negative (depolarization) but has a transient nature. This conductance favors transient K+ conduction in the cell-outward direction. The GKto also occurs in a small percentage of cells in osteoblast (OBL) and periosteal fibroblast (PFB) cultures. The other OCL K+ conductance, the GKCa, is activated by both membrane depolarization and a rise in [Ca2+]i. GKCa channels are also present in the other chick bone cell types, that is, OBL, osteocytes (OCY), and PFB. Furthermore, in excised patches of all bone cell types, channels have been found that conduct anions, including Cl- and phosphate ions. These channels are only active around Vm = 0 mV. While searching for a membrane mechanism for adaptation of bone to mechanical loading, we found stretch-activated channels in chick osteoclasts; other investigators have found stretch-activated cation channels (K+ or aselective) in rat and human osteogenic cell lines. In contrast to other studies on cell lines or OBL from other species, we have not found any of the classic macroscopic voltage-activated calcium conductances (GCa) in any of the chick bone

  18. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels. PMID:26794461

  19. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.

    PubMed

    Chernyshev, Anatoly; Cukierman, Samuel

    2002-01-01

    The temperature dependencies (range: 5-45 degrees C) of single-channel proton conductances (g(H)) in native gramicidin A (gA) and in two diastereoisomers (SS and RR) of the dioxolane-linked gA channels were measured in glycerylmonooleate/decane (GMO) and diphytanoylphosphatidylcholine/decane (DiPhPC) bilayers. Linear Arrhenius plots (ln (g(H)) versus K(-1)) were obtained for the native gA and RR channels in both types of bilayers, and for the SS channel in GMO bilayers only. The Arrhenius plot for proton transfer in the SS channel in DiPhPC bilayers had a break in linearity around 20 degrees C. This break seems to occur only when protons are the permeating cations in the SS channel. The activation energies (E(a)) for proton transfer in various gA channels (approximately 15 kJ/mol) are consistent with the rate-limiting step being in the channel and/or at the membrane-channel/solution interface, and not in bulk solution. E(a) values for proton transfer in gA channels are considerably smaller than for the permeation of nonproton currents in gA as well as in various other ion channels. The E(a) values for proton transfer in native gA channels are nearly the same in both GMO and DiPhPC bilayers. In contrast, for the dioxolane linked gA dimers, E(a) values were strongly modulated by the lipid environment. The Gibbs activation free energies (Delta G(#)(o)) for protons in various gA channels are within the range of 27-29 kJ/mol in GMO bilayers and of 20-22 kJ/mol in DiPhPC bilayers. The largest difference between Delta G(#)(o) for proton currents occurs between native gA (or SS channels) and the RR channel. In general, the activation entropy (Delta S) is mostly responsible for the differences between g(H) values in various gA channels, and also in distinct bilayers. However, significant differences between the activation enthalpies (Delta H(#)(o)) for proton transfer in the SS and RR channels occur in distinct membranes.

  20. Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness.

    PubMed Central

    Karpen, J W; Loney, D A; Baylor, D A

    1992-01-01

    1. Patch-clamp methods were used to investigate the areal density and spatial location of cyclic GMP-activated channels in the surface membrane of salamander rod outer segments. 2. The density of active channels (i.e. channels able to respond to cyclic GMP) in patches excised from outer segments was determined from the number of active channels, N, and the membrane area, A. N was estimated from the current induced by a saturating concentration of cyclic GMP, while A was estimated from the electrical capacitance of the patch. 3. In patches excised from forty-one isolated outer segments prepared in the light the active channel density varied over a remarkable range: 0.34-629 microns-2, with a mean of 166 microns-2. Density was not correlated with patch area in this or any of the conditions studied. 4. The spatial distribution of open channels on the outer segment of a transducing rod was measured by recording the local dark current at various positions with a loose-patch electrode. The apparent density of open channels varied by only about +/- 50% around the circumference of the outer segment and up and down its length. This indicates that the wide range of densities in excised patches did not result from sampling a non-uniform spatial distribution of channels. 5. Patches excised from sixteen dark-adapted whole cells with healthy appearances and saturating light responses of normal size had active channel densities of 1.1-200 microns-2, with a mean of 60 microns-2. Patches from twenty light-adapted whole cells had similar densities. Many densities from the whole cells were much lower than expected. This, and the wide variation in densities, suggests that obtaining a patch often lowered the density of active channels. The number of channels in a patch was quite stable from 1 s to 30 min after excision, ruling out progressive denaturation or adsorption of channels to the glass as a cause for this effect. 6. The mean active channel density in patches excised from whole

  1. Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation.

    PubMed

    Lacroix, Jérôme J; Campos, Fabiana V; Frezza, Ludivine; Bezanilla, Francisco

    2013-08-21

    Most action potentials are produced by the sequential activation of voltage-gated sodium (Nav) and potassium (Kv) channels. This is mainly achieved by the rapid conformational rearrangement of voltage-sensor (VS) modules in Nav channels, with activation kinetics up to 6-fold faster than Shaker-type Kv channels. Here, using mutagenesis and gating current measurements, we show that a 3-fold acceleration of the VS kinetics in Nav versus Shaker Kv channels is produced by the hydrophilicity of two "speed-control" residues located in the S2 and S4 segments in Nav domains I-III. An additional 2-fold acceleration of the Nav VS kinetics is provided by the coexpression of the β1 subunit, ubiquitously found in mammal tissues. This study uncovers the molecular bases responsible for the differential activation of Nav versus Kv channels, a fundamental prerequisite for the genesis of action potentials.

  2. Anti-bacterial TeNPs biosynthesized by haloarcheaon Halococcus salifodinae BK3.

    PubMed

    Srivastava, Pallavee; Nikhil, Edarapalli V R; Bragança, Judith M; Kowshik, Meenal

    2015-07-01

    Microbial synthesis of highly structured metal sulfide and metallic nanoparticles is a benign approach of nanomaterial synthesis. Various microbes have been exploited for nanoparticle synthesis, but nanofabrication using haloarchaea is still in nascent stages. Here, we report the intracellular synthesis of hexagonal needle-shaped tellurium nanoparticles with an aspect ratio of 1:4.4, by the haloarcheon Halococcus salifodinae BK3. The isolate was able to tolerate up to 5.5 mM K2TeO3. The yield of tellurium nanoparticles was highest when the culture was exposed to 3 mM K2TeO3, even though the isolate exhibited slightly decreased growth rate as compared to the culture growing in the absence of K2TeO3. The enzyme tellurite reductase was responsible for tellurite resistance and nanoparticle synthesis in H. salifodinae BK3. These tellurium nanoparticles exhibited anti-bacterial activities against both Gram-positive and Gram-negative bacteria, with higher antibacterial activity towards Gram-negative bacteria. This is the first report on the synthesis of tellurium nanoparticles by Halophilic archaea.

  3. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels.

    PubMed

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan; Möhrlen, Frank

    2013-10-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.

  4. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  5. Calcium-activated potassium channels in the endothelium of intact rat aorta.

    PubMed Central

    Marchenko, S M; Sage, S O

    1996-01-01

    1. Single K+ channel currents and membrane potential were recorded in the endothelium of excised intact rat aorta. 2. Two types of K+ channel were found in excised patches, KCh and KAp. With Na+ and K+ as the main external and internal cations, outward conductances were 6.7 pS (KCh) and 2.8 pS (KAp). In symmetric 150 mM K+, the inward conductances were 18 and 9.1 pS. 3. Activation by Ca2+ was concentration dependent. KCh channels were activated by [Ca2+] > 0.1 microM and KAp by [Ca2+] > 0.5 microM. 4. Apamin at concentrations > 1 nM inhibited KAp Channels. Block was complete at 10 nM. KAp channels were insensitive to charybdotoxin. KCh channels were inhibited by charybdotoxin at concentrations > 50 nM, but were insensitive to apamin. 5. d-Tubocurarine (dTC) evoked flickering activity of KAp channels at concentrations > 5 microM and complete block at 100 microM. At these doses, dTC did not affect KCh channels, but at concentrations > 1 mM it decreased the single channel amplitude. 6. Hyperpolarization evoked by acetylcholine was unaffected by apamin or dTC at low concentrations ( < or = 100 microM), but inhibited by high concentrations of charybdotoxin ( > 50 nM) or dTC ( > 1 mM). 7. These data suggest that KCh channels are novel Ca(2+)-activated K+ channels responsible for the ACh-evoked hyperpolarization in the endothelium of rat aorta. PMID:8730582

  6. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  7. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias.

    PubMed

    Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan

    2015-08-01

    Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

  8. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  9. pH regulation of amphotericin B channels activity in the bilayer lipid membrane

    PubMed Central

    Shahmoradi, Tahereh; Sepehry, Hamid; Ashrafpour, Manuchehr

    2016-01-01

    Background: Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of systemic fungal infections in spite of its secondary effects. The pH plays a crucial role in modulating biophysical features of ion channels in the bilayer lipid membranes. Aim: In this study, the role of pH in the regulation of AmB channel was assessed by single channel recording of ion channel incorporated in the artificial membrane. Materials and Methods: Bilayer lipid membrane was formed by phosphatidylcholine in a 350 μm diameter aperture between two chambers, cis and trans contained 200/50 mMKCl solutions, respectively; then AmB was incorporated into the bilayer lipid membrane. Single channel recordings were used to indicate the effects of pH changes on AmB channels activity. The records were analyzed by Clamp fit 10 software. Results: A kinetic analysis of single channel currents indicated a cation ion channel with 500 pS conductance and voltage-dependence of the open probability of the AmB channel (Po). A reduction of cis pH to 6 decreased Po and conductance. This effect was also voltage-dependent, being greater at a more positive above −40. The pH changes in the range of 6-8 had no effect on the reversal potential and ion selectivity. Conclusion: Our data indicated that extracellular acidity can reduce AmB activity. PMID:27003977

  10. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

  11. Ion Channels in Regulation of Neuronal Regenerative Activities

    PubMed Central

    Chen, Dongdong; Yu, Shan Ping; Wei, Ling

    2014-01-01

    The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treating neurodegenerative diseases because of the regenerative capability of stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones and axon outgrowth after injury. PMID:24399572

  12. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    PubMed

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

  13. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation.

    PubMed

    Feng, Jing; Yang, Weishan; Xie, Zili; Xiang, Fang; Cao, Zhijian; Li, Wenxin; Hu, Hongzhen; Chen, Zongyun; Wu, Yingliang

    2015-06-19

    Among the three extracellular domains of the tetrameric voltage-gated K(+) (Kv) channels consisting of six membrane-spanning helical segments named S1-S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2-4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.

  14. Structure-activity studies on 1,4-dihydropyridine calcium channel antagonists and activators

    SciTech Connect

    Joslyn, A.F.

    1986-01-01

    Four series of 1,4-dihydropyridine Ca{sup 2+} channel antagonists related to mifedipine were synthesized by a modified Hantzsch procedure to determine the effects of ester (C{sub 3} = CO{sub 2}Me, C{sub 5} = CO{sub 2}R) and phenyl (C{sub 4}) substituents on pharmacological and radioligand binding ((H)nitrendipine) activities in guinea pig ileal longitudinal smooth muscle. Two series of Ca{sup 2+} channel activator 1,4-dihydropyridines, BAY K 8644 (C{sub 3} = NO{sub 2}, C{sub 5} = CO{sub 2}Me) and CGP 28392 (C{sub 2,3} = lactone, C{sub 5} = CO{sub 2}Me) were biochemically evaluated by inhibition of ({sup 3}H)nitrendipine binding in guinea pig ileal longitudinal smooth muscle membranes to establish fundamental structure-activity requirements. A homologous series of bis-1,4-dihydropyridines were synthesized, pharmacologically and biochemically evaluated in an attempt to explore the distribution of the 1,4-dihydropyridine receptor in guinea pig ileal longitudinal smooth muscle membranes. Several potential affinity labels including ester substituted 3- and 4-fluorosulfonyl benzoyl and isothiocyanate derivatives were synthesized and evaluated by inhibition of ({sup 3}H)nitrendipine binding.

  15. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1.

    PubMed

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C

    2016-08-01

    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  16. Store-operated Ca2+ channels blockers inhibit lipopolysaccharide induced astrocyte activation.

    PubMed

    Li, Jian-Hua; Zhao, Shen-Ting; Wu, Cui-Ying; Cao, Xiong; Peng, Miao-Ru; Li, Shu-Ji; Liu, Xiao-Ai; Gao, Tian-Ming

    2013-10-01

    The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca(2+) (SOC) channels are essential for Ca(2+) homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca(2+)]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.

  17. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  18. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  19. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity.

    PubMed

    Hawkins, Virginia E; Hawryluk, Joanna M; Takakura, Ana C; Tzingounis, Anastasios V; Moreira, Thiago S; Mulkey, Daniel K

    2015-02-15

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H(+)-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs(+)) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih.

  20. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  1. Two-quasiparticle states in {sup 250}Bk studied by decay scheme and transfer reaction spectroscopy

    SciTech Connect

    Ahmad, I.; Kondev, F. G.; Koenig, Z. M.; McHarris, Wm. C.; Yates, S. W.

    2008-05-15

    Two-quasiparticle states in {sup 250}Bk were investigated with decay scheme studies and the single-neutron transfer reaction {sup 249}Bk(d,p){sup 250}Bk. Mass-separated sources of {sup 254}Es were used for {alpha} singles and {alpha}-{gamma} coincidence measurements. These studies, plus previous studies of {sup 254}Es{sup m} {alpha} decay and the {sup 249}Bk(n,{gamma}) reaction, provide spins and parities of the observed levels. The transfer reaction {sup 249}Bk(d,p){sup 250}Bk was used to deduce neutron single-particle components of the observed bands. Six pairs of singlet and triplet states, formed by the coupling of proton and neutron one-quasiparticle states, were identified. The splitting energies between the triplet and singlet states were found to be in agreement with previous calculations.

  2. Late-onset BK viral nephropathy in a kidney transplant recipient.

    PubMed

    Mathew, J C; Holanda, D G; Figanbaum, T L; Fraer, M; Thomas, C P

    2014-09-01

    BK polyoma viral infection occurs as an asymptomatic infection in a high proportion of normal hosts without obvious sequelae. In the kidney transplant population, the virus is reactivated because of reduced immunity and, if not appropriately managed, can lead to BK viral nephropathy, which has emerged as a common cause of acute kidney injury and progressive chronic kidney disease in renal transplant recipients. BK viremia almost always occurs during the first 2 years after transplantation, when immunosuppressive therapy is high, or at other periods when immunosuppression is intensified. BK viremia is now detected by routine screening of transplant patients for the first few years, and BK viral nephropathy is considered to be high in the differential diagnosis of acute kidney injury in recently transplanted patients. We report a case of BK viral nephropathy developing 10 years after transplantation and present the challenges of managing advanced disease.

  3. BIOPSY-PROVEN BK VIRUS NEPHROPATHY WITHOUT DETECTABLE BK VIREMIA IN A ONE-YEAR POST-KIDNEY TRANSPLANT RECIPIENT.

    PubMed

    Ruangkanchanasetr, Prajej; Pumchandh, Norawee; Satirapoj, Bancha; Termmathurapoj, Sumeth; Pongthanapisith, Viroj

    2015-07-01

    BK virus nephropathy (BKVN) is an important clinical problem in kidney transplant (KT) recipients. The sequence of disease is usually viruria, viremia and then nephropathy. Diagnosis of BK virus (BKV) infection includes checking BKV DNA in the urine, in the plasma and histology on renal biopsy. This last method is used to diagnose BKVN. We describe a KT patient with BKVN without detectable BK viremia. A 62-year-old female with hypertensive nephropathy underwent renal transplant from a living relative donor in December 2011. Fourteen months after transplantation, her serum creatinine(SCr) rose up from 1.2 to 1.6 mg/dl with biopsy-proven acute antibody-mediated and cellular rejection. After pulse methylprednisolone, plasmapheresis and intravenous immunoglobulin, her SCr decreased to baseline but she subsequently developed cytomegalovirus infection with pancytopenia and transaminitis. The SCr rose to 1.9 mg/dl despite ganciclovir treatment. Renal ultrasound and antegrade pyelogram showed partial obstruction of the proximal ureter with moderate hydronephrosis. A quantitative polymerase chain reaction (PCR) assay for BKV DNA was negative (less than 10 copies/ml). A renal biopsy was performed and the pathology revealed viral cytopathic changes in the tubular epithelium with interstitial inflammation. The renal biopsy also showed BKV nucleic acid sequences by in-situ hybridization confirming BKVN. Immunosuppression regimen was changed to cyclosporine, low-dose prednisolone and leflunomide. A temporary percutaneous nephrostomy was performed. Her renal function improved within one week. The diagnosis of BKVN should be considered in a KT recipient with a rising SCr with or without BK viremia and should be made by renal biopsy.

  4. Evaluation of leflunomide for the treatment of BK viremia and biopsy proven BK nephropathy; a single center experience

    PubMed Central

    Nesselhauf, Nicole; Strutt, Jaclyn; Bastani, Bahar

    2016-01-01

    Background: BK virus reactivation is a significant complication following renal transplantation that can result in graft failure. Reduction of immunosuppression and substitution of leflunomide for mycophenolate mofetil (MMF) has been used to treat this entity. Objectives: To evaluate the use of leflunomide in BK viremia (BKV) and biopsy proven BK nephropathy (BKN) in kidney and kidney-pancreas transplant recipients. Patients and Methods: We retrospectively reviewed 28 kidney and kidney-pancreas transplant recipients who had received leflunomide for BKV from January 2006 to November 2012. Demographics, time to BKV diagnosis, biopsy findings, rejection episodes, and laboratory data were recorded. Results: The average (mean ± SD) time to BKV from time of transplant was 316.1 ± 368.0 days (62-1708 days). At time of diagnosis, 64% of patients had their maintenance immunosuppression reduced. The indications for leflunomide administration were; BKV and biopsy proven acute rejection (BPAR) (50%), biopsy proven BKN (18%), or persistent BKV (25%). Therapeutic levels (50-100 mcg/mL) were achieved in only 54% of patients, and 60% of them had required a leflunomide dose of at least 60 mg/day. BK virus was cleared from the serum on average of 151 ± 145.2 days (17-476 days). At study commencement, 29% of patients had remained on leflunomide due to persistent BKV. Conclusions: In our study, most patients required at least a 60 mg daily dose of leflunomide to achieve therapeutic levels and to clear the virus compared to the standard 40 mg daily dose. Delaying therapy may result in progressive BKV and BKN. PMID:27047808

  5. Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52.

    PubMed

    Pan, Haifeng; Bao, Wenna; Xie, Zhipeng; Zhang, Jianguo; Li, Yongquan

    2010-04-01

    A cis-epoxysuccinate hydrolase (CESH) from Bordetella sp. BK-52 was purified 51.4-fold with a yield of 27.1% using ammonium sulphate precipitation, ionic exchange, hydrophobic interaction, molecular sieve chromatograph and an additional anion exchange chromatography. The CESH was stable in a broad range of temperature (up to 50 degrees C) and pH (4.0-10.0) with optima of 40 degrees C and pH6.5, respectively. It could be partially inhibited by EDTA-Na2, Ag+, SDS and DTT, while slightly enhanced by Ba2+ and Ca2+. The enzyme exhibited high stereospecificity in D(-)-tartaric acid (enantiomeric excess value higher than 99 %) with Km and Vmax value of 18.67 mM and 94.34 micronM/min/mg for disodium cis-epoxysuccinate, respectively. The Bordetella sp. BK-52 CESH gene, which contained 885 nucleotides (open reading frame) encoding 294 amino acids with a molecular mass of about 32 kDa, was successfully overexpressed in Escherichia coli using a T7/lac promoter vector and the enzyme activity increased 42-times compared to original strain. It may be an industrial biocatalyst for the preparation of D(-)-tartaric acid.

  6. Efficacy of intravenous immunoglobulin in the treatment of persistent BK viremia and BK virus nephropathy in renal transplant recipients.

    PubMed

    Vu, D; Shah, T; Ansari, J; Naraghi, R; Min, D

    2015-03-01

    BK virus-associated nephropathy (BKVN) can cause clinically significant viral infection in renal transplant recipients, leading to allograft dysfunction and loss. The usual management of BKVN involves the reduction of immunosuppression and the addition of leflunomide, quinolones, and cidofovir, but the rate of graft loss remains high. The aim of this study was to assess the impact of treatment with intravenous human immunoglobulin (IVIG) on the outcome of BKVN in renal transplant recipients. Upon diagnosis of BKVN, patients remained on anti-polyomavirus treatment, consisting of the reduction of immunosuppression and the use of leflunomide therapy. Treatment with IVIG was given only to patients who did not respond to 8 weeks of the adjustment of immunosuppression and leflunomide. All 30 patients had persistent BKV viremia and BKVN with their mean BK viral loads higher than the baseline (range, 15,000-2 million copies/mL). Mean peak BK load was 205,314 copies/mL compared with 697 copies/mL after 1 year of follow-up. Twenty-seven patients (90%) had a positive response in clearing viremia. The actuarial patient and graft survival rates after 12 months were 100% and 96.7%, respectively. IVIG administration appeared to be safe and effective in treating BKV viremia and BKVN and preventing graft loss in patients who had inadequate response to immunosuppression reduction and leflunomide therapy.

  7. BK virus nephropathy in a pediatric patient after hematopoietic stem cell transplantation.

    PubMed

    Aksenova, M; Tsetlina, V; Gutovskaya, E; Mitrofanova, A; Balashov, D; Maschan, A

    2015-02-01

    We report the case of a seven-yr-old Caucasian girl who presented with progressive deterioration of renal function 13 months after HSCT for myelodysplastic syndrome. BK virus nephropathy was suspected and confirmed. After reduction of immunosuppression and treatment with IVIG, leflunomide, ciprofloxacin, and cidofovir, clearance of BK virus from blood was achieved, and further progression or renal failure was prevented. We believe that BK virus nephropathy should be considered in cases of renal function deterioration in all immunocompromised patients.

  8. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels

    PubMed Central

    Gomis, Ana; Soriano, Sergio; Belmonte, Carlos; Viana, Félix

    2008-01-01

    Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP2 levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP2 levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events. PMID:18832422

  9. Methyl p-hydroxybenzoate causes pain sensation through activation of TRPA1 channels

    PubMed Central

    Fujita, F; Moriyama, T; Higashi, T; Shima, A; Tominaga, M

    2007-01-01

    Background and purpose: Parabens are commonly added in pharmaceutical, cosmetic and food products because of their wide antibacterial properties, low toxicity, inertness and chemical stability, although the molecular mechanism of their antibacterial effect is not fully understood. Some agonists of the transient receptor potential (TRP) A1 channels are known to have strong antibacterial activities. Therefore, a series of experiments was conducted to find out the effects of parabens on TRP channels expressed in sensory neurons, particularly the TRPA1 channels. Experimental approach: Effects of parabens, especially of methyl p-hydroxybenzoate (methyl paraben) on TRP channel activities were examined using Ca2+-imaging and patch-clamp methods. In addition, an involvement of methyl paraben in the development of pain-related behavior in mice was investigated. Key results: Methyl paraben specifically activated TRPA1 in both HEK293 cells expressing TRPA1 and in mouse sensory neurons with an EC50 value of 4.4 mM, an attainable concentration in methyl paraben-containing products. Methyl paraben caused pain-related behavior in mice similar to that caused by allyl isothiocyanate, which was blocked by the TRP channel blocker, ruthenium red. Conclusions and implications: Our data indicate that methyl paraben is able to activate TRPA1 channels and can cause pain sensation. As such, methyl paraben provides a useful tool for investigating TRPA1 function and development of antinociceptive agents acting on TRPA1 channels. PMID:17351650

  10. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  11. Apical potassium channels in the rat connecting tubule.

    PubMed

    Frindt, Gustavo; Palmer, Lawrence G

    2004-11-01

    Apical membrane K channels in the rat connecting tubule (CNT) were studied using the patch-clamp technique. Tubules were isolated from the cortical labyrinth of the kidney and split open to provide access to the apical membrane. Cell-attached patches were formed on presumed principal and/or connecting tubule cells. The major channel type observed had a single-channel conductance of 52 pS, high open probability and kinetics that were only weakly dependent on voltage. These correspond closely to the "SK"-type channels in the cortical collecting duct, identified with the ROMK (Kir1.1) gene product. A second channel type, which was less frequently observed, mediated larger currents and was strongly activated by depolarization of the apical membrane voltage. These were identified as BK or maxi-K channels. The density of active SK channels revealed a high degree of clustering. Although heterogeneity of tubules or of cell types within a tubule could not be excluded, the major factor underlying the distribution appeared to be the presence of channel clusters on the membrane of individual cells. The overall density of channels was higher than that previously found in the cortical collecting tubule (CCT). In contrast to results in the CCT, we did not detect an increase in the overall density of SK channels in the apical membrane after feeding the animals a high-K diet. However, the activity of amiloride-sensitive Na channels was undetectable under control conditions but was increased after both 1 day (90 +/- 24 pA/cell) or 7 days (385 +/- 82 pA/cell) of K loading. Thus one important factor leading to an increased K secretion in the CNT in response to increased dietary K is an increased apical Na conductance, leading to depolarization of the apical membrane voltage and an increased driving force for K movement out into the tubular lumen. PMID:15280155

  12. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    PubMed Central

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  13. Cryo-EM structure of the Slo2.2 Na+-activated K+ channel

    PubMed Central

    Hite, Richard; Yuan, Peng; Li, Zongli; Hsuing, Yichun; Walz, Thomas; MacKinnon, Roderick

    2015-01-01

    Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism. PMID:26436452

  14. Paradoxical Contribution of SK3 and GIRK Channels to the Activation of Mouse Vomeronasal Organ

    PubMed Central

    Kim, SangSeong; Ma, Limei; Jensen, Kristi L.; Kim, Michelle M.; Bond, Chris T.; Adelman, John P.; Yu, C. Ron

    2012-01-01

    The vomeronasal organ (VNO) plays an essential role in intraspecies communication for terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We find that the calcium–activated potassium channel SK3 and G–protein activated potassium channel GIRK are part of an independent pathway for VNO activation. In slice preparations, the potassium channels attenuate inward currents carried by TRPC2 and calcium–activated chloride channels (CACCs). In intact tissue preparations, paradoxically, the potassium channels enhance urine–evoked inward currents. This discrepancy results from the loss of a high concentration of lumenal potassium, which enables the influx of potassium ions to depolarize the VNO neurons in vivo. SK3−/− and GIRK1−/− mice show deficits in both mating and aggressive behaviors and deficiency in SK3−/− is exacerbated by TRPC2 knockout. Our results suggest a model of VNO activation that is mediated by TRPC2, CACCs and two potassium channels, all contributing to the in vivo depolarization of VNO neurons. PMID:22842147

  15. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    PubMed Central

    Griffith, Thom; Tsaneva-Atanasova, Krasimira; Mellor, Jack R.

    2016-01-01

    The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. PMID:27232631

  16. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  17. Discovery of novel tetrahydroisoquinoline derivatives as orally active N-type calcium channel blockers with high selectivity for hERG potassium channels.

    PubMed

    Ogiyama, Takashi; Inoue, Makoto; Honda, Shugo; Yamada, Hiroyoshi; Watanabe, Toshihiro; Gotoh, Takayasu; Kiso, Tetsuo; Koakutsu, Akiko; Kakimoto, Shuichiro; Shishikura, Jun-ichi

    2014-12-15

    N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.

  18. Fatal encephalitis due to BK virus in a patient with common variable immunodeficiency: a case report.

    PubMed

    Bakri, Faris G; Bahou, Yacoub G; Al-Sammarrai, Firas A; Hadidy, Azmy; Gharaibeh, Almutez; Zaid, Ghida K; Mahafzah, Azmi; Samara, Osama A; Ababneh, Nidaa A; Zak, Imad

    2013-08-01

    Encephalitis due to BK virus is a rare condition. Here, we describe a young male patient with common variable immunodeficiency who developed fatal encephalitis due to BK virus. The patient presented initially with ocular symptoms that were followed by behavioral changes and spastic quadriparesis. Diagnosis was made by the compatible clinical findings and detection of viral DNA by polymerase chain reaction in the cerebrospinal fluid. To the best of our knowledge, this is the first report of BK virus encephalitis in a patient with common variable immunodeficiency. We suggest that BK virus should be suspected in cases of encephalitis; particularly in patients with immunodeficiency.

  19. BK Virus in Kidney Transplant: Current Concepts, Recent Advances, and Future Directions.

    PubMed

    Sharma, Rajeev; Tzetzo, Stephanie; Patel, Sunil; Zachariah, Mareena; Sharma, Sonakshi; Melendy, Thomas

    2016-08-01

    BK virus nephropathy is a challenging clinical problem in kidney transplant recipients with wide range of surveillance and management practices, based on individual experience. BK virus reactivation in kidney transplant recipients can result in BK virus nephropathy and graft loss. The most effective strategy for early diagnosis and treatment of BK virus nephropathy is regular monitoring for BK virus, currently achieved by quantification of viral DNA in blood by quantitative polymerase chain reaction. Immunosuppression reduction remains the mainstay of treatment; however, viral clearance is often followed by acute rejection, likely secondary to a delay between immune reconstitution and viral clearance. Impaired cell-mediated immune response to BK virus has been shown to correlate with progression to BK virus nephropathy, while reconstitution of this response correlates with resolution of nephropathy. There is recent research to support monitoring BK virus-specific cell-mediated immune response as a predictor of disease progression and resolution. In this article, we review the current concepts and recent developments in understanding BK virus-associated disease in the context of kidney transplant and outline areas for future research.

  20. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage

    PubMed Central

    1992-01-01

    Cyclic nucleotide-gated channels (cng channels) in the sensory membrane of olfactory receptor cells, activated after the odorant-induced increase of cytosolic cAMP concentration, conduct the receptor current that elicits electrical excitation of the receptor neurons. We investigated properties of cng channels from frog and rat using inside- out and outside-out membrane patches excised from isolated olfactory receptor cells. Channels were activated by cAMP and cGMP with activation constants of 2.5-4.0 microM for cAMP and 1.0-1.8 for cGMP. Hill coefficients of dose-response curves were 1.4-1.8, indicating cooperativity of ligand binding. Selectivity for monovalent alkali cations and the Na/Li mole-fraction behavior identified the channel as a nonselective cation channel, having a cation-binding site of high field strength in the pore. Cytosolic pH effects suggest the presence of an additional titratable group which, when protonated, inhibits the cAMP-induced current with an apparent pK of 5.0-5.2. The pH effects were not voltage dependent. Several blockers of Ca2+ channels also blocked olfactory cng channels. Amiloride, D 600, and diltiazem inhibited the cAMP-induced current from the cytosolic side. Inhibition constants were voltage dependent with values of, respectively, 0.1, 0.3, and 1 mM at -60 mV, and 0.03, 0.02, and 0.2 mM at +60 mV. Our results suggest functional similarity between frog and rat cng channels, as well as marked differences to cng channels from photoreceptors and other tissues. PMID:1324972

  1. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-01-01

    Background and PurposeRetinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ, is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. Experimental ApproachWe performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. Key ResultsLE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. Conclusions and ImplicationsThis blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. PMID:24308840

  2. The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex

    PubMed Central

    2015-01-01

    The basal fungus Allomyces macrogynus (A. macrogynus) produces motile male gametes displaying well-studied chemotaxis toward their female counterparts. This chemotaxis is driven by sirenin, a sexual pheromone released by the female gametes. The pheromone evokes a large calcium influx in the motile gametes, which could proceed through the cation channel of sperm (CatSper) complex. Herein, we report the total synthesis of sirenin in 10 steps and 8% overall yield and show that the synthetic pheromone activates the CatSper channel complex, indicated by a concentration-dependent increase in intracellular calcium in human sperm. Sirenin activation of the CatSper channel was confirmed using whole-cell patch clamp electrophysiology with human sperm. Based on this proficient synthetic route and confirmed activation of CatSper, analogues of sirenin can be designed as blockers of the CatSper channel that could provide male contraceptive agents. PMID:26674547

  3. Calmodulin regulation of TMEM16A and 16B Ca(2+)-activated chloride channels.

    PubMed

    Yang, Tingting; Colecraft, Henry M

    2016-01-01

    Ca(2+)-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca(2+) sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca(2+)-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca(2+)-dependent sensitization of activation (CDSA) and Ca(2+)-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca(2+)-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels.

  4. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  5. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  6. Pilot conversion trial from mycophenolic acid to everolimus in ABO-incompatible kidney-transplant recipients with BK viruria and/or viremia.

    PubMed

    Belliere, Julie; Kamar, Nassim; Mengelle, Catherine; Allal, Asma; Sallusto, Federico; Doumerc, Nicolas; Game, Xavier; Congy-Jolivet, Nicolas; Esposito, Laure; Debiol, Benedicte; Rostaing, Lionel

    2016-03-01

    Immunosuppression using everolimus (EVR) plus low-dose tacrolimus (Tac) is commonly used in organ transplantation. EVR has potential antiviral effects. Herein, the long-term outcomes and impacts of Tac-EVR on the BK virus are reported in ABO-incompatible kidney-transplant recipients. The initial immunosuppressive regimen combined steroids, Tac, and mycophenolic acid (MPA). At a median of 141 (34-529) days post-transplantation, seven stable ABO-incompatible kidney-transplant recipients were converted from MPA to EVR because of active BK replication, and compared with a reference group of fourteen ABO-incompatible patients receiving classical Tac plus MPA. At 1 month before conversion, at 1, 3 months after, and at last follow-up, clinical and biological parameters were monitored. The median time from conversion to the last follow-up was 784 (398-866) days. Conversion to EVR caused no change to rejection episodes or immunological status (isoagglutinin titers, anti-HLA antibodies). At last follow-up, median eGFR was similar in the Tac-MPA versus Tac-EVR group (40 [range: 14-56] vs. 54.5 ml/min/1.73 m(2) [range: 0-128], P = 0.07). The major adverse event was dyslipidemia. Interestingly, conversion from MPA to EVR decreased BK viral load in five patients. ABO-incompatible kidney-transplant recipients with an active BK virus infection may benefit from conversion to EVR. PMID:26575959

  7. Blockade by local anaesthetics of the single Ca(2+)-activated K+ channel in rat hippocampal neurones.

    PubMed

    Oda, M; Yoshida, A; Ikemoto, Y

    1992-01-01

    1. Effects of local anaesthetics on single Ca(2+)-activated K+ channels were investigated using the inside-out configuration of the patch-clamp technique in single pyramidal neurones, which were freshly dissociated from rat hippocampus by use of proteolytic enzymes. 2. No significant effect was observed when 2 mM benzocaine was applied on either side of the membrane patch, or when 2 mM lignocaine or QX-314 was applied to the external surface of the membrane. 3. Lignocaine 1 mM, applied to the internal surface, slightly reduced the amplitude of the single K+ channel current. When applied to the internal surface QX-314 reduced the amplitude of the K+ channel current, accompanied by an increase in noise in the open channel current, suggesting a fast flickering block. The blocking effect of QX-314 on the outward current increased with depolarization, suggesting a binding site for the drug at an electrical distance of about 0.5 across the membrane field. 4. The open time histogram showed one exponential component and the closed time histogram showed at least two components. The mean open time of the outward current was increased when the amplitude was reduced by the drugs. 5. The ionized form of the local anaesthetics had a similar action on the Ca(2+)-activated K+ channels to that on Na+ channels, that is, they enter into the channel from the cytoplasmic side to induce open channel block. The blocking kinetics, however, might be so fast that they were beyond the frequency response of our recording apparatus, thus the recorded current amplitude was decreased. In contrast the K+ channel was not accessible via hydrophobic pathways for the neutral form, which is also known to block the sodium channel.

  8. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  9. Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site.

    PubMed Central

    Boyce, J D; Davidson, B E; Hillier, A J

    1995-01-01

    Spontaneous deletion mutants of the temperate lactococcal bacteriophage BK5-T were obtained when the phage was grown vegetatively on the indicator strain Lactococcus lactis subsp. cremoris H2. One deletion mutant was unable to form stable lysogens, and analysis of this mutant led to the identification of the BK5-T attP site and the integrase gene (int). The core sequences of the BK5-T attP and host attB regions are conserved in a number of lactococcal phages and L. lactis strains. PMID:8526525

  10. Alternative mechanism of activation of the epithelial na+ channel by cleavage.

    PubMed

    Hu, John Cong; Bengrine, Abderrahmane; Lis, Agnieszka; Awayda, Mouhamed S

    2009-12-25

    We examined activation of the human epithelial sodium channel (ENaC) by cleavage. We focused on cleavage of alphaENaC using the serine protease subtilisin. Trimeric channels formed with alphaFM, a construct with point mutations in both furin cleavage sites (R178A/R204A), exhibited marked reduction in spontaneous cleavage and an approximately 10-fold decrease in amiloride-sensitive whole cell conductance as compared with alphaWT (2.2 versus 21.2 microsiemens (microS)). Both alphaWT and alphaFM were activated to similar levels by subtilisin cleavage. Channels formed with alphaFD, a construct that deleted the segment between the two furin sites (Delta175-204), exhibited an intermediate conductance of 13.2 microS. More importantly, alphaFD retained the ability to be activated by subtilisin to 108.8 +/- 20.9 microS, a level not significantly different from that of subtilisin activated alphaWT (125.6 +/- 23.9). Therefore, removal of the tract between the two furin sites is not the main mechanism of channel activation. In these experiments the levels of the cleaved 22-kDa N-terminal fragment of alpha was low and did not match those of the C-terminal 65-kDa fragment. This indicated that cleavage may activate ENaC by the loss of the smaller fragment and the first transmembrane domain. This was confirmed in channels formed with alphaLD, a construct that extended the deleted sequence of alphaFD by 17 amino acids (Delta175-221). Channels with alphaLD were uncleaved, exhibited low baseline activity (4.1 microS), and were insensitive to subtilisin. Collectively, these data support an alternative hypothesis of ENaC activation by cleavage that may involve the loss of the first transmembrane domain from the channel complex. PMID:19858199

  11. Effects of antiarrhythmic drugs on the hyperpolarization-activated cyclic nucleotide-gated channel current.

    PubMed

    Tamura, Atsushi; Ogura, Takehiko; Uemura, Hiroko; Reien, Yoshie; Kishimoto, Takashi; Nagai, Toshio; Komuro, Issei; Miyazaki, Masaru; Nakaya, Haruaki

    2009-06-01

    After the report of the Cardiac Arrhythmia Suppression Trial, a tabular framework of the Sicilian Gambit has been proposed to display actions of antiarrhythmic drugs on ion channels and receptors and to provide more rational pharmacotherapy of arrhythmias. However, because effects of antiarrhythmic drugs on If have not been thoroughly examined, we used patch clamp techniques to determine the effects of various antiarrhythmic drugs on the HCN (hyperpolarization-activated cyclic nucleotide-gated) channel currents. HCN4 channels, a dominant isoform of HCN channels in the heart, were expressed in HEK293 cells. Amiodarone and bepridil potently inhibited the HCN4 channel current with IC50 values of 4.5 and 4.9 microM, respectively, which were close to their therapeutic concentrations. The inhibitory effects of quinidine, disopyramide, cibenzoline, lidocaine, mexiletine, aprindine, propafenone, flecainide, propranolol, and verapamil on the HCN4 channel current were weak in their therapeutic concentrations, with IC50 values of 78.3, 249, 46.8, 276, 309, 43.7, 14.3, 1700, 50.5, and 44.9 microM, respectively, suggesting that the inhibitory effects on If would be clinically small. D,L-Sotalol hardly affected the HCN4 channel current. Information about the HCN4-channel effects of many antiarrhythmic drugs may be useful for determining the appropriate drug for treatment of various arrhythmias while minimizing adverse effects. PMID:19498275

  12. Trimethyloxonium modification of batrachotoxin-activated Na channels alters functionally important protein residues.

    PubMed Central

    Cherbavaz, D B

    1995-01-01

    The extracellular side of single batrachotoxin-activated voltage-dependent Na channels isolated from rat skeletal muscle membranes incorporated into neutral planar lipid bilayers were treated in situ with the carboxyl methylating reagent, trimethyloxonium (TMO). These experiments were designed to determine whether TMO alters Na channel function by a general through-space electrostatic mechanism or by methylating specific carboxyl groups essential to channel function. TMO modification reduced single-channel conductance by decreasing the maximal turnover rate. Modification increased channel selectivity for sodium ions relative to potassium ions as measured under biionic conditions. TMO modification increased the mu-conotoxin (muCTX) off-rate by three orders of magnitude. Modification did not alter the muCTX on-rate at low ionic strength or Na channel voltage-dependent gating characteristics. These data demonstrate that TMO does not act via a general electrostatic mechanism. Instead, TMO targets protein residues specifically involved in ion conduction, ion selectivity, and muCTX binding. These data support the hypothesis that muCTX blocks open-channel current by physically obstructing the ion channel pore. PMID:7787022

  13. [The activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator chloride channel].

    PubMed

    Yang, Shuang; Yu, Bo; Zhang, Yao-Fang; Wang, Xue; Yang, Hong

    2013-06-01

    Aim of the present study is to investigate activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity. CFTR-mediated iodide influx assay and patch-clamp tests were done on FRT cells stably co-transfected with human CFTR and EYFP/H148Q. Nobiletin potently activated CFTR chloride channel activity in a dose- and time-dependent manner. The CFTR blocker CFTR(inh)-172 could completely reverse the effect. Preliminary mechanism study indicated that nobiletin activated CFTR chloride channel through a direct binding way. In addition, ex vivo tests done on mice trachea showed that nobiletin time-dependently stimulated submucosal gland fluid secretion. Nobiletin may be a therapeutic lead compound in treating CFTR-related diseases including disseminated bronchiectasis.

  14. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  15. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator.

    PubMed Central

    Cooke, J P; Rossitch, E; Andon, N A; Loscalzo, J; Dzau, V J

    1991-01-01

    Flow-mediated vasodilation is endothelium dependent. We hypothesized that flow activates a potassium channel on the endothelium, and that activation of this channel leads to the release of the endogenous nitrovasodilator, nitric oxide. To test this hypothesis, rabbit iliac arteries were perfused at varying flow rates, at a constant pressure of 60 mm Hg. Increments in flow induced proportional increases in vessel diameter, which were abolished by L,N-mono-methylarginine (the antagonist of nitric-oxide synthesis). Barium chloride, depolarizing solutions of potassium, verapamil, calcium-free medium, and antagonists of the KCa channel (charybdotoxin, iberiotoxin) also blocked flow-mediated vasodilation. Conversely, responses to other agonists of endothelium-dependent and independent vasodilation were unaffected by charybdotoxin or iberiotoxin. To confirm that flow activated a specific potassium channel to induce the release of nitric oxide, endothelial cells cultured on micro-carrier beads were added to a flow chamber containing a vascular ring without endothelium. Flow-stimulated endothelial cells released a diffusible vasodilator; the degree of vasorelaxation was dependent upon the flow rate. Relaxation was abrogated by barium, tetraethylammonium ion, or charybdotoxin, but was not affected by apamin, glybenclamide, tetrodotoxin, or ouabain. The data suggest that transmission of a hyperpolarizing current from endothelium to the vascular smooth muscle is not necessary for flow-mediated vasodilation. Flow activates a potassium channel (possibly the KCa channel) on the endothelial cell membrane that leads to the release of nitric oxide. Images PMID:1719029

  16. RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction

    PubMed Central

    Graf, Ethan R.; Valakh, Vera; Wright, Christina M.; Wu, Chunlai; Liu, Zhihua; Zhang, Yong Q.; DiAntonio, Aaron

    2012-01-01

    Summary Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca2+ channels and proteins that influence Ca2+ channel accumulation at release sites. Here we identify Drosophila RIM and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission, due to a significant reduction in both the clustering of Ca2+ channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Since RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca2+ channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca2+ channel accumulation but is not a Rab3 effector for release machinery distribution across release sites. PMID:23175814

  17. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism

    PubMed Central

    1996-01-01

    Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm. PMID:8923264

  18. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    PubMed

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK.

  19. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  20. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  1. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries

    PubMed Central

    Prieto, Dolores; Simonsen, Ulf; Hernández, Medardo; García-Sacristán, Albino

    1998-01-01

    Penile small arteries (effective internal lumen diameter of 300–600 μm) were isolated from the horse corpus cavernosum and mounted in microvascular myographs in order to investigate the mechanisms underlying the endothelium-dependent relaxations to acetylcholine (ACh) and bradykinin (BK).In arteries preconstricted with the thromboxane analogue U46619 (3–30 nM), ACh and BK elicited concentration-dependent relaxations, pD2 and maximal responses being 7.71±0.09 and 91±1% (n=23), and 8.80±0.07 and 89±2% (n=24) for ACh and BK, respectively. These relaxations were abolished by mechanical endothelial cell removal, attenuated by the nitric oxide (NO) synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG, 100 μM) and unchanged by indomethacin (3 μM). However, raising extracellular K+ to concentrations of 20–30 mM significantly inhibited the ACh and BK relaxant responses to 63±4% (P<0.01, n=7) and to 59±4% (P<0.01, n=6), respectively. ACh- and BK-elicited relaxations were abolished in arteries preconstricted with K+ in the presence of 100 μM L-NOARG.In contrast to the inhibitor of ATP-sensitive K+ channels, the blockers of Ca2+-activated K+ (KCa) channels, charybdotoxin (30 nM) and apamin (0.3 μM), each induced slight but significant rightward shifts of the relaxations to ACh and BK without affecting the maximal responses. Combination of charybdotoxin and apamin did not cause further inhibition of the relaxations compared to either toxin alone. In the presence of L-NOARG (100 μM), combined application of the two toxins resulted in the most effective inhibition of the relaxations to both ACh and BK. Thus, pD2 and maximal responses for ACh and BK were 7.65±0.08 and 98±1%, and 9.17±0.09 and 100±0%, respectively, in controls, and 5.87±0.09 (P<0.05, n=6) and 38±11% (P<0.05, n=6), and 8.09±0.14 (P<0.01, n=6) and 98±1% (n=6), respectively, after combined application of charybdotoxin plus apamin and L-NOARG.The selective inhibitor of

  2. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle.

    PubMed

    Bolotina, V M; Najibi, S; Palacino, J J; Pagano, P J; Cohen, R A

    1994-04-28

    Nitric oxide is the major endothelium-derived relaxing factor (EDRF), and it is thought to relax smooth muscle cells by stimulation of guanylate cyclase, accumulation of its product cyclic GMP, and cGMP-dependent modification of several intracellular processes, including activation of potassium channels through cGMP-dependent protein kinase. Here we present evidence that both exogenous nitric oxide and native EDRF can directly activate single Ca(2+)-dependent K+ channels (K+Ca) in cell-free membrane patches without requiring cGMP. Under conditions when guanylate cyclase was inhibited by methylene blue, considerable relaxation of rabbit aorta to nitric oxide persisted which was blocked by charybdotoxin, a specific inhibitor of K+Ca channels. These studies demonstrate a novel direct action of nitric oxide on K+Ca channels. PMID:7512692

  3. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intra