Sample records for black carbon quantification

  1. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  2. Quantity and quality of black carbon molecular markers as obtained by two chromatographic methods (GC-FID and HPLC-DAD) - How do results compare?

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Smittenberg, R. H.; Dittmar, T.; Schmidt, M. W. I.

    2009-04-01

    Chars produced by wildfires are an important source of black carbon (BC) in the environment. After their deposition on the soil surface they can be distributed into rivers, marine waters and sediments. The analysis of benzenepolycarboxylic acids (BPCAs) as a quantitative measure for black carbon (BC) in soil and sediment samples is a well-established method (Glaser et al., 1998; Brodowski et al., 2005). Briefly, the nitric acid oxidation of fused aromatic ring systems in BC forms eight molecular markers (BPCAs), which can be assigned to BC, and which subsequently can be quantified by GC-FID (gas chromatography with flame ionization detector). Recently, this method was modified for the quantification of BC in seawater samples using HPLC-DAD (High performance liquid chromatography with diode array detector) for the determination of individual BPCAs (Dittmar, 2008). A direct comparison of both analytical techniques is lacking but would be important for future data comparison aimed at the calculation of global BC budgets. Here we present a systematic comparison of the two BPCA quantification methods. We prepared chars under well-defined laboratory conditions. In order to cover a broad spectrum of char properties we used two sources of biomass and a wide range of pyrolysis temperatures. Chestnut hardwood chips (Castanea sativa) and rice straw (Oryza sativa) were pyrolysed at temperatures between 200 and 1000°C under a constant N2 stream. The maximum temperatures were held constant for 5 hours (Hammes et al., 2006). The BC contents of the chars have been analysed using the BPCA extraction method followed by either GC-FID or HPLC-DAD quantification. Preliminary results suggest that both methods yield similar total quantities of BPCA, and also the proportions of the individual markers are similar. Ongoing experiments will allow for a more detailed comparison of the two methods. The BPCA composition of chars formed at different temperatures and from different precursor biomass is being used for this purpose. We seek to establish a conversion factor between both methods, if required. Results show that both the GC and the HPLC method can be used for organic samples containing some silica, such as grass char. Further tests include silica-rich materials, such as soils. Ongoing methodological work aims at carbon isotope analysis (13C and 14C) on individual BPCAs isolated via HPLC. At present the HPLC method employs tetrabutyl ammonium bromide (TBAB) as a modifier for the liquid phase. TBAB is not volatile and contains carbon, it therefore prevents carbon isotopic analysis on isolated BPCAs. References Brodowski, S., Rodionov, A., Haumeier, L., Glaser, B., Amelung, W. (2005) Revised black carbon assessment using benzene polycarboxylic acids. Organic Geochemistry, 36(9), 1299-1310. Dittmar, T. (2008) The molecular level determination of black carbon in marine dissolved organic matter. Organic Geochemistry, 39(4). 396-407. Glaser, B., Haumeier, L., Guggenberger, G., Zech, W. (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 29(4), 811-819. Hammes, K. Smernik, R. J., Skjemstad, J. O., Herzog, A., Vogt, U. F., Schmidt, M. W. I. (2006) Synthesis and characterisation of laboratory-charred grass straw (Oryza saliva) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification Organic Geochemistry 37(11). 1629-1633

  3. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGES

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  4. Analysis of PEG oligomers in black gel inks: Discrimination and ink dating.

    PubMed

    Sun, Qiran; Luo, Yiwen; Xiang, Ping; Yang, Xu; Shen, Min

    2017-08-01

    Carbon-based black gel inks are common samples in forensic practice of questioned document examination in China, but there are few analytical methods for this type of ink. In this study, a liquid chromatography-.high resolution mass spectrometry (LC-HRMS) method was established for the analysis of PEG oligomers in carbon-based black gel ink entries. The coupled instruments achieve both the identification and quantification of PEG oligomers in ink entries with reproducible results. Twenty carbon-based black gel inks, whose Raman spectra appeared identical, were analyzed using the LC-HRMS method. As a result, the twenty gel inks were classified into four groups according to the distribution of PEG oligomers. Artificially aging of PEG 400 and a gel ink showed that as PEG degraded, the relative amounts of low molecular weight PEG oligomers increased, while those of high molecular weight decreased. The degradation of PEG oligomers in a naturally aged gel ink was consistent with those in the artificially aged samples, but occurred more slowly. This study not only provided a new method for discriminating carbon-based black gel ink entries, but also offered a new approach for studying the relative ink dating of carbon-based black gel ink entries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for revealing the mechanism of carbon burial and evaluating the capacity of marine carbon accumulation and sequestration.

  6. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging.

    PubMed

    Müller, Simon; Pietsch, Patrick; Brandt, Ben-Elias; Baade, Paul; De Andrade, Vincent; De Carlo, Francesco; Wood, Vanessa

    2018-06-14

    Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.

  7. Black Carbon Measurement Intercomparison during the 2017 Black Carbon Shootout

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Moore, R.; Winstead, E.; Robinson, C. E.; Shook, M.; Crosbie, E.; Ziemba, L. D.; Thornhill, K. L., II; Sorooshian, A.; Anderson, B. E.

    2017-12-01

    The NASA Langley Aerosol Research Group (LARGE) provides multiple black carbon (BC) based aerosol particle measurements and engine emission factors for airborne and ground-based field campaigns and laboratory studies. These datasets are made available to the general public where accuracy is key to enable further use in environmental assessments, models, and validation studies. Studies are needed to establish the accuracy and precision of BC measurements of particles with varying physical properties using a variety of detection techniques. Work is also needed to develop calibration and correction schemes for new sensors and to link these measurements to heritage instruments on which our understanding of BC emissions and characteristics has been established. A BC measurement intercomparison was performed at Langley Research Center using particles generated from a mini-CAST (Jing) diffusion flame soot generator. The particles were passed to instruments measuring optical absorption, extinction, scattering and black carbon mass. Filter based measurements of optical absorption were performed using a PSAP (Radiance Research) and a TAP (BMI). Absorption was also measured using two photoacoustic based instruments: the MSS-plus (AVL) and PASS-3 (DMT). Measurements of aerosol extinction were performed using three CAPS PM-ex (Aerodyne Research) instruments at multiple wavelengths. Two Artium LII-300 units (standard and high-sensitivity) were used to measure black carbon mass via laser incandescence. Black carbon measurements were correlated to mass collected concurrently on a filter and analyzed by OC/EC analysis (Sunset Labs). Black carbon quantification measurements are analyzed between instruments to assess agreement between platforms using manufacturer's calibration settings as well as after calibrations performed to a single standard soot source (mini-CAST). Sampling was also performed from behind a Falcon aircraft at multiple thrust settings and downwind of runway at an international airport with commercial takeoffs and landings.

  8. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less

  9. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System.

    PubMed

    Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-07-07

    An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.

  10. How shorter black carbon lifetime alters its climate effect.

    PubMed

    Hodnebrog, Øivind; Myhre, Gunnar; Samset, Bjørn H

    2014-09-25

    Black carbon (BC), unlike most aerosol types, absorbs solar radiation. However, the quantification of its climate impact is uncertain and presently under debate. Recently, attention has been drawn both to a likely underestimation of global BC emissions in climate models, and an overestimation of BC at high altitudes. Here we show that doubling present day BC emissions in a model simulation, while reducing BC lifetime based on observational evidence, leaves the direct aerosol effect of BC virtually unchanged. Increased emissions, together with increased wet removal that reduces the lifetime, yields modelled BC vertical profiles that are in strongly improved agreement with recent aircraft observations. Furthermore, we explore the consequences of an altered BC profile in a global circulation model, and show that both the vertical profile of BC and rapid climate adjustments need to be taken into account in order to assess the total climate impact of BC.

  11. Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance

    NASA Astrophysics Data System (ADS)

    Elmquist, Marie; Cornelissen, Gerard; Kukulska, Zofia; Gustafsson, Örjan

    2006-06-01

    Sequestration in sediments of black carbon (BC) from vegetation fires and fuel combustion may constitute a significant sink of otherwise rapidly cycling carbon from the atmosphere-biosphere cycle. It also has the potential to provide a historical record of atmospheric BC loadings. Previous treatments of BC as one homogeneous entity are being replaced with the growing awareness of a BC combustion continuum, a range spanning from slightly charred biomass to soot and graphite. Here the relative recalcitrance of different BC forms is evaluated, and implications for both BC quantification and environmental stability are considered. The stabilities of four BC reference materials against thermal oxidation in air were quite distinct with T50%BC values (i.e., the temperature where 50% BC remained in the residue) of 444°C (diesel soot-BC), 388°C (n-hexane soot-BC), 338°C (wood char-BC), and 266°C (grass char-BC). The implications for BC quantification have been illustrated for a thermal oxidation (the CTO-375) method commonly applied to study BC in sediments. This technique measured BC:TOC ratios of 78.3 ± 1.3% for the diesel soot-BC and 45.3 ± 6.1% for n-hexane soot-BC, whereas no CTO375-BC was detected for the two analyzed char-BC materials. The greater lability of char-BC compared to soot-BC likely reflects higher accessibility to internal microporosity in char-BC, facilitating internal O2 transfer. Decreasing the temperature cutoff below 375°C to also include char-BC is not possible as thermograms of nonpyrogenic reference materials indicated that such material would then be artifactually quantified as BC. The presence of mineral oxides in the sediment matrix may lead to a catalytically mediated lowering of the activation energy for soot-BC oxidation but not for char-BC or nonpyrogenic organic material. Several recent studies combine to challenge the proposition of complete recalcitrance of BC. Particularly, the thermal lability of char-BC from grassland fires deserves further attention in order to improve the understanding of BC in the global carbon cycle.

  12. Analysis of black carbon molecular markers by two chromatographic methods (GC-FID and HPLC-DAD)

    NASA Astrophysics Data System (ADS)

    Schneider, Maximilian P. W.; Smittenberg, Rienk H.; Dittmar, Thorsten; Schmidt, Michael W. I.

    2010-05-01

    The analysis of benzenepolycarboxylic acids (BPCA) as a quantitative measure for black carbon (BC) in soil and sediment samples is a well-established method [1, 2]. Briefly, the oxidation of polycondensated BC molecules forms seven molecular markers, which can be assigned to BC, and which subsequently can be quantified by GC-FID (gas chromatography with flame ionization detector). Recently this method has been refined for BC quantification in seawater samples measuring BPCA on HPLC-DAD (High performance liquid chromatography with diode array detector) [3]. However, a systematic comparison of BC as determined by both analytical techniques would be essential to the calculation of global BC budgets, but is lacking. Here we present data for the systematic comparison of the two BPCA methods, both for quantity and quality. We prepared chars under well-defined laboratory conditions. Chestnut hardwood chips and rice straw were pyrolysed at temperatures between 200 and 1000°C under constant N2 stream. The BC contents of the chars have been analysed using the BPCA extraction method followed by either GC-FID or HPLC-DAD quantification [4]. It appears that the GC-FID method yields systematically lower concentrations of BPCA in the chars compared to the HPLC-DAD method. Possible reasons for the observed difference are i) higher losses of sample material during preparation for GC-FID; ii) different quality of the linear regression used for quantification; iii) incomplete derivatisation of B5CA and B6CA, which is needed for GC-FID analysis. In a next step, we will test different derivatisation procedures (methylation with dimethyl sulfate or diazomethane, and silylation) for their influence on the GC-FID results. The aim of this study is to test if black carbon can be quantified in soil, sediment and water samples using one single method - a crucial step when attempting a global BC budget. References: [1] Brodowski, S., Rodionov, A., Haumeier L., Glaser, B., Amelung, W. (2005) Org. Geochem. 36, 1299-1310. [2] Glaser, B., Haumeier, L., Guggenberger, G., Zech, W. (1998) Org. Geochem. 29, 811-819. [3] Dittmar, T. (2008) Org. Geochem. 39. 396-407. [4] Schneider, M.P.W., Hilf, M., Vogt, U.F., Schmidt, M.W.I., Org. Geochem. (submitted)

  13. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  14. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  15. Segmentation And Quantification Of Black Holes In Multiple Sclerosis

    PubMed Central

    Datta, Sushmita; Sajja, Balasrinivasa Rao; He, Renjie; Wolinsky, Jerry S.; Gupta, Rakesh K.; Narayana, Ponnada A.

    2006-01-01

    A technique that involves minimal operator intervention was developed and implemented for identification and quantification of black holes on T1- weighted magnetic resonance images (T1 images) in multiple sclerosis (MS). Black holes were segmented on T1 images based on grayscale morphological operations. False classification of black holes was minimized by masking the segmented images with images obtained from the orthogonalization of T2-weighted and T1 images. Enhancing lesion voxels on postcontrast images were automatically identified and eliminated from being included in the black hole volume. Fuzzy connectivity was used for the delineation of black holes. The performance of this algorithm was quantitatively evaluated on 14 MS patients. PMID:16126416

  16. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  17. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    PubMed

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current-generation gasoline engines. Most comparison studies of black carbon (BC) measurement methods were carried out in the ambient air. This study assesses the agreement among various BC measurement instrument in emissions from light-duty gasoline vehicles (LDGVs) on standard test cycles, and evaluates applicability of these methods under various fuel types, driving cycles, and engine combustion technologies. This research helps to fill in the knowledge gap of BC method standardization as stated in the U.S. Environmental Protection Agency (EPA) 2011 Report to Congress on Black Carbon, and these results demonstrate the feasibility of quantification of BC at the 1 mg/mi PM standard in California Low Emission Vehicle III regulations.

  18. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    PubMed

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents inmore » the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign’s deployment within the Arctic Circle during the summer of 2015 (Deadhorse, Alaska [70° 12' 20" N, 148° 30' 42" W]), the truly unique opportunity presented itself to acquire profile data on BC loading at little additional cost. Since the SP2 is a particle-resolved measurement, the resulting data set provides refractory black carbon (rBC) mass loadings, size and mass distributions, and rBC-containing particle mixing state, all of which are expected to readily find value in the modeling community. As part of the ACME-V (http://www.arm.gov/campaigns/aaf2014armacmev) campaign, CO, CO2, and CH4 were also measured, providing the unique opportunity for carbon closure. We will also work closely with modelers who require such data and expect this collaboration will lead directly to a better understanding of the climate impacts of BC in the Arctic. The primary measurement objective was to acquire airborne data on the vertical and spatial distributions of refractory black carbon (rBC) loading, size and mass distribution, and particle mixing state. The primary scientific objective was to provide a targeted data set of rBC particle distributions to better understand and constrain the impact of black carbon radiative forcing in the cryosphere. The SP2-based data set during this campaign is available in the DOE-ARM archive (http://www.arm.gov/campaigns/aaf2015abclp).« less

  20. Distribution, Transport, and Accumulation of Pyrogenic Black Carbon in Post-Wildfire Watersheds

    NASA Astrophysics Data System (ADS)

    Galanter, A.; Cadol, D. D.; Frey, B.; Lohse, K. A.

    2014-12-01

    Large, high severity wildfires greatly alter forest structure, water quality, and soil development/erosion. With increased frequency of such wildfires also follows heavy post-wildfire debris flows and flooding which deliver high loads of sediment and pyrogenic black carbon (PyC) to downstream waterways. The accumulation of PyC is a multi-faceted and dynamic issue in the critical zone. Generated by incomplete combustion of organic matter, PyC (in the form of soot and char) impacts turbidity, biological and chemical oxygen demand, and pH. In addition, PyC has the potential to sequester contaminants and can store carbon over short and long timescales. The impacts of two recent wildfires in Northern New Mexico are studied with the goal of understanding the fluxes and residence times of PyC in post-wildfire, mountainous watersheds. Employing burn severity maps and geospatial data, we selected three sites to collect soil and water samples to characterize PyC: a control, an area impacted by a large, severe burn (2011), and an area impacted by a smaller, less severe burn (2013). By collaborating with researchers at the Jemez Critical Zone Observatory, soil samples are being analyzed and will provide pre-wildfire PyC concentrations for the 2013 burn area. In this study, PyC is treated as both a particulate and a solute that is transported throughout the watershed as well as degraded in soils, surface water and groundwater. We used two black carbon quantification methods: the chemo-thermal oxidation (CTO-375) method to distinguish between soil soot and char, and the benzene polycarboxylic acids (BPCA) method to quantify the total concentrations of PyC in soil and water samples. Preliminary soil data from the CTO-375 method show comparable soot concentrations in the control, 2011, and 2013 burn indicating that the soot is more recalcitrant than char and remains in the watershed long after a wildfire. This data also suggests that the fluxes of black carbon over short time scales are composed mainly of char.

  1. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    NASA Astrophysics Data System (ADS)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order to evaluate the possibility of continue using, for trend analysis, the historical data set, we performed an inter-comparison between our method and an adaptation of EUSAAR-2 protocol, taking into account that this last protocol will possibly be recommended for analysing carbonaceous aerosols at European sites. In this inter-comparison we tested different types of samples (PM2,5, PM2,5-10, PM10) with large spectra of carbon loadings, with and without pre-treatment acidification. For a reduced number of samples, five replicates of each one were analysed by each method for statistical purposes. The inter-comparison study revealed that when the sample analysis were performed in similar room conditions, the two thermo-optic methods give similar results for TC, OC and EC, without significant differences at a 95% confidence level. The correlation between the methods, DAO and EUSAAR-2 for EC is smaller than for TC and OC, although showing a coefficient correlation over 0,95, with a slope close to one. For samples performed in different periods, room temperatures seem to have a significant effect over OC quantification. The sample pre-treatment with HCl fumigation tends to decrease TC quantification, mainly due to the more volatile organic fraction release during the first heating step. For a set of 20 domestic biomass burning samples analyzed by the DAO method we observed an average decrease in TC quantification of 3,7 % in relation to non-acidified samples, even though this decrease is accompanied by an average increase in the less volatile organic fraction. The indirect measurement of carbon carbonate, usually a minor carbon component in the carbonaceous aerosol, based on the difference between TC measured by TOM of acidified and non-acidified samples is not a robust measurement, considering the biases affecting his quantification. The present study show that the two thermo-optic temperature program used for OC and EC quantification give similar results, and if in the future the EUSAAR-2 protocol will be adopted the past measurement of carbonaceous fractions can be used for trend analysis. However this study demonstrates that the temperature control during post-sampling handling is a critical point in total OC and TC quantification that must be assigned in the new European protocol. References: Cavali et al., 2009, AMTD 2, 2321-2345, 2009 Chow et al., 2001, Aerosol. Sci. Technol., 34, 23-34, 2001. Pio et al., 1994, Proceedings of the Sixth European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants. Report EUR 15609/2 EN, pp. 706-711. Pio et al, 2007, J. Geophys. Res. 112, D23S02 Acknowledgement: This work was funded by the Portuguese Science Foundation through the projects POCI/AMB/60267/2004 and PTDC/AMB/65706/2006 (BIOEMI). F. Mirante acknowledges the PhD grant SFRH/BD/45473/2008.

  2. REPORT TO CONGRESS ON BLACK CARBON

    EPA Science Inventory

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and thei...

  3. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp... production of carbon black by the lamp process. ...

  4. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace Process Subcategory § 458.10 Applicability; description of the carbon black...

  5. 40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.20 Applicability: description of the carbon black...

  6. 40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.30 Applicability; description of the carbon black...

  7. EVALUATION OF CARBON BLACK SLURRIES AS CLEAN BURNING FUELS

    EPA Science Inventory

    Experiments were performed to examine the pumpability, atomization and combustion characteristics of slurries made of mixtures of carbon black with No. 2 fuel oil and methanol. Carbon black-No. 2 fuel oil and carbon black-methanol slurries, with carbon black contents of up to 50 ...

  8. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    NASA Astrophysics Data System (ADS)

    DuBay, Shane G.; Fuldner, Carl C.

    2017-10-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling.

  9. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    PubMed Central

    DuBay, Shane G.; Fuldner, Carl C.

    2017-01-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling. PMID:29073051

  10. Black Carbon Measurement and Modeling in the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Zawad, Faisal Al; Khoder, Mamdouh; Almazroui, Mansour; Alghamdi, Mansour; Lihavainen, Heikki; Hyvarinen, Antti; Henriksson, Svante

    2017-04-01

    Black carbon is an important atmospheric aerosol as an effective factor in public health, changing the global and regional climate, and reducing visibility. Black carbon absorbs light, warms the atmosphere, and modifies cloud droplets and the amount of precipitation. In spite of this significance, knowledge of black carbon over the Arabian Peninsula is hard to find in literature until recently. The total mass of black carbon and wind direction and speeds were measured continuously at Hada Al-Sham, Saudi Arabia for the year 2013. In addition, a state of the art global aerosol - climate model (ECHAM5-HAM) was used to determine black carbon climatology over the Arabian Peninsula. Simulation of the model was carried out for the years eight years (2004 - 2011). The daily mean values of the concentrations of black carbon had a minimum of 15.0 ng/m3 and a maximum of 6372 ng/m3 with a mean of at 1899 ng/m3. The diurnal pattern of black carbon showed higher values overnight, and steady low values during daytimes caused by sea and land breezes. Seasons of black carbon vary over the Arabian Peninsula, and the longest is in the Northern Region where it lasts from July to October. High concentrations of black carbon at Hada Al-Sham was observed with a mean of 1.9 µm/m3, and seasons of black carbon vary widely across the Arabian Peninsula. Assessment of the effects of black carbon over the Arabian Peninsula on the global radiation balance. Initiating a black carbon monitoring network is highly recommended to assess its impacts on health, environment, and climate.

  11. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pyrolytic carbon coated black silicon

    NASA Astrophysics Data System (ADS)

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-05-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm.

  13. Pyrolytic carbon black composite and method of making the same

    DOEpatents

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  14. Recent Increase in Black Carbon Concentrations from a Mt. Everest Ice Core Spanning 1860-2000 AD

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Schwikowski, M.; Gysel, M.; Mayewski, P. A.; Kang, S.; Hou, S.

    2009-12-01

    Black carbon produced by the incomplete combustion of biomass, coal and diesel fuels can significantly contribute to climate change by altering the Earth’s radiative balance. Black carbon in the atmosphere absorbs light and causes atmospheric heating, whereas black carbon deposited on snow and ice can significantly reduce the surface albedo, resulting in rapid melting of snow and ice. Historical records of black carbon concentration and distribution in the atmosphere are needed to determine the role of black carbon in climate change, however most studies have relied on estimated inventories based on wood and/or fossil fuel consumption data. Reconstructing black carbon concentrations in Asia is particularly important because this region has some of the largest black carbon sources globally, which negatively impact climate, water resources, agriculture and human health. We analyzed a Mt. Everest ice core for black carbon using a single particle soot photometer (SP2). The high-resolution black carbon data demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. Black carbon concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, and the timing of this increase is consistent with black carbon emission inventory data from South Asia. It is notable that there is no increasing trend in iron (used as a proxy for dust) since 1860. This is significant because it suggests that if the recent retreat of glaciers in the region is due, at least in part, to the effect of impurities on snow albedo, the reduced albedo is due to changes in black carbon emissions, not dust.

  15. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions.

    PubMed

    Kucbel, Marek; Corsaro, Agnieszka; Švédová, Barbora; Raclavská, Helena; Raclavský, Konstantin; Juchelková, Dagmar

    2017-12-01

    Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Black Carbon Diesel Initiative in the Russian Arctic

    EPA Pesticide Factsheets

    Mobile and stationary diesel engines are among the largest sources of black carbon emissions in the Arctic. To address this challenge, EPA is leading the Black Carbon Diesel Initiative under the Arctic Black Carbon Initiative (ABCI).

  17. Low-level (submicromole) environmental 14C metrology

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Kessler, J. D.; Marolf, J. V.; McNichol, A. P.; Stuart, D. R.; Donoghue, J. C.; Donahue, D. J.; Burr, G. S.; Biddulph, D.

    2000-10-01

    Accelerator mass spectrometry (AMS) measurements of environmental 14C have been employed during the past decade at the several micromole level (tens of μg carbon), but advanced research in the atmospheric and marine sciences demands still higher (μg) sensitivity, an extreme example being the determination of 14C in elemental or "black" carbon (BC) at levels of 2-10 μg per kg of Greenland snow and ice (Currie et al., 1998). A fundamental limitation for 14C AMS is Poisson counting statistics, which sets in at about 1 μg modern-C. Using the small sample (25 μg) AMS target preparation facility at NOSAMS (Pearson et al., 1998), and the microsample combustion-dilution facility at NIST, we have demonstrated an intrinsic modern-C quantification limit ( mQ) of ca. 0.9 μg, based on a 1-parameter fit to the empirical AMS variance function. (For environmental 14C, the modern carbon quantification limit is defined as that mass ( mQ) corresponding to 10% relative standard deviation (rsd) for the fraction of modern carbon, σ( fM)/ fM.) Stringent control, required for quantitative dilution factors (DL), is achieved with the NIST on-line manometric/mass spectrometry facility that compensates also for unsuspected trace impurities from vigorous chemical processing (e.g., acid digestion). Our current combustion blank is trivial (mean: 0.16 ± 0.02 μg C, n=13) but lognormally distributed (dispersion [σ]: 0.07 ± 0.01 μg). An iterative numerical expression is introduced to assess the quantitative impacts of fossil and modern carbon blank components on mQ; and a new "clean chemistry" BC processing system is described for the minimization of such blanks. For the assay of soot carbon in Greenland snow/ice, the overall processing blank has been reduced from nearly 7 μg total carbon to less than 1 μg, and is undetectable for BC.

  18. Pyrolytic carbon coated black silicon

    PubMed Central

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  19. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    PubMed

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  20. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Joachim, E-mail: Joachim.Berger@Monash.edu; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in anmore » otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.« less

  1. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  2. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  3. Agenda and Meeting Summary from Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:

  4. The origin of black carbon on speleothems in tourist caves in South Korea: Chemical characterization and source discrimination by radiocarbon measurement

    NASA Astrophysics Data System (ADS)

    Chang, Sae Jung; Jeong, Gi Young; Kim, Soo Jin

    Since the Gosu, Ondal, and Sungryu karst caves in South Korea became open to the public several decades ago, the surface of their speleothems has been turning black due to pollutants. The black pollutant is concentrated at the surface of speleothems, and the surface black layer is 0.1 to several millimeters thick. Elemental measurements of three bulk, acid-dissolved and oxidized fractions of the surface black layer show that the black pigment is a black carbon. The black carbon correlates positively with sulfates, nitrates, manganese, and lead, which are typical tracers of industrial and urban emissions. The 14C-measurement of the black carbon, using accelerator mass spectrometry, shows that the black carbon was derived from both fossil-fuel combustion and biomass burning in roughly equal amounts, evidenced by fC value ranging from 0.340 to 0.592 (<±0.004, 1 σ). Therefore, protection of speleothems from black coloration requires control of anthropogenic black carbons carried by visitors. Suitable measures might include closure of caves, air cleaning of visitors and regulation of visitor numbers. The application of radiocarbon measurement of black carbon suggests that the fC is a valuable proxy for tracing the blackening phenomenon of natural and cultural heritage sites such as caves.

  5. Continuous flux of dissolved black carbon from a vanished tropical forest biome

    NASA Astrophysics Data System (ADS)

    Dittmar, T.; Rezende, C. E.; Manecki, M.; Niggemann, J.; Coelho Ovalle, A. R.; Bernardes, M. C.

    2012-04-01

    Humans have extensively used fire as a tool to shape Earth's vegetation. One of the biggest events in this context was the destruction of Brazilian's Atlantic forest, once among the largest tropical forest biomes on Earth. We estimate that the slash-and-burn practice produced 200 to 500 million tons of black carbon from the 1850' to 1973. The fate of this charred organic matter is unknown. Here we show continuous runoff of dissolved black carbon from the cleared forest biome, more than 35 years after the widespread burning of the forest ended. During the 11-year observation period (1997-2008) of this study, on average 0.04 to 0.08 tons of dissolved black carbon were annually exported per square kilometer land. We estimate an annual runoff of 48,000 to 97,000 tons dissolved black carbon from the former Atlantic forest biome. Dissolved black carbon was mobilized by water percolating through the soil during the rainy season. During base flow conditions, dissolved organic carbon (DOC) did not contain black carbon, whereas at peak flow up to 6% of DOC was combustion-derived. If runoff was the only removal mechanism of black carbon from soils, even the highly condensed and presumably refractory component of black carbon would have a half-life of only 440 to 2300 years in the soil. In areas with higher precipitation, stronger runoff and consequently a shorter half-life can be expected. In the deep ocean, dissolved black carbon is virtually inert on this time scale. The disappearance of the Atlantic forest provides a worst-case scenario for tropical forests worldwide, most of which are cleared at increasing rate. Because of the comparably fast mobilization of dissolved black carbon from soils and its resistivity in the deep ocean, an increase of black carbon production on land may alter the size of the global pool of >12 Pg carbon of thermally altered DOC in the ocean on the long term.

  6. REPORT TO CONGRESS ON BLACK CARBON | Science ...

    EPA Pesticide Factsheets

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.

  7. Soil Black Carbon Loss and Sediment Black Carbon Accumulation in a Central Texas Woodland

    NASA Astrophysics Data System (ADS)

    Schieve, E. A.; Hockaday, W. C.; White, J. D.

    2016-12-01

    The Balcones Canyonlands National Wildlife Refuge is located along the eastern edge of the Edwards Plateau in Texas, and was established in 1992 for the purpose of conserving habitat for two endangered bird species. The landscape is composed of hilly, mesa-valley terrain, which is mostly covered by grasslands and woodlands dominated by juniper with intermingling of various oak species. Based on historical photo analysis and tree fire scar dendrochronology, the area has experienced major land use changes over the last century due to wildfire, logging, and drought affecting soil stability and woodland species composition. A previous study on soil black carbon showed that site-specific soil erosion potential and time since last fire may act as controls on soil black carbon concentrations. However, the black carbon transport flux, depositional fate, or the magnitude of soil erosion effects upon the black carbon budget are unconstrained at the watershed scale. To address this, we sampled the sediments accumulating in small ponds constructed during the 1950's for livestock watering. We are quantifying black carbon in sediments using solid-state 13C nuclear magnetic resonance spectroscopy. Preliminary data suggest that the pond sediments are a black carbon sink. Black carbon comprises 15 % - 25 %, of the sedimentary organic carbon, as substantial enrichment relative to soils within the watershed. We will present an early assessment of the black carbon erosion and sediment accumulation rates in first- and second-order watersheds.

  8. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, (3-methylphenyl... Significant New Uses for Specific Chemical Substances § 721.10149 Carbon black, (3-methylphenyl)-modified... substance identified generically as carbon black, (3-methylphenyl)-modified, substituted (PMN P-07-522) is...

  9. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, (4-methylphenyl... Significant New Uses for Specific Chemical Substances § 721.10150 Carbon black, (4-methylphenyl)-modified... substance identified generically as carbon black, (4-methylphenyl)-modified, substituted (PMN P-07-523) is...

  10. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting...

  11. Aqueous carbon black dispersions prepared with steam jet-cooked corn starch

    USDA-ARS?s Scientific Manuscript database

    The utilization of jet-cooked waxy and normal corn starch to prepare aqueous dispersions of hydrophobic carbon black (Vulcan XC-72R) is reported. Blending carbon black (CB) into aqueous jet-cooked dispersions of starch followed by high pressure homogenization produced stable aqueous carbon black di...

  12. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  13. Co-milled silica and coppiced wood biochars improve elongation and toughness in styrene-butadiene elastomeric composites while replacing carbon black

    USDA-ARS?s Scientific Manuscript database

    Carbon black is a petroleum byproduct with a million-ton market in the US tire industry. Finding renewable substitutes for carbon black reduces dependence on oil and alleviates global warming. Biochar is a renewable source of carbon that has been studied previously as a replacement for carbon black ...

  14. Toxicity assessment of carbon black waste: A by-product from oil refineries.

    PubMed

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-05

    In Singapore, approximately 30t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with increasing waste concentration. Results from reactive oxygen species (ROS) assay indicated that carbon black waste extract induced oxidative stress by increasing intracellular ROS generation in these three human cell lines. Moreover, induction of oxidative damage in these cells was also observed through the alteration of glutathione (GSH) and superoxide dismutase (SOD) activities. Last but not least, by treating the cells with V-spiked solution of concentration equivalent to that found in the carbon black waste extract, V was identified as the main culprit for the high toxicity of carbon black waste extract. These findings could potentially provide insight into the hazards of carbon black waste extract and its toxicity mechanism on human cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...

  16. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace...

  17. 40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel...

  18. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace...

  19. 40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...

  20. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process...

  1. 40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel...

  2. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process...

  3. Effect of Carbon Black on Elastomer Blends

    NASA Astrophysics Data System (ADS)

    Si, Mayu; Koga, Tadanori; Ji, Yuan; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Gerspacher, M.; Dias, A. J.; Karp, Kriss R.; Satija, Sushil; Lin, Min Y.

    2003-03-01

    The effects of untreated and heat-treated carbon black N299 on the interfacial properties of PB (Polybutadiene) and terpolymer BIMS [brominated Poly(isobutylene-co-methyl styrene)] were investigated by neutron reflectivity (NR) and lateral force microscopy (LFM). The NR results show that the addition of carbon black significantly slows down the interfacial broadening while heat-treated carbon black has less effect on slowing down the diffusion compared with untreated carbon black. These results were confirmed by the LFM data, which shows the magnitude of lateral force loop of heat-treated carbon black is bigger than that of untreated one. Ultra small and small angle neutron scattering (USANS and SANS) were used to probe the morphology and surface lateral force. Increasing volume concentration of carbon black to 5glass transition temperature of BIMS is also decreased, which was measured by Differential scanning Calorimeter (DSC). XRD analysis indicates that the heat treatment crystallizes the carbon black and strong graphitic peaks are observed. The large degree of crystallization decreases the interaction with the polymer matrix and hence minimizes the effect on the internal dynamics

  4. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.

    PubMed

    Jacobson, M Z

    2001-02-08

    Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.

  5. 40 CFR 721.10075 - Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10075 Carbon black, 4-[[2-(Sulfooxy... uses subject to reporting. (1) The chemical substance identified generically as carbon black, 4-[[2... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, 4-[[2-(Sulfooxy) ethyl...

  6. Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city.

    PubMed

    Geng, Fuhai; Hua, Jing; Mu, Zhe; Peng, Li; Xu, Xiaohui; Chen, Renjie; Kan, Haidong

    2013-01-01

    There is only limited monitoring data of black carbon for epidemiologic analyses. In the current study, we used the distributed lag models to evaluate the association between mortality outcomes (both total and cause-specific) and exposure to black carbon and fine particle (PM(2.5)) in Shanghai, China. During our research period, the mean daily concentrations of black carbon and PM(2.5) were 3.9 μg/m3 and 53.9 μg/m3, respectively. The regression results showed that black carbon was significantly associated with total and cardiovascular mortality, but not with respiratory mortality. An inter-quartile range increase (2.7 μg/m3) of black carbon corresponded to a 2.3% (95% confidence interval [CI]: 0.6-4.1), 3.2% (95% CI: 0.6-5.7), and 0.6% (95% CI: -4.5 to 5.7) increase in total, cardiovascular and respiratory mortality, respectively. When adjusted for PM(2.5), the effects of black carbon increased and remained statistically significant; in contrast, the associations of PM(2.5) with daily mortality decreased and became statistically insignificant after adjustment for black carbon. To our knowledge, this is the first study in China, or even in Asian developing countries, to report the acute effect of black carbon and PM(2.5) on daily mortality simultaneously. Our findings suggest that black carbon is a valuable additional air quality indicator to evaluate the health risks of ambient particles. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    NASA Astrophysics Data System (ADS)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  8. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    NASA Astrophysics Data System (ADS)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  9. Large variability of biochar stability and biochar properties

    NASA Astrophysics Data System (ADS)

    Lehmann, J.; Nguyen, B.; Hanley, K.; Enders, A.

    2008-12-01

    In general, charring or purposeful pyrolysis increases the stability of biomass. It is less clear, however, to what extent biochar properties influence its stability. Chemical and physical properties of biochars and biomass-derived black carbons (BC) vary greatly as a function of the type of biomass it was generated from and of the production temperature. We show that these properties greatly affect the stability of BC is a function of both these factors, with highly significant interactions. BC produced from corn stalks produced at 350°C decomposed much quicker when incubated at field capacity at 30°C for one year than those produced at 600°C. In contrast, there was hardly a difference noted between those two temperatures if oak was the precursor biomass. Such differences in labile carbon not only affect the proportion of stable carbon in BC, but also influence the quantification of long-term stability. Extrapolation from short-term decay to long-term stability may require prior knowledge about the decay rate of the labile fraction of BC. Some indications are provided for the short-term oxidation of BC.

  10. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    USGS Publications Warehouse

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.

    2010-01-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  11. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    PubMed

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  12. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH) in human skin and regional lymph nodes.

    PubMed

    Lehner, Karin; Santarelli, Francesco; Vasold, Rudolf; Penning, Randolph; Sidoroff, Alexis; König, Burkhard; Landthaler, Michael; Bäumler, Wolfgang

    2014-01-01

    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC-DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1-0.6 μg/cm2 in the tattooed skin and 0.1-11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

  13. Black Tattoos Entail Substantial Uptake of Genotoxicpolycyclic Aromatic Hydrocarbons (PAH) in Human Skin and Regional Lymph Nodes

    PubMed Central

    Lehner, Karin; Santarelli, Francesco; Vasold, Rudolf; Penning, Randolph; Sidoroff, Alexis; König, Burkhard; Landthaler, Michael; Bäumler, Wolfgang

    2014-01-01

    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC – DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1–0.6 μg/cm2 in the tattooed skin and 0.1–11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body. PMID:24670978

  14. 40 CFR 458.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory... apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp process. ...

  15. 40 CFR 458.41 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process... shall apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp...

  16. 40 CFR 458.41 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process... shall apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp...

  17. 40 CFR 458.41 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process... shall apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp...

  18. 40 CFR 458.41 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory... apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp process. ...

  19. The relationship between black carbon concentration and black smoke: A more general approach

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Quincey, Paul

    2012-07-01

    The black carbon (BC) component of ambient particulate matter is an important marker for combustion sources and for its impact on human health and radiative forcing. Extensive data archives exist for the black smoke metric, the historic measure of ambient particle darkness. An expression presented in earlier publications (Quincey, 2007; Quincey et al., 2011) for estimating BC concentrations from traditional black smoke measurements is shown to have limitations that can be addressed by using a more systematic approach to the issue of corrections for increasing darkening of the filter. The form of the more general relationship is shown to be an off-axis parabola rather than the on-axis parabola of the earlier work. Existing data from co-located black smoke and aethalometer measurements at 5 UK sites are reanalysed in this context. At very low concentrations of dark particles (British Black Smoke index < ˜10 μg m-3) a simple linear relationship BC (/μg m-3) ≈ 0.27·BSIBRITISH will suffice. A parabolic relationship, [BC/μgm]=√{5.2-1.1+1.5×BSI+62-13+19}-7.9-0.9+1.1, quantitatively similar to the previously published relationship will be more reliable for BSIBRITISH values up to 20-25 μg m-3. The full set of data available was fitted empirically to the off-axis parabola over the range 0-80 μg m-3 as the quadratic: [BC/μg m-3] = (0.27 ± 0.03) · BSIBRITISH - (4.0 ± 0.2) × 10-4(BSIBRITISH)2, but this curve is highly dependent on the variations between the individual data sets. Adding the extra complexity of the full off-axis parabolic relationship is unlikely to be justified in practical situations. All expressions apply also to the OECD definition of black smoke with the substitution BSIBRITISH = 0.85·BSIOECD. However, in common with the previous approach, they apply only to black smoke values obtained from standard black smoke samplers with 25 mm diameter filters and ˜2 m3 day-1 volumetric flow rate, and presume a value 16.6 m2 g-1 for the specific absorption of BC in ambient particulate matter measured by aethalometry. Fitting uncertainties correspond to imprecision in estimated BC of ±5%, ±12% and ±18% at BSIBRITISH of 5, 20 and 80 μg m-3, respectively. Spatial and temporal variation in particle ensemble optical properties contributes to uncertainty in BC quantification.

  20. 78 FR 22513 - Certain New Pneumatic Off-the-Road Tires From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ...''); see also Issues and Decision Memorandum at Comment 6. Carbon Black: We have used the Thai import data for ``Rubber Grade Carbon Black'' to value all carbon black inputs.\\7\\ \\7\\ See Surrogate Value... Certain Material Inputs A. Carbon Black B. Bead Wire C. Nylon Tire Cord D. Natural Rubber E. Gap-filling...

  1. Template directed assembly of nanoelements in viscous polymer environments

    NASA Astrophysics Data System (ADS)

    Modi, Satyamkumar

    Polymer melt-based manufacturing methods, such as injection molding, offer the potential of directly fabricating three-dimensional parts with nanostructured surfaces in a one-step, high-rate, and solventless process. Electrophoretic deposition has the potential to produce in-mold assembly of nanoparticles during injection molding. The process is fast, is cost effective and can be automated. This electrophoretic deposition, however, has been performed from low-viscosity media and polymer melts are far more viscous. This research provided a fundamental understanding of the electrophoretic deposition process in viscous media. Electrophoresis was performed using a model system of carbon black and polystyrene in tetrahydrofuran (THF). Examined were the effects of processing parameters, polystyrene molecular weight, and carbon black charge. The presence of polystyrene did not prevent deposition of carbon black, but deposition rates decreased at shorter deposition times; deposition was not linear with increasing applied voltage; and greater solution concentrations reduced the critical voltages. A comparison of experimental data with Hamaker's model showed that about 1.6% of the available polystyrene was initially deposited with the carbon black. At voltages above the critical voltage, the deposited mass indicated formation of electrically insulating layers on the electrodes. Increases in polystyrene molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤ 5 seconds), only carbon black deposited onto the electrodes. For longer deposition times, polystyrene co-deposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. The additional of function groups to the carbon black surface decoupled the carbon black and polystyrene, however, the deposition of the carbon black particles, followed by deposition of a thick layer of polystyrene was observed. This polystyrene deposition was present regardless of the applied voltage, the deposition time, the polystyrene molecular weight, polystyrene material (i.e., charge), and solvent polarity. This deposition behavior suggests that use of lower molecular polymers and unmodified carbon blacks, and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts.

  2. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  3. 40 CFR 458.45 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the...

  4. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  5. Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd

    2015-11-13

    This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less

  6. Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd

    This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less

  7. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  8. Continuous flux of dissolved black carbon from a vanished tropical forest biome

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; de Rezende, Carlos Eduardo; Manecki, Marcus; Niggemann, Jutta; Coelho Ovalle, Alvaro Ramon; Stubbins, Aron; Bernardes, Marcelo Correa

    2012-09-01

    Humans have used fire extensively as a tool to shape Earth's vegetation. The slash-and-burn destruction of Brazil's Atlantic forest, which once covered over 1.3millionkm2 of present-day Brazil and was one of the largest tropical forest biomes on Earth, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200-500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000-70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.

  9. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

    NASA Astrophysics Data System (ADS)

    Gupta, Pratima; Singh, Shalendra Pratap; Jangid, Ashok; Kumar, Ranjit

    2017-09-01

    This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.

  10. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that ismore » quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second most important individual climate-forcing agent in the industrial era, following carbon dioxide. Sources that emit black carbon also emit other short- lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co- emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have a net climate forcing of +0.004 (-0.62 to +0.57) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black- carbon-rich sources becomes slightly negative (-0.08 W m-2 with 90% uncertainty bounds of -1.23 to +0.81 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.« less

  11. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha, E-mail: n4neha31@gmail.com; Sharma, N. N.; Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  12. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.« less

  13. Abiotic degradation of hexahydro-l,3,5-trinitro-1,3,5-triazine in the presence of hydrogen sulfide and black carbon.

    PubMed

    Kemper, Jerome M; Ammar, Emaan; Mitch, William A

    2008-03-15

    We report that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was rapidly destroyed by sulfides in the presence of black carbon, forming nitrite and formaldehyde, rather than toxic nitrosated reduction products. Although traditionally viewed as inactive sorbents, black carbons have been noted to participate in the destruction of certain contaminants, such as azo dyes, via quinonoid groups. However, in our experiments sulfide modification of quinones did not seem to be involved. Although at least 1.2 mM sulfides were needed for the reaction to proceed, abiotic natural attenuation of RDX in marine sediments may occur, because these concentrations are found in certain marine sediments, together with black carbon. In the absence of natural black carbons, synthetic black carbons, such as activated carbon, may be added to sediments. As compared with other in situ techniques, such as bioremediation and zero-valent iron cutoff trenches, which often generate nitrosated byproducts, this in situ, abiotic technique may be an attractive alternative.

  14. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  15. Rapid preconcentration method for the determination of azadirachtin-A and -B, nimbin and salannin in neem oil samples by using graphitised carbon solid phase extraction.

    PubMed

    Ramesh, A; Balasubramanian, M

    1999-01-01

    A simple and rapid method involving solid phase extraction and liquid chromatography for the determination of azadirachtin-A and -B, nimbin and salannin at nanogram levels in neem oil samples is presented. The neem oil samples are defatted and the compounds of interest extracted by mixing the sample with hexane and passing the hexane solution through a graphitised carbon black column. After washing the column with 2 ml of hexane, azadirachtin-A and -B, nimbin and salannin are eluted with 5 ml of acetonitrile and quantified using HPLC with UV detection. The recoveries of azadirachtin-A and -B, nimbin and salannin in fortified oil samples were 97.4-104.7%. The upper limit of quantification is up to 100 micrograms ml-1 without any additional clean-up and with little interference from lipids during the analysis by HPLC. The method was successfully applied to various neem oil samples collected from different locations in India.

  16. Webinar Presentation: Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty

    EPA Pesticide Factsheets

    This presentation, Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty, was given at the STAR Black Carbon 2016 Webinar Series: Changing Chemistry over Time held on Oct. 31, 2016.

  17. Roles of black carbon on the fate of heavy metals and agrochemicals in soil

    USDA-ARS?s Scientific Manuscript database

    Char(coal) and other black carbon materials can comprise up to 35% of total organic carbon in US agricultural soils, and are known to strongly and often irreversibly bind contaminants including heavy metals. Black carbon has received renewed interests in recent years as a solid co-product formed du...

  18. Birchwood biochar as partial carbon black replacement in styrene-butadiene rubber composites

    USDA-ARS?s Scientific Manuscript database

    Birchwood feedstock was used to make slow pyrolysis biochar that contained 89% carbon and < 2% ash. This biochar was blended with carbon black as filler for styrene-butadiene rubber. Composites made from blended fillers of 25/75 biochar/carbon black were equivalent to or superior to their 100% carbo...

  19. Highlighting Uncertainty and Recommendations for Improvement of Black Carbon Biomass Fuel-Based Emission Inventories in the Indo-Gangetic Plain Region.

    PubMed

    Soneja, Sutyajeet I; Tielsch, James M; Khatry, Subarna K; Curriero, Frank C; Breysse, Patrick N

    2016-03-01

    Black carbon (BC) is a major contributor to hydrological cycle change and glacial retreat within the Indo-Gangetic Plain (IGP) and surrounding region. However, significant variability exists for estimates of BC regional concentration. Existing inventories within the IGP suffer from limited representation of rural sources, reliance on idealized point source estimates (e.g., utilization of emission factors or fuel-use estimates for cooking along with demographic information), and difficulty in distinguishing sources. Inventory development utilizes two approaches, termed top down and bottom up, which rely on various sources including transport models, emission factors, and remote sensing applications. Large discrepancies exist for BC source attribution throughout the IGP depending on the approach utilized. Cooking with biomass fuels, a major contributor to BC production has great source apportionment variability. Areas requiring attention tied to research of cookstove and biomass fuel use that have been recognized to improve emission inventory estimates include emission factors, particulate matter speciation, and better quantification of regional/economic sectors. However, limited attention has been given towards understanding ambient small-scale spatial variation of BC between cooking and non-cooking periods in low-resource environments. Understanding the indoor to outdoor relationship of BC emissions due to cooking at a local level is a top priority to improve emission inventories as many health and climate applications rely upon utilization of accurate emission inventories.

  20. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  1. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  2. Black Carbon in the Arctic: Assessment of and efforts to reduce black carbon emissions from wildfires and agricultural burning in Russia

    NASA Astrophysics Data System (ADS)

    Kinder, B.; Hao, W. M.; Larkin, N. K.; McCarty, G.; O'neal, K. J.; Gonzalez, O.; Luxenberg, J.; Rosenblum, M.; Petkov, A.

    2011-12-01

    Black carbon and other short-lived climate forcers exert a warming effect on the climate but remain in the atmosphere for short time periods when compared to carbon dioxide. Black carbon is a significant contributor to increasing temperatures in the Arctic region, which has warmed at twice the global rate over the past 100 years. Black carbon warms the Arctic by absorbing incoming solar radiation while in the atmosphere and, when deposited onto Arctic ice, leading to increased atmospheric temperatures and snow and ice melt. Black carbon remains in the atmosphere for a short time period ranging from days to weeks; therefore, local atmospheric conditions at the time of burning determine the amount of black carbon transport to the Arctic. Most black carbon transport and deposition in the Arctic results from the occurrence of wildfires, prescribed forest fires, and agricultural burning at latitudes greater than 40 degrees north latitude. Wildfire affects some 10-15 million hectares of forest, forest steppe, and grasslands in Russia each year. In addition to wildfire, there is widespread cropland burning in Russia occurring in the fall following harvest and in the spring prior to tilling. Agricultural burning is common practice for crop residue removal as well as suppression of weeds, insects and residue-borne diseases. The goal of the United States Department of Agriculture (USDA) Black Carbon Initiative is to assess black carbon emissions from agricultural burning and wildfires in Russia and explore practical options and opportunities for reducing emissions from these two sources. The emissions assessment combines satellite-derived burned area measurements of forest and agricultural fires, burn severity information, ancillary geospatial data, vegetation and land cover maps, fuels data, fire emissions data, fire/weather relationship information, and smoke transport models to estimate black carbon transport and deposition in the Arctic. The assessment addresses necessary improvements to fire and burned area detection algorithms to improve agricultural burned area mapping accuracy. Efforts to explore practical options for reducing black carbon emissions from wildfires and agricultural burning in Russia have been focused on designing community-based fire prevention and education programs in Siberia and the Russia Far East, two regions prone to frequent human-caused fires. The initiative also seeks to identify practical alternatives to reduce black carbon emissions from agricultural burning and to help promote these alternatives through outreach to farmers and other agricultural organizations. This submission will explore the initial findings and results of the emissions assessment and discuss the progress and challenges associated with implementation of local-level fire prevention and mitigation efforts in Russia. The results of this initiative will help inform future policy and management tools to address black carbon emissions from wildfires and agricultural burning in Russia and perhaps additional interested countries.

  3. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    NASA Astrophysics Data System (ADS)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.

  4. Black carbon radiative forcing at TOA decreased during aging.

    PubMed

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  5. Structure and properties of carbon black particles

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  6. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    NASA Astrophysics Data System (ADS)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  7. Laboratory Evaluation of Selected Ways for Determining Black Carbon Source Emissions

    EPA Science Inventory

    A number of studies have been conducted which compare various methods for the determination of black carbon in the atmosphere. Relatively little attention has been paid, however, to similar measurements of black carbon from different types of emission sources. Of particular int...

  8. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    NASA Technical Reports Server (NTRS)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; hide

    2013-01-01

    Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W/sq m, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (0.50 to +1.08) W/sq m during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (0.06 W/sq m with 90% uncertainty bounds of 1.45 to +1.29 W/sq m). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

  9. Enviro-HIRLAM Applicability for Black Carbon Studies in Arctic

    NASA Astrophysics Data System (ADS)

    Nuterman, Roman; Mahura, Alexander; Baklanov, Alexander; Kurganskiy, Alexander; Amstrup, Bjarne; Kaas, Eigil

    2015-04-01

    One of the main aims of the Nordic CarboNord project ("Impact of black carbon on air quality and climate in Northern Europe and Arctic") is focused on providing new information on distribution and effects of black carbon in Northern Europe and Arctic. It can be done through assessing robustness of model predictions of long-range black carbon distribution and its relation to climate change and forcing. In our study, the online integrated meteorology-chemistry/aerosols model - Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) - is used. This study, at first, is focused on adaptation (model setup, domain for the Northern Hemisphere and Arctic region, emissions, boundary conditions, refining aerosols microphysics and chemistry, cloud-aerosol interaction processes) of Enviro-HIRLAM model and selection of most unfavorable weather and air pollution episodes for the Arctic region. Simulations of interactions between black carbon and meteorological processes in northern conditions for selected episodes will be performed (at DMI's supercomputer HPC CRAY-XT5), and then long-term simulations at regional scale for selected winter vs. summer months. Modelling results will be compared on a diurnal cycle and monthly basis against observations for key meteorological parameters (such as air temperature, wind speed, relative humidity, and precipitation) as well as aerosol concentration. Finally, evaluation of black carbon atmospheric transport, dispersion, and deposition patterns at different spatio-temporal scales; physical-chemical processes and transformations of black carbon containing aerosols; and interactions and effects between black carbon and meteorological processes in Arctic weather conditions will be done.

  10. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  11. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings.more » The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.« less

  12. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  13. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  14. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE PAGES

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee; ...

    2017-10-12

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  15. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  16. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10150 Carbon black, (4-methylphenyl)-modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, (4-methylphenyl...

  17. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10149 Carbon black, (3-methylphenyl)-modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, (3-methylphenyl...

  18. Evolution of black carbon properties in soil

    USDA-ARS?s Scientific Manuscript database

    Black carbon deposited in soil from natural or deliberate wildfires and engineered black carbon products (biochar) intentionally added to soil are known to have significant effects on soil biogeochemical processes and in many cases to influence the yield and quality of crops and to enhance the abili...

  19. 77 FR 12050 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Maximum Achievable Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal... Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal). ICR Numbers: EPA... control technology standards for carbon black, ethylene, cyanide and spandex facilities. Estimated Number...

  20. Bounding the role of black carbon in the climate system: A scientific assessment

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.

    2013-06-01

    carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (-0.06 W m-2 with 90% uncertainty bounds of -1.45 to +1.29 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

  1. Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics

    Treesearch

    E.S. Kane; W.C. Hockaday; M.R. Turetsky; C.A. Masiello; D.W. Valentine; B.P. Finney; J.A. Badlock

    2010-01-01

    There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon [BC]) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral...

  2. CONTINUOUS BLACK CARBON MEASUREMENTS INDOORS AND OUTDOORS AT AN OCCUPIED HOUSE FOR ONE YEAR

    EPA Science Inventory

    Black carbon is one of the components of particulate matter, and is of importance because the only known source of aerosol black carbon in the atmosphere is the combustion of carbonaceous fuels (Hansen, 1997). Polyaromatic hydrocarbons (PAH) formed in the combustion process ar...

  3. INDOOR-OUTDOOR RELATIONSHIPS OF PARTICLES, PAH, AND BLACK CARBON IN AN OCCUPIED TOWNHOUSE

    EPA Science Inventory

    Real-time instrumentation for measuring particles, PAH, and black carbon (soot) has been operated since May of 1998 in an occupied 3-story town house in Reston, VA. Indoor and outdoor concentrations have been measured every five minutes for the particles and black carbon and ev...

  4. Webinar Presentation: Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China

    EPA Pesticide Factsheets

    This presentation, Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty held on Nov. 7, 2016.

  5. 40 CFR 458.45 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the provisions of this subpart: There shall be no discharge of process waste water pollutants to navigable waters. ...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...

  6. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  7. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  8. Quantifying the potential for low-level transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic.

    NASA Astrophysics Data System (ADS)

    Hall, Joanne V.; Loboda, Tatiana V.

    2017-12-01

    Short-lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts’ ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March - May) cropland active fires (7% annual) likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority ( 90% - depending on injection height) of all potential spring deposition occurs below 75°N.

  9. Trade and the Future of China's Black Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Persad, G.; Oppenheimer, M.; Naik, V.

    2016-12-01

    Emissions of black carbon aerosols in China have increased by over 200% during the last 50 years, with negative implications both for human health and for regional and global climate. The Representative Concentration Pathway (RCP) emissions scenarios all assume that China's future black carbon emissions will decrease. However, this decline partially depends on the assumption that the evolution of future pollutant emissions in developing nations will match the observed historical relationship between air quality and income in developed nations. Recent research has demonstrated that a substantial portion of China's current black carbon emissions are driven by the production of goods exported for consumption elsewhere. This constitutes an external demand for black carbon-emitting activity in China that is much smaller in the developed nations on which the historical air quality/income relationship is based. We here show using integrated assessment model output, general circulation modeling, and emissions and economic data that (1) China must achieve a faster technological and regulatory evolution than did developed countries in order achieve the same air quality/income trajectory; (2) China's uniquely large share of export-related black carbon-emitting activities and their potential growth are a plausible explanation for this disparity; and (3) the climate and health implications of these export-related black carbon emissions, if unmitigated, are of interest from a policy perspective. Together these results indicate that the production of goods for export will steepen the mitigation curve for China relative to developed nations, if China is to achieve the future black carbon emissions reductions assumed in the RCPs.

  10. Inkjet printing of carbon black electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Schlatter, Samuel; Rosset, Samuel; Shea, Herbert

    2017-04-01

    Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.

  11. A Community Network of 100 Black Carbon Sensors

    NASA Astrophysics Data System (ADS)

    Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.

    2017-12-01

    We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.

  12. Coal as a Substitute for Carbon Black

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.

    1982-01-01

    New proposal shows sprayed coal powder formed by extrusion of coal heated to plastic state may be inexpensive substitute for carbon black. Carbon black is used extensively in rubber industry as reinforcing agent in such articles as tires and hoses. It is made from natural gas and petroleum, both of which are in short supply.

  13. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.

    2004-01-01

    Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.

  14. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  15. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  16. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGES

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  17. Effects of γ-radiation on microbial load and antioxidant proprieties in black tea irradiated with different water activities

    NASA Astrophysics Data System (ADS)

    Fanaro, G. B.; Hassimotto, N. M. A.; Bastos, D. H. M.; Villavicencio, A. L. C. H.

    2014-04-01

    The aim of this paper is to study the effect of gamma radiation on black tea irradiated with different water activities. The black tea samples had their Aw adjusted to three values (0.92, 0.65, and 0.18) and were irradiated in 60Co source at doses of 0, 1.0, 1.5, 2.0, 2.5, 5.0, 7.5, and 10.0 kGy. The methods used were: microbiology, total phenolic compounds quantification, antioxidant activity by ORAC, and quantification of the main antioxidants. It was observed that the greater the amount of free water present in the samples, lower was the dose to achieve microbiological control. Regardless the water activity used, there was no difference in content of the phenolic compounds and at the mainly theaflavins, as well in the antioxidant activity at doses up to 5.0 kGy.

  18. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  19. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  20. Low-Wind and Other Microclimatic Factors in Near-road Black Carbon Variability: A Case Study and Assessment Implications

    EPA Science Inventory

    Airborne black carbon from urban traffic is a climate forcing agent and has been associated with health risk to near-road populations. In this paper, we describe a case study of black carbon concentration and compositional variability at and near a traffic-laden multi-lane highw...

  1. 75 FR 48328 - Science Advisory Board Staff Office; Request for Nominations of Experts to Augment the Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Compliance Analysis (Council) to review EPA's draft report to Congress on the climate effects of black carbon... with other Federal agencies, to prepare a comprehensive report to Congress on the climate effects of black carbon. Black carbon, or soot, results from incomplete combustion of organic matter such as fossil...

  2. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    EPA Science Inventory

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  3. Invited article summarizing the Science To Achieve Results research portfolio on Black Carbon for the journal EM of the Air and Waste Management Association.

    EPA Science Inventory

    Where there’s smoke, there’s fire – and black carbon. Black carbon is the sooty material emitted from combustion processes, including diesel engines and other sources that burn fossil fuels, biofuels, or biomass. This soot contributes to fine particulate matter,...

  4. Characterizing the long-range transport of black carbon aerosols during Transport and Chemical Evolution over the Pacific (TRACE-P) experiment.

    PubMed

    Verma, Sunita; Worden, John; Payra, Swagata; Jourdain, Line; Shim, Changsub

    2009-07-01

    A major aircraft experiment Transport and Chemical Evolution over the Pacific (TRACE-P) mission over the NW Pacific in March-April 2001 was conducted to better understand how outflow from the Asian continent affects the composition of the global atmosphere. In this paper, a global climate model, GEOS-Chem is used to investigate possible black carbon aerosol contributions from TRACE-P region. Our result depicts that absorbing black carbon ("soot") significantly outflow during lifting to the free troposphere through warm conveyor belt and convection associated with this lifting. The GEOS-Chem simulation results show significant transport of black carbon aerosols from Asian regions to the Western Pacific region during the spring season. As estimated by GEOS-Chem simulations, approximately 25% of the black carbon concentrations over the western pacific originate from SE Asia in the spring.

  5. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  6. Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress.

    PubMed

    Cowell, Whitney J; Bellinger, David C; Coull, Brent A; Gennings, Chris; Wright, Robert O; Wright, Rosalind J

    2015-01-01

    Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children's memory and learning. Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). The associations between prenatal exposure to black carbon and stress with children's memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups.

  7. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs

    PubMed Central

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg−1, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material. PMID:25105506

  8. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.

    PubMed

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.

  9. The effect of carbon black filler to the mechanical properties of natural rubber as base isolation system

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Mahadi, Z. A.; Ishak, I. S.

    2018-04-01

    This paper presented the study on the effect of carbon black as filler to the mechanical properties of natural rubber for base isolation system. This study used the five formulations with the different amount of carbon black filler for every sample. The samples were tested for tensile, hardness and resilience test. The samples were cured or vulcanized at 1500C for 23 minutes for every formulation. The filler used in this study was the carbon black filler with type N660. The tensile test was done to determine the ability of the sample in term of the elongation with the load at break. The hardness test, it has been done to determine the ability of the sample to resist the load. This hardness was measured in the unit of IRHD. The resilience test was being done to determine the properties of the sample in term of rebound characteristics. The finding of this study showed that, the high the loading of carbon black filler, the high the tensile strength of the sample and the high the hardness of the sample. In term of resilience, it was inversely proportional to the loading of the carbon black filler.

  10. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Kato, Katharine

    1995-01-01

    Black carbon soot from the upper troposphere and lower stratosphere has been systematically collected at latitudes from 90 deg N to 45 deg S. The measured latitudinal distribution of this soot at 10 to 11 km altitude is found to covary with commercial air traffic fuel use, suggesting that aircraft fuel combustion at altitude is the principal source. In addition, at latitudes where the commercial air traffic is high, measured black carbon soot values are high even at 20 km altitude, suggesting that aircraft-generated soot injected just above the tropopause may be transported to higher altitudes. During the volcanically influenced period in which these samples were collected, the number abundances, total mass, and calculated total surface area of black carbon soot are 2-3 orders of magnitude lower than similar measures of sulfuric acid aerosol. During volcanically quiescent periods, the calculated total surface area of black carbon soot aerosol is of the same order of magnitude as that of the background sulfuric acid aerosol. It appears from this comparison that black carbon soot is only capable of influencing lower stratosphere or upper troposphere chemistry during periods when the aerosol budget is not dominated by volcanic activity. It remains to determine the extent to which black carbon soot particles act as nuclei for sulfuric acid aerosol formation. However, mass balance calculations suggest that aircraft soot injected at altitude does not represent a significant source of condensation nuclei for sulfuric acid aerosols.

  11. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Pylypenko, Svitlana; Dowlapalli, Madhu; Atanassov, Plamen

    2012-09-01

    Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst supports, with their chemistry and morphology is an important task towards designing carbon blacks with desired properties. Structure-to-property relationship between surface chemistry determined by X-ray photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical characteristics such as Brunauer-Emmett-Teller (BET) surface area and pore volume, determined by nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks. Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for more inclusive description and therefore more complete structure-to-property correlations of corrosion behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property relationship, developed by multivariate analysis (MVA) that links chemical and physical structural properties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.

  12. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  13. Water requirements of the carbon-black industry

    USGS Publications Warehouse

    Conklin, Howard L.

    1956-01-01

    Carbon blacks include an important group of industrial carbons used chiefly as a reinforcing agent in rubber tires. In 1953 more than 1,610 million pounds of carbon black was produced, of which approximately 1,134 million pounds was consumed by the rubber industry. The carbon-black industry uses small quantities of water as compared to some industries; however, the water requirements of the industry are important because of the dependence of the rubber-tire industry on carbon black.Two methods are used in the manufacture of carbon black - contact and furnace. The only process use of water in the contact method is that used in pelleting. Water is used also in the plant washhouse and for cleaning, and sometimes the company camp may be supplied by the plant. A survey made during the last quarter of 1953 showed that the average values of unit water use at contact plants for process use, all plant uses, and all uses including company camps are 0.08, 0.14, and 0.98 gallon of water per pound of carbon black respectively.In addition to use in wet pelleting, large quantities of water are required in continuous and cyclic furnace methods to reduce the temperature of the gases of decomposition in order to separate and collect the entrained carbon black. The 22 furnace plants in operation in 1953 used a total of 12.4 million gallons per day for process use. Four furnace plants generate electric power for plant use; condenser-cooling water for one such plant may nearly equal the requirements of the entire industry for process use. The average values of unit water use at furnace plants for process use, all plant uses and all uses including company camps but excluding power generation are 3.26, 3.34, and 3.45 gallons of water per pound of carbon black respectively.Carbon-black plants in remote, sparsely settled areas often must maintain company camps for employees. Twenty-one of twenty-seven contact plants surveyed in 1953 had company camps. These camps used large quantities of water: 0.84 gallon per pound of carbon black as compared to 0.14 gallon per pound used in the plants.Furnace plants can generally be located near a labor supply and, therefore, do not require company camps. Ten of the twenty-two furnace plants surveyed in 1953 had company camps.Because water used for pelleting and gas quenching is evaporated, leaving the dissolved minerals in the product as objectionable impurities, particular attention was paid to the quality of water available for use at the plants visited during the 1953 survey. Reports of chemical analyses of water samples were obtained at 23 plants. A study of these reports does not develop a pattern of the limits of tolerance of dissolved solids in water used in process or of the need for water treatment based on geographical location of the plant. However these analyses show that water used for quenching contains less dissolved solids than water used by the industry for any other purpose.Based on trends in the industry it is expected that the quantity of water used by the carbon-black industry will increase more rapidly than will the quantity of carbon black produced because of the increasing percentage produced in furnace plants, and that selection of sites for modern furnace plants will be influenced more by quantity and quality of the available water supply than was the case in selecting sites for contact plants for which low-cost natural gas was the primary consideration.

  14. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  15. 40 CFR 721.10080 - Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, 4-[(17-substituted-3,6,9... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10080 Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted...

  16. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  17. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S

    NASA Astrophysics Data System (ADS)

    Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.

    2016-06-01

    The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (<30 cm depth) from the three wetland settings. The pyrite fraction was quantified in various steps of the chemical oxidation method, evaluating the effects of pyrite oxidation. Regardless of the method used, and consistent with site-specific physicochemical conditions, higher pyrite and SOC contents were recorded in the mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.

  18. Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress

    PubMed Central

    Cowell, Whitney J.; Bellinger, David C.; Coull, Brent A.; Gennings, Chris; Wright, Robert O.; Wright, Rosalind J.

    2015-01-01

    Background Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. Objectives To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children’s memory and learning. Methods Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Results Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P 3-way interaction = 0.04). Conclusion The associations between prenatal exposure to black carbon and stress with children’s memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups. PMID:26544967

  19. Organic Carbon--water Concentration Quotients (IIsocS and [pi]pocS): Measuring Apparent Chemical Disequilibria and Exploring the Impact of Black Carbon in Lake Michigan

    EPA Science Inventory

    When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .

  20. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    EPA Science Inventory

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  1. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    EPA Science Inventory

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  2. Vertical Distribution of Black and Brown Carbon over Shanghai during Winter

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Yan, C.; Wang, D.; Fu, Q.

    2016-12-01

    Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.

  3. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter.

    PubMed

    Qiu, Yuping; Xiao, Xiaoyu; Cheng, Haiyan; Zhou, Zunlong; Sheng, G Daniel

    2009-07-01

    Loading two organic acids of known molecular structures onto a black carbon was conducted to study the influence of pH and dissolved organic matter on the adsorption of pesticides. Tannic acid at the loading rates of 100 and 300 micromol/g reduced the surface area of black carbon by 18 and 63%, respectively. This was due principally to the blockage of micropores, as verified by measured pore volumes and pore-size distributions. With a comparatively much smaller molecular structure, gallic acid did not apparently influence these properties. The intrinsic acidities of the two acids increased the surface acidity from 1.88 mmol/g of black carbon to 1.93-2.02 mmol/g after DOM loading, resulting in a reduction in isoelectric point pH from 1.93 to 1.66-1.82. The adsorption of propanil, 2,4-D and prometon by black carbon free and loaded of DOM was dependent on pH because major adsorptive forces were the interactions between neutral pesticide molecules and uncharged carbon surfaces. The adsorption was diminished considerably by the deprotonation of 2,4-D and protonation of prometon, as well as the surface charge change of black carbon. Tannic acid of 100 and 300 micromol/g on black carbon reduced the pesticide adsorption at the equilibrium concentration of 10 mg/L by an average of 46 and 81%, respectively, consistent with the reductions of 42 and 81% in micropore volume. At the equilibrium concentration of 30 mg/L, the mesopore surface became the additional adsorptive domain for propanil. Loading tannic acid made the mesopore surface less accessible, due presumably to the enhanced obstruction by tannic acid.

  4. Hygienic characteristics of carbon black used in tyre production.

    PubMed

    Rogaczewska, T; Ligocka, D; Nowicka, K

    1989-01-01

    Seven types of carbon black used in type production were subjected to hygienic evaluation. The coal tar pitch volatiles (CTPVs), toluene solubles, were determined by the gravimetric method and benzo/a/pyrene by HPLC with a spectrophotometric detector. Toluene solubles were found to amount to 0.12-0.25% (by weight). Benzo/a/pyrene (1.44-3.07 ppm) was detected in five out of the seven carbon blacks examined.

  5. Cancer mortality in German carbon black workers 1976–98

    PubMed Central

    Wellmann, J; Weiland, S K; Neiteler, G; Klein, G; Straif, K

    2006-01-01

    Background Few studies have investigated cancer risks in carbon black workers and the findings were inconclusive. Methods The current study explores the mortality of a cohort of 1535 male German blue‐collar workers employed at a carbon black manufacturing plant for at least one year between 1960 and 1998. Vital status and causes of death were assessed for the period 1976–98. Occupational histories and information on smoking were abstracted from company records. Standardised mortality ratios (SMR) and Poisson regression models were calculated. Results The SMRs for all cause mortality (observed deaths (obs) 332, SMR 120, 95% CI 108 to 134), and mortality from lung cancer (obs 50, SMR 218, 95% CI 161 to 287) were increased using national rates as reference. Comparisons to regional rates from the federal state gave SMRs of 120 (95% CI 107 to 133) and 183 (95% CI 136 to 241), respectively. However, there was no apparent dose response relationship between lung cancer mortality and several indicators of occupational exposure, including years of employment and carbon black exposure. Conclusions The mortality from lung cancer among German carbon black workers was increased. The high lung cancer SMR can not fully be explained by selection, smoking, or other occupational risk factors, but the results also provide little evidence for an effect of carbon black exposure. PMID:16497850

  6. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-02-01

    Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

  7. Carbon sequestration, optimum forest rotation and their environmental impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less

  8. Oxidation of SO2 by NO2 and air in an aqueous suspension of carbon

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Schryer, D. R.; Cofer, W. R., III; Edahl, R. A., Jr.; Munavalli, S.

    1982-01-01

    A series of experiments has been performed using carbon black as a surrogate for soot particles. Carbon black was suspended in water and gas mixtures were bubbled into the suspensions to observe the effect of carbon particles on the oxidation of SO2 by air and NO2. Identical gas mixtures were bubbled into a black containing only pure water. After exposure each solution was analyzed for pH and sulfate. It was found that NO2 greatly enhances the oxidation of SO2 to sulfate in the presence of carbon black. The amount of sulfate in the blanks was significantly less. Under the conditions of the experiments no saturation of the reaction was observed and SO2 was converted to sulfate even in a highly acid medium (pH not less than 1.5).

  9. Quantification of the proliferation of arbuscular mycorrhizal fungi in soil

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lilje, Osu; McGee, Peter

    2013-04-01

    Good soil structure is important for sustaining agricultural production and preserving functions of the soil ecosystem. Soil aggregation is a critically important component of soil structure. Stable aggregates enable water infiltration, gas exchange for biological activities of plant roots and microorganisms, living space and surfaces for soil microbes, and contribute to stabilization of organic matter and storage of organic carbon (OC) in soil. Soil aggregation involves fine roots, organic matter and hyphae of arbuscular mycorrhizal (AM) fungi. Hyphal proliferation is essential for soil aggregation and sequestration of OC in soil. We do not yet have a mechanism to directly quantify the density of hyphae in soil. Organic materials and available phosphorus are two of the major factors that influence fungi in soil. Organic materials are a source of energy for saprotrophic microbes. Fungal hyphae increase in the presence of organic matter. Phosphorus is an important element usually found in ecosystems. The low availability of phosphorus limits the biological activity of microbes. AM fungi benefit plants by delivering phosphorus to the root system. However, the density and the length of hyphae of AM fungi do not appear to be influenced by available phosphorus. A number of indirect methods have been used to visualize distribution of fungi in soil. Reliable analyses of soil are limited because of soil characteristics. Soils are fragile, and fragility limits opportunity for non-destructive analysis. The soil ecosystem is complex. Soil particles are dense and the density obscures the visualization of fungal hyphae. Fungal hyphae are relatively fine and information at the small scale (<250µm) is key to understanding how fungi respond to environmental stimuli. This experiment tested whether organic carbon (starch), phosphorus (K2HPO4) and their mixture influences proliferation of hyphae of AM fungi. Hyphae were quantified in an artificial soil matrix using micro-computer aided tomography. Micro-computer aided tomography provides three dimensional images of hyphal ramification through electron lucent materials and enables the visualization and quantification of hyphae. Starch and the mixture of starch plus K2HPO4, stimulated hyphal proliferation, while K2HPO4 alone did not change the density of hyphae. The images also indicate that fungal hyphae attached to the surfaces of the particles rather than grow through the spaces between them. The capacity to quantify hyphae in three-dimensional space allows a wide range of questions to now be addressed. Apart from studying mechanisms of carbon turnover, more complex processes may now be considered. Soil is commonly thought of as a black box. That black box is now a shade of grey.

  10. Study on the PTC/NTC effect of carbon black-filled polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hao; Chen, Xinfang; Luo, Yunxia

    1995-12-01

    In this work, the effect of processing condition and radiation-crosslinking on the electrical and dynamic behaviors of carbon black filled low density polyethylene (LDPE) composites were investigated. Compared with the solution counterpart, the mechanical composites have a strong PTC effect and a great dynamic elastic mold, which results from the strong interaction between carbon black and LDPE. The experiment result shows that the NTC effect is caused by the decrease of elastic mold of LDPE at high temperature, and it can be declined significantly by radiation-crosslinking. We conclude that the strong interaction between polymer and carbon black is essentially importantmore » for composites to have a great PTC intensity good electrical reproducibility and high dynamic elastic sold.« less

  11. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    EPA Science Inventory

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  12. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  13. New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Jaiser, Stefan; Müller, Marcus; Scharfer, Philip; Schabel, Wilhelm; Bauer, Werner; Scheiba, Frieder; Ehrenberg, Helmut

    2017-09-01

    In the current work, graphite electrodes comprising PVDF binder and carbon black are subjected to characterization. An energy selective backscatter detector is used to localize carbon black and fluorine of PVDF. Therefore, it is necessary to distinguish between graphite, amorphous carbon and fluorine rich regions. Typically, an angular selective backscatter detector is employed to obtain an image providing the material contrast of the sample. Suitable materials for that detector are e.g. alloys to observe intermetallic phases, semiconductor for ;channeling contrast;, or imaging SiO2 and Au nanoparticles in biological cells. However, this detector cannot be used to distinguish between light elements with low atomic numbers, such as C to P. In addition, the contrast of fluorine rich regions and graphite is poor in normal in-lens images due to the low difference of the atomic mass between C and F. The aim of this study is to enhance the contrast of fluorine rich regions to graphite to carbon black. Therefore, the energy selective backscatter detector is used and its advantages and setup is described. Finally this technique is applied to investigate 400 μm thick cross-sections of graphite electrodes dried at different temperatures and obtain the carbon black distribution.

  14. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-10-01

    This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow), aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams) by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  15. Dielectric and microstructure properties of polymer carbon black composites

    NASA Astrophysics Data System (ADS)

    Brosseau, C.; Boulic, F.; Queffelec, P.; Bourbigot, C.; Le Mest, Y.; Loaec, J.; Beroual, A.

    1997-01-01

    Dielectric and physicochemical properties of a composite material prepared by incorporating carbon black particles into a polymer matrix were investigated. Two types of carbon blacks, having very different structures of aggregates, were used. The volume fraction of the carbon blacks ranged from 0.2% to 7%, i.e. below and above the percolation threshold concentration observed from the measurements of dc conductivity. The composite samples were characterized in terms of: swelling by a compatible solvent, electron paramagnetic resonance (EPR) response, and frequency variation of permittivity. First, the article attempts to evaluate the diffusion coefficient of an appropriate solvent in these materials. Sorption kinetics experiments with toluene indicate that the initial uptake of solvent exhibits a square root dependence in time as a consequence of Fick's law and permit to evaluate the effective diffusion coefficient in the range 10-11-10-12 m2 s-1 depending on the volume fraction of the carbon black in the sample. Second, the analysis of the carbon black concentration dependence of the intensity and linewidth of the EPR signals indicates that EPR is an important experimental probe of the structure of the elasticity network. The most notable feature of the present work is that we find a correlation of the percolation threshold concentration which is detected from the dc electrical conductivity with moments of the EPR lines. The conclusions on the elasticity networks deduced from swelling measurements are confirmed by EPR data carried out on swollen samples. On qualitative grounds the role of the specific surface of carbon black is further analyzed. It is suggested that the elasticity network is mainly controlled by secondary (respectively primary) aggregates for samples containing low (respectively high) specific surface carbon blacks. Last, the article reports precise experimental data on the permittivity of these composite materials as a function of frequency. Thanks to a sensitive measurement technique using an impedance analyzer, we are able to measure the complex permittivity and permeability values of the samples in the frequency range from 108 to 1010 Hz. It is found that the real part of the permittivity is a function of frequency f, via a power law expression ɛ'=af-b, where a and b are two parameters depending upon carbon black concentration, in the range of frequency investigated. The data analysis reaffirms the result that percolation threshold is a key parameter for characterizing the topological arrangement in these structures.

  16. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies.

    PubMed

    Nieuwenhuijsen, Mark J; Donaire-Gonzalez, David; Rivas, Ioar; de Castro, Montserrat; Cirach, Marta; Hoek, Gerard; Seto, Edmund; Jerrett, Michael; Sunyer, Jordi

    2015-03-03

    Novel technologies, such as smartphones and small personal continuous air pollution sensors, can now facilitate better personal estimates of air pollution in relation to location. Such information can provide us with a better understanding about whether and how personal exposures relate to residential air pollution estimates, which are normally used in epidemiological studies. The aims of this study were to examine (1) the variability in personal air pollution levels during the day and (2) the relationship between modeled home and school estimates and continuously measured personal air pollution exposure levels in different microenvironments (e.g., home, school, and commute). We focused on black carbon as an indicator of traffic-related air pollution. We recruited 54 school children (aged 7-11) from 29 different schools around Barcelona as part of the BREATHE study, an epidemiological study of the relation between air pollution and brain development. For 2 typical week days during 2012-2013, the children were given a smartphone with CalFit software to obtain information on their location and physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 μg/m(3)) and the lowest levels at home (geometric mean = 1.3 μg/m(3)). Hourly temporally adjusted LUR model estimates for the home and school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68, respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled home estimates and overall personal black carbon levels was 0.62. Personal black carbon levels vary substantially during the day. The correlation between modeled and measured black carbon levels was generally good, with the exception of commuting times. In conclusion, novel technologies, such as smartphones and sensors, provide insights in personal exposure to air pollution.

  17. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    PubMed

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A study of the mixing state of black carbon in urban zone

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Putaud, J. P.; Dubovik, O.

    2004-02-01

    The knowledge of the mixing state of black carbon particle with other aerosol species is critical for adequate simulations of the direct radiative effect of black carbon particles and its effect on climate. This paper reports the investigation of the mixing state of black carbon aerosol in the urban zone. The study uses a combination of in situ and ground-based remote sensing observations conducted during the ESCOMPTE experiment, which took place in industrialized region in France in summer of 2001. The criteria we used for identifying mixing state relies on the known enhancement of absorption for aerosol composed by internal versus external mixtures of black carbon with weakly absorbing aerosol components. First, using in situ aerosol data, we performed Mie computations and reconstructed the single scattering albedo of aerosol for the two different mixing assumptions: black carbon mixed externally or internally with other aerosol species. Then, we compared the obtained values ωo,int and ωo,ext with the retrievals of ωo from independent AERONET Sun-photometric measurements. The aerosol single scattering albedo (ωo,aer.) derived from the AERONET photometer observations (with the mean value equal to 0.84 ± 0.04) was found to be close to ωo,ext reconstructed from in situ observation under assumptions of external mixture. This similarity between AERONET values and external mixture simulations was observed during all the days studied. Our conclusion on external mixture of black carbon aerosol with other particles in urban zone during ESCOMPTE (close to the pollution source) is coherent with observations made during other independent studies reported in a number of recent publications.

  19. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  20. Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork

    NASA Astrophysics Data System (ADS)

    Levine, L. E.; Long, G. G.; Ilavsky, J.; Gerhardt, R. A.; Ou, R.; Parker, C. A.

    2007-01-01

    The authors have used mechanical self-assembly of carbon-black nanoparticles to fabricate a three dimensional, electrically connected micronetwork of nanowires embedded within an insulating, supporting matrix of poly(methyl methacrylate). The electrical connectivity, mean wire diameter, and morphological transitions were characterized as a function of the carbon-black mass fraction. Conductive wires were produced with mean diameters as low as 24nm with lengths up to 100μm.

  1. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent

    PubMed Central

    Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan

    2015-01-01

    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977

  2. Equilibrium climate response of the East Asian summer monsoon to forcing of anthropogenic aerosol species

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Wang, Qiuyan; Zhang, Hua

    2017-12-01

    We used an online aerosol-climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea-land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea-land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea-land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.

  3. A New Oceanic Anoxic Event 2 record from the Central North Atlantic at South East Newfoundland Ridge, IODP Expedition 342, Newfoundland Drifts

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Bornemann, A.; Bown, P. R.; Friedrich, O.; Moriya, K.; Kirtland Turner, S.; Whiteside, J. H.

    2013-12-01

    The recovery of Cretaceous, Cenomanian-Turonian black shales deposited during Oceanic Anoxic Event 2 (OAE 2) at Site U1407, South East Newfoundland Ridge (SENR), was an unexpected but fortuitous discovery that fills a gap in the pelagic Tethyan and North Atlantic geologic records. Drilling operations recovered the OAE sequence in all three holes drilled at Site U1407 defined initially on the basis of lithology and calcareous nannofossil biostratigraphy and confirmed by carbon isotope stratigraphy post-expedition. The SENR OAE 2 sequence is a classic chalk sequence punctuated by a prominent black band. Prior to OAE 2, greenish white pelagic carbonate is interrupted by thin, 2 to 5 cm thick organic-rich, gray calcareous clays. A sharp transition from greenish-white chalk to carbonate-poor sediments marks the occurrence of the organic carbon-rich black band. Within the black band are finely laminated to massive, pyritic black shales and laminated gray clays that are relatively organic carbon-lean, free of preserved benthic foraminifera and rich in radiolarians. Finely laminated greenish-gray marls overlay the black band and grade into approximately 1 meter of greenish white chalks with common 1cm chert layers and nodules. The remainder of the Turonian sequence is characterized by a notable transition to pink chalks. The thickness of the black band ranges from 15-40 cm between Holes A through C. The differences in the thickness of beds between Holes is due in part to drilling disturbances and mass wasting indicated by slump features in the overlying Turonian strata. Core scanning XRF and carbon isotopes can help resolve the nature of these differences and inform future sampling and study. Carbonate and organic carbon isotopes reveal that the δ13C excursion marking the initiation of OAE 2 is below the base of the black band. At U1407A the δ13C rise is immediately below (3 cm) the black shale, with δ13C maxima in the black band. At U1407C the initial δ13C rise is below the black shale by 60 cm, in the underlying chalk. The temporal transience of TOC-enrichment is typical of OAE 2 sequences, particularly in the Tethyan realm (Gubbio, Italy; Ferriby, UK; Tarfaya, Morocco; Wunsorf, Germany), but the mechanism is unknown. In many ways, Site U1407 bears the distinct characteristics of the Tethyan region. Prior to the OAE, there are several black and dark gray bands interbedded with carbonate-rich (>80 wt. %), greenish white chalks. The color progression of white to black to pink through the OAE at U1407 is similar to C-T boundary sequences from the Umbria-Marche basin of Italy. The greenish white to pink nannofossil chalks are reminiscent of the Scaglia Bianca/Rossa limestones that bound the Bonarelli horizon. Associated lithologies include the presence of radiolarian sands interbedded with the black shales and cherts. This stratigraphic progression is similar to the Italian sequences, but the δ13C stratigraphy indicates that the excursion leads black shale deposition and in this sense is more similar to shallow continental records from the UK, USA and mainland Europe. This new δ13C record can be used to correlate SENR with other OAE 2 sections, allowing us to better understand possible mechanisms for the temporal transience of the black shales and paleoceanographic change during OAE2.

  4. Mass absorption efficiency of elemental carbon over Van Vihar National Park, Bhopal, India: Temporal variability and implications to estimates of black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Samiksha, S.; Raman, R. S.; Singh, A.

    2016-12-01

    It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2.However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed. It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2. However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed.

  5. Carbothermal Reduction of Quartz and Carbon Pellets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete; Ringdalen, Eli

    2018-06-01

    In this study, the carbothermal reduction of pellets composed of quartz and carbon at temperatures between 1898 K and 1948 K (1625 °C and 1675 °C) are investigated. The main product from this reaction is silicon carbide (SiC). The reduction of quartz with carbon black, charcoal, coke, coal, and pre-heated coal in the pellet were compared to investigate the different carbon resources used in silicon production. Charcoal and coke have high SiO reactivity, while carbon black and coal (pre-heated coal) have low SiO reactivity. Charcoal and carbon black show better matching between quartz/carbon reactivity and SiO reactivity, and will lose less SiO gas than coke and pre-heated coal. Coal has a high volatile content and is thus not recommended as a raw material for the pellets.

  6. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  7. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  8. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  9. 40 CFR 458.36 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  10. 40 CFR 458.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  11. 40 CFR 458.26 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  12. 40 CFR 458.36 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  13. 40 CFR 458.26 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  14. 40 CFR 458.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...

  15. 40 CFR 458.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process... pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned...

  16. Organic / inorganic carbon content and isotope analysis of 3.1Ga Cleaverville Formation in Pilbara, Australia: Result of DXCL project

    NASA Astrophysics Data System (ADS)

    Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.

    2014-12-01

    DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon.  The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰.  In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands.  1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively.  We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

    This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects onmore » carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.« less

  18. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    PubMed

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application.

  19. Variable effects of plant colonization on black slate uptake into microbial PLFAs

    NASA Astrophysics Data System (ADS)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Gleixner, Gerd

    2013-04-01

    Microbial degradation of carbon derived from black shale and slate has been shown in vitro. However, in natural settings where other labile carbon sources are likely to exist, this has not been previously demonstrated. We investigated the uptake of ancient carbon derived from slate weathering and from recently photosynthesised organic matter by different groups of microorganisms. Therefore we isolated microbial biomarkers (phospholipid fatty acids, PLFAs) from black slates collected at a chronosequence of waste piles which differed in age and vegetation cover. We quantified the amount of PLFAs and performed stable isotope and radiocarbon measurements on individual or grouped PLFAs to quantify the fraction of slate derived carbon. We used black slate from a pile heaped in the 1950s with either uncovered black slate material (bare site) or material slightly colonized by small plants (greened site) and from a forested leaching pile (forested site) used for alum-mining in the 19th century. Colonization by plants influenced the amount and composition of the microbial community. Greater amounts of PLFAs (5410 ng PLFA/g dw) were extracted from slate sampled at the forested site as opposed to the bare site (960 ng PLFAs/g dw) or the greened (annual grasses and mosses) rock waste pile (1050 ng PLFAs/g dw). We found the highest proportion of PLFAs representing Gram-negative bacteria on the forested site and the highest proportion of PLFAs representing Gram-positive bacteria on the bare site. The fungal PLFA was most abundant at the greened site. Sites with less plant colonization (bare and greened site) tended to have more depleted δ13C values compared to the forested site. Radiocarbon measurements on PLFAs indicated that fungi and Gram-positive bacteria were best adapted to black slate carbon uptake. In the fungal PLFA (combined bare and greened waste pile sample) and in PLFAs of Gram-positive bacteria (greened site) we measured 39.7% and 28.9% ancient carbon uptake, respectively. Our results prove that black slate degradation followed by carbon uptake takes place in situ. Results imply that plant colonization might additionally affect this process. Slight colonization with few plants increased slate derived carbon uptake in PLFAs of Gram-positive bacteria. Evidently, Gram-positive bacteria represented by specific PLFAs from the greened site held more ancient carbon than from the bare site. In contrast, no black slate derived carbon was used by microorganisms at the forested site with 2-3 times greater carbon content. Results suggest that the use of ancient slate derived carbon dominates mainly in early stages of microbial colonization of surfaces and that with increasing ecosystem development recycling of plant derived carbon dominates.

  20. Polymer-based materials to be used as the active element in microsensors: a scanning force microscopy study

    PubMed

    Porter; Eastman; Pace; Bradley

    2000-09-01

    Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.

  1. Measurement of aerosol optical properties by integrating cavity ring-down spectroscopy and nephelometery

    NASA Astrophysics Data System (ADS)

    Tedela, Getachew; Singh, Sujeeta; Fiddler, Marc; Bililign, Solomon

    2013-03-01

    Accurate measurement of optical properties of aerosols is crucial for quantifying the influence of aerosols on climate. Aerosols that scatter and absorb radiation can have a cooling or warming effect depending on the magnitude of the respective scattering and absorption terms. One example is black carbon known for its strong absorption. The reported refractive indices for black carbon particles range from 1.2 +0i to 2.75 +1.44i. Our work attempts to measure extinction coefficient, and scattering coefficient of black carbon particles at different incident beam wavelengths using a cavity ring-down spectrometer and a Nephelometer and compare to Mie theory predictions. We report calibration results using polystyrene latex spheres and preliminary results on using commercial black carbon particles. The work is supported by the Department of Defense grant W911NF-11-1-0188.

  2. A method for monitoring mass concentration of black carbon particulate matter using photothermal interferometry.

    PubMed

    Li, Baosheng; Wang, Yicheng; Li, Zhengqiang

    2016-03-01

    A method for measurements of mass concentration of black carbon particulate matter (PM) is proposed based on photothermal interferometry (PTI). A folded Jamin photothermal interferometer was used with a laser irradiation of particles deposited on a filter paper. The black carbon PM deposited on the filter paper was regarded as a film while the quartz filter paper was regarded as a substrate to establish a mathematical model for measuring the mass concentration of PM using a photothermal method. The photothermal interferometry system was calibrated and used to measure the atmospheric PM concentration corresponding to different dust-treated filter paper. The measurements were compared to those obtained using β ray method and were found consistent. This method can be particularly relevant to polluted atmospheres where PM is dominated by black carbon.

  3. Study of Rubber Composites with Positron Doppler Broadening Spectroscopy: Consideration of Counting Rate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Quarles, C. A.

    2007-10-01

    We have used positron Doppler Broadening Spectroscopy (DBS) to investigate the uniformity of rubber-carbon black composite samples. The amount of carbon black added to a rubber sample is characterized by phr, the number of grams of carbon black per hundred grams of rubber. Typical concentrations in rubber tires are 50 phr. It has been shown that the S parameter measured by DBS depends on the phr of the sample, so the variation in carbon black concentration can be easily measured to 0.5 phr. In doing the experiments we observed a dependence of the S parameter on small variation in the counting rate or deadtime. By carefully calibrating this deadtime correction we can significantly reduce the experimental run time and thus make faster determination of the uniformity of extended samples.

  4. Scaling approach of terrestrial carbon cycle over Alaska's black spruce forests: a synthesis of field observation, remote sensing, and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Date, T.; Harazono, Y.; Ichii, K.

    2007-12-01

    Spatio-temporal scale up of the eddy covariance data is an important challenge especially in the northern high latitude ecosystems, since continuous ground observations are rarely conducted. In this study, we measured the carbon fluxes at a black spruce forest in interior Alaska, and then scale up the eddy covariance data to spatio- temporal variations in regional carbon budget by using satellite remote sensing data and a process based ecosystem model, Biome-BGC. At point scale, both satellite-based empirical model and Biome-BGC could reproduce seasonal and interannual variations in GPP/RE/NEE. The magnitude of GPP/RE is also consistent among the models. However, spatial patterns in GPP/RE are something different among the models; high productivity in low elevation area is estimated by the satellite-based model whereas insignificant relationship is simulated by Biome-BGC. Long- term satellite records, AVHRR and MODIS, show the gradual decline of NDVI in Alaska's black spruce forests between 1981 and 2006, resulting in a general trend of decreasing GPP/RE for Alaska's black spruce forests. These trends are consistent with the Biome-BGC simulation. The trend of carbon budget is also consistent among the models, where the carbon budget of black spruce forests did not significantly change in the period. The simulated results suggest that the carbon fluxes in black spruce forests could be more sensitive to water availability than air temperature.

  5. Association of black carbon with cognition among children in a prospective birth cohort study.

    PubMed

    Suglia, S Franco; Gryparis, A; Wright, R O; Schwartz, J; Wright, R J

    2008-02-01

    While studies show that ultrafine and fine particles can be translocated from the lungs to the central nervous system, the possible neurodegenerative effect of air pollution remains largely unexplored. The authors examined the relation between black carbon, a marker for traffic particles, and cognition among 202 Boston, Massachusetts, children (mean age = 9.7 years (standard deviation, 1.7)) in a prospective birth cohort study (1986-2001). Local black carbon levels were estimated using a validated spatiotemporal land-use regression model (mean predicted annual black carbon level, 0.56 mug/m(3) (standard deviation, 0.13)). The Wide Range Assessment of Memory and Learning and the Kaufman Brief Intelligence Test were administered for assessment of cognitive constructs. In analysis adjusting for sociodemographic factors, birth weight, blood lead level, and tobacco smoke exposure, black carbon (per interquartile-range increase) was associated with decreases in the vocabulary (-2.2, 95% confidence interval (CI): -5.5, 1.1), matrices (-4.0, 95% CI: -7.6, -0.5), and composite intelligence quotient (-3.4, 95% CI: -6.6, -0.3) scores of the Kaufman Brief Intelligence Test and with decreases on the visual subscale (-5.4, 95% CI: -8.9, -1.9) and general index (-3.9, 95% CI: -7.5, -0.3) of the Wide Range Assessment of Memory and Learning. Higher levels of black carbon predicted decreased cognitive function across assessments of verbal and nonverbal intelligence and memory constructs.

  6. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.

    PubMed

    Ding, Kai; Xu, Wenqing

    2016-12-06

    1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), are often detected in soils and sediments containing high concentrations of black carbon. Sulfide (∼5 mM) from biological sulfate reduction often coexists with black carbon and serves as both a strong reductant and a nucleophile for the abiotic transformation of contaminants. In this study, we found that the abiotic transformation of DDT, DDD, and DDE (collectively referred to as DDX) require both sulfide and black carbon. 89.3 ± 1.8% of DDT, 63.2 ± 1.9% of DDD, and 50.9 ± 1.6% of DDE were degraded by sulfide (5 mM) in the presence of graphite powder (21 g/L) after 28 days at pH 7. Chloride was a product of DDX degradation. To better understand the reaction pathways, electrochemical cells and batch reactor experiments with sulfide-pretreated graphite powder were used to differentiate the involvement of black carbon materials in DDX transformation by sulfide. Our results suggest that DDT and DDD are transformed by surface intermediates formed from the reaction between sulfide and black carbon, while DDE degradation involves reductive dechlorination. This research lays the groundwork for developing an alternative in situ remediation technique for rapidly decontaminating soils and sediments to lower toxic products under environmentally relevant conditions.

  7. Quantification of carbon accumulation in eleven New England eelgrass meadows

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  8. The characterisation and management of greenhouse gas emissions from fires in northern Australian savannas

    NASA Astrophysics Data System (ADS)

    Cook, G. D.; Liedloff, A. C.; Richards, A. E.; Meyer, M.

    2016-12-01

    Australia is the only OECD country with a significant area of tropical savannas within it borders. Approximately 220 000 km2 of these savannas burn every year releasing 2 to 4 % of Australia's accountable greenhouse gas emissions. Reduction in uncertainty in the quantification of these emissions of methane and nitrous has been fundamental to improving both the national GHG inventory and developing approaches to better manage land to reduce these emissions. Projects to reduce pyrogenic emissions have been adopted across 30% of Australia's high rainfall savannas. Recent work has focussed on quantifying the additional benefit of increased carbon stocks in fine fuel and coarse woody debris (CWD) resulting from improvements in fire management. An integrated set of equations have been developed to enable seemless quantification of emissions and sequestration in these frequently burnt savannas. These show that increases in carbon stored in fine fuel and CWD comprises about 3 times the emissions abatement from improvements in fire management that have been achieved in a project area of 28 000 km2. Future work is focussing on improving the understanding of spatial and temporal variation in fire behaviour across Australia's savanna biome, improvements in quantification of carbon dynamics of CWD and improved quantification of the effects of fire on carbon dynamics in soils of the savannas.

  9. Effect of Pt and Fe catalysts in the transformation of carbon black into carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Myrseth, Velaug; Kosinski, Pawel

    2015-06-01

    In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals.

  10. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    NASA Astrophysics Data System (ADS)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS have been determined. Beside a general distribution of number and mass of black carbon particles, single peak events were detected with an up to 20 times higher concentration. High concentration plumes have been observed continuously over a range of 10,000 km. Interestingly, the first measurements show also a lower amount of black carbon mass in the tropics compared to the mid latitude northern hemisphere. References CARIBIC: www.caribic-atmospheric.com / www.caribic-atmospheric.org / www.caribic.de Bond, T. C., et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380-5552, doi:10.1002/jgrd.50171

  11. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    EPA Science Inventory

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  12. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  14. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    NASA Astrophysics Data System (ADS)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  15. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments

    PubMed Central

    Thamdrup, Bo; Rosselló-Mora, Ramón; Amann, Rudolf

    2000-01-01

    The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ∼1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ∼10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche. PMID:10877783

  16. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quantification of systemic renin-angiotensin system peptides of hypertensive black and white African men established from the RAS-Fingerprint®.

    PubMed

    van Rooyen, J M; Poglitsch, M; Huisman, H W; Mels, Cmc; Kruger, R; Malan, L; Botha, S; Lammertyn, L; Gafane, L; Schutte, A E

    2016-10-01

    The objective of this study was to make use of a quantitative and qualitative approach comparing the systemic renin-angiotensin system (RAS) of hypertensive black and white African men by using RAS equilibrium analysis. This sub-study involved 23 black (n = 15) and white (n = 8) hypertensive men aged 39.5-41 years, living in the North West Province of South Africa. The RAS-Fingerprinting was determined with LC-MS/MS quantification of angiotensin peptides. Blood pressure and other variables were determined with known methods. The main finding of this study was the significant lower Ang I (<5.0 and 45.1 pg/ml; p = 0.005) and Ang II (15.6 and 123.9 pg/ml; p ⩽ 0.001) encountered in the hypertensive black African men compared to their white counterparts. Levels of Ang 1-5 (downstream metabolite of Ang 1-7) (1.8 and 3.0 pg/ml), were detected in black and white hypertensive men, respectively. The observed differences between circulating RAS components, which are reflected via equilibrium angiotensin levels, point to a distinctive molecular regulation of the RAAS in the two study cohorts. The increased peripheral resistance observed in hypertensive black individuals might take over a dominant role in control of blood pressure in this study population. A novel highly sensitive LC-MS/MS method resolved the issue of peptide recovery variations during sample preparation by using internal standards for each individual angiotensin metabolite. © The Author(s) 2016.

  18. Webinar Presentations: STAR Black Carbon Webinar Series (11/21 and 12/9)

    EPA Pesticide Factsheets

    These presentations were given at the STAR Black Carbon Webinar Series held on Nov. 21, 2016 (Topic: Interactions with Water) and on Dec. 9, 2016 (Topic: Representation at Different Geographic Scales).

  19. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  20. Black and brown pigment gallstones differ in microstructure and microcomposition.

    PubMed

    Malet, P F; Takabayashi, A; Trotman, B W; Soloway, R D; Weston, N E

    1984-01-01

    The two subtypes of pigment gallstones, black and brown stones, differ in chemical composition and pathogenesis. We examined a black bilirubinate stone and a black phosphate stone (which represented opposite ends of the compositional spectrum of black noncarbonate stones), a black carbonate stone, and a brown pigment stone using scanning electron microscopy and microchemical techniques to determine if stone microstructure and microcomposition reflected different patterns of formation. The cross-sectional surfaces of the black bilirubinate and black phosphate stones were smooth and homogenous. Electron probe microanalysis demonstrated high concentrations of sulfur and copper in the center of the black bilirubinate stone; sulfur was in a low valence state consistent with disulfide linkages in proteins. The brown stone was rough-surfaced with lamellated bands on cross-section. The lighter-colored bands in this stone contained virtually all of the detected calcium palmitate, while the darker sections contained much more calcium bilirubinate. Plasma oxygen etching demonstrated a network of protein interdigitating with calcium bilirubinate salts in the black bilirubinate and black phosphate stones but not in the black carbonate or brown stones. Argon ion etching demonstrated that calcium bilirubinate was in a closely packed rod-shaped arrangement in all three black stones but not in the brown stone. We conclude that the marked differences in structure and composition between the black noncarbonate and brown pigment gallstones support the hypothesis that the two major pigment gallstone types form by different mechanisms. In addition, the layered structures of the black carbonate and brown stones suggest that stone growth is affected by cyclic changes in biliary composition.

  1. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    PubMed

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  2. Regional scale temperature and circulation impacts of short-lived climate pollutants reductions

    NASA Astrophysics Data System (ADS)

    Oudar, T.; Kushner, P. J.; Fyfe, J. C.; von Salzen, K.; Shrestha, R.

    2017-12-01

    The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to gauge the chance of finding similar signals as a result of internal variability alone.

  3. Atmospheric Rivers as a Trigger for Landslides and Post-Fire Debris Flows in Southern California

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Lancaster, J.; Stock, J. D.; Cerovski-Darriau, C.; Kaplan, M.; Ralph, F. M.

    2016-12-01

    The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to gauge the chance of finding similar signals as a result of internal variability alone.

  4. Long-term Airborne Black Carbon Measurements on a Lufthansa Passenger Aircraft

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Su, H.; Ditas, J.; Scharffe, D.; Wang, S.; Zhang, Y.; McMeeking, G. R.; Brenninkmeijer, C. A. M.; Poeschl, U.

    2015-12-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO2 the strongest component of current global warming. Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free troposphere, and in the UTLS (upper troposphere and lower stratosphere). In August 2014, a single particle soot photometer (SP2) was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 and carries out systematic observations of trace gas and aerosol sampling and on-line analyses, as well as DOAS remote sensing system at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The integration of a SP2 offers the possibility for the first long-term measurement of global distribution of black carbon. Up to date the SP2 measurements have been analyzed for 392 flights hours over four continents (Fig. 1). The first measurements show promising results of black carbon including periods when background concentrations in the UTLS were encountered. Beside a general distribution of number and mass of black carbon particles, peak events were detected with up to 20 times higher concentrations compared to the background. Moreover, high concentration plumes have been observed continuously over a range of 10,000 km. Interestingly, our results show also a generally lower amount of black carbon mass in the tropics compared to the mid latitude northern hemisphere.

  5. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    PubMed

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.

    PubMed

    Highwood, Eleanor J; Kinnersley, Robert P

    2006-05-01

    With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.

  7. Evolution of anthropogenic emissions at the global and regional scale during the past three decades

    NASA Astrophysics Data System (ADS)

    Granier, C.; Bessagnet, B. B.; Bond, T. C.; D'Angiola, A.; Denier van der Gon, H.; Frost, G. J.; Heil, A.; Kaiser, J.; Kinne, S. A.; Klimont, Z.; Kloster, S.; Lamarque, J.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.; Riahi, K.; Schultz, M. G.; Smith, S.; Thomson, A. M.; van Aardenne, J.; van der Werf, G.; van Vuuren, D.

    2010-12-01

    The knowledge of the distributions of surface emissions of gases and aerosols is essential for an accurate modeling and analysis of the distribution and evolution of the concentration of gaseous and particulate chemical species. The quantification of surface fluxes by source of origin is furthermore central to the assessment of effects and the development of control measures. Over the past few years, different ranges of emission fluxes have been proposed by several studies, which have provided emissions at different spatial and temporal scales. We have compared the emissions of several chemical compounds, i.e. carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon, as provided by global and regional emissions inventories in different regions of the world for the past thirty years. The presentation will focus on the United States, Europe and China. Significant differences between the datasets providing emissions in these regions have been identified, reaching for example 60% and 35% for anthropogenic emissions of carbon monoxide and nitrogen oxides in both regions, respectively. We will assess the current uncertainties on surface emissions and their recent trends. This analysis is often hindered because of differences in base years and in species considered in the different datasets. Current work aiming at compiling comparable metrics for such species for the analysis of regional and global emission datasets will be discussed.

  8. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  9. Rethinking the Scope of Environmental Injustice: Perceptions of Health Hazards in a Rural Native American Community Exposed to Carbon Black

    ERIC Educational Resources Information Center

    Shriver, Thomas E.; Webb, Gary R.

    2009-01-01

    We use in-depth interviews, participant observation, and document analysis to examine perceptions of environmental health and justice among Native Americans in a rural Oklahoma community. Residents live near the Continental Carbon Company, which manufactures a rubber compound know as "carbon black." Ponca tribal members believe their…

  10. THE OPTIMIZATION OF THERMAL OPTICAL ANALYSIS FOR THE MEASUREMENT OF BLACK CARBON IN REGIONAL PM2.5: A CHEMOMETRIC APPROACH REPORT

    EPA Science Inventory

    In thermal-optical analysis (TOA), particulate organic carbon (OC) as well as black carbon (BC) must be quantified. Both the BC that is native to the filter and instrument-produced OC char are products of incomplete combustion and have similar optical as well as chemical properti...

  11. Environmental Technology Verification Program Advanced Monitoring Systems Center Quality Assurance Project Plan for Verification of Black Carbon Monitors

    EPA Science Inventory

    Black carbon is a term that is commonly used to describe strongly light absorbing carbon (LAC), which is thought to play a significant role in global climate change through direct absorption of light, interaction with clouds, and by reducing the reflectivity of snow and ice. BC ...

  12. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  13. Black shale deposition during Toarcian super-greenhouse driven by sea level

    NASA Astrophysics Data System (ADS)

    Hermoso, M.; Minoletti, F.; Pellenard, P.

    2013-12-01

    One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere-ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the oxygen availability in the water column whose nature has still to be determined through cyclostratigraphic analysis.

  14. Behavior of Quartz and Carbon Black Pellets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    This paper studies the quartz and carbon black pellets at elevated temperature with varying temperature and gas atmosphere. High-purity quartz and commercial ultra-pure carbon black was mixed (carbon content vet. 15%), and then pelletized into particles of l-3mm in diameter. The stoichiometric analysis of the pellet during heating is studied in thermogravimetric analysis (TGA) furnace at different temperature in CO and Ar atmosphere. The microstructure, phase changes and element content of sample before/after heating is characterized by X-ray diffraction, scanning electron microscope, X-ray fluorescence and LECO analyzer. The reaction process can be divided into two stages. Higher temperature and argon atmosphere are the positive parameters for SiC formation.

  15. Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites

    NASA Astrophysics Data System (ADS)

    Brosseau, C.; Molinié, P.; Boulic, F.; Carmona, F.

    2001-06-01

    Electron paramagnetic resonance (EPR) has now become firmly established as one of the methods of choice for analyzing the carbon network over a range of different volume fraction of the carbon black in the composite, i.e., below and above the respective conduction threshold concentration. In the present article, two types of carbon blacks, having very different primary structures, surface areas, and percolation thresholds, were used; Raven 7000 (of high surface area and high percolation threshold volume fraction) and Y50A (of low surface area and low percolation threshold volume fraction). A semiquantitative image analysis of the microstructure from transmission electron microscopy reveals information about the spatial distribution of the carbon aggregates and agglomerates inside the composite. We observe that the apparent surface of agglomerates increases significantly with increasing carbon black content for the two types of blacks investigated. Adsorbed oxygen on the carbon black cristallites and dynamic coalescence under mixing conditions can be responsible for the broadening of the dispersed phase surface distribution. The interagglomerate distance in two samples of concentrations f

  16. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-04-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon - a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams). The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  17. Source contributions to black carbon mass fractions in aerosol particles over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Koga, Seizi; Maeda, Takahisa; Kaneyasu, Naoki

    Aerosol particle number size distributions above 0.3 μm in diameter and black carbon mass concentrations in aerosols were observed on Chichi-jima of the Ogasawara Islands in the northwestern Pacific from January 2000 to December 2002. Chichi-jima is suitable to observe polluted air masses from East Asia in winter and clean air masses over the western North Pacific in summer. In winter, aerosols over Chichi-jima were strongly affected by anthropogenic emissions in East Asia. The form of energy consumption in East Asia varies in various regions. Hence, each source region is expected to be characterized by an individual black carbon mass fraction. A three-dimensional Eulerian transport model was used to estimate contribution rates to air pollutants from each source region in East Asia. Because the Miyake-jima eruption began at the end of June 2000, the influence of smokes from Miyake-jima was also considered in the model calculation. The results of model calculations represent what must be noticed about smokes from volcanoes including Miyake-jima to interpret temporal variations of sulfur compounds over the northwestern Pacific. To evaluate black carbon mass fractions in anthropogenic aerosols as a function of source region, the relationships between the volume concentration of aerosol particles and the black carbon mass concentration in the winter were classified under each source region in East Asia. Consequently, the black carbon mass fractions in aerosols from China, Japan and the Korean Peninsula, and other regions were estimated to be 9-13%, 5-7%, and 4-5%, respectively.

  18. Wintertime Correlation Between Black Carbon and Particle Size in a Street and Rural Site in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Gramsch, E. V.; Reyes, F.; Oyola, P.

    2013-05-01

    We have studied the correlation between black carbon and particle size in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and performed a detailed comparison. Two of the sites are located near busy streets in Santiago de Chile. The other site was located in a rural area about 30 km upwind from downtown with little influence from vehicles, but large influence from wood burning. The particle size distribution was measured with a DMPS (Whalin, 2001) in the range from 10 to 700 nm. Simultaneously, black carbon was measured with an optical monitor developed at the University of Santiago (Gramsch, 2004). It is well known that the smaller particles (~ 10 - 40 nm ) are emitted directly by the engines of vehicles, which later condensate or coagulate in the atmosphere to form larger particles. In our measurements, the street site is mostly influenced by diesel vehicles which emit large amounts of black carbon. We have divided the particle size measurements in four groups (10 - 40 nm, 41- 69 nm, 79 - 157 nm and 190 - 700 nm) in order to compare with the carbon monitor. The highest correlation (0.98) in the site near the street between black carbon and the particles was obtained with the 190 - 700 nm. The correlation with the 79 - 157 nm group was slightly less (0.93). A comparison between the hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the whole day. In the rural site, the number of particles in the 10 - 40 nm group was 10 times lower than in the street, but the number of particles in the 190 - 700 nm group was only two times smaller. This fact is an indication that wood burning does not generate particles smaller than ~ 80 - 100 nm. The best correlation in the rural site between the black carbon and the particles was also with the 190 - 700 nm group. However, the correlation was lower (0.86) than in the street site. The hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the night (10 PM - 6 AM), but differ during the day. These measurements indicate that black carbon measurements may be more sensitive to emission from diesel vehicles than wood burning. This work was supported by the University of Santiago (Dicyt), the National Commission for the Environment (CONAMA) and the Regional Government of the Metropolitan Region (GORE).. Gramsch, E., Cereceda-Balic, F., Ormeño, I., Palma, G., Oyola, P., 2004. Use of the light absorption coefficient to monitor elemental carbon and PM2.5. Example of Santiago de Chile. Journal of the Air and Waste Management Association 54, 799-808 Wahlin, P., Palmgren, F., Van Dingenen, R., 2001. Experimental studies of ultrafine particles in streets and the relationship to traffic. Atmospheric Environment 35 (Suppl. 1), 63-69..

  19. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  20. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    NASA Astrophysics Data System (ADS)

    Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.

  1. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  2. Novel Structural Health Monitoring Schemes for Glass-Fiber Composites using Nanofillers

    DTIC Science & Technology

    2014-03-31

    laminate with aligned carbon black. EIT has also been used to locate damage in a carbon nanofiber (CNF) filled epoxy composite. Methods of improving EIT...mm in diameter as well as impact damage to a GFRP laminate with aligned carbon black. EIT has also been used to locate damage in a carbon nanofiber...field applications, particularly ballistic armor and helicopter blades. The ability to detect matrix damage in composite laminates is extremely

  3. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with CNTs. It was observed that bound rubber content decreased with increase in CNT content for NBR/CB/CNTs nanocomposites above a loading of 1 phr CNT. In the fourth chapter, the effect of another carbon filler, fullerene, on the properties of HNBR was studied. Fullerenes are conductive and thermally stable due to their three dimensional aromaticity and high reactivity. In this work, the effect of fullerenes (C60) on the properties of HNBR rubber for potential use in aggressive environments was investigated. The vulcanized HNBR rubber with different filler loadings of fullerenes was compared with carbon black (N330). The static mechanical, dynamic mechanical and rheological behavior of the compounds was investigated, along with the vulcanization kinetics study. Increased filler loading of both carbon black and fullerene gave higher modulus and strength. The fullerene filled materials showed improved failure properties.

  4. Detection and quantification of Leptographium wageneri, the cause of black-stain root disease, from bark beetles (Coleoptera: Scolytidae) in North California using regular and real-time PCR

    Treesearch

    Wolfgang Schweigkofler; William J. Otrosina; Sheri L. Smith; Daniel R. Cluck; Kevin Maeda; Kabir G. Peay; Matteo Garbelotto

    2005-01-01

    Black-stain root disease is a threat to conifer forests in western North America. The disease is caused by the ophiostomatoid fungus Leptographium wageneri (W.B. Kendr.) M.J. Wingf., which is associated with a number of bark beetle (Coleoptera: Scolytidae) and weevil species (Coleoptera: Curculionidae). We developed a polymerase chain reaction test...

  5. Characterisation of Black Carbon (BC) mixing state and flux in Beijing using single particle measurements.

    NASA Astrophysics Data System (ADS)

    Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil

    2017-04-01

    BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.

  6. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    NASA Astrophysics Data System (ADS)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass concentration from SP2, a mass absorption cross section of 6.0 m2 g-1 was found at a wavelength of 880 nm. Concerning mixing, rBC cores with a dimeter between 170 nm and 280 nm were found to be covered by a layer of non-absorbing material having a median thickness of 50 nm. From Mie calculation, such mixing would lead to an enhancement of absorption of 46% compared to a bare BC core. The aforementioned absorption enhancement would lead to a net decrease of single scattering albedo of the total aerosol of less than 1%. The reliability of Mie approach was confirmed by agreement with observations, while MAC values commonly used in radiative forcing models might lead to discrepancies up to 80%. Our work provides all the major optical properties of total aerosol and BC to minimize the uncertainty of radiative estimations based on a priori assumptions.

  7. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem

    2015-06-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...

  9. 40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...

  10. 40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...

  11. 40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...

  12. 40 CFR 458.44 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 458.44 Section 458.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.44 [Reserved] ...

  13. 40 CFR 458.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...

  14. 40 CFR 458.44 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 458.44 Section 458.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.44...

  15. 40 CFR 458.44 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 458.44 Section 458.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.44...

  16. 40 CFR 458.44 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 458.44 Section 458.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.44...

  17. 40 CFR 458.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...

  18. 40 CFR 458.44 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 458.44 Section 458.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.44 [Reserved] ...

  19. 40 CFR 458.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...

  20. 40 CFR 458.14 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 458.14 Section 458.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace Process Subcategory § 458.14...

  1. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  2. Black carbon in aerosol during BIBLE B

    NASA Astrophysics Data System (ADS)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  3. An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.

    PubMed

    Good, Nicholas; Mölter, Anna; Peel, Jennifer L; Volckens, John

    2017-07-01

    The AE51 micro-Aethalometer (microAeth) is a popular and useful tool for assessing personal exposure to particulate black carbon (BC). However, few users of the AE51 are aware that its measurements are biased low (by up to 70%) due to the accumulation of BC on the filter substrate over time; previous studies of personal black carbon exposure are likely to have suffered from this bias. Although methods to correct for bias in micro-Aethalometer measurements of particulate black carbon have been proposed, these methods have not been verified in the context of personal exposure assessment. Here, five Aethalometer loading correction equations based on published methods were evaluated. Laboratory-generated aerosols of varying black carbon content (ammonium sulfate, Aquadag and NIST diesel particulate matter) were used to assess the performance of these methods. Filters from a personal exposure assessment study were also analyzed to determine how the correction methods performed for real-world samples. Standard correction equations produced correction factors with root mean square errors of 0.10 to 0.13 and mean bias within ±0.10. An optimized correction equation is also presented, along with sampling recommendations for minimizing bias when assessing personal exposure to BC using the AE51 micro-Aethalometer.

  4. Can reducing black carbon emissions counteract global warming?

    PubMed

    Bond, Tami C; Sun, Haolin

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. We review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. We argue that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. We synthesize results from published climate-modeling studies to obtain a global warming potential for black carbon relative to that of CO2 (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. We find that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, we propose a role for black carbon in climate mitigation strategies that is consistent with the apparently conflicting arguments raised during our discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement.

  5. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    PubMed Central

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application. PMID:23773277

  6. Accounting for water levels and black carbon-inclusive sediment-water partitioning of organochlorines in Lesser Himalaya, Pakistan using two-carbon model.

    PubMed

    Ali, Usman; Sweetman, Andrew James; Jones, Kevin C; Malik, Riffat Naseem

    2018-06-18

    This study was designed to monitor organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in riverine water of Lesser Himalaya along the altitude. Further, the sediment-water partitioning employing organic carbon and black carbon models were assessed. Results revealed higher water levels of organochlorine pesticides (0.07-41.4 ng L -1 ) and polychlorinated biphenyls (0.671-84.5 ng L -1 ) in Lesser Himalayan Region (LHR) of Pakistan. Spatially, elevated levels were observed in the altitudinal zone (737-975 masl) which is influenced by anthropogenic and industrial activities. Sediment-water partitioning of OCPs and PCBs were deduced using field data by employing one-carbon (f OC K OC ) and two-carbon Freundlich models (f OC K OC + f BC K BC C W nF-1 ). Results suggested improved measured vs predicted model concentrations when black carbon was induced in the model and suggested adsorption to be the dominant mechanism in phase partitioning of organochlorines in LHR.

  7. Contribution of black spruce (Picea mariana) transpiration to growing season evapotranspiration in a subarctic discontinuous permafrost peatland complex

    NASA Astrophysics Data System (ADS)

    Helbig, M.; Warren, R. K.; Pappas, C.; Sonnentag, O.; Berg, A. A.; Chasmer, L.; Baltzer, J. L.; Quinton, W. L.; Patankar, R.

    2016-12-01

    Partitioning the components of evapotranspiration (ET), evaporation and transpiration, has been increasingly important for the better understanding and modeling of carbon, water, and energy dynamics, and for reliable water resources quantification and management. However, disentangling its individual processes remains highly uncertain. Here, we quantify the contribution of black spruce transpiration, the dominant overstory, to ET of a boreal forest-wetland landscape in the southern Taiga Plains. In these ecosystems, thawing permafrost induces rapid landscape change, whereby permafrost-supported forested plateaus are transformed into bogs or fens (wetlands), resulting in tree mortality. Using historical and projected rates of forest-wetland changes, we assess how the contribution of black spruce transpiration to landscape ET might be altered with continued permafrost loss, and quantify the resulting water balance changes. We use two nested eddy covariance flux towers and a footprint model to quantify ET over the entire landscape. Sap flux density of black spruce is measured using the heat ratio method during the 2013 (n=22) and 2014 (n=3) growing seasons, and is used to estimate tree-level transpiration. Allometric relations between tree height, diameter at breast height and sapwood area are derived to upscale tree-level transpiration to overstory transpiration within the eddy covariance footprint. Black spruce transpiration accounts for <10% of total landscape ET. The largest daily contribution of overstory transpiration to landscape ET is observed shortly after the landscape becomes snow-free, continually decreasing throughout the progression of the growing season. Total transpiration is notably lower in 2014 (2.34 mm) than 2013 (2.83 mm) over the same 40-day period, corresponding to 3% of cumulative landscape ET in both years. This difference is likely due to the antecedent moisture conditions, where the 2014 growing season was proceeded by lower than average snowfall. As wetland features contribute a larger percentage to landscape ET than plateaus and expand with thawing permafrost, black spruce transpiration may become a negligible component of the water balance in these environments in the near future, with pronounced implications for the hydrological regime in these ecosystems.

  8. Black shale deposition during Toarcian super-greenhouse driven by sea level

    NASA Astrophysics Data System (ADS)

    Hermoso, M.; Minoletti, F.; Pellenard, P.

    2013-07-01

    One of the most elusive aspects of the Toarcian Oceanic Anoxic Event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the T-OAE (defined by the overarching positive trend in the carbon isotopes). In the present studied, we have attempted to establish a sequence stratigraphy framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by > 10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the Atmosphere-Ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the concentration of redox-sensitive elements such as iron or vanadium whose nature has still to be determined through cyclostratigraphic analysis.

  9. Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Li, Minmin; Dai, Chao; Wang, Fengzhong; Kong, Zhiqiang; He, Yan; Huang, Ya Tao; Fan, Bei

    2017-02-01

    An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett-Burman (P-B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer’s desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4-113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables.

  10. Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables

    PubMed Central

    Li, Minmin; Dai, Chao; Wang, Fengzhong; Kong, Zhiqiang; He, Yan; Huang, Ya Tao; Fan, Bei

    2017-01-01

    An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett–Burman (P–B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer’s desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4–113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables. PMID:28225030

  11. Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables.

    PubMed

    Li, Minmin; Dai, Chao; Wang, Fengzhong; Kong, Zhiqiang; He, Yan; Huang, Ya Tao; Fan, Bei

    2017-02-22

    An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett-Burman (P-B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer's desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4-113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables.

  12. CARBON BLACK DISPERSION PRE-PLATING TECHNOLOGY FOR PRINTED WIRE BOARD MANUFACTURING

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in replacing electroless copper with a carbon black dispersion technology. McCurdy Circuits of Orange County, California, currently has both processes in operation. McCurdy has found that...

  13. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  14. A black carbon air quality network

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.

    2016-12-01

    We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.

  15. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    NASA Astrophysics Data System (ADS)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  16. Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF

    EPA Science Inventory

    Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon ...

  17. How do molecular marker patterns of BC change at increasing age of chars?

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Hilf, M.; Schmidt, M. W. I.

    2009-04-01

    Black carbon (BC) is considered to be a relatively stable form of organic carbon. However, previous results have shown that the physical and chemical properties of BC can vary considerably with formation temperature. Thus, to understand the long-term carbon sink potential of BC there is increasing interest to gain more information about i) the conditions under which BC was formed, and ii) the resulting degradability of BC under natural conditions. In a first step, we synthesised chars from two different sources of biomass (chestnut wood, rice straw) under well-defined conditions as model substances to analyse the changes in their molecular structure at increasing formation temperature. Results are presented obtained from a set of laboratory produced char samples pyrolysed at increasing temperatures with a high resolution between 200 and 1000 °C. The chars were characterized by a molecular marker method for pyrogenic carbon quantification, which additionally provides information about the degree of condensation of chars. At temperatures between 275 and 500°C, which typically are observed during wildfires and thus are relevant for natural char formation, the molecular marker pattern of the chars remains almost constant. In a next step, we analysed changes in the molecular marker patterns of chars from a chronosequence, with BC deposited between 0 and 100 years ago. Based on the data obtained from the laboratory char series, we compare changes in the molecular marker patterns of the chars from the chronosequence over time. These results show if less condensed forms of BC are degraded preferentially and more condensed, aromatic backbone of BC becomes enriched in the soils with time of degradation. Our results provide information about the fate of BC in the environment, which has important implications in the context of carbon sequestration strategies.

  18. On-road black carbon instrument intercomparison and aerosol characteristics by driving environment

    EPA Science Inventory

    Large spatial variations of black carbon (BC) concentrations in the on-road and near-road environments necessitate measurements with high spatial resolution to assess exposure accurately. A series of measurements was made comparing the performance of several different BC instrume...

  19. Overview of EPA activities and research related to black carbon

    EPA Science Inventory

    The purpose of this international presentation is to give an overview of EPA activities related to black carbon (BC). This overview includes some summary information on how EPA defines BC, current knowledge on United States emissions and forecasted emission reductions, and ongoin...

  20. 40 CFR 458.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for new sources. 458.46 Section 458.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...

  1. 40 CFR 458.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Pretreatment standards for new sources. 458.46 Section 458.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...

  2. Use of carbon black in bituminous concrete in Virginia.

    DOT National Transportation Integrated Search

    1981-01-01

    In an attempt to verify the claim that the addition of carbon black to bituminous concrete increases its stability and performance, a test section placed on a deformed bridge deck surface near Altavista and one on Route 360 near Richmond are being ev...

  3. Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten

    2012-04-01

    The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS ® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.

  4. Coatings of black carbon in Tijuana, Mexico, during the CalMex Campaign

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Russell, L. M.; Duran, R.; Subramanian, R.; Kok, G.

    2010-12-01

    Black carbon number and mass concentrations were measured by a single-particle soot photometer (SP2; by Droplet Measurement Technologies) in Tijuana, Mexico between May 15, 2010, and June 30, 2010, for the CalMex campaign. The measurement site, Parque Morelos, is a recreational area located in the Southeast region of Tijuana. The SP2 was equipped with 8-channels of signal detection that spans a wider range of sensitivity for incandescing and scattering measurements than traditional configurations. The campaign-average number concentration of incandescing particles was 280 #/cc, peaking during traffic activity in the mornings. Incandescing particles made up 50% of all particles (incandescing and purely scattering) detected by the SP2. The mode of the number size distribution estimated for black carbon, according to estimated mass-equivalent diameters, was approximately 100 nm or smaller. Temporal variations in estimated coating thicknesses for these black carbon particles are discussed together with co-located measurements of organic aerosol and inorganic salts.

  5. Feedbacks between Climate and Fire Emissions

    DTIC Science & Technology

    2011-11-29

    CH4 2. Direct emission of short-lived climate forcers - Black Carbon - Particulate organic matter 3. Production of tropospheric ozone and secondary... tropospheric ozone and secondary organic particulate matter 4. Changes in land surface properties - Black carbon on snow - Albedo Radiative Forcing of Black...lived  climate forcers:  particles 3.  Ozone   production 4. Change in  surface properties Fires Impacts on the Climate System 1. Emission of long lived

  6. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

  7. Paleoceanographic Inferences from Carbon and Nitrogen Isotopic Compositions of Cenomanian Black Shales from DSDP/ODP Sites 367, 530, 603, 641, 1257-1261, and 1276 in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yum, J.; Meyers, P. A.; Bernasconi, S. M.; Arnaboldi, M.

    2005-12-01

    The mid-Cretaceous (Cenomanian- Turonian) was characterized as a peak global greenhouse period with highest sea level, highest CO2 concentration in atmosphere and low thermal gradients from the poles to the equator. The depositional environment of the organic-carbon-rich black shales that typify this period remains an open question. A total of 180 Cenomanian- Turonian core samples were selected from multiple ODP and DSDP sites in the Atlantic Ocean: 530 (Cape Basin), 603 (Hatteras Rise), 641 (Galicia Bank), 1257-1261 (Demerara Rise), 1276 (Newfoundland Basin). Total organic carbon and nitrogen concentrations and isotopic compositions were measured to investigate variations in the proto-Atlantic Ocean paleoceanographic conditions that contributed to the origin of the black shales for this period. These new data were combined with existing data from Sites 367 (Senegal Rise), 530, and 603. Both the black shales and the organic-carbon-poor background sediments (less than 1 percent) have carbon isotope values between -29 to -22 permil. The C/N ratios of the background sediments are low (less than 20) compared to those of the black shales (20-40). Nitrogen isotope values range from 0 to 4 permil in the background samples. All black shales have similarly low nitrogen isotope values that range between -4 to 0 permil. These exceptionally low values are inferred to reflect the productivity of blue green algae and cyanobacteria under strongly surface stratified oceanic conditions. Although carbon isotope and C/N values of black shales show almost similar patterns at each location, there are site-specific shifts in these data that could be related to the amount of continental run off and/or the effect of latitude. Our multi-site comparison suggests that specially stratified depositional environments that could produce and accumulate the abnormally high carbon concentrations in sediments occurred throughout the proto-Atlantic ocean during the mid-Cretaceous. However, regional factors affected the amount and origin of organic matter delivered to each location.

  8. Development of land-use regression models for fine particles and black carbon in peri-urban South India.

    PubMed

    Sanchez, Margaux; Ambros, Albert; Milà, Carles; Salmon, Maëlle; Balakrishnan, Kalpana; Sambandam, Sankar; Sreekanth, V; Marshall, Julian D; Tonne, Cathryn

    2018-09-01

    Land-use regression (LUR) has been used to model local spatial variability of particulate matter in cities of high-income countries. Performance of LUR models is unknown in less urbanized areas of low-/middle-income countries (LMICs) experiencing complex sources of ambient air pollution and which typically have limited land use data. To address these concerns, we developed LUR models using satellite imagery (e.g., vegetation, urbanicity) and manually-collected data from a comprehensive built-environment survey (e.g., roads, industries, non-residential places) for a peri-urban area outside Hyderabad, India. As part of the CHAI (Cardiovascular Health effects of Air pollution in Telangana, India) project, concentrations of fine particulate matter (PM 2.5 ) and black carbon were measured over two seasons at 23 sites. Annual mean (sd) was 34.1 (3.2) μg/m 3 for PM 2.5 and 2.7 (0.5) μg/m 3 for black carbon. The LUR model for annual black carbon explained 78% of total variance and included both local-scale (energy supply places) and regional-scale (roads) predictors. Explained variance was 58% for annual PM 2.5 and the included predictors were only regional (urbanicity, vegetation). During leave-one-out cross-validation and cross-holdout validation, only the black carbon model showed consistent performance. The LUR model for black carbon explained a substantial proportion of the spatial variability that could not be captured by simpler interpolation technique (ordinary kriging). This is the first study to develop a LUR model for ambient concentrations of PM 2.5 and black carbon in a non-urban area of LMICs, supporting the applicability of the LUR approach in such settings. Our results provide insights on the added value of manually-collected built-environment data to improve the performance of LUR models in settings with limited data availability. For both pollutants, LUR models predicted substantial within-village variability, an important feature for future epidemiological studies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.

    2010-06-01

    We propose a measure to quantify climate warming or cooling by pollutants with atmospheric lifetimes of less than one year: the Specific Forcing Pulse (SFP). SFP is the amount of energy added to the Earth system per mass of pollutant emitted. Global average SFP for black carbon, including atmosphere and cryosphere, is 1.12 GJ g-1 and that for organic matter is -0.061 GJ g-1. We provide regional values for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations, divided between atmosphere and cryosphere impacts and identifying forcing by latitude. Regional SFP varies by about 40% for black carbon. This variation is relatively small because of compensating effects; particles from regions that affect ice albedo typically have shorter atmospheric lifetimes because of lower convection. The ratio between BC and OM SFP implies that, for direct forcing, an OM:BC mass ratio of 15 has a neutral effect on top-of-atmosphere direct forcing for any region, and any lower ratio induces direct warming. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. We demonstrate ensemble adjustment, in which we produce a "best estimate" by combining a suite of diverse but simple models and enhanced models of greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed; regions with convection are implicated in greater model diversity. SFP expresses scientific uncertainty and separates it from policy uncertainty; the latter is caused by disagreements about the relevant time horizon, impact, or spatial scale of interest. However, metrics used in policy discussions, such as global warming potentials, are easily derived from SFP. Global-average SFP for biofuel and fossil fuel emissions translates to a 100-year GWP of about 760 for black carbon and -40 for organic matter when snow forcing is included. Ensemble-adjusted estimates of atmospheric radiative impact by black and organic matter using year 2000 emissions are +0.46 W m-2 and -0.17 W m-2, respectively; anthropogenic forcing is +0.38 W m-2 and -0.12 W m-2. The black carbon value is only 11% higher than that of the Intergovernmental Panel on Climate Change (IPCC), although this value includes enhanced absorption due to internal mixing.

  10. Effect of chronic treatment with three varieties of Lepidium meyenii (Maca) on reproductive parameters and DNA quantification in adult male rats.

    PubMed

    Gasco, M; Aguilar, J; Gonzales, G F

    2007-08-01

    The aim of this study was to evaluate the chronic effect of different varieties of Lepidium meyenii (Red Maca, Yellow Maca and Black Maca). Male rats were treated by gavage with aqueous extract of each variety of maca equivalent to 1 g hypocotyl kg(-1) body weight (BW) for 84 days. At the end of the treatment, daily sperm production (DSP), epididymal sperm count (ESC) and sperm count in vas deferens (SCVD) were assessed. In addition, testis DNA quantification was also determined. Any toxic effect was assessed in liver and spleen by histological studies. The results indicate that Yellow Maca and Black Maca improved ESC and that three varieties of maca increased the SCVD without affecting DSP. Moreover, testis DNA levels were not affected by treatment with any of the three varieties of maca. Histological picture of the liver in animals treated with the three varieties of maca was similar to that observed in controls. In conclusion, Yellow and Black Maca increased epididymal sperm count after 84 days of treatment without affecting DSP. Maca seems to act as a modulator of sperm count at the reproductive tract level.

  11. Carbon catalyzed SO2 oxidation by NO2 and O3

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Schryer, D. R.; Rogowski, R. S.

    1982-01-01

    The oxidation of SO2 to sulfate on carbon particles by trace quantities of NO2 and O3 was studied. Particulate carbon black was either: (1) directly exposed on the pan of a microbalance to various humidified mixtures of SO2 and oxidant gas and the resultant weight gains monitored, or (2) the gas mixtures were bubbled through aqueous suspensions of carbon black and pure water blanks. In each set of experiments the run times were varied appropriately and the yields of sulfate were determined analytically. Conversion of SO2 to sulfate was thus characterized as a function of exposure time and of oxidant gas. Carbon black was determined to be an excellent catalyst for SO2 oxidation to sulfate by both NO2 and O3. No saturation effects were observed in either experimental approach. Conversions of SO2 to sulfate did not appear pH dependent.

  12. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Pesticide Factsheets

    This dataset provides all data used to generate the figures and tables in the article entitled Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States published in the Journal of Geophysical Research: AtmospheresThis dataset is associated with the following publication:Holder , A., G. Hagler , J. Aurell, M. Hays , and B. Gullett. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 121(7): 3465-3483, (2016).

  13. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  14. 40 CFR 63.11400 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Carbon Black Production Area Sources... if you own or operate a carbon black production facility that is an area source of hazardous air... units, maintenance wastewater, and equipment components that contain or contact HAP that are associated...

  15. MULTIYEAR REAL-TIME MONITORING OF PARTICLES, PAH, AND BLACK CARBON IN AN OCCUPIED HOUSE

    EPA Science Inventory

    Concentrations of ultrafine, fine, and coarse particles, particle-bound polycyclic aromatic hydrocarbons (PAH), and black carbon have been measured continuously (every 1 to 5 minutes) in an occupied townhouse for 2-3 years. Also, since the summer of 1999, temperature (outdoors...

  16. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  17. Domestic airborne black carbon and exhaled nitric oxide in children in NYC

    PubMed Central

    Cornell, Alexandra G.; Chillrud, Steven N.; Mellins, Robert B.; Acosta, Luis M.; Miller, Rachel L.; Quinn, James W.; Yan, Beizhan; Divjan, Adnan; Olmedo, Omar E.; Lopez-Pintado, Sara; Kinney, Patrick L.; Perera, Frederica P.; Jacobson, Judith S.; Goldstein, Inge F.; Rundle, Andrew G.; Perzanowski, Matthew S.

    2012-01-01

    Differential exposure to combustion by-products and allergens may partially explain the marked disparity in asthma prevalence (3%–18%) among New York City neighborhoods. Subclinical changes in airway inflammation can be measured by fractional exhaled nitric oxide (FeNO). FeNO could be used to test independent effects of these environmental exposures on airway inflammation. Seven and eight year-old children from neighborhoods with lower (range 3–9%, n=119) and higher (range 11–18%, n=121) asthma prevalence participated in an asthma case-control study. During home visits, FeNO was measured, and samples of bed dust (allergens) and air (black carbon) were collected. Neighborhood built-environment characteristics were assessed for the 500m surrounding participants’ homes. Airborne black carbon concentrations in homes correlated with neighborhood asthma prevalence (P<0.001) and neighborhood densities of truck routes (P<0.001) and buildings burning residual oil (P<0.001). FeNO concentrations were higher among asthmatics with compared to asthmatics without frequent wheeze (≥4 times/year) (P=0.002). FeNO concentrations correlated with domestic black carbon among children without seroatopy (P=0.012) and with dust mite allergen among children with seroatopy (P=0.020). The association between airborne black carbon in homes and both neighborhood asthma prevalence and FeNO suggest that further public health interventions on truck emissions standards and residual oil use are warranted. PMID:22377682

  18. Temporal variations of black carbon during haze and non-haze days in Beijing

    PubMed Central

    Liu, Qingyang; Ma, Tangming; Olson, Michael R; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J.

    2016-01-01

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m−3. The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions. PMID:27634102

  19. Black carbon, mass and elemental measurements of airborne particles in the village of Serowe, Botswana

    NASA Astrophysics Data System (ADS)

    Moloi, K.; Chimidza, S.; Lindgren, E. Selin; Viksna, A.; Standzenieks, P.

    Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5-10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.

  20. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  1. Biomass and carbon pools of disturbed riparian forests

    Treesearch

    Laura A.B. Giese; W.M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest ageldevelopment can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different sera1 stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  2. Biomass and carbon pools of disturbed riparian forests

    Treesearch

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  3. Evaluating Renewable Cornstarch/biochar Fillers as Potential Substitutes for Carbon Black in SBR Composites

    USDA-ARS?s Scientific Manuscript database

    The continually growing demand for fossil fuels coupled with the potential risk of relying on foreign sources for these fuels strengthens the need to find renewable substitutes for petroleum products. Carbon black is a petroleum product that dominates the rubber composite filler market. Agricultur...

  4. Nitric Acid Uptake and Decomposition on Black Carbon (Soot) Surfaces: Its Implications for the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Choi, W.; Leu, M. T.

    1998-01-01

    Black carbon particles (soot) are formed as a result of incomplete combustion processes and are ubiquitous in the atmosphere. The lower troposphere contains plenty of soot particles whose principal sources are fossil fuel and biomass combustion at the ground level.

  5. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  6. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, (3-methylphenyl)-modified, substituted (generic). 721.10149 Section 721.10149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  7. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, (3-methylphenyl)-modified, substituted (generic). 721.10149 Section 721.10149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  8. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, (4-methylphenyl)-modified, substituted (generic). 721.10150 Section 721.10150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  9. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, (4-methylphenyl)-modified, substituted (generic). 721.10150 Section 721.10150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  10. Laboratory validation of four black carbon measurement methods for the determination of non-volatile particulate matter (PM) mass emissions . . .

    EPA Science Inventory

    A laboratory-scale experimental program was designed to standardize each of four black carbon measurement methods, provide appropriate quality assurance/control procedures for these techniques, and compare measurements made by these methods to a NIST traceable standard (filter gr...

  11. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  12. PULMONARY TOXICOLOGY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL

    EPA Science Inventory

    PULMONARY TOXICITY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL.

    M Daniels, A Ranade* & MJ Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, RTP, NC. * Particle Technology, College Par...

  13. 40 CFR 721.10579 - Carbon black derived from the pyrolysis of rubber tire shreds (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pyrolysis of rubber tire shreds (generic). 721.10579 Section 721.10579 Protection of Environment... pyrolysis of rubber tire shreds (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as carbon black derived from the pyrolysis of...

  14. 40 CFR 458.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  15. 40 CFR 458.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  16. 40 CFR 458.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  17. 40 CFR 458.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  18. 40 CFR 458.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  19. 40 CFR 458.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  20. 40 CFR 458.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  1. 40 CFR 458.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  2. 40 CFR 458.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  3. 40 CFR 458.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  4. 40 CFR 458.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...

  5. Black Carbon Measurements of Flame-Generated Soot as Determinedby Optical, Thermal-Optical, Direct Absorption,and Laser Incandescence Methods

    EPA Science Inventory

    Black carbon (BC), light absorbing particles emitted primarily from incomplete combustion, is operationally defined through a variety of instrumental measurements rather than with a universal definition set forth by the research or regulatory communities. To examine the consiste...

  6. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    USDA-ARS?s Scientific Manuscript database

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  7. EFFECTS OF FORMALDEHYDE AND PARTICLE-BOUND FORMALDEHYDE ON LUNG MACROPHAGE FUNCTIONS

    EPA Science Inventory

    Dr. George Jakab and associates exposed mice to varying levels (ranging from 0.5 to 15 parts per million [ppm]) of formaldehyde alone or to formaldehyde (5 and 2.5 ppm) mixed with carbon black particles. Carbon black particles were chosen because of their similarity to comb...

  8. Emission Rates and Optical Properties of Pollutants Emitted from a Traditional and an Improved Wood-Burning Cookstove

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Hadley, O. L.; Preble, C.; Gadgil, A.

    2010-12-01

    Traditional cooking methods in developing regions of the world generate gas and particle phase pollutants that endanger the lives of more than a billion people and contribute appreciably to the burden of climate-changing particles in the atmosphere. This presentation compares pollutant emissions from the traditional “three-stone fire” and an improved cookstove developed for refugees in Darfur: the Berkeley-Darfur Stove (BDS). The BDS was designed for increased fuel efficiency to decrease the risk of assault that women often face when gathering fuel wood. Reduced pollutant exposure and climate impact are potential co-benefits. Testing of these stoves at the Lawrence Berkeley National Laboratory facility includes 1-Hz measurements of concentrations of particulate matter, black carbon, carbon monoxide, and carbon dioxide; coefficients of particle light absorption and scattering; and absorption Angstrom exponent. Absorption and scattering coefficients were measured at 532 nm using a photoacoustic absorption instrument equipped with a reciprocal nephelometer. The BDS heated food faster and consumed less wood in cooking tests compared to the three-stone fire. The BDS emitted less carbon monoxide and particulate matter but comparable mass of black carbon compared to the three-stone fire for the same cooking task. Values of the absorption Angstrom exponent ranged from about 1 - 3, indicating the emission of both black carbon and light-absorbing organic carbon (i.e., brown carbon). Values of (dry) aerosol single scattering albedo were mostly in the range of 0.25 - 0.55, indicating that the emitted particles tend to absorb more light than they scatter. Our analysis considered the variability of pollutant emissions during different phases of the fire. Particulate matter emissions were highest during the first several minutes of cooking, which included igniting the wood, whereas carbon monoxide emissions were highest during the last several minutes of cooking when smoldering became more dominant. Comparison of photoacoustic absorption and aethalometer black carbon provided an easy means of correcting black carbon concentrations, which were low by a factor of 2 at the end of the aethalometer sampling cycle if uncorrected.

  9. Simultaneous Determination of Isopyrazam and Azoxystrobin in Cucumbers by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Hu, Dan; Xu, Xu; Cai, Tian; Wang, Wei-Ying; Wu, Chun-Jie; Ye, Li-Ming

    2017-12-01

    A rapid and sensitive analytical method based on high-performance liquid chromatography-tandem mass spectrometry was developed and validated for the determination of isopyrazam (IZM) and azoxystrobin (AZT) in cucumbers. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used as the pretreatment procedure. The samples were extracted with acetonitrile and cleaned up with octadecylsilyl silica (C18) and graphite carbon black. The proposed method resulted in satisfactory recovery of IZM and AZT (91.48 to 114.62%), and relative standard deviations were less than 13.1% at fortification concentrations of 1, 20, and 500 μg kg -1 (n = 3). The limits of quantification for IZM and AZT were 0.498 and 0.499 μg kg -1 , respectively, which are far below the maximum residue level (0.5 mg kg -1 ) established for this type of sample. Matrix effects were also evaluated. This study established a sensitive and fast method for the detection of IZM and AZT in cucumber samples.

  10. TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS

    EPA Science Inventory

    Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...

  11. Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human-climate interactions

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène

    2010-07-01

    This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate and environment, surface runoffs from forested areas and/or aerial transportation over short distances are also important sources for detrital charred particles. However, this 4.3 kyr-long record exhibits a major increase in charcoal and BC sediment influxes between 1.8 and 0.6 kyr BP, synchronously with the regional extent of Late Iron Age and agricultural innovations. Therefore, in both marine and terrestrial depositional environments, the climate- and vegetation-controlled fire regimes appear to be strongly associated to societal changes, or directly affected by human practices. In fact, the anthropogenic effect associated to past human activities (e.g. settlement, agriculture, and metallurgy) has temporarily at least tripled the emissions of pyrogenic carbon in the environment. However, the data from the three Late Pleistocene to Holocene sequences also show that the redistribution of fossil particles by runoff and erosion processes is a significant source of pyrogenic carbon that should be understood as a prerequisite for interpreting sedimentary records of biomass burning.

  12. Formation of artificial pores in nano-TiO2 photo-electrode films using acetylene-black for high-efficiency, dye-sensitized solar cells

    PubMed Central

    Cho, Tae-Yeon; Han, Chi-Whan; Jun, Yongseok; Yoon, Soon-Gil

    2013-01-01

    Acetylene-black paste without a light scattering layer was applied to meso-porous TiO2 photo-electrode films with a crystalline framework, a low residual carbon, and a tunable morphological pore size. The thermal-treated TiO2 photo-electrode films had an increased acetylene-black concentration with an increase in artificial pores and a decrease in residual carbon. The performance of dye-sensitized solar cells (DSSCs) was enhanced by the use of the TiO2 photo-anode pastes at various acetylene-black concentrations. The photo-conversion efficiency of the DSSCs using TiO2 photo-electrode films with 1.5 wt% acetylene-black was enhanced from 7.98 (no acetylene-black) to 9.75% without the integration of a light- scattering layer. PMID:23511122

  13. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes: Influence of carbon black pore former on performance and degradation

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kuhn, J.; Kesler, O.

    2016-06-01

    Suspension plasma spray deposition is utilized to fabricate solid oxide fuel cell cathodes with minimal material decomposition. Adding carbon black as a pore former to the feedstock suspension results in smoother and more porous coatings, but over the range of carbon black concentrations studied, has little impact on the overall symmetrical cell performance. The cathode made with a suspension containing 25 wt% carbon has the highest deposition efficiency and a polarization resistance of 0.062 Ωcm2 at 744 °C. This cathode is tested for 500 h, and it is observed that adding an SDC interlayer between the YSZ electrolyte and the cathode(s) and/or coating the metal substrate with lanthanum chromite decrease the rate of performance degradation.

  14. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, Meyer; Grohse, Edward W.

    1995-01-01

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  15. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  16. Isolation and Quantitative Estimation of Diesel Exhaust and Carbon Black Particles Ingested by Lung Epithelial Cells and Alveolar Macrophages In Vitro

    EPA Science Inventory

    A new procedure for isolating and estimating ingested carbonaceous diesel exhaust particles (DEP) or carbon black (CB) particles by lung epithelial cells and macrophages is described. Cells were incubated with DEP or CB to examine cell-particle interaction and ingestion. After va...

  17. REAL-TIME INDOOR AND OUTDOOR MEASUREMENTS OF BLACK CARBON IN AN OCCUPIED HOUSE: AN EXAMINATION OF SOURCES

    EPA Science Inventory

    Black carbon (BC) was measured every five minutes for two years (May, 1998 to May 2000) inside and immediately outside a northern Virginia house (suburban Washington, DC) occupied by two nonsmokers. Two Aethalometers TM, which measure BC by optical transmission through a quart...

  18. Studies of Aflas Fluoroelastomers

    DTIC Science & Technology

    1989-07-01

    experiments. 4 Table 6. RECIPE FOR FLUOREL FLUOROELASTOMER Ingredient PHR Fluorel 2174* 80 FRuorel 2145 20 Carnauba Wax 3 N-990 Carbon Black 30...FLUOROELASTOMEP Ingredient PHR Alas 150 P 100 N-990 Carbon Black 50 Carnauba Wax 2 Diak #7* 7 Luperco 101XLt 9 169 *Suppled by Du Pont Co. tSupplied by Harwick

  19. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    EPA Science Inventory

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  20. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  1. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  2. Utilization of low-ash biochar to partially replace carbon black in SBR composites

    USDA-ARS?s Scientific Manuscript database

    A biochar made from woody waste feedstock with low ash content was blended with carbon black as filler for styrene-butadiene rubber. At 10% total filler concentration (w/w), composites made from 25 or 50% biochar showed improved tensile strength, elongation, and toughness compared to similar composi...

  3. TEMPORAL TRENDS OF BLACK CARBON CONCENTRATIONS AND REGIONAL CLIMATE FORCING IN THE SOUTHEASTERN UNITED STATES. (R825248)

    EPA Science Inventory

    The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibb...

  4. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data

    EPA Science Inventory

    Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...

  5. 40 CFR 458.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...

  6. UNDERSTANDING SYSTEMATIC MEASUREMENT ERROR IN THERMAL-OPTICAL ANALYSIS FOR PM BLACK CARBON USING RESPONSE SURFACES AND SURFACE CONFIDENCE INTERVALS

    EPA Science Inventory

    Results from a NIST-EPA Interagency Agreement on Understanding Systematic Measurement Error in Thermal-Optical Analysis for PM Black Carbon Using Response Surfaces and Surface Confidence Intervals will be presented at the American Association for Aerosol Research (AAAR) 24th Annu...

  7. Application of Positron Doppler Broadening Spectroscopy to the Measurement of the Uniformity of Composite Materials

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.; Sheffield, Thomas; Stacy, Scott; Yang, Chun

    2009-03-01

    The uniformity of rubber-carbon black composite materials has been investigated with positron Doppler Broadening Spectroscopy (DBS). The number of grams of carbon black (CB) mixed into one hundred grams of rubber, phr, is used to characterize a sample. A typical concentration for rubber in tires is 50 phr. The S parameter measured by DBS has been found to depend on the phr of the sample as well as the type of rubber and carbon black. The variation in carbon black concentration within a surface area of about 5 mm diameter can be measured by moving a standard Na-22 or Ge-68 positron source over an extended sample. The precision of the concentration measurement depends on the dwell time at a point on the sample. The time required to determine uniformity over an extended sample can be reduced by running with much higher counting rate than is typical in DBS and correcting for the systematic variation of S parameter with counting rate. Variation in CB concentration with mixing time at the level of about 0.5% has been observed.

  8. Carbon Nanotubes Released from an Epoxy-Based Nanocomposite: Quantification and Particle Toxicity.

    PubMed

    Schlagenhauf, Lukas; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-09-01

    Studies combining both the quantification of free nanoparticle release and the toxicological investigations of the released particles from actual nanoproducts in a real-life exposure scenario are urgently needed, yet very rare. Here, a new measurement method was established to quantify the amount of free-standing and protruding multiwalled carbon nanotubes (MWCNTs) in the respirable fraction of particles abraded from a MWCNT-epoxy nanocomposite. The quantification approach involves the prelabeling of MWCNTs with lead ions, nanocomposite production, abrasion and collection of the inhalable particle fraction, and quantification of free-standing and protruding MWCNTs by measuring the concentration of released lead ions. In vitro toxicity studies for genotoxicity, reactive oxygen species formation, and cell viability were performed using A549 human alveolar epithelial cells and THP-1 monocyte-derived macrophages. The quantification experiment revealed that in the respirable fraction of the abraded particles, approximately 4000 ppm of the MWCNTs were released as exposed MWCNTs (which could contact lung cells upon inhalation) and approximately 40 ppm as free-standing MWCNTs in the worst-case scenario. The release of exposed MWCNTs was lower for nanocomposites containing agglomerated MWCNTs. The toxicity tests revealed that the abraded particles did not induce any acute cytotoxic effects.

  9. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.

  10. A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber.

    PubMed

    Sagar, M; Nibedita, K; Manohar, N; Kumar, K Raj; Suchismita, S; Pradnyesh, A; Reddy, A Babul; Sadiku, E Rotimi; Gupta, U N; Lachit, P; Jayaramudu, J

    2018-04-01

    End-of-life (EOL) tyres and their decomposition present severe environmental concern due to their resistance to moisture, oxygen, natural degradation, etc. Pyrolysis is considered to be the most effective and sustainable process for recycling, due to its eco-friendly process. The current work studied the effect of recycled carbon black (rCB), obtained from the pyrolysis of EOL tyres, on the properties of ethylene propylene diene rubber (EPDM). The rCB was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and chemical methods. rCB was incorporated solely, into a conventional EPDM formulation and also in combination with N550 carbon black. The physico-mechanical properties of the EPDM vulcanizates, before and after aging, were succinctly studied by SEM, TGA, Differential Scanning Calorimetry (DSC), tensile tests and cross-link density. The average particle size of rCB was observed to be 8 µm and the ash content was observed to be higher when compared to the conventional N550 carbon black, which was evident, by the TGA and SEM-EDX analyses. The reinforcing effect and the cross-link density of the rCB-filled vulcanizates were found to be marginally inferior in comparison to the conventional carbon black (N550). The morphology of the tensile- and tear-fractured surfaces were studied by SEM and it was observed that the breaking mechanism follows the rubber chain detachment from the surface mode. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Black carbon trends in southwestern Iberia in the context of the financial and economic crisis. The role of bioenergy.

    PubMed

    Malico, Isabel; Pereira, Sérgio Nepomuceno; Costa, Maria João

    2017-01-01

    Since black carbon concentrations are useful to reveal changes in anthropogenic activities, measurements taken from 2007 to 2015 in a Portuguese city are used to assess to which extent the ambient air was impacted by the economic crisis. The average black carbon concentrations are representative of an urban area of small size (1.3 ± 1.3 μg m -3 ). The highest concentrations are observed in the heating season, being biomass combustion one of the causes for the high values. The daily cycle of black carbon concentrations presents both morning and evening peaks, mainly due to road traffic and, in the heating season, to domestic heating as well. The yearly averaged black carbon mass concentrations decreased 33 % from 2007 to 2015, possibly due to a combination of the economic recession and environmental legislation. The reduction in road traffic led to a decrease in the daily morning peak from 2007 to 2015. This reduction was not followed by a decrease in the evening peak, explained by an increase in biomass burning. Biomass is the cheapest heating fuel in Portugal, and its consumption increased in the aftermath of the economic crisis. The use of bioenergy is an alternative to fossil fuels and presents many advantages. However, energy policies should discourage inefficient biomass burning and promote better ways of exploiting the available energy resources and emission air pollution mitigation strategies.

  12. Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.

    2017-12-01

    The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.

  13. Universal HPLC Detector for Hydrophilic Organic Compounds by Means of Total Organic Carbon Detection.

    PubMed

    Ohira, Shin-Ichi; Kaneda, Kyosuke; Matsuzaki, Toru; Mori, Shuta; Mori, Masanobu; Toda, Kei

    2018-06-05

    Most quantifications are achieved by comparison of the signals obtained with the sample to those from a standard. Thus, the purity and stability of the standard are key in chemical analysis. Furthermore, if an analyte standard cannot be obtained, quantification cannot be achieved, even if the chemical structures are identified by a qualification method (e.g., high-resolution mass spectrometry). Herein, we describe a universal and analyte standard-free detector for aqueous-eluent-based high-performance liquid chromatography. This universal carbon detector (UCD) was developed based on total organic carbon detection. Separated analytes were oxidized in-line and converted to carbon dioxide (CO 2 ). Generated CO 2 was transferred into the gas phase and collected into ultrapure water, which was followed by conductivity detection. The system can be applied as a HPLC detector that does not use an organic solvent as an eluent. The system can be calibrated with a primary standard of sodium bicarbonate for organic compounds. The universality and quantification were evaluated with organic compounds, including organic acids, sugars, and amino acids. Furthermore, the system was successfully applied to evaluation of the purity of formaldehyde in formalin solution, and determination of sugars in juices. The results show the universal carbon detector has good universality and can quantify many kinds of organic compounds with a single standard such as sodium bicarbonate.

  14. Nonlinear Conductivities and Electrochemical Performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Electrodes

    DOE PAGES

    Su, Xin; Ha, Seonbaek; Ishwait, Manar B.; ...

    2016-01-01

    There is increasing research attention on optimizing the carbon black nanoparticles’ structure and loading procedure for improving conductivities and thus, electrochemical performances of cathodes in lithium-ion batteries. Recently, LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523) has been actively investigated due to its larger specific capacity and lower cost compared to conventional cathode materials. Presented here is a high energy density NCM523 cathode obtained by reducing the carbon content using the state-of-the-art carbon nanoparticles developed at Cabot Corporation. It is the first time that the nonlinear conductivity of NCM523 electrodes has been discovered, which is significantly impacted by the dispersion and surface crystalline quality of carbon black nanoparticles, especially when the loading of carbon black is only 1 wt%. The nonlinear conductivity of the cathodes can dramatically affect their electrochemical performances at high rates (more » $$\\geqq$$3C), which is close to the tunneling saturated current. In addition, there is no discernable difference in terms of the rate and cycle performance of the NCM523 electrodes, when reducing the loading of novel carbon black nanoparticles from 5 wt% to 1 wt% in the cathode. Therefore, the energy density of the electrode can be increased by 9% by using existing commercially available electrode materials.« less

  15. Synthesis and characterization of non halogen fire retardant composite through combination of epoxy resin, Al(OH)3 additive and filler

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Sungkar, Faraj

    2017-11-01

    Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.

  16. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    PubMed

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  17. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  18. Bulk and surface structural investigations of diesel engine soot and carbon black.

    PubMed

    Müller, J-O; Su, D S; Wild, U; Schlögl, R

    2007-08-14

    The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. The materials exhibit differences in the predominant bonding, which influences microstructure as well as surface functionalization. These chemical and physical properties depend on the formation history of the investigated carbonaceous materials. In this work, a correlation of the microstructure of the samples to the predominant bonding and incorporation of oxygen into the carbons is obtained. It is shown that a high amount of defects and the deviation of the carbons from a perfect graphitic structure results in a increased incorporation of oxygen and hydrogen. A correlation between the length and curvature of graphene layers with the bonding state of carbon atoms and incorporation of oxygen and hydrogen is established.

  19. Methodology for quantification of waste generated in Spanish railway construction works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman Baez, Ana de; Villoria Saez, Paola; Rio Merino, Mercedes del

    Highlights: Black-Right-Pointing-Pointer Two equations for C and D waste estimation in railway construction works are developed. Black-Right-Pointing-Pointer Mixed C and D waste is the most generated category during railway construction works. Black-Right-Pointing-Pointer Tunnel construction is essential to quantify the waste generated during the works. Black-Right-Pointing-Pointer There is a relationship between C and D waste generated and railway functional units. Black-Right-Pointing-Pointer The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006,more » Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.« less

  20. Folded tubular photometer for atmospheric measurements of NO2 and NO

    NASA Astrophysics Data System (ADS)

    Birks, John W.; Andersen, Peter C.; Williford, Craig J.; Turnipseed, Andrew A.; Strunk, Stanley E.; Ennis, Christine A.; Mattson, Erick

    2018-05-01

    We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm-1, corresponding to ˜ 0.1 µg m-3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer-Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can be measured; (4) a more economical instrument than other currently available direct measurement techniques for NO2; and (5) the potential for simultaneous detection of additional species such as SO2, O3, and black carbon in the same instrument. In contrast to other commercially available direct NO2 measurements, such as cavity-attenuated phase-shift spectroscopy (CAPS), the folded tubular photometer also measures NO simultaneously in the same apparatus by quantitatively converting NO to NO2 with ozone, which is then detected by direct absorbance.

  1. Tryptophan and kynurenine determination in human hair by liquid chromatography.

    PubMed

    Dario, Michelli F; Freire, Thamires Batello; Pinto, Claudinéia Aparecida Sales de Oliveira; Prado, María Segunda Aurora; Baby, André R; Velasco, Maria Valéria R

    2017-10-15

    Tryptophan, an amino acid found in hair proteinaceous structure is used as a marker of hair photodegradation. Also, protein loss caused by several chemical/physical treatments can be inferred by tryptophan quantification. Kynurenine is a photo-oxidation product of tryptophan, expected to be detected when hair is exposed mainly to UVB (290-320nm) radiation range. Tryptophan from hair is usually quantified directly as a solid or after alkaline hydrolysis, spectrofluorimetrically. However, these types of measure are not sufficiently specific and present several interfering substances. Thus, this work aimed to propose a quantification method for both tryptophan and kynurenine in hair samples, after alkali hydrolysis process, by using high-performance liquid chromatography (HPLC) with fluorimetric and UV detection. The tryptophan and kynurenine quantification method was developed and validated. Black, white, bleached and dyed (blond and auburn) hair tresses were used in this study. Tryptophan and kynurenine were separated within ∼9min by HPLC. Both black and white virgin hair samples presented similar concentrations of tryptophan, while bleaching caused a reduction in the tryptophan content as well as dyeing process. Unexpectedly, UV/vis radiation did not promote significantly the conversion of tryptophan into its photo-oxidation product and consequently, kynurenine was not detected. Thus, this works presented an acceptable method for quantification of tryptophan and its photooxidation metabolite kynurenine in hair samples. Also, the results indicated that bleaching and dyeing processes promoted protein/amino acids loss but tryptophan is not extensively degraded in human hair by solar radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Chunhong; Wilson, Peter; Lekakou, Constantina

    Electrochemical double layer supercapacitor cells were fabricated and tested using composite electrodes of activated carbon with carbon black and poly(3,4-ethylenedioxythiophene) (PEDOT), and an organic electrolyte 1 M TEABF 4/PC solution. The effect of PEDOT on the performance of the EDLC cells was explored and the cells were characterised by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge-discharge. A generalised equivalent circuit model was developed for which numerical simulations were performed to determine the properties and parameters of its components from the EIS data. It was found that the proposed model fitted successfully the data of all tested cells. PEDOT enhanced the electrode and cell capacitance via its pseudo-capacitance effect up to a maximum value for an optimum PEDOT loading and greatly increased the energy density of the cell while the maximum power density has been still maintained at supercapacitor levels. Furthermore, PEDOT replaced PVDF as a binder and harmful solvent release was reduced during electrode processing. Activated carbon-carbon black composite electrodes with PEDOT as binder were found to have specific capacitance superior to that of activated carbon-carbon black electrodes with PVDF binder.

  3. An Investigation of Black Carbon Degradation Potential in a Forest Soil Environment

    NASA Astrophysics Data System (ADS)

    William, H. C.; Lee, E.; Grannas, A.; Hatcher, P. G.

    2003-12-01

    Except for emission processes, there is currently little understanding of the mechanisms driving the degradation and biogeochemical cycling of black carbon (BC). Considering current estimates of the global BC pool (>2,500x1015gC), and its annual emission rates (55-205x1012 gC/year), BC represents roughly 16% of Earth's actively cycling organic carbon. Without significant chemical and biological degradation pathways, all of the actively cycling carbon on earth would have accumulated as charcoal in <100,000 years. This investigation show that charcoals recovered from experimental forest fires are altered significantly by microbial colonization, and mineral complexation during exposure to soil processes. Charcoal surface morphology and elemental composition were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and BET surface area measurements. The influence of 90 years aging upon carbon functionality was probed by solid-state 13C NMR spectroscopy. The prevalence of fungal mycorhizae in these forest soil charcoals also motivated an investigation of black carbon degradation via extracellular enzymes and acids known be exuded by mycelia. Degradation is quantified by carbon loss, and soluble products are examined by mass spectrometry.

  4. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  5. Online single particle measurements of black carbon coatings, structure and optical properties

    NASA Astrophysics Data System (ADS)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain threshold, something that may explain some apparently contradictory results from field measurements. These findings should help to inform atmospheric black carbon models and reduce uncertainties when evaluating its impacts.

  6. Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.

    2018-03-01

    Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.

  7. An Investigation of the Effects of Black Carbon on Precipitation in the Western United States

    NASA Astrophysics Data System (ADS)

    Tseng, Hsien-Liang Rose

    Black carbon (BC), the byproduct of incomplete combustion, is considered to be the second most important anthropogenic climate forcing agent after carbon dioxide. BC warms the atmosphere by absorbing solar radiation (direct effect), alters cloud and precipitation formation by acting as cloud condensation nuclei (indirect effect), and modifies cloud distribution via cloud burn-off (semi-direct effect). Currently, there are large discrepancies in general circulation model estimates of the influence of BC on precipitation. Even less known is how BC changes precipitation on regional scales. In the drought-stricken western United States (WUS), where BC emissions are known to affect the hydrological cycle, an investigation on how BC influences precipitation is warranted. In this study, we employ the Weather Research and Forecasting-Chemistry (WRF Chem) model (version 3.6.0) with the newly chemistry- and microphysics-coupled Fu-Liou-Gu radiation scheme to study how black carbon affects precipitation by separating BC-related effects into direct and semi-direct, and indirect effects. In this three-part study, we use a recent wet year (2005) to investigate black carbon effects. We first examine BC effects during a heavy wintertime heavy precipitation event (7-11 January 2005), a heavy summertime precipitation week for comparison to the wintertime event (20-24 July 2005), and finally, examine these same effects for the months of January to June 2005 to investigate month-long trends. We find that BC suppresses precipitation, predominantly through its direct and semi-direct effects. The direct and semi-direct effects warm the air aloft, and cool the lower levels of the atmosphere (surface dimming) through the reduction of downward shortwave radiation flux at the surface. These changes in vertical temperature increase the stability of the atmosphere and reduce convective precipitation. Convective precipitation reduction accounts for approximately 60 75% of the total precipitation reduction. Additionally, cooling in the lower levels reduces evaporation from the surface, which reduces the moisture needed for non-convective precipitation. Subsequently, reduced moisture in the atmosphere suppresses non-convective precipitation by approximately 10-40%. The indirect effects also reduce precipitation, but to a much smaller extent of 5-20%. Although we use an atypical BC emission dataset is used in this study, the resulting reduction of the different types of precipitation sheds light on the physical mechanisms of BC-cloud-radiation interactions by which the reductions follow. In particular, our results highlight the importance of the cumulus and surface layer parameterizations that house the triggering mechanism and surface moisture flux parameterizations in future studies. In this research we find the NEI 2005 emissions did not significantly change precipitation. This is likely due to the aggressive emission regulations that exist for the United States. Emission regulations, however, do not exist or are enforced equally across the globe. In the developing countries that rely on inefficient cook stoves and heating systems, the populations suffer the most due to black carbon emission. Along with respiratory and cardiovascular impacts from black carbon, they may suffer from reduced water resources from suppressed precipitation, as well. In a larger sense, findings from this research serve as a platform for understanding the wider-reaching effects of black carbon on regional precipitation and drought. In particular, in areas where there are no black carbon emission regulations, this would highlight health and potentially significant environmental benefits that could be achieved from a black carbon cap and trade.

  8. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less

  9. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET) Measurements

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.; Clothiaux, Eugene E.

    2006-01-01

    The carbon emissions inventories used to initialize transport models and general circulation models are highly parameterized, and created on the basis of multiple sparse datasets (such as fuel use inventories and emission factors). The resulting inventories are uncertain by at least a factor of 2, and this uncertainty is carried forward to the model output. [Bond et al., 1998, Bond et al., 2004, Cooke et al., 1999, Streets et al., 2001] Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output on a continuous basis.

  10. 40 CFR 721.10075 - Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic). 721.10075 Section 721.10075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for...

  11. 76 FR 27316 - Science Advisory Board Staff Office Notification of a Public Teleconference of the Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... the Report to Congress on Black Carbon AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... announces a public teleconference of the Black Carbon Review Panel. DATES: The meeting will be held on June..., 1200 Pennsylvania Avenue, NW., Washington, DC 20460; or by telephone/voice mail at (202) 564-2067; fax...

  12. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    EPA Science Inventory

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  13. 76 FR 17123 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Advisory Council on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... comprehensive report to Congress on the climate effects of black carbon. Black carbon, or soot, results from incomplete combustion of organic matter such as fossil fuels and biomass. The report to Congress will... and regional climate, and the potential utility and cost-effectiveness of mitigation options for...

  14. 40 CFR 721.10579 - Carbon black derived from the pyrolysis of rubber tire shreds (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black derived from the pyrolysis of rubber tire shreds (generic). 721.10579 Section 721.10579 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical...

  15. 40 CFR 721.10075 - Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic). 721.10075 Section 721.10075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for...

  16. 40 CFR 721.10075 - Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, 4-[[2-(Sulfooxy) ethyl]substituted] phenyl- modified, sodium salts (generic). 721.10075 Section 721.10075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for...

  17. Brominated carbon black: An EDXD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Marilena; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it

    2014-06-19

    An energy dispersive X-Ray study of pure and brominated carbon black was carried out. The analysis of the diffraction patterns reveals that the low bromine load (ca.1% mol) is trapped into the structure, without significantly modifying it. This allows the application of the difference methods, widely tested for electrolyte solutions, inorganic matrices containing metals and isomorphic substitutions.

  18. FORMATION OF 8-OXO-2'-DEOXYGUANOSINE, AN OXIDATIVE ADDUCT IN THE LUNG DNA OF RATS FOLLOWING SUBCHRONIC INHALATION OF CARBON BLACK

    EPA Science Inventory

    Chronic inhalation of carbon black (CB) can produce carcinomas in rat lungs. The mechanisms underlying this response are uncertain. However, it has been postulated that chronic inflammation and cell proliferation may play a role in the development of tumors after high dose, lo...

  19. FORMATION OF 8-OXO-7, 8-DIHYDRO-2'-DEOXYGUANOSINE IN RAT LUNG FOLLOWING SUB-CHRONIC INHALATION OF CARBON BLACK

    EPA Science Inventory

    ABSTRACT
    Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative adduct in the lung DNA of rats following sub-chronic inhalation of carbon black. Gallagher, J., Sams II, R.L., Inmon, J., Gelein, R., Elder, A., Oberdorster, G., Prahalad, A. (2002). Toxicol. Appl. Pharm...

  20. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, M.; Grohse, E.W.

    1995-06-27

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  1. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiablemore » relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.« less

  2. Colour thresholding and objective quantification in bioimaging

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Gerber, M. A.; Torre-Bueno, J. R.

    1992-01-01

    Computer imaging is rapidly becoming an indispensable tool for the quantification of variables in research and medicine. Whilst its use in medicine has largely been limited to qualitative observations, imaging in applied basic sciences, medical research and biotechnology demands objective quantification of the variables in question. In black and white densitometry (0-256 levels of intensity) the separation of subtle differences between closely related hues from stains is sometimes very difficult. True-colour and real-time video microscopy analysis offer choices not previously available with monochrome systems. In this paper we demonstrate the usefulness of colour thresholding, which has so far proven indispensable for proper objective quantification of the products of histochemical reactions and/or subtle differences in tissue and cells. In addition, we provide interested, but untrained readers with basic information that may assist decisions regarding the most suitable set-up for a project under consideration. Data from projects in progress at Tulane are shown to illustrate the advantage of colour thresholding over monochrome densitometry and for objective quantification of subtle colour differences between experimental and control samples.

  3. Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers

    NASA Astrophysics Data System (ADS)

    Marcincin, A.; Hricova, M.; Ujhelyiova, A.

    2014-08-01

    In this paper, the effect of the compatibilisers-dispersants and other nanofillers on melt spinning of the polypropylene (PP) composites, containing carbon nanotubes (CNTs), and carbon black pigment (CBP) has been investigated. Further, the structure and selected properties of composite fibers, such as mechanical and electrical have been studied. The results revealed, that percolation threshold for PP/CBP composite fibres was situated within the concentration of 15 - 20 wt%, what is several times higher than for PP/CNTs fibers.

  4. AmeriFlux CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, Hank

    This is the AmeriFlux version of the carbon flux data for the site CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75). Site Description - Quebec - Eastern Boreal; Black Spruce forest harvested in 1975.

  5. AmeriFlux US-Blk Black Hills

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blk Black Hills. Site Description - The Black Hills tower was established by the Institute for Atmospheric Studies of the South Dakota School of Mines and Technology.

  6. A comparison of two methods for quantifying soil organic carbon of alpine grasslands on the Tibetan Plateau.

    PubMed

    Chen, Litong; Flynn, Dan F B; Jing, Xin; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2015-01-01

    As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth.

  7. A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau

    PubMed Central

    Chen, Litong; Flynn, Dan F. B.; Jing, Xin; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2015-01-01

    As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth. PMID:25946085

  8. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    PubMed

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stable nitrogen and carbon isotope (δ 15N and δ 13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, Branwen; Grottoli, Andréa G.

    2010-09-01

    Soft corals and black corals are useful proxy tools for paleoceanographic reconstructions. However, most work has focused on deep-water taxa and few studies have used these corals as proxy organisms in shallow water (<200 m). To facilitate the use of stable nitrogen and carbon isotope (δ 15N and δ 13C) records from shallow-water soft coral and black coral taxa for paleoceanographic reconstructions, quantification of the inherent variability in skeletal isotope values between sites, across depth, and among taxa is needed. Here, skeletal δ 15N and δ 13C values were measured in multiple colonies from eleven genera of soft corals and two genera of black corals from across a depth transect (5-105 m) at two sites in Palau located in the tropical western Pacific Ocean. Overall, no difference in skeletal δ 15N and δ 13C values between sites was present. Skeletal δ 15N values significantly increased and δ 13C values decreased with depth. This is consistent with changes in isotope values of suspended particulate organic matter (POM) across the photic zone, suggesting that the primary food source to these corals is suspended POM and that the stable isotopic composition of POM controls the skeletal isotopic composition of these corals. Thus, to compare the isotope records of corals collected across a depth range in the photic zone, first order depth corrections of -0.013‰ m -1 and +0.023‰ m -1 are recommended for δ 15N and δ 13C, respectively. Average depth-corrected δ 15N values were similar between black corals and soft corals, indicating that corals in these orders feed at a similar trophic level. In contrast, average depth-corrected δ 13C values of black corals were significantly lower than that of soft corals, potentially resulting from metabolic processes associated with differing skeletal compositions among the orders (i.e., gorgonin vs. chitin based). Thus, a correction of +1.0‰ is recommended for black corals when comparing their δ 13C-based proxy records to soft corals. After correcting for both the depth and order effects, variability in δ 15N values among corals within each genera was low (standard deviation (SD) of the mean <±0.5‰), with the exception of Acanthorgorgia. The calculated SD of <±0.5‰ provides a first order guideline for the amount of variability that could be expected in a δ 15N record, and suggests that these corals may be useful for δ 15N-based paleoceanographic reconstructions. Variability in δ 13C values among corals within genera was also low (standard deviation of the mean <±0.5‰) with the exception of Rhipidipathes and Villogorgia. Similar to δ 15N, records from the genera studied here with the exception of Rhipidipathes and Villogorgia may be useful for δ 13C-based paleoceanographic reconstructions. Overall, using the recommendations developed here, stable isotope records from multiple sites, depths and taxa of these corals can be more rigorously compared.

  10. Simultaneous and enantioselective determination of cis-epoxiconazole and indoxacarb residues in various teas, tea infusion and soil samples by chiral high performance liquid chromatography coupled with tandem quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhang, Xinzhong; Luo, Fengjian; Lou, Zhengyun; Lu, Meiling; Chen, Zongmao

    2014-09-12

    A novel and sensitive method for simultaneous enantiomeric analysis of two pesticides-cis-epoxiconazole and indoxacarb-in various teas, black tea infusion, and soil samples has been developed. The samples were initially subjected to acetonitrile extraction followed by cleanup using lab-made florisil/graphitized carbon black mixed solid phase extraction (SPE) column (for the different teas and soil samples) and a BondElut C18-SPE column (for the black tea infusion samples). Separation of the analytes was performed on a chiral stationary phase using high performance liquid chromatography (HPLC) under a reversed-phase isocratic elution mode followed by tandem quadrupole time-of-flight mass spectrometry (Q-TOF/MS) detection. The mobile phase components, mobile phase ratios, flow rates, column temperatures, and MS parameters were all optimized to reach high sensitivity and selectivity, good peak shape, and satisfactory resolution. The performance of the method was evaluated based on the sensitivity, linearity, accuracy, precision, and matrix effects. Under optimal conditions, for the various teas (green tea, black tea, and puer tea), fresh tea leaf, soil and black tea infusion samples spiked at low, medium, and high levels, the mean recoveries for the four enantiomers ranged from 61.0% to 129.7% with most relative standard deviations (RSDs) being 17.1% or below. Good linearity can be achieved with regression coefficients (R) of 0.9915 or above for all target enantiomers, and matrix-matched calibration concentration ranging from 5.0 to 1000μg/L. The limits of detection (LODs) for all four target enantiomers were 1.4μg/kg or below in the different teas and soil samples and 0.05μg/kg or below in the black tea infusion, whereas the limits of quantification (LOQs) for those did not exceed 5.0μg/kg and 0.2μg/L, respectively. The proposed method is convenient and reliable and has been applied to real tea samples screening. It has also been extended for studies on the degradation kinetics and environmental behaviors in the field trials, providing additional information for reliable risk assessment of these chiral pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Potential role for carbon nanoparticles to guide central neck dissection in patients with papillary thyroid cancer.

    PubMed

    Yu, Wenbin; Cao, XiaoLi; Xu, Guihu; Song, Yuntao; Li, Guojun; Zheng, Hongliang; Zhang, Naisong

    2016-09-01

    The purpose of this study was to investigate the use and clinical utility of carbon nanoparticles as a lymph node tracer in the central neck lymph node dissection of patients with papillary thyroid cancer. One hundred forty consecutive patients were divided into a carbon nanoparticle group (n = 70) and a control group (n = 70). All patients underwent total or near-total thyroidectomy with bilateral central neck dissection. The carbon nanoparticle and control groups had different rates of metastatic lymph nodes (P = .017), total detected numbers of lymph nodes (P = .0001), total numbers of dissected lymph nodes <5 mm (P = .0001), and numbers of metastatic lymph nodes <5 mm (P = .0001). Of the 682 lymph nodes dissected in the carbon nanoparticle group, 579 (85%) were stained black, and of these, 147 (25%) were metastatic lymph nodes. There were 63 metastatic lymph nodes <5 mm among the black-stained metastatic lymph nodes, while there were 12 non-black-stained metastatic lymph nodes <5 mm. Of the total number of metastatic lymph nodes (n = 193), 147 (76%) were stained black. Moreover, pathologic results revealed that 5 accidental parathyroid resections occurred in the carbon nanoparticle group, compared with 14 in the control group (P = .046). Carbon nanoparticles might help to detect lymph nodes and increase the number of metastatic lymph nodes visualized and preserved. Therefore, use of carbon nanoparticles may reflect the metastatic condition of the central neck and have the potential to protect parathyroid glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The determination of the energy values and the composition analysis of M-16 rifle black powders

    NASA Astrophysics Data System (ADS)

    Satee, R.; Dararutana, P.; Phutdhawong, W.

    2017-09-01

    The determination of the energy values, specifically the heat of combustion of various M-16 black powders was the important part of the bullet efficiency investigations. The calorimetric bomb is commonly used for these determinations. Four M-16 black powders from the different sources were used as samples for this research. It was found that, after using calorimetric bomb technique, the gross heating value in Joules/g of sample S1-S4 were 10,647, 10,416, 5,281 and 3,878 respectively. The chemical compositions of carbon (C), hydrogen (H), nitrogen (N) and sulfer (S) have also been determined. The results indicated that carbon and nitrogen compositions of sample S1 shown the highest values and provided little differences with sample S2 while sample S3 and S4 shown the lowest carbon and nitrogen percentage composition. The hydrogen composition of all samples was equally valued, however, only sample 3 and 4 displayed sulfur values while no sulfur values were detected from sample 1 and 2. From these results, the heat values and chemical composition of M-16 black powders were characterized their sources and the energy values might be estimated from the amount of carbon and nitrogen in the black powders. Thus, it would be possible to use this determination analysis in the forensic investigation.

  13. Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.

    PubMed

    Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young

    2018-09-01

    Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.

  14. Engineering and Modeling Carbon Nanofiller-Based Scaffolds for Tissue Regeneration

    NASA Astrophysics Data System (ADS)

    Al Habis, Nuha Hamad

    Conductive biopolymers are starting to emerge as potential scaffolds of the future. These scaffolds exhibit some unique properties such as inherent conductivity, mechanical and surface properties. Traditionally, a conjugated polymer is used to constitute a conductive network. An alternative method currently being used is nanofillers as additives in the polymer. In this dissertation, we fabricated an intelligent scaffold for use in tissue engineering applications. The main idea was to enhance the mechanical, electrical properties and cell growth of scaffolds by using distinct types of nanofillers such as graphene, carbon nanofiber and carbon black. We identified the optimal concentrations of nano-additive in both fibrous and film scaffolds to obtain the highest mechanical and electrical properties without neglecting any of them. Lastly, we investigated the performance of these scaffold with cell biology. To accomplish these tasks, we first studied the mechanical properties of the scaffold as a function of morphology, concentration and variety of carbon nanofillers. Results showed that there was a gradual increase of the modulus and the fracture strength while using carbon black, carbon nanofiber and graphene, due to the small and strong carbon-to-carbon bonds and the length of the interlayer spacing. Moreover, regardless of the fabrication method, there was an increase in mechanical properties as the concentration of nanofillers increased until a threshold of 7 wt% was reached for the nanofiller film scaffold and 1%wt for the fibrous scaffold. Experimental results of carbon black exhibited a good agreement when compared with data obtained using numerical approaches and analytical models, especially in the case of lower carbon black fractions. Second, we examined the influence of electrical properties of nanofillers based on the concentration and the geometry of carbon nanofillers in the polymer matrix using experimental and numerical simulation approaches. The experimental results showed an increase in conductivity as the amount of nanofiller concentration increased. And regardless of nanofiller type, the trend remained the same. The percolation threshold was around 4-5wt% of nano-additive with PCL and PAN matrices, respectively. However, at the same concentrations, conductivity was higher in graphene-based nanocomposites than for CNF and carbon black-based nanocomposites. The numerical modeling highlighted the effect of nanofillers as constructing a conductive network due to the aggregation phenomenon. The conductivity trend for carbon black and carbon nanofiber-based composites by the numerical simulation approach was similar to the experimental approach. Lastly, we studied the effect of these carbon nanocomposite-based scaffolds on the behavior of cell growth. The results showed that regardless of the scaffold shape (film or fiber) and the additive's type, when the concentration of nano-additives was increased, electrical conductivity and cell density increased also. For a given nano-additive concentration and type, cell density increased in the scaffolds with fiber shape vs. the film. Importantly, as the conductivity of the scaffolds increased, so did the cell density. Consequently, this study has highlighted the close relationship between electrical conductivity, cell density and scaffold orientation. An increase in conductivity can be achieved in two ways: by molecular orientation of the nanofillers or by the appropriate selection of nano-additives such as graphene and carbon nanofiber.

  15. Optical properties of sea ice doped with black carbon - an experimental and radiative-transfer modelling comparison

    NASA Astrophysics Data System (ADS)

    Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.

    2017-12-01

    Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).

  16. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less

  17. Carbonaceous aerosols and Impacts on regional climate over South Asia

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Parottil, A.

    2017-12-01

    A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.

  18. 40 CFR 721.10080 - Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified, hydrochlorides (generic). 721.10080 Section 721.10080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  19. Response of black ash wetland gaseous soil carbon fluxes to a simulated emerald ash borer infestation

    Treesearch

    Matthew Van Grinsven; Joseph Shannon; Nicholas Bolton; Joshua Davis; Nam Noh; Joseph Wagenbrenner; Randall Kolka; Thomas Pypker

    2018-01-01

    The rapid and extensive expansion of emerald ash borer (EAB) in North America since 2002 may eliminate most existing ash stands, likely affecting critical ecosystem services associated with water and carbon cycling. To our knowledge, no studies have evaluated the coupled response of black ash (Fraxinus nigra Marsh.) wetland water tables, soil...

  20. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls

    Treesearch

    Kimberly P. Wickland; Jason C. Neff

    2007-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how...

  1. 40 CFR 721.10080 - Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified, hydrochlorides (generic). 721.10080 Section 721.10080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  2. 40 CFR 721.10080 - Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl) substituted] phenyl-modified, hydrochlorides (generic). 721.10080 Section 721.10080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  3. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Treesearch

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  4. Black carbon concentrations in a goods-movement neighborhood of Philadelphia, PA

    Treesearch

    Michelle C. Kondo; Chris Mizes; John Lee; Igor Burstyn

    2014-01-01

    Communities along the Delaware River in Philadelphia, USA such as Port Richmond, are subject to traffic associated with goods movement to and from port facilities and local industry. Air pollution associated with this traffic poses an environmental health concern in this and other urban areas. Our study measures black carbon (BC) in Port Richmond and examines its...

  5. Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Siheng; Graduate University of Chinese Academy of Sciences, Beijing 100039; Qi Li, E-mail: qil@ciac.jl.cn

    Mesoporous MnO{sub 2} microstructures with large specific surface area have been successfully synthesized by an in-situ redox precipitation method in the presence of colloidal carbon spheres. The samples of them had much higher specific surface area, pore size and pore volume than those obtained via routes without carbon spheres. The morphology, chemical compositions and porous nature of products were fully characterized. Electrochemical measurements showed that these mesoporous MnO{sub 2} could function well when used as positive electrode materials for supercapacitor. Ideal electrochemical capacitive performances and cyclic stability after 2000 galvanostatic charge-discharge cycles could be observed in 1 M neutral Na{submore » 2}SO{sub 4} aqueous electrolyte with a working voltage of 1.7 V. - Graphical Abstract: Mesoporous MnO{sub 2} microstructures with large S{sub BET} were successfully synthesized by in-situ redox precipitation method in the presence of colloidal carbon spheres. Electrochemical measurements showed that these mesoporous MnO{sub 2} could be well used as electrode materials for supercapacitor. Highlights: Black-Right-Pointing-Pointer Mesoporous MnO{sub 2} was prepared by in-situ redox method assisted by carbon spheres. Black-Right-Pointing-Pointer S{sub BET}, pore size and volume were higher than MnO{sub 2} obtained without carbon spheres. Black-Right-Pointing-Pointer They could function well when used as electrode materials for supercapacitor. Black-Right-Pointing-Pointer Ideal capacitive behaviors and long cycling life showed after 2000 charge-discharge.« less

  6. Contribution of Black Carbon Aerosol to Drying of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.

    2017-12-01

    Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.

  7. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory.

    PubMed

    Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C

    2013-03-01

    To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.

  8. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    NASA Astrophysics Data System (ADS)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  9. The theory-practice gap of black carbon mitigation technologies in rural China

    NASA Astrophysics Data System (ADS)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  10. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  11. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.

    PubMed

    Min, Byung-Sam; Park, Young-Ho; Lee, Chang-Seop

    2014-11-01

    This study investigates the use of SnO2, ZnO, Ag, Au, Cu, In, Pd, Ru and carbon black to improve the sensitivity of a gas sensor for detecting toluene gas. Metal-SnO2/ZnO thick films were screen-printed onto Al2O3 substrates with platinum electrodes. The physico-chemical properties of the sensor materials were characterized using SEM/EDS, XRD, and BET analyses. Measuring the electrical resistance of each sensor as a function of the gas concentration determined the sensing characteristics. The sensors were tested using toluene, benzene, xylene, ethanol, methanol, ammonia and trimethylamine vapors with concentrations of 1-2000 ppm. The gas sensing properties of metal-SnO2/ZnO thick films depended on the content and variety of metals and the content of carbon black. The optimum condition of sensor material for toluene gas detection is operation temperature 300 degrees C and when metal catalyst Cu and carbon black were added. The best sensitivity and selectivity for toluene gas at 300 degrees C resulted from doping with 5 wt.% carbon black, 1 wt.% Cu and 20 wt.% ZnO to SnO2.

  12. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    NASA Astrophysics Data System (ADS)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  13. Accelerated benzene polycarboxylic acid analysis by liquid chromatography-time-of-flight-mass spectrometry for the determination of petrogenic and pyrogenic carbon.

    PubMed

    Hindersmann, Benjamin; Achten, Christine

    2017-08-11

    Pyrogenic carbon species are of particular interest due to their ubiquitous occurrence in the environment and their high sorption capacities for nonpolar organic compounds. It has recently been shown that the analysis of the molecular markers for complex aromatic carbon structures, benzene polycarboxylic acids (BPCA), has a high potential for aid in the identification of different carbon sources. In this study, the first LC method using mass spectrometry (MS) for reliable and accelerated (<24h) quantification of pyrogenic and petrogenic carbon by BPCA analysis has been developed. The main advantage of LC-MS compared to previous methods is the higher sensitivity, which is important if only small sample amounts are available. Sample pre-treatment could be reduced to a minimum. Deuterated phthalic acid was introduced as internal standard due to its structural similarity to BPCA and its lack of occurrence in the environment. Linear quantification with r 2 ≥0997 was accomplished for all BPCA. Method validation showed an excellent quantification reproducibility (mean CV<5%) which is comparable to LC-DAD methods and more reliable than GC-FID measurements (CV 16-23%). In summary, the presented BPCA method is more economic, efficient and presumably attractive to use. Besides reference materials, various pyrogenic and petrogenic samples were analyzed to test if the sources were indicated by BPCA analysis. In addition to pyrogenic carbon, large amounts of petrogenic carbon species can also be present in urban soils and river sediments, especially in mining regions. They also to a large degree consist of aromatic carbon structures and therefore have an impact on source identification by BPCA analysis. Comparison of petrogenic and pyrogenic carbon samples shows similarities in the BPCA concentrations and patterns, in their aromaticity and degree of aromatic condensation. Thus, a differentiation between petrogenic and pyrogenic carbon only by BPCA analysis of samples with unknown carbon sources is not possible. For reliable source identification of the carbon species, the combination with other methods, such as e. g. analysis of polycyclic aromatic hydrocarbons may be successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed improved definition in the 870nm wavelength absorption weighting due to the increased absorption in the near-infrared wavelengths, while the 440nm wavelength provided better definition when black carbon mixed with dust. Utilization of this particle type scheme provides necessary information for remote sensing applications, which needs a priori knowledge of aerosol type to model the retrieved properties especially over semi-bright surfaces. In fact, this analysis reveals that the aerosol types occurred in mixtures with varying magnitudes of absorption and requires the use of more than one assumed aerosol mixture model. Furthermore, this technique will provide the aerosol transport model community a data set for validating aerosol type.

  15. Thermodynamics of the adsorption of organic molecules on graphitized carbon black modified with a monolayer of 5-hydroxy-6-methyluracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ivanov, S. P.; Shaikhitdinova, Yu. F.; Kudasheva, F. Kh.

    2016-10-01

    Thermodynamic characteristics of the adsorption of alkanes, alcohols, arenes, and esters on graphitized carbon black with a deposited monolayer (0.17%) of 5-hydroxy-6-methyluracil are studied by means of inverse gas chromatography at infinite dilution. It is established that size effects (violation of the additivity of molar changes in internal energy and the entropy of adsorption for pairs of molecules of one homologous series that differ by one methyl group) are observed when organic molecules are adsorbed on the surface of the resulting adsorbent. The size effects are similar to those observed when 1% 5-hydroxy-6-methyluracil is deposited on graphitized carbon black. It is concluded that the observed violation of additivity is associated with cavities in the supramolecular structure.

  16. Winter habitat selection patterns of Merriam's turkeys in the southern Black Hills, South Dakota

    Treesearch

    Chad P. Lehman; Mark A. Rumble; Lester D. Flake

    2007-01-01

    In northern areas of their expanded range, information on Merriam's turkeys (Meleagris gallopavo merriami) is lacking, specifically pertaining to wintering behavior and factors associated with winter habitat selection. Forest managers need detailed quantification of the effects of logging and other management practices on wintering habitats...

  17. Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection.

    PubMed

    Smajdor, Joanna; Piech, Robert; Ławrywianiec, Martyna; Paczosa-Bator, Beata

    2018-03-01

    A voltammetric method for fast and sensitive estradiol determination using carbon black modified glassy carbon electrode (CBGC) is proposed. The use of carbon black as a modifying layer led to obtain low detection limit (9.2·10 -8  mol L -1 for a preconcentration time of 60 s) and stability of registered signals (measured as RSD is 1.3%, n = 7, estradiol concentration 0.5·10 -6  mol L -1 ). Cyclic voltammetry study revealed that in phosphate media estradiol suffers irreversible one-proton and one-electron oxidation process. Under the optimum conditions, estradiol calibration curve was linear in the concentration range from 0.15·10 -6 to 3.5·10 -6  mol L -1 . The proposed method enable to determine estradiol content in different pharmaceutical formulation with good recovery. Amperometric measurements of estradiol were performed as well to indicate the possibility of its fast and accurate determination under the flow conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom.

    PubMed

    Lehahn, Yoav; Koren, Ilan; Schatz, Daniella; Frada, Miguel; Sheyn, Uri; Boss, Emmanuel; Efrati, Shai; Rudich, Yinon; Trainic, Miri; Sharoni, Shlomit; Laber, Christian; DiTullio, Giacomo R; Coolen, Marco J L; Martins, Ana Maria; Van Mooy, Benjamin A S; Bidle, Kay D; Vardi, Assaf

    2014-09-08

    Phytoplankton blooms are ephemeral events of exceptionally high primary productivity that regulate the flux of carbon across marine food webs [1-3]. Quantification of bloom turnover [4] is limited by a fundamental difficulty to decouple between physical and biological processes as observed by ocean color satellite data. This limitation hinders the quantification of bloom demise and its regulation by biological processes [5, 6], which has important consequences on the efficiency of the biological pump of carbon to the deep ocean [7-9]. Here, we address this challenge and quantify algal blooms' turnover using a combination of satellite and in situ data, which allows identification of a relatively stable oceanic patch that is subject to little mixing with its surroundings. Using a newly developed multisatellite Lagrangian diagnostic, we decouple the contributions of physical and biological processes, allowing quantification of a complete life cycle of a mesoscale (∼10-100 km) bloom of coccolithophores in the North Atlantic, from exponential growth to its rapid demise. We estimate the amount of organic carbon produced during the bloom to be in the order of 24,000 tons, of which two-thirds were turned over within 1 week. Complimentary in situ measurements of the same patch area revealed high levels of specific viruses infecting coccolithophore cells, therefore pointing at the importance of viral infection as a possible mortality agent. Application of the newly developed satellite-based approaches opens the way for large-scale quantification of the impact of diverse environmental stresses on the fate of phytoplankton blooms and derived carbon in the ocean. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  20. Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study

    NASA Astrophysics Data System (ADS)

    Bahr, A.; Pape, T.; Bohrmann, G.; Mazzini, A.; Haeckel, M.; Reitz, A.; Ivanov, M.

    2009-04-01

    Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low δ13C values measured on carbonates (-41 to -32‰ V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. δ18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.

  1. Black Carbon in Sedimentary Organic Carbon in the Northeast Pacific using the Benzene Polycarboxylic Acid Method

    NASA Astrophysics Data System (ADS)

    Coppola, A. I.; Ziolkowski, L. A.; Druffel, E. R.

    2010-12-01

    Black carbon (BC) in the Northeast Pacific ultrafiltered dissolved organic matter (UDOM) was found to be surprisingly old with a 14C age of 18,000 +/-3,000 14C years (Ziolkowski and Druffel, 2010) using the Benzene Polycarboxylic Acid (BPCA) method, while BC in sedimentary organic carbon (SOC) was found to be 2,400-12,900 14C years older than non-BC SOC (Masiello and Druffel, 1998) with a different method. Using the dichromate-sulfuric acid oxidation method (Wolbach and Anders, 1989), Masiello and Druffel (1998) estimated that 12-31% of SOC in the Northeast Pacific and the Southern Ocean surface sediments was black carbon (BC). However, the dichromate-sulfuric acid oxidation may over-estimate the concentration of BC, because this method is more biased toward modern (char) material (Currie et al., 2002). Alternatively, the BPCA method isolates aromatic components of BC as benzene rings substituted with carboxylic acid groups, and provides structural information about the BC. Recent modifications to the BPCA method by Ziolkowski and Druffel (2009) involve few biases in quantifying BC in the continuum between char and soot in UDOM. Here we use the BPCA method to determine the concentrations and 14C values of BC in sediments from three sites in the Northeast Pacific Ocean. Constraining the difference between non-BC SOC and BC-SOC using the BPCA method allows for a more precise estimate of how much BC is present in the sediments and its 14C age. Presumably, the intermediate reservoir of BC is oceanic dissolved organic carbon (DOC) and is, in part, responsible for DOC’s great 14C age. These results can be utilized to better constrain the oceanic carbon budget as a possible sink of BC. References: Currie, L. A., Benner Jr., B. A., Kessler, J.D., et al (2002), A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, nist srm 1649a, J. Res. Natl. Inst. Stand. Technol., 107, 279-298. Masiello, C., and E. R. Druffel (1988), Black carbon in deep-sea sediments, Science, 280, 1911-1913. Wolbach, W., and E. Anders (1989), Elemental carbon in sediments: Determination and isotopic analysis in presence of kerogen, Geochim. Cosmochim. Acta, 53, 1637-1647. Ziolkowski, L. A., and E. R. Druffel (2010), Aged black carbon identified in marine dissolved organic carbon, J. Geophys. Res., 37, L16601, doi: 10.1029/2010GL043963.

  2. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.

  3. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Treesearch

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  4. Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians

    Treesearch

    Magdalena Main-Knorn; Gretchen G. Moisen; Sean P. Healey; William S. Keeton; Elizabeth A. Freeman; Patrick Hostert

    2011-01-01

    Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for...

  5. Photoacoustic bio-quantification of graphene based nanomaterials at a single cell level (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nedosekin, Dmitry A.; Nolan, Jacqueline; Biris, Alexandru S.; Zharov, Vladimir P.

    2017-03-01

    Arkansas Nanomedicine Center at the University of Arkansas for Medical Sciences in collaboration with other Arkansas Universities and the FDA-based National Center of Toxicological Research in Jefferson, AR is developing novel techniques for rapid quantification of graphene-based nanomaterials (GBNs) in various biological samples. All-carbon GBNs have wide range of potential applications in industry, agriculture, food processing and medicine; however, quantification of GBNs is difficult in carbon reach biological tissues. The accurate quantification of GBNs is essential for research on material toxicity and the development of GBNs-based drug delivery platforms. We have developed microscopy and cytometry platforms for detection and quantification of GBNs in single cells, tissue and blood samples using photoacoustic contrast of GBNs. We demonstrated PA quantification of individual graphene uptake by single cells. High-resolution PA microscopy provided mapping of GBN distribution within live cells to establish correlation with intracellular toxic phenomena using apoptotic and necrotic assays. This new methodology and corresponding technical platform provide the insight on possible toxicological risks of GBNs at singe cells levels. In addition, in vivo PA image flow cytometry demonstrated the capability to monitor of GBNs pharmacokinetics in mouse model and to map the resulting biodistribution of GBNs in mouse tissues. The integrated PA platform provided an unprecedented sensitivity toward GBNs and allowed to enhance conventional toxicology research by providing a direct correlation between uptake of GBNs at a single cell level and cell viability status.

  6. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol mixture of both industrial pollution (including black carbon) and mineral dust. This underscores the need for careful measurements and analysis to separate out the absorption effects of mineral dust and black carbon in the east Asia region.

  7. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on these, it is hypothesized that such intrusions of black carbon to lower stratosphere and its consequent longer residence time in the stratosphere, would have significant implications for stratospheric chemistry, considering the known ozone depleting potential of black carbon aerosols.

  8. Quantification of the total amount of black cohosh cycloartanoids by integration of one specific 1H NMR signal.

    PubMed

    Çiçek, Serhat Sezai; Girreser, Ulrich; Zidorn, Christian

    2018-06-05

    Quantitative analysis is an important field in the quality control of medicinal plants, aiming to determine the amount of pharmacologically active constituents in complex matrices. Often biological effects of herbal drugs are not restricted to single compounds, but are rather caused by a number of often biogenetically related plant metabolites. Depending on the complexity of the analyzed plant extract, conflicts between accuracy, such as total content assays using photometric or colorimetric methods, and comprehensiveness, e.g. quantification of one or a few lead compounds can occur. In this study, we present a qHNMR approach determining the total amount of cycloartanoids in black cohosh (Actaea racemosa) rhizomes. Perdeuterated methanol containing 1,2,4,5-tetrachloro-3-nitrobenzene as an internal standard was used for extraction. Amounts of cycloartanoids were then measured by integrating 1 H NMR signals of all cycloartenoids' H-19 exo protons. Due to their unusually low chemical shifts, these signals are well separated from all remaining signals in crude extracts. Thus, accurate (recovery rates of 99.5-102.5%) and precise (relative standard deviations below 2.5%) quantification of cycloartanoids was accomplished. To the best of our knowledge, this is the first example of a quantification of the total amount of a pharmacologically relevant compound class by integration of one 1 H NMR signal characteristic for all members of this particular compound class. Additionally, we propose a new term and unit for the evaluation of medicinal plants and herbal medicinal products: the "specific partial amount of substance" of pharmacologically active constituents, indicated in mmol/g. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    PubMed

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products

    NASA Astrophysics Data System (ADS)

    García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel

    2018-05-01

    In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of the TXRF results.

  11. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  12. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Isotopically Light Organic Carbon in Phanerozoic Black Shales: Diagenetic, Source, or Environmental Signal?

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2011-12-01

    A curious depletion of 13C in the organic matter of marine black shales has been widely recognized ever since the advent of carbon isotope measurements half a century ago. Paleozoic and Mesozoic black shales commonly have del13C values between -29 and -26 permil, whereas modern marine organic matter has values between -22 and -18 permil. The black shale values mimic those of continental organic matter, yet sedimentary settings and Rock-Eval results indicate that the organic matter is marine in origin. This presentation will overview and discuss hypotheses to explain the isotopically light values of the black shales. First, the preferential removal of isotopically heavier organic matter components such as carbohydrates by diagenesis will be examined and shown to be wanting. Second, the possible oxidation of isotopically light methane released from clathrates that would have altered the DIC pool available to phytoplankton will be considered and also be found unlikely. A third possibility - that greater concentrations of CO2 in the greenhouse atmospheres that corresponded with deposition of many black shales allowed greater discrimination against 13C during photosynthesis - will be evaluated from del13C values of bulk carbon and of algal and land-plant biomarker molecules. Finally, the possibility that stronger stratification of the surface ocean may have magnified photic zone recycling of organic matter and reincorporation of its isotopically light carbon into fresh biomass will be considered. Although the fourth possibility is contrary to the conditions of vertical mixing of nutrients that exist in modern upwelling systems and that are responsible for their high productivity, it is consistent with the strongly stratified conditions that accompanied the high productivity that produced the Pliocene-Pleistocene sapropels of the Mediterranean Sea. Because the sapropels and most Phanerozic black shales share del15N values near 0 permil, nitrogen fixation evidently was important to most of these carbon-rich sequences, implying that well-developed surface stratification was central to their formation. On this basis, the 13C-depletion common to most Phanerozoic black shales is evidence of periods of high productivity over large areas of poorly mixed ancient oceans and constitutes an isotopic signal and an environmental scenario very different to what is known in the modern ocean.

  14. Climate Impact of a Regional Nuclear Weapons Exchange: An Improved Assessment Based On Detailed Source Calculations

    NASA Astrophysics Data System (ADS)

    Reisner, Jon; D'Angelo, Gennaro; Koo, Eunmo; Even, Wesley; Hecht, Matthew; Hunke, Elizabeth; Comeau, Darin; Bos, Randall; Cooley, James

    2018-03-01

    We present a multiscale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock, Oman, Stenchikov, et al. (2007, https://doi.org/10.5194/acp-7-2003-2007), based on the analysis of Toon et al. (2007, https://doi.org/10.5194/acp-7-1973-2007), which assumes a regional exchange between India and Pakistan of fifty 15 kt weapons detonated by each side. We expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 109 kg of black carbon in the upper troposphere (approximately from 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 109 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.

  15. Climate impact of a regional nuclear weapons exchange: An improved assessment based on detailed source calculations

    DOE PAGES

    Reisner, Jon Michael; D'Angelo, Gennaro; Koo, Eunmo; ...

    2018-02-13

    In this paper, we present a multi-scale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock et al. (2007a), based on the analysis of Toon et al. (2007), which assumes a regional exchange between India and Pakistan of fifty 15-kiloton weapons detonated by each side. Wemore » expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 10 9 kg of black carbon in the upper troposphere (approximately 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 10 9 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Lastly, our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in the previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.« less

  16. Climate impact of a regional nuclear weapons exchange: An improved assessment based on detailed source calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisner, Jon Michael; D'Angelo, Gennaro; Koo, Eunmo

    In this paper, we present a multi-scale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock et al. (2007a), based on the analysis of Toon et al. (2007), which assumes a regional exchange between India and Pakistan of fifty 15-kiloton weapons detonated by each side. Wemore » expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 10 9 kg of black carbon in the upper troposphere (approximately 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 10 9 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Lastly, our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in the previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.« less

  17. Calcium carbonate gallstones in children.

    PubMed

    Stringer, Mark D; Soloway, Roger D; Taylor, Donald R; Riyad, Kallingal; Toogood, Giles

    2007-10-01

    In the United States, cholesterol stones account for 70% to 95% of adult gallstones and black pigment stones for most of the remainder. Calcium carbonate stones are exceptionally rare. A previous analysis of a small number of pediatric gallstones from the north of England showed a remarkably high prevalence of calcium carbonate stones. The aims of this study were to analyze a much larger series of pediatric gallstones from our region and to compare their chemical composition with a series of adult gallstones from the same geographic area. A consecutive series of gallbladder stones from 63 children and 50 adults from the north of England were analyzed in detail using Fourier transform infrared microspectroscopy. Demographic and clinical data were collected on all patients. The relative proportions of each major stone component were assessed: cholesterol, protein and calcium salts of bilirubin, fatty acids, calcium carbonate, and hydroxyapatite. Thirty-nine (78%) adults had typical cholesterol stones, 7 (14%) had black pigment bilirubinate stones, and only 2 (4%) had calcium carbonate stones. In contrast, 30 (48%) children had black pigment stones, 13 (21%) had cholesterol stones, 15 (24%) had calcium carbonate stones, 3 (5%) had protein dominant stones, and 2 (3%) had brown pigment stones. In children, cholesterol stones were more likely in overweight adolescent girls with a family history of gallstones, whereas black pigment stones were equally common in boys and girls and associated with hemolysis, parenteral nutrition, and neonatal abdominal surgery. Calcium carbonate stones were more common in boys, and almost half had undergone neonatal abdominal surgery and/or required neonatal intensive care. The composition of pediatric gallstones differs significantly from that found in adults. In particular, one quarter of the children in this series had calcium carbonate stones, previously considered rare. Geographic differences are not the major reason for the high prevalence of calcium carbonate gallstones in children.

  18. Carbon nanotube-based black coatings

    NASA Astrophysics Data System (ADS)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  19. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  20. In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.

    PubMed

    Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana

    2018-06-12

    Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Dyes removal using activated carbon from palm oil waste with digital image colorimetry quantification

    NASA Astrophysics Data System (ADS)

    Firdaus, M. Lutfi; Puspita, Melfi; Alwi, Wiwit; Ghufira, Nurhamidah, Elvia, Rina

    2017-11-01

    In the present study, activated carbon prepared from palm oil husk was used as adsorbent to remove synthetic dyes of Reactive Red 120 (RR) and Direct Green 26 (DG) from aqueous solution. The effects of solution pH, contact time, adsorbent weight, dyes concentration, and temperature on adsorption were evaluated based on batch experiments along with determination of the adsorption isotherms, kinetics, and thermodynamics parameters. Visible spectrophotometry was used for the quantification of dyes concentration, in conjunction with digital image colorimetry as a novel quantification method. Compared to visible spectrophotometry, the results of digital image colorimetry were accurate. In addition, improved sensitivity was achieved using this new colorimetry method. At equilibrium, dyes adsorption onto activated carbon followed Freundlich model, with adsorption capacities for RR and DG were 32 and 27 mg/g, respectively. The adsorption kinetics study showed a pseudo-second-order model with thermodynamic parameters of ΔG°, ΔH°, and ΔS° were -1.8 to -3.8 kJ/mol, -13.5 to -24.38 kJ/mol, and 0.001 J/mol, respectively. Therefore, the process of adsorption was exothermic and spontaneous with an increase in the disorder or entropy of the system.

  2. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli

    PubMed Central

    Meijer, M.; Houbraken, J.A.M.P.; Dalhuijsen, S.; Samson, R.A.; de Vries, R.P.

    2011-01-01

    Wild type Aspergillus niger isolates from different biotopes from all over the world were compared to each other and to the type strains of other black Aspergillus species with respect to growth and extracellular enzyme profiles. The origin of the A. niger isolate did not result in differences in growth profile with respect to monomeric or polymeric carbon sources. Differences were observed in the growth rate of the A. niger isolates, but these were observed on all carbon sources and not specific for a particular carbon source. In contrast, carbon source specific differences were observed between the different species. Aspergillus brasiliensis is the only species able to grow on D-galactose, and A. aculeatus had significantly better growth on Locus Bean gum than the other species. Only small differences were found in the extracellular enzyme profile of the A. niger isolates during growth on wheat bran, while large differences were observed in the profiles of the different black aspergilli. In addition, differences were observed in temperature profiles between the black Aspergillus species, but not between the A. niger isolates, demonstrating no isolate-specific adaptations to the environment. These data indicate that the local environment does not result in stable adaptations of A. niger with respect to growth profile or enzyme production, but that the potential is maintained irrespective of the environmental parameters. It also demonstrates that growth, extracellular protein and temperature profiles can be used for species identification within the group of black aspergilli. PMID:21892240

  3. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  4. Multiple Controls on the Paleoenvironment of the Early Cambrian Marine Black Shales in the Sichuan Basin, SW China: Geochemical and Organic Carbon Isotopic Evidence

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, G.; Dong, D.; Wang, Y.

    2016-12-01

    In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V+Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.

  5. Carbon nanomaterials used as conductive additives in lithium ion batteries.

    PubMed

    Zhang, Qingtang; Yu, Zuolong; Du, Ping; Su, Ce

    2010-06-01

    As the vital part of lithium ion batteries, conductive additives play important roles in the electrochemical performance of lithium ion batteries. They construct a conductive percolation network to increase and keep the electronic conductivity of electrode, enabling it charge and discharge faster. In addition, conductive additives absorb and retain electrolyte, allowing an intimate contact between the lithium ions and active materials. Carbon nanomaterials are carbon black, Super P, acetylene black, carbon nanofibers, and carbon nanotubes, which all have superior properties such as low weight, high chemical inertia and high specific surface area. They are the ideal conductive additives for lithium ion batteries. This review will discuss some registered patents and relevant papers about the carbon nanomaterials that are used as conductive additives in cathode or anode to improve the electrochemical performance of lithium ion batteries.

  6. Platinum assisted by carbon quantum dots for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Pan, Dan; Li, Xingwei; Zhang, Aofeng

    2018-01-01

    Various types of fuel cells as clean and portable power sources show a great attraction, especially direct methanol fuel cell (DMFC) having high energy density, low operating temperature and convenient fuel storage. However, the preparation of low-cost Pt-based catalysts with satisfactory catalytic performance still faces many challenges for its commercialization on large scale. Here, Pt catalysts assisted by carbon quantum dots (CQDs) are reported. The synergistic effect of carbon quantum dots and Pt metals is similar to a bi-component catalyst, such as PtRu. First, carbon quantum dots derived from Vulcan XC-72 carbon black are synthesized by mixed acid etching. Then, carbon black (Vulcan XC-72) is soaked in carbon quantum dots solution for several days to obtain carbon black modified by carbon quantum dots (XC-72-CQDs). Finally, Pt catalysts are supported on XC-72-CQDs (Pt/XC-72-CQDs) through a simple chemical reduction method. For methanol electro-oxidation reaction, the catalytic performance of Pt/XC-72-CQDs is compared with commercial PtRu/C (30% Pt + 15% Ru). Results show that a typical product (Pt/XC-72-CQDs5) exhibits a better catalytic activity than PtRu/C. In cyclic voltammetry test, the specific activity of Pt/XC-72-CQDs5 is 1.06 mA cm-2 Pt and 477.6 mA mg-1 Pt, while that of PtRu/C is 0.77 mA cm-2 Pt and 280.6 mA mg-1 Pt.

  7. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  8. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    DOE Data Explorer

    Margolis, Hank A. [Université Laval

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  9. The Potential Role Played by the Fullerene-Like Structures of Interstellar Carbon Dust in the Formation of Molecular Hydrogen in Space

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana

    After a general introduction to the problem of formation of molecular hydrogen from atomic hydrogen in the interstellar medium and in the dense molecular clouds in particular, and after the explanation of the key role played by the surfaces on this process, it is proposed that the most suitable carbon surface for the formation of molecular hydrogen (from the radiative association process of atomic hydrogen) can be represented by carbon black rather than by graphite. Furthermore, it is proposed that the fullerene-like structures present in the carbon black graphene sheets are the reaction sites where molecular hydrogen may be formed.

  10. Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Shevade, A. V.; Ryan, M. A.

    2003-01-01

    We report the effect of environmental condtions coupled with varying polymer properties and carbon loadings on the performance of polymer-carbon black composite film, used as sensing medium in the JPL Electronic Nose.

  11. Recovery of carbon pools a decade after wildfire in black spruce forests of interior Alaska: effects of soil texture and landscape position

    Treesearch

    Gregory P. Houle; Evan S. Kane; Eric S. Kasischke; Carolyn M. Gibson; Merritt R. Turetsky

    2017-01-01

    We measured organic-layer (OL) recovery and carbon stocks in dead woody debris a decade after wildfire in black spruce (Picea mariana (Mill.) B.S.P.) forests of interior Alaska. Previous study at these research plots has shown the strong role that landscape position plays in governing the proportion of OL consumed during fire and revegetation after...

  12. Black Carbon Emissions and Impacts on the South American Glacial Region

    NASA Astrophysics Data System (ADS)

    Molina, L. T.; Gallardo, L.; Schmitt, C. G.

    2015-12-01

    Black carbon is one of the key short-lived climate pollutants, which is a topic of growing interest for near-term mitigation of climate change and air quality improvement. In this presentation we will examine the emissions and impact of black carbon and co-pollutants on the South American glacial region and describe some recent measurements associated with the PISAC (Pollution and its Impacts on the South American Cryosphere) Initiative. The Andes is the longest continental mountain range in the world, extending about 7000 km along western South America through seven countries with complex topography and covering several climate zones, diversity of ecosystems and communities. Air pollution associated with biomass burning and urban emissions affects extensive areas in the region and is a serious public health concern. Scientific evidence indicates that the Andean cryosphere is changing rapidly as snow fields and glaciers generally recede, leading to changes in stream flow and water quality along the Andes. The challenge is to identify the principal causes of the observed changes so that action can be taken to mitigate this negative trend. Despite the paucity of systematic observations along the Andes, a few modeling and observational studies have indicated the presence of black carbon in the high Andes, with potentially significant impact on the Andean cryosphere.

  13. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    PubMed

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  14. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs.

    PubMed

    Di Paolo, Carolina; Gandhi, Nilima; Bhavsar, Satyendra P; Van den Heuvel-Greve, Martine; Koelmans, Albert A

    2010-10-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems.

  15. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire activity and Santa Ana winds from March to August 2013. In SLC, we seasonally collected 48h-PM2.5 samples from October 2012 to February 2014. We isolated and quantified BC and OC using a thermo-optical analyzer (RT 3080, Sunset Laboratory, Tigard, OR, USA) with the Swiss_4S protocol, and measured the 14C content of BC and OC with accelerator mass spectrometry at UCI's KCCAMS facility. We also measured the concentration and stable isotope composition of total (organic) carbon and nitrogen on the aerosol filters with EA-IRMS (Carlo Erba coupled to Finnigan DeltaPlus). Preliminary results suggest that in LA, PM10-BC concentrations are on the order of 2-8 ug C/m3. Black carbon is 14C-depleted (FM 0.04-0.21) - indicating that fossil sources dominate emissions. In comparison, OC concentrations were higher (12-17 ugC/m3) and more enriched in 14C (FM 0.54-0.83). In SLC, PM2.5-BC concentrations range from <1 to 3 ug C/m3, with the highest concentrations observed during wintertime inversions. The BC fraction is strongly 14C -depleted (FM 0.06 to 0.12) - indicating a dominance of fossil BC emissions throughout the year. Together, our measurements contribute to a comprehensive quantification of temporal and spatial variations in urban BC, a key uncertainty in constraining BC sources and transport in western North America.

  16. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector: Decline pattern and risk assessment.

    PubMed

    Malhat, Farag; Boulangé, Julien; Abdelraheem, Ehab; Abd Allah, Osama; Abd El-Hamid, Rania; Abd El-Salam, Shokr

    2017-08-15

    A simple and rapid gas chromatography with flame photometric detector (GC-FPD) determination method was developed to detect residue levels and investigate the dissipation pattern and safe use of fenitrothion in tomatoes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) using an ethyl acetate-based extraction, followed by a dispersive solid-phase extraction (d-SPE) with primary-secondary amine (PSA) and graphite carbon black (GCB) for clean up, was applied prior to GC-FPD analysis. The method showed satisfactory linearity, recovery and precision. The limits of detection (LOD) and quantification (LOQ) were 0.005 and 0.01mg/kg, respectively. The residue levels of fenitrothion were best described by first order kinetics with a half-life of 2.2days in tomatoes. The potential health risks posed by fenitrothion were not significant, based on supervised residue trial data. The current findings could provide guidance for safe and reasonable use of fenitrothion in tomatoes and prevent health problems to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Simultaneous determination of multiresidual phenyl acetanilide pesticides in different food commodities by solid-phase cleanup and gas chromatography-mass spectrometry.

    PubMed

    Li, Yongjun; Wang, Meiling; Yan, Hongfei; Fu, Shanliang; Dai, Hua

    2013-03-01

    An efficient and sensitive multiresidue method has been developed for quantification and confirmation of 25 phenyl acetanilide pesticides in a wide variety of food commodities including maize, spinach, mushroom, apple, soybean, chestnut, tea, beef, cattle liver, chicken, fish, and milk. Analytes were extracted with acetone-n-hexane (1:2, v/v) followed by cleanup using SPE. Several types of adsorbents were evaluated. Neutral aluminum and graphitized carbon black cartridge showed good cleanup efficiency. The extract was determined by GC-MS in the selected ion monitoring mode using one target and two qualitative ions for each analyte. The limits of detection were 0.01 mg/kg for all analytes. The average recoveries ranged from 66.9 to 110.6% (mean 88.8%) and RSDs were in the range 2.0-19% (mean 10.5%) across three fortification levels. The proposed method was successfully applied to real samples in routine analysis and a satisfactory result was obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. North-South Gradients in Carbon Isotopic Compositions of Atlantic Ocean Black Shales: Evidence for Paleohydrologic Influences on Mid-Cretaceous Black Shale Deposition

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2013-12-01

    Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.

  19. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great im- portance to research in groundwater contamination. However,...

  20. Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia

    Treesearch

    Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca

    2006-01-01

    Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...

  1. Comparing aboveground biomass predictions for an uneven-aged pine-dominated stand using local, regional, and national models

    Treesearch

    D.C. Bragg; K.M. McElligott

    2013-01-01

    Sequestration by Arkansas forests removes carbon dioxide from the atmosphere, storing this carbon in biomass that fills a number of critical ecological and socioeconomic functions. We need a better understanding of the contribution of forests to the carbon cycle, including the accurate quantification of tree biomass. Models have long been developed to predict...

  2. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance.

    PubMed

    Paterson, Eric; Midwood, Andrew J; Millard, Peter

    2009-01-01

    For soils in carbon balance, losses of soil carbon from biological activity are balanced by organic inputs from vegetation. Perturbations, such as climate or land use change, have the potential to disrupt this balance and alter soil-atmosphere carbon exchanges. As the quantification of soil organic matter stocks is an insensitive means of detecting changes, certainly over short timescales, there is a need to apply methods that facilitate a quantitative understanding of the biological processes underlying soil carbon balance. We outline the processes by which plant carbon enters the soil and critically evaluate isotopic methods to quantify them. Then, we consider the balancing CO(2) flux from soil and detail the importance of partitioning the sources of this flux into those from recent plant assimilate and those from native soil organic matter. Finally, we consider the interactions between the inputs of carbon to soil and the losses from soil mediated by biological activity. We emphasize the key functional role of the microbiota in the concurrent processing of carbon from recent plant inputs and native soil organic matter. We conclude that quantitative isotope labelling and partitioning methods, coupled to those for the quantification of microbial community substrate use, offer the potential to resolve the functioning of the microbial control point of soil carbon balance in unprecedented detail.

  3. Corrosion Mechanism of Low-Carbon Steel in Industrial Water and Adsorption Thermodynamics in the Presence of Some Plant Extracts

    NASA Astrophysics Data System (ADS)

    Badiea, A. M.; Mohana, K. N.

    2009-12-01

    The effects of radish leaves and black cumin as plant extracts on the corrosion behavior of low-carbon steel in industrial water in the temperature range of 30 to 80 °C and velocity range of 1.44 to 2.02 m s-1 using potentiodynamic polarization, electrochemical impedance spectroscopy, and mass loss measurements have been investigated. The inhibition efficiency increased with increasing concentration of the plant extracts up to a critical value but it slightly decreased with increasing temperature. Inhibition efficiency values obtained from mass loss and potentiodynamic data were in reasonable agreement. Potentiodynamic polarization clearly indicated that radish leaves and black cumin extracts acted as anodic inhibitors. The adsorption behavior was found to obey the Flory-Huggins isotherm model. The associated activation parameters and thermodynamic data of adsorption were evaluated and discussed. The results show that radish leaves and black cumin could serve as effective inhibitors for low-carbon steel in industrial water media, with black cumin providing better protection than radish leaves.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongfen, E-mail: wanghongfen11@163.com; Wang, Zhiqi; Chen, Shougang

    Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surfacemore » areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.« less

  5. Composite Manganese Oxide Percolating Networks As a Suspension Electrode for an Asymmetric Flow Capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, Kelsey B.; Fan, Lei; Beidaghi, Majid

    2014-05-05

    In this study, we examine the use of a percolating network of metal oxide (MnO2) as the active material in a suspension electrode as a way to increase the capacitance and energy density of an electrochemical flow capacitor. Amorphous manganese oxide was synthesized via a low-temperature hydrothermal approach and combined with carbon black to form composite flowable electrodes of different compositions. All suspension electrodes were tested in static configurations and consisted of an active solid material (MnO2 or activated carbon) immersed in aqueous neutral electrolyte (1 M Na2SO4). Increasing concentrations of carbon black led to better rate performance but atmore » the cost of capacitance and viscosity. Furthermore, it was shown that an expanded voltage window of 1.6 V could be achieved when combining a composite MnO2-carbon black (cathode) and an activated carbon suspension (anode) in a charge balanced asymmetric device. The expansion of the voltage window led to a significant increase in the energy density to ~11 Wh kg–1 at a power density of ~50 W kg–1. These values are ~3.5 times and ~2 times better than a symmetric suspension electrode based on activated carbon.« less

  6. Fires and Thick Smoke Across Southeast Asia

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Vehicles and power plants are not the only sources of air pollution and greenhouses gases: fires contribute, too. In the Northern Hemisphere spring, which is the end of dry season across much of Southeast Asia, thousands of fires burn each year as people clear cropland and pasture in anticipation of the upcoming wet (growing) season. Intentional fires also escape people's control and burn into adjacent forest. The smoke from these fires crosses the Pacific Ocean, affecting climate far away. This dramatic photo-like image of fires and smoke in Southeast Asia was captured on April 2, 2007, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite. MODIS detected hundreds, possibly thousands of fires (marked in red), burning in Thailand, Laos, Vietnam, and China. Thick smoke hides nearly all of Laos, where the highest concentration of fires is located. In southern China and northern Vietnam, the smoke has sunk into the valleys that crisscross the mountainous terrain; only the highest ridgelines, which appear dark green, emerge from the blanket of smoke. The smoke sails above a bank of clouds at upper right as a dingy, yellowish haze. Fires have been burning in the region for more than month, as shown by the high carbon monoxide levels observed by NASA's MOPITT sensor during March 2007. In addition to carbon dioxide and other greenhouse gases, fires produce tiny particles of incompletely burned, or charred, carbon. According to research published in mid-March 2007 in the Journal of Geophysical Research, significant amounts of this black carbon travel across the Pacific Ocean to North America at altitudes above 2 kilometers. In spring 2004, between 25-35 gigatons (roughly 55 to 77 million pounds) of black carbon crossed the Pacific and entered skies over western North America between March 26 and April 25; nearly 75 percent of it came from Asia. (Smoke and other pollution have no respect for borders; for example, scientists have also documented smoke pollution from fires in Alaska and Canada crossing the Atlantic and entering skies over Europe.) Black carbon influences the climate. Like any dark-colored material, it absorbs incoming sunlight, dimming and cooling the Earth's surface. But while the surface cools, the atmosphere where the black carbon is located heats up. Which effect is stronger? When scientists looked at the overall effect for an entire column of the atmosphere, black carbon's warming effects outweighed its cooling effects. They concluded that trans-Pacific transport of black carbon, such as the soot released from the fires shown in this image, may amplify greenhouse-gas warming over the western United States and the Pacific Ocean. The analysis was based on a variety of information, including weather models, observations collected from airplanes, and aerosol data from MODIS.

  7. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    PubMed

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  8. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000

    NASA Astrophysics Data System (ADS)

    Bond, Tami C.; Bhardwaj, Ekta; Dong, Rong; Jogani, Rahil; Jung, Soonkyu; Roden, Christoph; Streets, David G.; Trautmann, Nina M.

    2007-06-01

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

  9. Simultaneous determination of 24 polycyclic aromatic hydrocarbons in edible oil by tandem solid-phase extraction and gas chromatography coupled/tandem mass spectrometry.

    PubMed

    Xu, Ting; Tang, Hua; Chen, Dazhou; Dong, Haifeng; Li, Lei

    2015-01-01

    An efficient and fast tandem SPE method followed by GC/MS/MS has been developed for the determination and the quantification of 24 polycyclic aromatic hydrocarbons (PAHs) in edible oil. This method includes the monitoring of 15 + 1 PAHs designated as a priority by the European Union in their 2005/108/EC recommendation and 16 PAHs listed by the U. S. Environmental Protection Agency. The sample preparation procedures were based on SPE in which PAH-dedicated cartridges with molecularly imprinted polymers and graphitized carbon black were used in series. The novel tandem SPE combination of selective extraction and purification of light and heavy PAHs provided highly purified analytes. Identification and quantification of 24 target PAHs were performed using GC/MS/MS with the isotope dilution approaches using D-labeled and (13)C-labeled PAHs. The advantages of GC/MS/MS as compared to other detection methods include high sensitivity, selectivity, and interpretation ability. The method showed satisfactory linearity (R(2) > 0.998) over the range assayed (0.5-200 μg/kg); the LODs ranged from 0.03 to 0.6 μg/kg, and LOQs from 0.1 to 2.0 μg/kg. The recoveries using this method at three spiked concentration levels (2, 10, and 50 μg/kg) ranged from 56.8 to 117.7%. The RSD was lower than 12.7% in all cases. The proposed analytical method has been successfully applied for the analysis of the 24 PAHs in edible oil.

  10. Quantification of Carbon Nanotubes in Different Environmental Matrices by a Microwave Induced Heating Method

    EPA Science Inventory

    Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a ma...

  11. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    NASA Astrophysics Data System (ADS)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  12. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS provides an affordable real-time method for gathering BC data on a mass scale. The CBMS' scalability should enable dense deployments near emissions sources and reduce uncertainty in emissions inventories due to undersampling. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. Birch, M. E. and R.A. Cary (1996), Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol., 25, 221-241. NIOSH (1996). Elemental carbon (diesel particulate) method 5040. NIOSH Manual of Analytical Methods, 4th ed. National Institute for Occupational Safety and Health, Cincinnati, Ohio (1st Suppl.). Ramanathan, N., M. Lukac, T. Ahmed, A. Kar, P.S. Praveen, T. Honles, I. Leong, I.H. Rehman, J.J. Schauer, V. Ramanathan (2011), A cellphone based system for large-scale monitoring of black carbon, Atmos. Environ., 45 (26), 4481-4487.

  13. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Treesearch

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  14. Characterization of Thermoplastic Polyurethane (TPU) and Ag Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing (Postprint)

    DTIC Science & Technology

    2016-12-29

    APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) Steven T. Patton, Chenggang Chen, Jianjun Hu, and Lawrence Grazulis University of Dayton Research...CARBON BLACK TPU NANOCOMPOSITE FOR POTENTIAL APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b...and polymer nanocomposites (PNCs) are of interest for additive manufacturing (AM) and flexible electronics. Development/optimization of inks for AM

  15. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    Treesearch

    N. Evangeliou; Y. Balkanski; WeiMin Hao; A. Petkov; R. P. Silverstein; R. Corley; B. L. Nordgren; Shawn Urbanski; S. Eckhardt; A. Stohl; P. Tunved; S. Crepinsek; A. Jefferson; S. Sharma; J. K. Nojgaard; H. Skov

    2016-01-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002–2013 influenced...

  16. Black Lung Program: Further Improvements Can Be Made in Claims Adjudication

    DTIC Science & Technology

    1990-03-21

    Law Judges SS Social Security Administration S I ction Miners sometimes develop black lung disease ( neumoconiosis or a chronic respiratory condition res...the identifica- tion and measurement of impairments involving the lung’s efficiency in exchanging oxygen and carbon dioxide. When these test results...and carbon dioxide. When these test results, judged by criteria established by the Secretary of Labor, demonstrate the miner’s inability to perform

  17. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.

    PubMed

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-31

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.

  18. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells

    PubMed Central

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-01

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864

  19. Patterns of total ecosystem carbon storage with changes in soil temperature in boreal black spruce forests

    Treesearch

    E.S. Kane; J.G. Vogel

    2009-01-01

    To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [B•S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m

  20. Potential climate impact of black carbon emitted by rockets

    NASA Astrophysics Data System (ADS)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  1. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  2. The effect of carbon black (CB) loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber (Nbrv)/recycled acrylonitrile butadiene rubber (Nbrr) blends

    NASA Astrophysics Data System (ADS)

    Husnan, M. A.; Ismail, H.; Shuib, R. K.

    2018-02-01

    Recently, the interest of polymer industry researchers have grown rapidly on the use of specific techniques which can reduce cost and utilize rubber waste into the processing form. The increasing of cognizance in environmental matters and the desire to sustain the resources had fortified the practice of recycling waste materials. In this work, the effect of carbon black loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (NBRv/NBRr) blends were studied. Cure time (t90), scorch time (tS2) and swelling percentage decreased but minimum torque (ML) and maximum torque (MH) increased with increasing carbon black (CB) loading in the blends. Increasing CB loading also increased tensile strength, tensile modulus (M100), hardness and compression set but decreased elongation at break (Eb) of NBRv/NBRr blends.

  3. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

    PubMed Central

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-01

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a−1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models. PMID:28079148

  4. Fluxes of Soot Carbon to South Atlantic Sediments

    EPA Science Inventory

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ 13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04–0.17% dry weight), but ...

  5. Optimization of process parameters during carbonization for improved carbon fibre strength

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Pursche, F.; Burscheidt, P.; Seide, G.; Gries, T.

    2017-10-01

    Based on their extraordinary properties, carbon fibres nowadays play a significant role in modern industries. In the last years carbon fibres are increasingly used for lightweight constructions in the energy or the transportation industry. However, a bigger market penetration of carbon fibres is still hindered by high prices (~ 22 /kg) [3]. One crucial step in carbon fibre production is the process of carbonization of stabilized fibres. However, the cause effect relationships of carbonization are nowadays not fully understood. Therefore, the main goal of this research work is the quantification of the cause-effect relationships of process parameters like temperature and residence time on carbon fibre strength.

  6. On-Chip, Amplification-Free Quantification of Nucleic Acid for Point-of-Care Diagnosis

    NASA Astrophysics Data System (ADS)

    Yen, Tony Minghung

    This dissertation demonstrates three physical device concepts to overcome limitations in point-of-care quantification of nucleic acids. Enabling sensitive, high throughput nucleic acid quantification on a chip, outside of hospital and centralized laboratory setting, is crucial for improving pathogen detection and cancer diagnosis and prognosis. Among existing platforms, microarray have the advantages of being amplification free, low instrument cost, and high throughput, but are generally less sensitive compared to sequencing and PCR assays. To bridge this performance gap, this dissertation presents theoretical and experimental progress to develop a platform nucleic acid quantification technology that is drastically more sensitive than current microarrays while compatible with microarray architecture. The first device concept explores on-chip nucleic acid enrichment by natural evaporation of nucleic acid solution droplet. Using a micro-patterned super-hydrophobic black silicon array device, evaporative enrichment is coupled with nano-liter droplet self-assembly workflow to produce a 50 aM concentration sensitivity, 6 orders of dynamic range, and rapid hybridization time at under 5 minutes. The second device concept focuses on improving target copy number sensitivity, instead of concentration sensitivity. A comprehensive microarray physical model taking into account of molecular transport, electrostatic intermolecular interactions, and reaction kinetics is considered to guide device optimization. Device pattern size and target copy number are optimized based on model prediction to achieve maximal hybridization efficiency. At a 100-mum pattern size, a quantum leap in detection limit of 570 copies is achieved using black silicon array device with self-assembled pico-liter droplet workflow. Despite its merits, evaporative enrichment on black silicon device suffers from coffee-ring effect at 100-mum pattern size, and thus not compatible with clinical patient samples. The third device concept utilizes an integrated optomechanical laser system and a Cytop microarray device to reverse coffee-ring effect during evaporative enrichment at 100-mum pattern size. This method, named "laser-induced differential evaporation" is expected to enable 570 copies detection limit for clinical samples in near future. While the work is ongoing as of the writing of this dissertation, a clear research plan is in place to implement this method on microarray platform toward clinical sample testing for disease applications and future commercialization.

  7. Using India Ink as a Sensor for Oximetry: Evidence of its Safety as a Medical Device.

    PubMed

    Flood, Ann Barry; Wood, Victoria A; Swartz, Harold M

    2017-01-01

    Clinical EPR spectroscopy is emerging as an important modality, with the potential to be used in standard clinical practice to determine the extent of hypoxia in tissues and whether hypoxic tissues respond to breathing enriched oxygen during therapy. Oximetry can provide important information useful for prognosis and to improve patient outcomes. EPR oximetry has many potential advantages over other ways to measure oxygen in tissues, including directly measuring oxygen in tissues and being particularly sensitive to low oxygen, repeatable, and non-invasive after an initial injection of the EPR-sensing material is placed in the tumor. The most immediately available oxygen sensor is India ink, where two classes of carbon (carbon black and charcoal) have been identified as having acceptable paramagnetic properties for oximetry. While India ink has a long history of safe use in tattoos, a systematic research search regarding its safety for marking tissues for medical uses and an examination of the evidence that differentiates between ink based on charcoal or carbon black has not been conducted. Using systematic literature search techniques, we searched the PubMed and Food and Drug Administration databases, finding ~1000 publications reporting on adverse events associated with India/carbon based inks. The detailed review of outcomes was based on studies involving >16 patients, where the ink was identifiable as carbon black or charcoal. Fifty-six studies met these criteria. There were few reports of complications other than transient and usually mild discomfort and bleeding at injection, and there was no difference in charcoal vs. carbon black India ink. India ink was generally well tolerated by patients and physicians reported that it was easy to use in practice and used few resources. The risk is low enough to justify its use as an oxygen sensor in clinical practice.

  8. C/TiO{sub 2} nanohybrids co-doped by N and their enhanced photocatalytic ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming Hai; Huang Hui; Pan Keming

    2012-08-15

    N-doping carbon-TiO{sub 2} nanohybrids (NCTs, nitrogen not only in situ doped carbon film but also doped TiO{sub 2} nanocrystals, and 5-10 nm TiO{sub 2} nanocrystals evenly dispersed on N-doping carbon film) have been successfully prepared by a mild, one-step approach. N-O-Ti chemical bonds between N-Carbon film and N-TiO{sub 2} nanoparticles were formed, and here, N-Carbon can not only sensitize and modify TiO{sub 2} nanocrystals surface, but also N can dope in the TiO{sub 2} nanocrystals. The as-prepared NCTs were investigated by X-ray photoelectron spectroscopy, TEM, FT-IR, electrochemistry method. It was demonstrated that the as-obtained NCTs have a large BET specificmore » surface area of 279.43 m{sup 2}/g. The NCTs show excellent photocatalytic abilities towards organic (Rhodamine B) and inorganic pollutant (K{sub 2}Cr{sub 2}O{sub 7}) degradation under visible light irradiation. This work provided a new approach for the high performance catalyst design towards new energy sources and environmental issues. - Graphical abstract: C/TiO{sub 2} nanohybrids co-doped by N with excellent photocatalytic performance were prepared. Highlights: Black-Right-Pointing-Pointer C/TiO{sub 2} nanohybrids (NCTs) co-doped by nitrogen (N) were prepared. Black-Right-Pointing-Pointer N was not only in situ doped in carbon film but also doped in TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer N-O-Ti chemical bonds were formed between C film and TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer NCTs exhibited excellent visible-light photocatalytic performance.« less

  9. [Application of lymph node labeling with carbon nanoparticles by preoperative endoscopic subserosal injection in laparoscopic radical gastrectomy].

    PubMed

    Hong, Q; Wang, Y; Wang, J J; Hu, C G; Fang, Y J; Fan, X X; Liu, T; Tong, Q

    2017-01-10

    Objective: To evaluate the application value of carbon lymph node tracing technique by preoperative endoscopic subserosal injection in laparoscopic radical gastrectomy. Methods: From June 2013 to February 2015, seventy eight patients with gastric cancer were enrolled and randomly divided into trial group and control group. Subserosal injection of carbon nanoparticles around the tumor was performed by preoperative endoscopic subserosal injection one day before the operation in trial group, while the patients routinely underwent laparoscopic gastrectomy in control group. Results of harvested lymph nodes, postoperative complications were compared between the two groups. Carbon nanoparticle-related side effect was also evaluated. Results: The average number of harvested lymph node in trial group was significantly higher than that in control group (35.5±8.5 vs 29.5±6.5, P <0.05). The rate of overall black-dyed harvested lymph node was 74.7% (1 035/1 386) in trial group, the black-dyed lymph node rate in D1 lymph node was 80.1%, which was significantly higher than that in D2 lymph node (69.8%, χ 2 =19.38, P <0.01). When comparing the lymph node with and without black-dyed in trial group, the rate of metastasis lymph node was significantly higher in lymph node with black-dyed (17.3% vs 4.0%, χ 2 =38.67, P <0.01). There was no significant difference in postoperative complications rate between two group (trial group 10.2%; control group 12.8%, χ 2 =0.00, P >0.05), and no carbon nanoparticle-related side effect was observed. Conclusion: Given a higher harvested lymph node number and a similar rate of complications, preoperative endoscopic subserosal injection of carbon nanoparticles was safe and feasible.

  10. Black Carbon Measurements From Ireland's Transboundary Network (TXB)

    NASA Astrophysics Data System (ADS)

    Spohn, T. K.; Martin, D.; O'Dowd, C. D. D.

    2017-12-01

    Black Carbon (BC) is carbonaceous aerosol formed by incomplete fossil fuel combustion. Named for its light absorbing properties, it acts to trap heat in the atmosphere, thus behaving like a greenhouse gas, and is considered a strong, short-lived climate forcer by the International Panel on Climate Change (IPCC). Carbonaceous aerosols from biomass burning (BB) such as forest fires and residential wood burning, also known as brown carbon, affect the ultra violet (UV) light absorption in the atmosphere as well. In 2016 a three node black carbon monitoring network was established in Ireland as part of a Transboundary Monitoring Network (TXB). The three sites (Mace Head, Malin Head, and Carnsore Point) are coastal locations on opposing sides of the country, and offer the opportunity to assess typical northern hemispheric background concentrations as well national and European pollution events. The instruments deployed in this network (Magee Scientific AE33) facilitate elimination of the changes in response due to `aerosol loading' effects; and a real-time calculation of the `loading compensation' parameter which offers insights into aerosol optical properties. Additionally, these instruments have an inbuilt algorithm, which estimates the difference in absorption in the ultraviolet wavelengths (mostly by brown carbon) and the near infrared wavelengths (only by black carbon).Presented here are the first results of the BC measurements from the three Irish stations, including instrument validation, seasonal variation as well as local, regional, and transboundary influences based on air mass trajectories as well as concurrent in-situ observations (meteorological parameters, particle number, and aerosol composition). A comparison of the instrumental algorithm to off-line sensitivity calculations will also be made to assess the contribution of biomass burning to BC pollution events.

  11. Quantifying legacies of clearcut on carbon fluxes and biomass carbon stock in northern temperate forests

    Treesearch

    W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets

    2014-01-01

    Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...

  12. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; Graham, H. V.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Steele, A.; Sutter, B.; Trainer, M. G.; MSL Science Team

    2014-07-01

    The SAM Combustion Experiment combusts reduced materials in solid samples for oxidized species quantification and C and H isotopic analysis of CO2 and H2O, with the goal of understanding the inventory of organic carbon and history of water on Mars.

  13. Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates

    EPA Science Inventory

    The development of effective measures to stabilize atmospheric 22 CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strengt...

  14. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana

    PubMed Central

    Van Vliet, Eleanne D.S.; Asante, Kwakupoku; Jack, Darby W.; Kinney, Patrick L.; Whyatt, Robin M.; Chillrud, Steven N.; Abokyi, Livesy; Zandoh, Charles; Owusu-Agyei, Seth

    2014-01-01

    Objective To examine cooking practices and 24-h personal and kitchen area exposures to fine particulate matter (PM2.5) and black carbon in cooks using biomass in Ghana. Methods Researchers administered a detailed survey to 421 households. In a sub-sample of 36 households, researchers collected 24-h integrated PM2.5 samples (personal and kitchen area); in addition, the primary cook was monitored for real-time PM2.5. All filters were also analyzed for black carbon using a multi-wavelength reflectance method. Predictors of PM2.5 exposure were analyzed, including cooking behaviors, fuel, stove and kitchen type, weather, demographic factors and other smoke sources. Results The majority of households cooked outdoors (55%; 231/417), used biomass (wood or charcoal) as their primary fuel (99%; 412/413), and cooked on traditional fires (77%, 323/421). In the sub-sample of 29 households with complete, valid exposure monitoring data, the 24-h integrated concentrations of PM2.5 were substantially higher in the kitchen sample (mean 446.8 μg/m3) than in the personal air sample (mean 128.5 μg/m3). Black carbon concentrations followed the same pattern such that concentrations were higher in the kitchen sample (14.5 μg/m3) than in the personal air sample (8.8 μg/m3). Spikes in real-time personal concentrations of PM2.5 accounted for the majority of exposure; the most polluted 5%, or 72 min, of the 24-h monitoring period accounted for 75% of all exposure. Two variables that had some predictive power for personal PM2.5 exposures were primary fuel type and ethnicity, while reported kerosene lantern use was associated with increased personal and kitchen area concentrations of black carbon. Conclusion Personal concentrations of PM2.5 exhibited considerable inter-subject variability across kitchen types (enclosed, semi-enclosed, outdoor), and can be elevated even in outdoor cooking settings. Furthermore, personal concentrations of PM2.5 were not associated with kitchen type and were not predicted by kitchen area samples; rather they were driven by spikes in PM2.5 concentrations during cooking. Personal exposures were more enriched with black carbon when compared to kitchen area samples, underscoring the need to explore other sources of incomplete combustion such as roadway emissions, charcoal production and kerosene use. PMID:24176411

  15. Determination of black carbon and nanoparticles along glaciers in the Spitsbergen (Svalbard) region exploiting a mobile platform

    NASA Astrophysics Data System (ADS)

    Spolaor, Andrea; Barbaro, Elena; Mazzola, Mauro; Viola, Angelo P.; Lisok, Justyna; Obleitner, Friedrich; Markowicz, Krzysztof M.; Cappelletti, David

    2017-12-01

    An innovative approach to characterize concentration of atmospheric aerosol particles and air mass layering along the elevation profile of glaciers is presented for the first time and validated, exploiting low weight and fast response sensors deployed on a snowmobile. Two micro-Aethalometers for black carbon measurements and a miniature Diffusion Size Classifier (miniDisc) for total aerosol concentration (airborne particles) in the 14-260 nm range were used. Test experiments were conducted in the Arctic (Svalbard) in Spring (2016). Three glaciers in the Spitsbergen region were considered for this exploratory study, the Austre Brøggerbreen, the Edithbreen and the Kongsvegen. The Austre Brøggerbreen and Edithbreen were considered as test sites to setup the experiment, to optimize the sampling strategy and to identify some basic experimental artefacts. Kongsvegen glacier was chosen for the main case study, extending from the Kongsfjorden coast to roughly 700 m above sea level for a total length of ca. 25 km and with a nearly constant elevation gradient. The obtained results were rather consistent for the three glaciers and show an increase of nanoparticles with altitude. Black carbon concentration show stationary to decreasing trends going from the bottom to the top of the glaciers. These observations indicate a very active secondary aerosol formation at the highest elevations, responsible for the increase concentration of ultrafine particles at the glacier top. On the other side, black carbon shows higher levels at the lower altitudes of the glacier. This is indicative that in absence of a long-range transport as demonstrated by calculated back trajectories, black carbon might have accumulated due to the effect of katabatic winds flow along the glacier profile. The results obtained were compared and are largely consistent with the observations from concurrent soundings with a tethered balloon experiment conducted in the nearby site of Ny-Ålesund. The proposed experimental design opens new perspectives for future experiments, which may be of relevance for the understanding of black carbon and dry dust deposition on the glacier surface, which may impact the melting of ice and snow. The investigations also contribute to better understanding of the transport and surface exchange processes acting within the atmospheric layer over glacier surface.

  16. Pilot study to reduce emissions, improve health, and offset BC emissions through the distribution of improved cook stoves in Nepal

    NASA Astrophysics Data System (ADS)

    Banmali Pradhan, B.; Panday, A. K.; Surapipith, V.

    2013-12-01

    In most developing countries, wood and other biomass fuels are still the primary source of energy for the majority of the people, particularly the poor. It is estimated that cook stoves account for approximately 20% of global black carbon emissions. In Nepal 87% of energy is supplied from traditional biomass and 75% of households still depend on biomass as a cooking fuel. The substitution of traditional cook stoves with improved cook stoves provides an important way to reduce black carbon emissions. In 2013 the International Centre for Integrated Mountain Development (ICIMOD) has commenced a pilot study that both examines ways to effectively disseminate improved cookstoves across remote rural mountain regions, and also quantifies the resulting changes in emissions, air quality and health. The selected study area is in Bajrabarahi Village in Makawanpur district, to the southwest of Kathmandu. The study area consists of around 1600 households, which are divided into control groups and groups where the cook stove intervention is taking place. The study complements the ';Clean Cooking energy solution for all by 2017' announced by the Government of Nepal recently, and will provide insights to the government on ways to effectively reduce black carbon emissions from cook stoves. To make the study robust and sustainable, local women's group and a local medical institution are involved in the project right from the conceptualization stage. The study region has been chosen in part because the medical school Patan Academy of Health Sciences (PAHS) has already started a long term health assessment in the region, and has built up considerable local contacts. The local women's group is working on the modality of cook stove distribution through micro credit programmes in the village. We will distribute the best available manufactured, fan-assisted cook stoves that are expected to reduce BC emissions the most. Health assessments, emissions estimates, as well as measurements of indoor and outdoor air quality will be done before and after the stoves are disseminated. Having obtained funds for the purchase of improved cook stoves from Nepal's diesel automobile sector, we compare the emissions of black carbon from the sponsoring diesel vehicles with the reduction in black carbon emissions from the sponsored improved cook stoves, thereby pioneering methods to offset black carbon emissions.

  17. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin

    NASA Astrophysics Data System (ADS)

    Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.

    2015-09-01

    We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this sink (i.e. adsorption onto Mn-oxides in well oxygenated surface oceans and/or subaerial environments or incomplete thiomolybdate formation in weakly sulfidic settings) remains debated, but its relevance becomes more important closer to the Great Oxidation Event and is probably related to already weakly oxidizing conditions even prior to the 2.5 Ga "whiff of oxygen".

  18. Novel materials for electrochemical power sources—introduction of PUREBLACK ® Carbons

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor V.; Gallego, Maritza A.; Doninger, Joseph E.

    Graphitization heat treatment of a precursor carbon black was seen to effectively produce a wide variety of forms of partially graphitized nano-sized carbonaceous materials with a set of unique properties, some of which are reported in this paper in comparison with those properties of the precursor carbon material. These novel materials were given the name of PUREBLACK ® Carbons. Among some of the unique properties are: higher conductivity than that of acetylene type carbon blacks due to PUREBLACK ® Carbon's particles having more graphitic structure; very low to zero volatile content (external oxygen, sulfur, etc., groups, which are often believed to be the cause of initiation of self-discharge reactions in batteries); very low equilibrium moisture pickup (20 ppm level), which makes it particularly attractive in lithium metal or lithium-ion based electrochemical systems; high purity. Electrochemical testing of the newly proposed PUREBLACK ® Carbons in several battery systems offers significant promise that it presents a viable solution to the needs of industry.

  19. Black carbon network in Mexico. First Results

    NASA Astrophysics Data System (ADS)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal heating. The annual BC concentration media for Mexico City and Monterrey site were near 2.5 μg/m3, Guadalajara near 2 μg/m3, and Juriquilla 1.2 μg/m3. Daily and weekly data showed the BC and CO strong relationships produced by the traffic source in the three main cities. BC can be used as a marker for mobile sources policies in cities to evaluate these results quickly. Guadalajara and Juriquilla had some monitoring issues. Data verification is still been verified. This work presents a first year BC experimental network extended measure campaign for year 2015 in some cities in Mexico, to obtain direct equivalent black carbon (eBC) concentrations (Also, named when eBC data is derived from optical absorption methods) (Petzold, 2013) using aethalometers and photoacoustic extinctiometers. After this effort (mainly from National University and local agencies) it is planned to extend this BC Network to other cities around Mexico and with the Mexican Government support. REFERENCES Bond, T. C., et al., (2013). Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380-5552. Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221-227 Petzold A., et al. (2013). Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys., 13, 8365-8379.

  20. PTCR characteristics and microstructure of porous (Ba,Sr)TiO3 ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung

    2010-02-01

    Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.

Top