Science.gov

Sample records for black hole horizon

  1. Astrophysical Black Holes: Evidence of a Horizon?

    NASA Astrophysics Data System (ADS)

    Colpi, Monica

    In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.

  2. Toroidal horizons in binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  3. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209

  4. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  5. Horizon supertranslation and degenerate black hole solutions

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Ruan, Shan-Ming; Zhang, Yun-Long

    2016-09-01

    In this note we first review the degenerate vacua arising from the BMS symmetries. According to the discussion in [1] one can define BMS-analogous supertranslation and superrotation for spacetime with black hole in Gaussian null coordinates. In the leading and subleading orders of near horizon approximation, the infinitely degenerate black hole solutions are derived by considering Einstein equations with or without cosmological constant, and they are related to each other by the diffeomorphism generated by horizon supertranslation. Higher order results and degenerate Rindler horizon solutions also are given in appendices.

  6. Black hole entropy and isolated horizons thermodynamics.

    PubMed

    Ghosh, Amit; Perez, Alejandro

    2011-12-01

    We present a statistical mechanical calculation of the thermodynamical properties of (nonrotating) isolated horizons. The introduction of the Planck scale allows for the definition of a universal horizon temperature (independent of the mass of the black hole) and a well-defined notion of energy (as measured by suitable local observers) proportional to the horizon area in Planck units. The microcanonical and canonical ensembles associated with the system are introduced. Black hole entropy and other thermodynamical quantities can be consistently computed in both ensembles and results are in agreement with Hawking's semiclassical analysis for all values of the Immirzi parameter.

  7. Hall scrambling on black hole horizons

    NASA Astrophysics Data System (ADS)

    Fischler, Willy; Kundu, Sandipan

    2015-08-01

    We explore the effect of the electrodynamics θ angle on the macroscopic properties of black hole horizons. Using only classical Einstein-Maxwell-Chern-Simons theory in (3 +1 ) dimensions, in the form of the membrane paradigm, we show that in the presence of the θ term, a black hole horizon behaves as a Hall conductor, for an observer hovering outside. We study how localized perturbations created on the stretched horizon scramble on the horizon by dropping a charged particle. We show that the θ angle affects the way perturbations scramble on the horizon, in particular, it introduces vortices without changing the scrambling time. This Hall scrambling of information is also expected to occur on cosmological horizons.

  8. Apparent horizons in binary black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre Marie

    Over the last decade, advances in computing technology and numerical techniques have lead to the possible theoretical prediction of astrophysically relevant waveforms in numerical simulations. With the building of gravitational wave detectors such as the Laser Interferometric Gravitational-Wave Observatory, we stand at the epoch that will usher in the first experimental study of strong field general relativity. One candidate source for ground based detection of gravitational waveforms, the orbit and merger of two black holes, is of great interest to the relativity community. The binary black hole problem is the two-body problem in general relativity. It is a stringent dynamical test of the theory. The problem involves the evolution of the Einstein equation, a complex system of non-linear, dynamic, elliptic-hyperbolic equations intractable in closed form. Numerical relativists are now developing the technology to evolve the Einstein equation using numerical simulations. The generation of these numerical I codes is a ``theoretical laboratory'' designed to study strong field phenomena in general relativity. This dissertation reports the successful development and application of the first multiple apparent horizon tracker applied to the generic binary black hole problem. I have developed a method that combines a level set of surfaces with a curvature flow method. This method, which I call the level flow method, locates the surfaces of any apparent horizons in the spacetime. The surface location then is used to remove the singularities from the computational domain in the evolution code. I establish the following set of criteria desired in an apparent horizon tracker: (1)The robustness of the tracker due to its lack of dependence on small changes to the initial guess; (2)The generality of the tracker in its applicability to generic spacetimes including multiple back hole spacetimes; and (3)The efficiency of the tracker algorithm in CPU time. I demonstrate the apparent

  9. Black Hole Observations - Towards the Event Horizon

    NASA Astrophysics Data System (ADS)

    Britzen, Silke

    Black Holes are probably the most elusive solutions of Einstein's theory of General Relativity. Despite numerous observations of the direct galactic environment and indirect influence of astrophysical black holes (e.g. jets, variable emission across the wavelength spectrum, feedback processes, etc.) -- a direct proof of their existence is still lacking. This article highlights some aspects deduced from many observations and concentrates on the experimental results with regard to black holes with masses from millions to billions of solar masses. The focus will be on the challenges and remaining questions. The Event Horizon Telescopce (EHT) project to image the photon sphere of Sgr A* and its potential is briefly sketched. This instrumental approach shall lead to highest resolution observations of the supermassive black hole at the center of the Milky Way (Sgr A*).

  10. New geometries for black hole horizons

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D ≥ 6.

  11. Energy and information near black hole horizons

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben

    2014-07-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ``frozen'' by a flux of negative energy. When the black hole is ``mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall.

  12. Extended symmetries at the black hole horizon

    NASA Astrophysics Data System (ADS)

    Donnay, Laura; Giribet, Gaston; González, Hernán A.; Pino, Miguel

    2016-09-01

    We prove that non-extremal black holes in four-dimensional general relativity exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing a physically sensible set of boundary conditions at the horizon, we derive the algebra of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in particular, two sets of supertranslations and two mutually commuting copies of the Witt algebra. We define the surface charges associated to the asymptotic diffeomorphisms that preserve the boundary conditions and discuss the subtleties of this definition, such as the integrability conditions and the correct definition of the Dirac brackets. When evaluated on the stationary solutions, the only non-vanishing charges are the zero-modes. One of them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of charges and the integrability conditions get modified, we find that the computation of the zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case of three spacetime dimensions, in which the integrability conditions notably simplify and the field equations can be solved analytically to produce a family of exact solutions that realize the boundary conditions explicitly. We examine other features, such as the form of the algebra in the extremal limit and the relation to other works in the literature.

  13. Energy and information near black hole horizons

    SciTech Connect

    Freivogel, Ben

    2014-07-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall.

  14. Quantum correlations across the black hole horizon

    SciTech Connect

    Schuetzhold, Ralf; Unruh, William G.

    2010-06-15

    Inspired by the condensed-matter analogues of black holes, we study the quantum correlations across the event horizon reflecting the entanglement between the outgoing particles of the Hawking radiation and their in-falling partners. For a perfectly covariant theory, the total correlation is conserved in time and piles up arbitrary close to the horizon in the past, where it merges into the singularity of the vacuum two-point function at the light cone. After modifying the dispersion relation (i.e., breaking Lorentz invariance) for large k, on the other hand, the light cone is smeared out and the entanglement is not conserved but actually created in a given rate per unit time.

  15. Falling through the black hole horizon

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2015-06-01

    We consider the fate of a small classical object, a "stick", as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking's quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a "firewall", the stick will be consumed as it falls through. We have recently extended Hawking's model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the train exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically smaller than the BH entropy. A firewall does, however, appear if the number of disentangled pairs near the horizon is of order of the BH entropy, as implicitly assumed in previous discussions in the literature.

  16. Horizons of semiclassical black holes are cold

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2014-06-01

    We calculate, using our recently proposed semiclassical framework, the quantum state of the Hawking pairs that are produced during the evaporation of a black hole (BH). Our framework adheres to the standard rules of quantum mechanics and incorporates the quantum fluctuations of the collapsing shell spacetime in Hawking's original calculation, while accounting for back-reaction effects. We argue that the negative-energy Hawking modes need to be regularly integrated out; and so these are effectively subsumed by the BH and, as a result, the number of coherent negative-energy modes N coh at any given time is parametrically smaller than the total number of the Hawking particles N total emitted during the lifetime of the BH. We find that N coh is determined by the width of the BH wavefunction and scales as the square root of the BH entropy. We also find that the coherent negative-energy modes are strongly entangled with their positive-energy partners. Previously, we have found that N coh is also the number of coherent outgoing particles and that information can be continually transferred to the outgoing radiation at a rate set by N coh . Our current results show that, while the BH is semiclassical, information can be released without jeopardizing the nearly maximal inside-out entanglement and imply that the state of matter near the horizon is approximately the vacuum. The BH firewall proposal, on the other hand, is that the state of matter near the horizon deviates substantially from the vacuum, starting at the Page time. We find that, under the usual assumptions for justifying the formation of a firewall, one does indeed form at the Page time. However, the possible loophole lies in the implicit assumption that the number of strongly entangled pairs can be of the same order of N total .

  17. Entanglement, tensor networks and black hole horizons

    NASA Astrophysics Data System (ADS)

    Molina-Vilaplana, J.; Prior, J.

    2014-11-01

    We elaborate on a previous proposal by Hartman and Maldacena on a tensor network which accounts for the scaling of the entanglement entropy in a system at a finite temperature. In this construction, the ordinary entanglement renormalization flow given by the class of tensor networks known as the Multi Scale Entanglement Renormalization Ansatz (MERA), is supplemented by an additional entanglement structure at the length scale fixed by the temperature. The network comprises two copies of a MERA circuit with a fixed number of layers and a pure matrix product state which joins both copies by entangling the infrared degrees of freedom of both MERA networks. The entanglement distribution within this bridge state defines reduced density operators on both sides which cause analogous effects to the presence of a black hole horizon when computing the entanglement entropy at finite temperature in the AdS/CFT correspondence. The entanglement and correlations during the thermalization process of a system after a quantum quench are also analyzed. To this end, a full tensor network representation of the action of local unitary operations on the bridge state is proposed. This amounts to a tensor network which grows in size by adding succesive layers of bridge states. Finally, we discuss on the holographic interpretation of the tensor network through a notion of distance within the network which emerges from its entanglement distribution.

  18. Breaking an Abelian gauge symmetry near a black hole horizon

    SciTech Connect

    Gubser, Steven S.

    2008-09-15

    I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.

  19. Supertranslations and Superrotations at the Black Hole Horizon.

    PubMed

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-01

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  20. Supertranslations and Superrotations at the Black Hole Horizon.

    PubMed

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-01

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon. PMID:26991167

  1. Black Hole Physics with the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Ozel, Feryal

    2016-01-01

    The Event Horizon Telescope is an experiment that is being performed on a large and ever-increasing array of radio telescopes that span the Earth from Hawaii to Chile and from the South Pole to Arizona. When data will be taken with the full array, it will image the event horizons of the supermassive black hole at the center of our Galaxy, Sagittarius A*, and the black hole at the center of M87, with an unprecedented 10 microarcssecond resolution. This will allow us to take the first ever pictures of black holes at 1.3 and 0.85 mm wavelengths and look for the shadow that is a direct evidence for a black hole predicted by the theory of General Relativity. In addition, the Event Horizon Telescope will also enable us to study the process by which black holes accrete matter and grow in mass. I will discuss the theoretical developments in simulating the properties of the black hole accretion flows and their expected images using state-of-the-art algorithms and high performance computing. Interpreting the upcoming observations within this theoretical framework will open new horizons in black hole astrophysics.

  2. Stability of the black hole horizon and the Landau ghost

    SciTech Connect

    Bekenstein, J.D.; Rosenzweig, C. )

    1994-12-15

    The stability of the black hole horizon is demanded by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of these principles by attempting to exceed the black hole extremality condition in various processes in which a U(1) charge is added to a nearly extreme Reissner-Nordstroem black hole charged with a [ital different] type of U(1) charge. For an infalling spherical charged shell the attempt is foiled by the self-Coulomb repulsion of the shell. For an infalling classical charge it fails because the required classical charge radius exceeds the size of the black hole. For a quantum charge the horizon is saved because, in order to aviod the Landau ghost, the effective coupling constant cannot be large enough to accomplish the removal of the horizon.

  3. Entanglement entropy of a black hole and isolated horizon

    NASA Astrophysics Data System (ADS)

    Shi, Jianhua; Hu, Shuangqi; Zhao, Ren

    2013-02-01

    Using Unruh-Verlinde temperature obtained by entropic force, we directly calculate partition functions of quantum field in Schwarzschild spacetime via quantum statistical method and derive the expression of the black hole statistical entropy. In our calculation the lower limit of integral is the location of isolated horizon introduced in loop quantum gravity and the upper limit of integral is infinity. So the obtained entropy is the statistical entropy from isolated horizon to the infinite. In our calculation there are not the cutoff and approximation. The results showed that, as long as proper Immirzi parameters are selected, the entropy obtained by loop quantum gravity is consistent with the quantum statistical entropy outside the black hole horizon. Therefore the black hole entropy is a quantum entanglement entropy outside the isolated horizon.

  4. Horizons of description: Black holes and complementarity

    NASA Astrophysics Data System (ADS)

    Bokulich, Peter Joshua Martin

    Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this

  5. On the Horizon: Black Hole Experiment Gallery

    NASA Astrophysics Data System (ADS)

    Steel, Simon J.; Reinfeld, E. L.; Dussault, M. E.; Gould, R. R.

    2006-09-01

    A new project is underway for engaging the museum-going public in the ongoing story of black hole science and the nature of scientific discovery. Following on the success of the Cosmic Questions traveling exhibition, the Smithsonian Astrophysical Observatory is initiating another museum project aimed at exploring the recent breakthroughs and current mysteries in our scientific understanding of black holes. High-energy astrophysicists and engineers are invited to learn more about this new proposal and to join in the development of a 2,500 square foot traveling exhibition, an associated web site and a supporting suite of educational materials and resources. This poster presents opportunities for scientist involvement, such as brainstorming of scientific priorities, input during the design process, and contributions of materials such as graphics and animations, and interviews with researchers. Following the opening, there will be opportunities for scientist participation in exhibit-related outreach, such as live presentations and content professional development for educators.

  6. Black hole thermodynamics from near-horizon conformal quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-05-15

    The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.

  7. Black holes or firewalls: A theory of horizons

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2013-10-01

    We present a quantum theory of black hole (and other) horizons, in which the standard assumptions of complementarity are preserved without contradicting information theoretic considerations. After the scrambling time, the quantum mechanical structure of a black hole becomes that of an eternal black hole at the microscopic level. In particular, the stretched horizon degrees of freedom and the states entangled with them can be mapped into the near-horizon modes in the two exterior regions of an eternal black hole, whose mass is taken to be that of the evolving black hole at each moment. Salient features arising from this picture include (i) the number of degrees of freedom needed to describe a black hole is eA/2lP2, where A is the area of the horizon; (ii) black hole states having smooth horizons, however, span only an eA/4lP2-dimensional subspace of the relevant eA/2lP2-dimensional Hilbert space; (iii) internal dynamics of the horizon is such that an infalling observer finds a smooth horizon with a probability of 1 if a state stays in this subspace. We identify the structure of local operators responsible for describing semiclassical physics in the exterior and interior spacetime regions and show that this structure avoids the arguments for firewalls—the horizon can keep being smooth throughout the evolution. We discuss the fate of infalling observers under various circumstances, especially when the observers manipulate degrees of freedom before entering the horizon, and we find that an observer can never see a firewall by making a measurement on early Hawking radiation. We also consider the presented framework from the viewpoint of an infalling reference frame and argue that Minkowski-like vacua are not unique. In particular, the number of true Minkowski vacua is infinite, although the label discriminating these vacua cannot be accessed in usual nongravitational quantum field theory. An application of the framework to de Sitter horizons is also discussed.

  8. Destroying the event horizon of regular black holes

    NASA Astrophysics Data System (ADS)

    Li, Zilong; Bambi, Cosimo

    2013-06-01

    Recently, several authors have studied the possibility of overspinning or overcharging an existing black hole to destroy its event horizon and make the central singularity naked. When all the effects are properly taken into account, any attempt to destroy the black hole seems to be doomed to fail, in agreement with the weak cosmic censorship conjecture. In this article, we study the possibility of destroying the event horizon of regular black holes. These objects have no central singularity and therefore they are not protected by the cosmic censorship hypothesis. Our results strongly support the conclusion that regular black holes can be destroyed. If we believe that the central singularity in astrophysical black holes is solved by quantum gravity effects, we might have a chance to see the black hole’s internal region and observe quantum gravity phenomena. As our finding implies the violation of the black hole’s area theorem, the collision of two black holes may release an amount of energy exceeding the Hawking bound, which can be experimentally tested by gravitational wave detectors.

  9. Exact event horizon of a black hole merger

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Martínez, Marina

    2016-08-01

    We argue that the event horizon of a binary black hole merger, in the extreme-mass-ratio limit where one of the black holes is much smaller than the other, can be described in an exact analytic way. This is done by tracing in the Schwarzschild geometry a congruence of null geodesics that approaches a null plane at infinity. Its form can be given explicitly in terms of elliptic functions, and we use it to analyze and illustrate the time-evolution of the horizon along the merger. We identify features such as the line of caustics at which light rays enter the horizon, and the critical point at which the horizons touch. We also compute several quantities that characterize these aspects of the merger.

  10. The Cauchy horizon singularity inside Kerr black holes

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Khanna, Gaurav

    2016-03-01

    The numerical technology that allows for the careful evolution of linearized fields inside Kerr black holes and the study of their behavior approaching the Cauchy horizon singularity includes a number of interesting aspects. The latter include compactified hyperboloidal coordinates and foliation, mixed type hyperbolic-elliptic PDE, and initial data evolution where all equal-coordinate hypersurfaces are spacelike. We review the need for the numerical technology that allows for the solution of the spin-2 Teukolsky equation inside Kerr black holes, and discuss the main features thereof. We present new results about the numerical properties of the Cauchy horizon singularity and their correspondence with the predictions of perturbative analysis. We then discuss present directions of study, which include the sub-dominant azimuthal modes, approaching the Cauchy horizon singularity along timelike directions, approaching the Marolf-Ori (``outflying'') singularity and the studying the fields along the Cauchy horizon.

  11. Gauss-Bonnet black holes with nonconstant curvature horizons

    SciTech Connect

    Maeda, Hideki

    2010-06-15

    We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.

  12. Horizon of quantum black holes in various dimensions

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Cavalcanti, Rogerio T.; Giugno, Andrea; Mureika, Jonas

    2016-09-01

    We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the (3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass grows above the relevant D-dimensional Planck scale mD. At fixed mass, however, PBH decreases with increasing D, so that a particle with mass m ≃mD has just about 10% probability to be a black hole in D = 5, and smaller for larger D. This result has a potentially strong impact on estimates of black hole production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller masses, but PBH < 0.5, suggesting that such lower dimensional black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and find a minimum length corresponding to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual Heisenberg contribution, and therefore no fundamental scale exists.

  13. Spectral properties of acoustic black hole radiation: Broadening the horizon

    SciTech Connect

    Finazzi, Stefano; Parentani, Renaud

    2011-04-15

    The sensitivity of the black hole spectrum when introducing short distance dispersion is studied in the context of atomic Bose condensates. By considering flows characterized by several length scales, we show that, while the spectrum remains remarkably Planckian, the temperature is no longer fixed by the surface gravity. Rather it is determined by the average of the flow gradient across the horizon over an interval fixed by the healing length and the surface gravity, as if the horizon were broadened. This remains valid as long as the flow does not induce nonadiabatic effects that produce oscillations or some parametric amplification of the flux.

  14. Toroidal Event Horizons in Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Bohn, Andy; Teukolsky, Saul; Kidder, Lawrence; Simulating eXtreme Spacetimes Collaboration

    2016-03-01

    We find the first binary black hole (BBH) event horizon with a short-lived toroidal topology. The BBH mergers are produced using the Spectral Einstein Code (SpEC). It is expected that a toroidal topology should appear in space-like slicings of these 2 + 1 dimensional event horizons, but this topology has not been found previously. While we do not see a toroidal phase in the generalized harmonic slicing used to simulate the BBHs, we do find a toroidal phase after using a motivated coordinate transformation to another space-like slicing.

  15. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  16. Horizon closeness bounds for static black hole mimickers

    NASA Astrophysics Data System (ADS)

    Sushkov, Sergey V.; Zaslavskii, Oleg B.

    2009-03-01

    We consider the question whether a wormhole can be converted into a nonextremal quasiblack hole by a continuous change of parameters. In other words, we ask whether “black” wormholes can exist as end points of families of static wormhole geometries. The answer is negative since the corresponding limit is singular. Similar conclusions are valid also for other types of black hole mimickers. Our treatment is model independent and applies to any static geometries. We also find an asymptotic expression for the Kretschmann scalar for wormholes on the threshold of horizon formation. We point out complementarity between the ability of wormholes to mimic black holes and their ability to be traversable “in practice.”

  17. The Black Hole Horizon as a Dynamical System

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular, the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon's dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this contribution, in which earlier results are rederived and elaborated upon, we first describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components. We demonstrate that, unlike classical black holes, the quantized black hole has on its horizon an imprint of its (recent) past history, i.e., quantum hair. The relation between in- and outgoing states depends on this imprint. As a first step towards the inclusion of non-Abelian interactions, we then compute the effects of magnetic monopoles both in the in-states and in the out-states. They completely modify, and indeed simplify, our algebra.

  18. Gravitational black hole hair from event horizon supertranslations

    NASA Astrophysics Data System (ADS)

    Averin, Artem; Dvali, Gia; Gomez, Cesar; Lüst, Dieter

    2016-06-01

    We discuss BMS supertranslations both at null-infinity BMS- and on the horizon {BMS}^{mathscr{H}} for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra mathcal{A}equiv {BMS}^{mathscr{H}}/{BMS}- using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in mathcal{A} are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.

  19. A quantum peek inside the black hole event horizon

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Singh, Suprit; Padmanabhan, T.

    2015-06-01

    We solve the Klein-Gordon equation for a scalar field, in the background geometry of a dust cloud collapsing to form a black hole, everywhere in the (1+1) spacetime: that is, both inside and outside the event horizon and arbitrarily close to the curvature singularity. This allows us to determine the regularized stress tensor expectation value, everywhere in the appropriate quantum state (viz., the Unruh vacuum) of the field. We use this to study the behaviour of energy density and the flux measured in local inertial frames for the radially freely falling observer at any given event. Outside the black hole, energy density and flux lead to the standard results expected from the Hawking radiation emanating from the black hole, as the collapse proceeds. Inside the collapsing dust ball, the energy densities of both matter and scalar field diverge near the singularity in both (1+1) and (1+3) spacetime dimensions; but the energy density of the field dominates over that of classical matter. In the (1+3) dimensions, the total energy (of both scalar field and classical matter) inside a small spatial volume around the singularity is finite (and goes to zero as the size of the region goes to zero) but the total energy of the quantum field still dominates over that of the classical matter. Inside the event horizon, but outside the collapsing matter, freely falling observers find that the energy density and the flux diverge close to the singularity. In this region, even the integrated energy inside a small spatial volume enclosing the singularity diverges. This result holds in both (1+1) and (1+3) spacetime dimensions with a milder divergence for the total energy inside a small region in (1+3) dimensions. These results suggest that the back-reaction effects are significant even in the region outside the matter but inside the event horizon, close to the singularity.

  20. Entropy bound of horizons for accelerating, rotating and charged Plebanski-Demianski black hole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2016-09-01

    We first review the accelerating, rotating and charged Plebanski-Demianski (PD) black hole, which includes the Kerr-Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou-Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  1. N = 2 superparticle near horizon of a magnetized Kerr black hole

    NASA Astrophysics Data System (ADS)

    Orekhov, Kirill

    2016-06-01

    The Melvin-Kerr black hole represents a generalization of the Kerr black hole to the case of a non-vanishing external magnetic field via the Harrison transformation. Conformal mechanics related to the near-horizon limit of such a black hole configuration is studied and its unique N = 2 supersymmetric extension is constructed.

  2. Horizon News Function and Quasi-Local Energy-Momentum Flux Near Black Hole

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Huei

    2008-09-01

    From the 'quasi-local' definition of horizons, e.g. isolated horizon and dynamical horizon, the consequence quasi-local energy-momentum near horizons can be observed by using the idea of frame alignment. In particular, we find the horizon news function from the asymptotic expansion near horizons and use this to describe the gravitational flux and change of mass of a black hole.

  3. Schrodinger formalism, black hole horizons, and singularity behavior

    SciTech Connect

    Wang, John E.; Greenwood, Eric; Stojkovic, Dejan

    2009-12-15

    The Gauss-Codazzi method is used to discuss the gravitational collapse of a charged Reisner-Nordstroem domain wall. We solve the classical equations of motion of a thin charged shell moving under the influence of its own gravitational field and show that a form of cosmic censorship applies. If the charge of the collapsing shell is greater than its mass, then the collapse does not form a black hole. Instead, after reaching some minimal radius, the shell bounces back. The Schroedinger canonical formalism is used to quantize the motion of the charged shell. The limits near the horizon and near the singularity are explored. Near the horizon, the Schroedinger equation describing evolution of the collapsing shell takes the form of the massive wave equation with a position dependent mass. The outgoing and incoming modes of the solution are related by the Bogolubov transformation which precisely gives the Hawking temperature. Near the classical singularity, the Schroedinger equation becomes nonlocal, but the wave function describing the system is nonsingular. This indicates that while quantum effects may be able to remove the classical singularity, it may also introduce some new effects.

  4. FAST TRACK COMMUNICATION: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter

    NASA Astrophysics Data System (ADS)

    Ansorg, Marcus; Hennig, Jörg

    2008-11-01

    We investigate the interior of regular axisymmetric and stationary black holes surrounded by matter and find that for non-vanishing angular momentum of the black hole the spacetime can always be extended regularly up to and including an inner Cauchy horizon. We provide an explicit relation for the regular metric at the inner Cauchy horizon in terms of that at the event horizon. As a consequence, we obtain the universal equality (8πJ)2 = A+A- where J is the black hole's angular momentum and A- and A+ denote the horizon areas of inner Cauchy and event horizons, respectively. We also find that in the limit J → 0 the inner Cauchy horizon becomes singular. This paper is dedicated to Reinhard Meinel on the occasion of his 50th birthday.

  5. The absence of horizon in black-hole formation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2016-08-01

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  6. The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.

    Three advanced instruments planned for a near future ( LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.

  7. Horizon instability of extremal Kerr black holes: Nonaxisymmetric modes and enhanced growth rate

    NASA Astrophysics Data System (ADS)

    Casals, Marc; Gralla, Samuel E.; Zimmerman, Peter

    2016-09-01

    We show that the horizon instability of the extremal Kerr black hole is associated with a singular branch point in the Green function at the superradiant bound frequency. We study generic initial data supported away from the horizon and find an enhanced growth rate due to nonaxisymmetric modes. The growth is controlled by the conformal weight h of each mode. We speculate on connections to near-extremal black holes and holographic duality.

  8. Membrane viewpoint on black holes: Properties and evolution of the stretched horizon

    NASA Astrophysics Data System (ADS)

    Price, Richard H.; Thorne, Kip S.

    1986-02-01

    This paper derives the ``membrane formalism'' for black holes. The membrane formalism rewrites the standard mathematical theory of black holes in a language and notation which (we hope) will facilitate research in black-hole astrophysics: The horizon of a black hole is replaced by a surrogate ``stretched horizon,'' which is viewed as a 2-dimensional membrane that resides in 3-dimensional space and evolves in response to driving forces from the external universe. This membrane, following ideas of Damour and Znajek, is regarded as made from a 2-dimensional viscous fluid that is electrically charged and electrically conducting and has finite entropy and temperature, but cannot conduct heat. The interaction of the stretched horizon with the external universe is described in terms of familiar laws for the horizon's fluid, e.g., the Navier-Stokes equation, Ohm's law, a tidal-force equation, and the first and second laws of thermodynamics. Because these laws have familiar forms, they are likely to help astrophysicists understand intuitively and compute quantitatively the behaviors of black holes in complex external environments. Previous papers have developed and elucidated electromagnetic aspects of the membrane formalism for time-independent rotating holes. This paper derives the full formalism for dynamical, evolving holes, with one exception: In its present form the formalism is not equipped to handle horizon caustics, where new generators attach themselves to the horizon.

  9. Tortoise Coordinate Transformation on Apparent Horizon of a Dynamical Black Hole

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Zhao, Zheng; Liu, Wenbiao

    Thinking of Hawking radiation calculation from a Schwarzschild black hole using Damour-Ruffini method, some key requirements of the tortoise coordinate transformation are pointed out. Extending these requirements to a dynamical black hole, a dynamical tortoise coordinate transformation is proposed. Under this new dynamical tortoise coordinate transformation, Hawking radiation from a Vaidya black hole can be got successfully using Damour-Ruffini method. Moreover, we also find that the radiation should be regarded as originating from the apparent horizon rather than the event horizon at least from the viewpoint of the first law of thermodynamics.

  10. Conformal techniques in cosmology: Conformal Killing horizons and cosmological black holes

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph

    This study investigates the use of conformal Killing horizons in time dependent black hole spacetimes, particularly expanding black holes in a FLRW universe. It examines the use of conformal techniques to generate these cosmological black hole models. The role played by conformal techniques in generating black holes with non-spherical event horizons is also studied. The concept of conformal Killing horizons is investigated through a generalization of some theorems involving Killing horizons, such as the strong rigidity theorem and the weak rigidity theorem. The surface gravity on conformal Killing horizons is defined and a generalization of the first law of black hole physics is obtained. A cosmological black hole spacetime which admits a conformal Killing horizon, is obtained by applying a time dependent conformal transformation on the Schwarzschild metric. The result is an asymptotically Einstein-de Sitter black hole spacetime that satisfies Einstein's field equations, with the matter content described by a non-comoving heat conducting fluid. Being time dependent, unlike previous cosmological black holes, this solution is the first example of a dynamical cosmological black hole which forms ab initio with the big bang singularity. Physical quantities such as the surface gravity and other effects like perihelion precession, light bending and circular geodesics are studied in this spacetime and compared to their counterparts in the gravitational field of the isolated Schwarzschild black hole. No changes in the structure of null geodesics are recorded, but significant differences are obtained for timelike geodesics, particularly a reduction in the perihelion precession and the non-existence of circular timelike orbits. Other differences are evident after constructing a maximal extension followed by a Penrose diagram for this spacetime. This solution is also expressed in the Newman-Penrose formalism. Finally a infinite cylindrical black hole is obtained by applying a

  11. Near-horizon circular orbits and extremal limit for dirty rotating black holes

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2015-08-01

    We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity κ ) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when κ →0 . This generalizes the observation of T. Jacobson [Classical Quantum Gravity 28, 187001 (2011), 10.1088/0264-9381/28/18/187001] made for the Kerr metric. If a black hole is extremal (κ =0 ), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Bañados-Silk-West effect of high energy collisions near black holes. Impossibility of the on-horizon orbits in question is manifestation of kinematic censorship that forbids infinite energies in collisions.

  12. Horizon structure and shadow of rotating Einstein-Born-Infeld black holes

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh

    2016-07-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a < aE describe a non-extremal Einstein-Born- Infeld black hole with outer and inner horizons. Similarly, the effect of on innite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for different values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.

  13. Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon.

    PubMed

    Bousso, Raphael

    2014-01-31

    If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle.

  14. Violations of the Equivalence Principle by a Nonlocally Reconstructed Vacuum at the Black Hole Horizon

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2014-01-01

    If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle.

  15. Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon.

    PubMed

    Bousso, Raphael

    2014-01-31

    If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle. PMID:24580432

  16. Conformally coupled scalar black holes admit a flat horizon due to axionic charge

    NASA Astrophysics Data System (ADS)

    Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos

    2012-09-01

    Static, charged black holes in the presence of a negative cosmological constant and with a planar horizon are found in four dimensions. The solutions have scalar secondary hair. We claim that these constitute the planar version of the Martínez-Troncoso-Zanelli black holes, only known up to now for a curved event horizon in four dimensions. Their planar version is rendered possible due to the presence of two, equal and homogeneously distributed, axionic charges dressing the flat horizon. The solutions are presented in the conformal and minimal frame and their basic properties and thermodynamics analysed. Entertaining recent applications to holographic superconductors, we expose two branches of solutions: the undressed axionic Reissner-Nordström-AdS black hole, and the novel black hole carrying secondary hair. We show that there is a critical temperature at which the (bald) axionic Reissner-Nordström-AdS black hole undergoes a second order phase transition to the hairy black hole spontaneously acquiring scalar hair.

  17. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  18. Entanglement Entropy of d-DIMENSIONAL Black Hole and Quantum Isolated Horizon

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Hua; Li, Guang-Liang; Zhao, Ren; Ma, Meng-Sen; Zhang, Li-Chun

    2013-09-01

    Based on the works of Ghosh et al. who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH), the entropy of d-dimensional black hole is studied. According to the Unruh-Verlinde temperature deduced from the concept of entropic force, the statistical entropy of quantum fields under the background of d-dimensional spacetime is calculated by means of quantum statistics. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states and display the effects of dimensions on the correction terms of the entanglement entropy.

  19. Testing numerically the null Cauchy horizon singularity inside Kerr black holes

    NASA Astrophysics Data System (ADS)

    Burko, Lior; Khanna, Gaurav; Zenginoĝlu, Anil

    2015-04-01

    The Cauchy horizon inside a Kerr black hole develops an instability that transforms it into a curvature singularity. Perturbative analyses are consistent with the picture arising from fully nonlinear simulations of spherical charged black holes: this singularity is deformational weak and null for early retarded times. Despite much interest in this long-standing problem, no numerical simulations of the interior of a perturbed Kerr black hole have been done to date. Here, we report on preliminary results obtained from a linear simulation of the evolution of the fields under the collapse of a test wave packet. We use recent developments to a Teukolsky equation solver, which use (event) horizon-penetrating, hyperboloidal coordinates, which compactify null infinity and penetrate through both horizons. This numerical technology allows us to penetrate through the event horizon, and probe the fields on the approach to the Cauchy horizon singularity. We study the behavior of the Weyl scalars ψ0 and ψ4 and of the curvature scalar RαβγδRαβγδ , and confront our results with those of perturbation analysis. Our results may be useful when planning fully nonlinear numerical studies of rotating black hole interiors.

  20. What happens to Petrov classification, on horizons of axisymmetric dirty black holes

    SciTech Connect

    Tanatarov, I. V.; Zaslavskii, O. B.

    2014-02-15

    We consider axisymmetric stationary dirty black holes with regular non-extremal or extremal horizons, and compute their on-horizon Petrov types. The Petrov type (PT) in the frame of the observer crossing the horizon can be different from that formally obtained in the usual (but singular in the horizon limit) frame of an observer on a circular orbit. We call this entity the boosted Petrov type (BPT), as the corresponding frame is obtained by a singular boost from the regular one. The PT off-horizon can be more general than PT on-horizon and that can be more general than the BPT on horizon. This is valid for all regular metrics, irrespective of the extremality of the horizon. We analyze and classify the possible relations between the three characteristics and discuss the nature and features of the underlying singular boost. The three Petrov types can be the same only for space-times of PT D and O off-horizon. The mutual alignment of principal null directions and the generator in the vicinity of the horizon is studied in detail. As an example, we also analyze a special class of metrics with utra-extremal horizons (for which the regularity conditions look different from the general case) and compare their off-horizon and on-horizon algebraic structure in both frames.

  1. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-05-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while ablack hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β , whose radius decreases with increase of the value of the parameter β . Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole.

  2. Event horizon of a Schwarzschild black hole: Magnifying glass for Planck length physics

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    1999-06-01

    An attempt is made to describe the ``thermodynamics'' of semiclassical spacetime without specifying the detailed ``molecular structure'' of quantum spacetime, using the known properties of black holes. I give detailed arguments, essentially based on the behavior of quantum systems near the event horizon, which suggest that the event horizon of a Schwarschild black hole acts as a magnifying glass to probe Planck length physics even in those contexts in which the spacetime curvature is arbitrarily low. The quantum state describing a black hole, in any microscopic description of spacetime, has to possess certain universal form of density of states which can be ascertained from general considerations. Since a black hole can be formed from the collapse of any physical system with a low energy Hamiltonian H, it is suggested that the high energy behavior of any system should be described by a modified Hamiltonian of the form H2mod=A2 ln(1+H2/A2) where A2~E2P. I also show that it is possible to construct several physical systems which have the black hole density of states and hence will be indistinguishable from a black hole as far as thermodynamic interactions are concerned. In particular, black holes can be thought of as one-particle excitations of a class of nonlocal field theories with the thermodynamics of black holes arising essentially from the asymptotic form of the dispersion relation satisfied by these excitations. These field theoretic models have correlation functions with a universal short distance behavior, which translates into the generic behavior of semiclassical black holes. Several implications of this paradigm are discussed.

  3. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.

    PubMed

    Page, Don N; Shoom, Andrey A

    2015-04-10

    Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime.

  4. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.

    PubMed

    Page, Don N; Shoom, Andrey A

    2015-04-10

    Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime. PMID:25910105

  5. On the near horizon rotating black hole geometries with NUT charges

    NASA Astrophysics Data System (ADS)

    Galajinsky, Anton; Orekhov, Kirill

    2016-09-01

    The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d=4 and d=5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d=4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d=5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d=5 near horizon Myers-Perry black hole with a NUT charge.

  6. On the stability of cauchy horizons in a black hole's nucleus

    NASA Astrophysics Data System (ADS)

    Balbinot, Roberto

    1989-08-01

    The stability of the Cauchy horizons of a black hole with interior de Sitter region is analyzed. I show that these surfaces can be made quantum mechanically stable. On leave of absence from Istituto di Fisica dell'Universita di Palermo, I-90133 Palermo, Italy.

  7. Inner cauchy horizon of axisymmetric and stationary black holes with surrounding matter in einstein-maxwell theory.

    PubMed

    Ansorg, Marcus; Hennig, Jörg

    2009-06-01

    We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively. PMID:19658851

  8. Generalized Robertson-Walker Space-Time Admitting Evolving Null Horizons Related to a Black Hole Event Horizon

    PubMed Central

    2016-01-01

    A new technique is used to study a family of time-dependent null horizons, called “Evolving Null Horizons” (ENHs), of generalized Robertson-Walker (GRW) space-time (M¯,g¯) such that the metric g¯ satisfies a kinematic condition. This work is different from our early papers on the same issue where we used (1 + n)-splitting space-time but only some special subcases of GRW space-time have this formalism. Also, in contrast to previous work, we have proved that each member of ENHs is totally umbilical in (M¯,g¯). Finally, we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open problems. PMID:27722202

  9. Black holes without firewalls

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  10. Entanglement entropy of charged dilaton-axion black hole and quantum isolated horizon

    NASA Astrophysics Data System (ADS)

    Yang, Ze-Min; Li, Xiu-Lan; Gao, Ying

    2016-09-01

    Based on the work of Ghosh and Perez, we calculate the statistical entropy of charged dilaton-axion black hole. In the calculations we take the integral from the position of QIH to infinity, so the obtained entropy is the entanglement entropy outside the QIH. It is shown that only if the position of QIH is properly chosen the leading term of logarithm of the number of quantum states on the QIH is equal to the leading term of the entanglement entropy outside the black hole horizon, and both are the Bekenstein-Hawking entropy. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states.

  11. Highly damped quasinormal modes of generic single-horizon black holes

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin G.; Kunstatter, Gabor

    2005-10-01

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  12. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.

    PubMed

    Doeleman, Sheperd S; Weintroub, Jonathan; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C-J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-09-01

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

  13. Anyonic statistics and large horizon diffeomorphisms for loop quantum gravity black holes

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Ruiz Euler, Hans-Christian

    2015-03-01

    We investigate the role played by large diffeomorphisms of quantum isolated horizons for the statistics of loop quantum gravity (LQG) black holes by means of their relation to the braid group. To this aim the symmetries of Chern-Simons theory are recapitulated with particular regard to the aforementioned type of diffeomorphisms. For the punctured spherical horizon, these are elements of the mapping class group of S2, which is almost isomorphic to a corresponding braid group on this particular manifold. The mutual exchange of quantum entities in two dimensions is achieved by the braid group, rendering the statistics anyonic. With this we argue that the quantum isolated horizon model of LQG based on S U (2 )k-Chern-Simons theory exhibits non-Abelian anyonic statistics. In this way a connection to the theory behind the fractional quantum Hall effect and that of topological quantum computation is established, where non-Abelian anyons play a significant role.

  14. Small black holes on branes: Is the horizon regular or singular?

    NASA Astrophysics Data System (ADS)

    Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C.

    2004-09-01

    We investigate the following question: Consider a small mass, with ɛ (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ɛ and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ɛ we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.

  15. Near horizon symmetries of the non-extremal black hole solutions of Generalized Minimal Massive Gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-09-01

    We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].

  16. Strong-field tidal distortions of rotating black holes. II. Horizon dynamics from eccentric and inclined orbits

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Stephen; Hughes, Scott A.

    2016-08-01

    In a previous paper, we developed tools for studying the horizon geometry of a Kerr black hole that is tidally distorted by a binary companion using techniques that require large mass ratios but can be applied to any bound orbit and allow for arbitrary black hole spin. We now apply these tools to generic Kerr black hole orbits. This allows us to investigate horizon dynamics: the tidal field perturbing the horizon's geometry varies over a generic orbit, with significant variations for eccentric orbits. Many of the features of the horizon's behavior found previously carry over to the dynamical case in a natural way. In particular, we find significant offsets between the applied tide and the horizon's response. This leads to bulging in the horizon's geometry which can lag or lead the orbit, depending upon the hole's rotation and the orbit's geometry. An interesting and apparently new feature we find are small-amplitude, high-frequency oscillations in the horizon's response. We have not been able to identify a mechanism for producing these oscillations but find that they appear most clearly when rapidly rotating black holes are distorted by very strong-field orbits.

  17. FAST TRACK COMMUNICATION: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter

    NASA Astrophysics Data System (ADS)

    Hennig, Jörg; Ansorg, Marcus; Cederbaum, Carla

    2008-08-01

    We prove that for sub-extremal axisymmetric and stationary black holes with arbitrary surrounding matter the inequality 8π|J| < A holds, where J is the angular momentum and A the horizon area of the black hole.

  18. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2012-06-01

    Based on various string theoretic constructions, and various string-inspired generalizations thereof, there have been repeated suggestions that the areas of black hole event horizons might be quantized in a quite specific manner, in terms of linear combinations of square roots of positive integers. It is important to realise that there are significant physical constraints on such integer-based proposals when one (somewhat speculatively) attempts to extend them outside their original extremal and supersymmetric framework. Specifically, in their most natural and direct physical interpretations, some of the more speculative integer-based proposals for the quantization of horizon areas fail for the ordinary Kerr-Newman black holes in (3+1) dimensions, essentially because the fine structure constant is not an integer. A more baroque interpretation involves asserting the fine structure constant is the square root of a rational number; but such a proposal has its own problems. Insofar as one takes (3+1) general relativity (plus the usual quantization of angular momentum and electric charge) as being paramount, the known explicitly calculable spectra of horizon areas for the physically compelling Kerr-Newman spacetimes indicate that some caution is called for when assessing the universality of some of the more speculative integer-based string-inspired proposals.

  19. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    NASA Astrophysics Data System (ADS)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  20. Near-horizon geometry and the entropy of a minimally coupled scalar field in the Kerr black hole

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik

    2016-09-01

    In this article we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in a Kerr black hole background. We will use the brick wall model of 't Hooft. In a Kerr black hole, complications arise due to the absence of a global timelike Killing field and the presence of the ergosphere. Nevertheless, it is possible to calculate the entropy of a thin shell of matter field in the near-horizon region using the brick wall model. The corresponding leading-order entropy of the nonsuperradiant modes is found to be proportional to the area of the horizon and is logarithmically divergent. Thus, the entropy of a three-dimensional system in the near-horizon region is proportional to the boundary surface. This aspect is also valid in the Schwarzschild black holes and is similar to that of the black hole entropy itself. The corresponding internal energy remains finite if the entropy is chosen to be of the order of the black hole entropy itself. For a fixed value of the brick wall cut-off, the leading order entropy in a Kerr black hole is found to be half of the corresponding term in a Schwarzschild black hole. This is due to rotation and is consistent with the preferential emission of particles in a Kerr black hole with azimuthal angular momentum in the same direction as that of the black hole itself. However, we can obtain the Schwarzschild case expression by including a subleading term and taking the appropriate slow rotation limit.

  1. Hawking Radiation from Horizons of Reissner Nordström de Sitter Black Hole with a Global Monopole via Anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Wu; Liu, Xiong-Wei; Lin, Kai; Zeng, Xiao-Xiong; Yang, Shu-Zheng

    2008-08-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner Nordström de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.

  2. A Note on the Observational Evidence for the Existence of Event Horizons in Astrophysical Black Hole Candidates

    PubMed Central

    2013-01-01

    Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations. PMID:23853532

  3. A note on the observational evidence for the existence of event horizons in astrophysical black hole candidates.

    PubMed

    Bambi, Cosimo

    2013-01-01

    Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations.

  4. AdS flowing black funnels: stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT

    NASA Astrophysics Data System (ADS)

    Fischetti, Sebastian; Marolf, Donald; Santos, Jorge E.

    2013-04-01

    We construct stationary non-equilibrium black funnels locally asymptotic to global AdS4 in vacuum Einstein-Hilbert gravity with a negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (ΔT ≠ 0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While generators of the bulk future horizon evolve toward zero expansion in the far future, they begin at finite affine parameter with infinite expansion on a singular past horizon characterized by power-law divergences with universal exponents. We explore both the horizon generators and the boundary stress tensor in detail. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. The new parameter detunes the temperatures Tbulk BH and Tbndy BH of the bulk and boundary black holes, and we may then take α = {T_{bndy \\ BH}/{T_{bulk \\ BH}} and ΔT small to control the accuracy of the fluid-gravity approximation. In the small α, ΔT regime, we find excellent agreement with our numerical solutions. For our cases the agreement also remains quite good even for α ˜ 0.8. In terms of a dual CFT, our α = 1 solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes.

  5. Naked black holes

    SciTech Connect

    Horowitz, G.T.; Ross, S.F.

    1997-08-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces {ital outside} the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  6. AdS flowing black funnels: Stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT

    NASA Astrophysics Data System (ADS)

    Fischetti, Sebastian; Marolf, Donald; Santos, Jorge

    2013-04-01

    We construct stationary non-equilibrium black funnels locally asymptotic to global AdS4 in vacuum Einstein-Hilbert gravity with negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (δT !=0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. In the fluid regime, we find excellent agreement with our numerical solutions. In terms of a dual CFT, our solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes.

  7. Analogue black holes in relativistic BECs: Mimicking Killing and universal horizons

    NASA Astrophysics Data System (ADS)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-09-01

    Relativistic Bose-Einstein condensates (rBECs) have recently become a well-established system for analogue gravity. Indeed, while such relativistic systems cannot be yet realized experimentally, they provide an interesting framework for mimicking metrics for which no analogue is yet available, thus paving the way for further theoretical and numerical explorations. In this vein, we here discuss black holes in rBECs and explore how their features relate to the bulk properties of the system. We then propose the coupling of external fields to the rBEC as a way to mimic nonmetric features. In particular, we use a Proca field to simulate an aether field, as found in Einstein-aether or Hořava-Lifshitz gravity. This allows us to mimic a universal horizon, the causal barrier relevant for superluminal modes in these modified gravitational theories.

  8. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  9. A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES

    SciTech Connect

    Koljonen, K. I. I.; Russell, D. M.; Bernardini, F.; Fernández-Ontiveros, J. A.; Markoff, Sera; Russell, T. D.; Miller-Jones, J. C. A.; Curran, P. A.; Soria, R.; Van der Horst, A. J.; Casella, P.; Gandhi, P.

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  10. A Connection between Plasma Conditions near Black Hole Event Horizons and Outflow Properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Russell, D. M.; Fernández-Ontiveros, J. A.; Markoff, Sera; Russell, T. D.; Miller-Jones, J. C. A.; van der Horst, A. J.; Bernardini, F.; Casella, P.; Curran, P. A.; Gandhi, P.; Soria, R.

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  11. Nonstationary analogue black holes

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2014-12-01

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics.

  12. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  13. Near-Horizon Geometry and the Entropy of a Minimally Coupled Scalar Field in the Schwarzschild Black Hole

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik

    2016-01-01

    In this article, we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in the Schwarzschild black hole background using the brick wall model of 't Hooft. In the original article, the Wentzel-Kramers-Brillouin (WKB) approximation was used for the modes that are globally stationary. In a previous article, we found that the WKB quantization rule together with a proper counting of the states, leads to a new expression of the scalar field entropy which is not proportional to the area of the horizon. The expression of the entropy is logarithmically divergent in the brick wall cut-off parameter in contrast to an inverse power divergence obtained earlier. In this article, we will consider the entropy for a thin shell of matter field of a given thickness surrounding the black hole horizon. The thickness is chosen to be large compared with the Planck length and is of the order of the atomic scale. We will discuss the corresponding boundary conditions and the appropriateness of the WKB approximation using the Regge-Wheeler tortoise coordinates. When expressed in terms of a covariant cut-off parameter, the entropy of a thin shell of matter field of a given thickness and surrounding the horizon in the Schwarzschild black hole background is given by an expression proportional to the area of the black hole horizon. This leading order divergent term in the cut-off parameter remains to be logarithmically divergent. The logarithmic divergence is expected from the nature of the near-horizon geometry and is discussed in detail at the end of Sect. 2. We will find that these discussions are significant in the context of the continuation to the Euclidean sector and the corresponding regularization schemes used to evaluate the thermodynamical properties of matter fields in curved spaces. These are related with to geometric aspects of curved spaces.

  14. Geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    SciTech Connect

    Mandel, Ilya

    2005-10-15

    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.

  15. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  16. The quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge

    NASA Astrophysics Data System (ADS)

    Xie, Zhi-Kun; Pan, Wei-Zhen; Yang, Xue-Jun

    2013-03-01

    Using a new tortoise coordinate transformation, we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time, and obtain the event horizon surface gravity and the Hawking temperature on that event horizon. The results show that there is a crossing of particle energy near the event horizon. We derive the maximum overlap of the positive and negative energy levels. It is also found that the Hawking temperature of a black hole depends not only on the time, but also on the angle. There is a problem of dimension in the usual tortoise coordinate, so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.

  17. How close can we approach the event horizon of the Kerr black hole from the detection of gravitational quasinormal modes?

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Nakano, Hiroyuki

    2016-04-01

    Using the Wentzel-Kramers-Brillouin method, we show that the peak location (r_peak) of the potential, which determines the quasinormal mode frequency of the Kerr black hole, obeys an accurate empirical relation as a function of the specific angular momentum a and the gravitational mass M. If the quasinormal mode with a/M ˜ 1 is observed by gravitational wave detectors, we can confirm the black-hole space-time around the event horizon, r_peak=r_+ +O(√ {1-q}), where r_+ is the event horizon radius. However, if the quasinormal mode is different from that of general relativity, we are forced to seek the true theory of gravity and/or face the existence of the naked singularity.

  18. Probing the magnetic field structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Gold, Roman; McKinney, Jonathan; Johnson, Michael; Doeleman, Sheperd; Event Horizon Telescope Collaboration

    2016-03-01

    Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. I will present results from general-relativistic, polarized radiatiative transfer models for the inner accretion flow in Sgr A*. The models use time dependent, global GRMHD simulations of hot accretion flows including standard-and-normal-evolution (SANE) and magnetically arrested disks (MAD). I present comparisons of these synthetic data sets to the most recent observations with the Event Horizon Telescope and show how the data distinguishes the models and probes the magnetic field structure.

  19. Black hole accretion.

    PubMed

    Narayan, Ramesh; Quataert, Eliot

    2005-01-01

    Black holes are most often detected by the radiation produced when they gravitationally pull in surrounding gas, in a process called accretion. The efficiency with which the hot gas radiates its thermal energy strongly influences the geometry and dynamics of the accretion flow. Both radiatively efficient thin disks and radiatively inefficient thick disks are observed. When the accreting gas gets close to the central black hole, the radiation it produces becomes sensitive to the spin of the hole and the presence of an event horizon. Analysis of the luminosities and spectra of accreting black holes has yielded tantalizing evidence for both rotating holes and event horizons. Numerical simulations imply that the relativistic jets often seen from accreting black holes may be powered in part by the spin of the hole. PMID:15637269

  20. Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Giugno, Andrea; Micu, Octavian

    2016-01-01

    It is congruous with the quantum nature of the world to view the spacetime geometry as an emergent structure that shows classical features only at some observational level. One can thus conceive the spacetime manifold as a purely theoretical arena, where quantum states are defined, with the additional freedom of changing coordinates like any other symmetry. Observables, including positions and distances, should then be described by suitable operators acting on such quantum states. In principle, the top-down (canonical) quantization of Einstein-Hilbert gravity falls right into this picture, but is notoriously very involved. The complication stems from allowing all the classical canonical variables that appear in the (presumably) fundamental action to become quantum observables acting on the “superspace” of all metrics, regardless of whether they play any role in the description of a specific physical system. On can instead revisit the more humble “minisuperspace” approach and choose the gravitational observables not simply by imposing some symmetry, but motivated by their proven relevance in the (classical) description of a given system. In particular, this review focuses on compact, spherically symmetric, quantum mechanical sources, in order to determine the probability that they are black holes (BHs) rather than regular particles. The gravitational radius is therefore lifted to the status of a quantum mechanical operator acting on the “horizon wave function (HWF),” the latter being determined by the quantum state of the source. This formalism is then applied to several sources with a mass around the fundamental scale, which are viewed as natural candidates of quantum BHs.

  1. A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A*

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chan, Chi-Kwan; Marrone, Daniel P.

    2015-12-01

    The half opening angle of a Kerr black hole shadow is always equal to (5 ± 0.2)GM/Dc{sup 2}, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% range constitutes a null hypothesis test of general relativity. We show that the black hole in the center of the Milky Way, Sgr A*, is the optimal target for performing this test with upcoming observations using the Event Horizon Telescope (EHT). We use the results of optical/IR monitoring of stellar orbits to show that the mass-to-distance ratio for Sgr A* is already known to an accuracy of ∼4%. We investigate our prior knowledge of the properties of the scattering screen between Sgr A* and the Earth, the effects of which will need to be corrected for in order for the black hole shadow to appear sharp against the background emission. Finally, we explore an edge detection scheme for interferometric data and a pattern matching algorithm based on the Hough/Radon transform and demonstrate that the shadow of the black hole at 1.3 mm can be localized, in principle, to within ∼9%. All these results suggest that our prior knowledge of the properties of the black hole, of scattering broadening, and of the accretion flow can only limit this general relativistic null hypothesis test with EHT observations of Sgr A* to ≲10%.

  2. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  3. EVENT HORIZON TELESCOPE EVIDENCE FOR ALIGNMENT OF THE BLACK HOLE IN THE CENTER OF THE MILKY WAY WITH THE INNER STELLAR DISK

    SciTech Connect

    Psaltis, Dimitrios; Narayan, Ramesh; Loeb, Abraham; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E. E-mail: rnarayan@cfa.harvard.edu

    2015-01-01

    Observations of the black hole in the center of the Milky Way with the Event Horizon Telescope at 1.3 mm have revealed a size of the emitting region that is smaller than the size of the black-hole shadow. This can be reconciled with the spectral properties of the source, if the accretion flow is seen at a relatively high inclination (50°-60°). Such an inclination makes the angular momentum of the flow, and perhaps of the black hole, nearly aligned with the angular momenta of the orbits of stars that lie within ≅ 3'' from the black hole. We discuss the implications of such an alignment for the properties of the black hole and of its accretion flow. We argue that future Event Horizon Telescope observations will not only refine the inclination of Sgr A* but also measure precisely its orientation on the plane of the sky.

  4. Imaging the Supermassive Black Hole Shadow and Jet Base of M87 with the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Lu, Ru-Sen; Broderick, Avery E.; Baron, Fabien; Monnier, John D.; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor

    2014-06-01

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole "shadow," a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (~2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.

  5. Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope

    SciTech Connect

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor; Broderick, Avery E.; Baron, Fabien; Monnier, John D.

    2014-06-20

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole 'shadow', a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (∼2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.

  6. Collisional Penrose process near the horizon of extreme Kerr black holes.

    PubMed

    Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida

    2012-09-21

    Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.

  7. Distorted stationary rotating black holes

    NASA Astrophysics Data System (ADS)

    Shoom, Andrey A.

    2015-03-01

    We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizons of the black hole, which is different from that of an electrically charged static distorted black hole. The duality transformation is directly related to the discrete symmetry of the space-time. The black hole horizon areas, surface gravity, and angular momentum satisfy the Smarr formula constructed for both the horizons. We formulate the zeroth, the first, and the second laws of black hole thermodynamics for both the horizons of the black hole and show the correspondence between the local and the global forms of the first law. The Smarr formula and the laws of thermodynamics formulated for both the horizons are related by the duality transformation. The distortion is illustrated on the example of a quadrupole and octupole fields. The distortion fields noticeably affect the proper time of a free fall from the outer to the inner horizon of the black hole along the symmetry semiaxes. There is some minimal nonzero value of the quadrupole and octupole moments when the time becomes minimal. The minimal proper time indicates the closest approach of the horizons due to the distortion.

  8. Euclidean black hole vortices

    NASA Technical Reports Server (NTRS)

    Dowker, Fay; Gregory, Ruth; Traschen, Jennie

    1991-01-01

    We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.

  9. Rotating Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2008-03-01

    The properties of higher-dimensional black holes can differ significantly from those of black holes in four dimensions, since neither the uniqueness theorem, nor the staticity theorem or the topological censorship theorem generalize to higher dimensions. We first discuss black holes of Einstein-Maxwell theory and Einstein-Maxwell-Chern-Simons theory with spherical horizon topology. Here new types of stationary black holes are encountered. We then discuss nonuniform black strings and present evidence for a horizon topology changing transition.

  10. Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes

    SciTech Connect

    Dain, Sergio

    2010-11-15

    We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggests that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.

  11. Slowly balding black holes

    SciTech Connect

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-15

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  12. Janus black holes

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  13. Charged Galileon black holes

    SciTech Connect

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar E-mail: christos.charmousis@th.u-psud.fr

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  14. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.

    1998-01-01

    Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.

  15. Slowly balding black holes

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  16. Gravitational polarizability of black holes

    SciTech Connect

    Damour, Thibault; Lecian, Orchidea Maria

    2009-08-15

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  17. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    ERIC Educational Resources Information Center

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  18. Black holes as antimatter factories

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Dolgov, Alexander D.; Petrov, Alexey A.

    2009-09-01

    We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 1020 g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.

  19. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  20. Global embedding of the Kerr black hole event horizon into hyperbolic 3-space

    SciTech Connect

    Gibbons, G. W.; Herdeiro, C. A. R.; Rebelo, C.

    2009-08-15

    An explicit global and unique isometric embedding into hyperbolic 3-space, H{sup 3}, of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H{sup 3} of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H{sup 3}, for arbitrary values of the angular momentum. For this example, considering a quotient of H{sup 3} by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding that cannot be made global.

  1. Black hole mimickers: Regular versus singular behavior

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to

  2. Physical process first law and increase of horizon entropy for black holes in Einstein-Gauss-Bonnet gravity.

    PubMed

    Chatterjee, Ayan; Sarkar, Sudipta

    2012-03-01

    We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.

  3. Scalar field radiation from dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  4. The case for artificial black holes.

    PubMed

    Leonhardt, Ulf; Philbin, Thomas G

    2008-08-28

    The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.

  5. Moulting Black Holes

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2012-03-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.

  6. Tomograms of spinning black holes

    SciTech Connect

    Krishnan, Chethan

    2009-12-15

    The classical internal structure of spinning black holes is vastly different from that of static black holes. We consider spinning Banados-Teitelboim-Zanelli black holes, and probe their interior from the gauge theory. Utilizing the simplicity of the geometry and reverse engineering from the geodesics, we propose a thermal correlator construction which can be interpreted as arising from two entangled conformal field theories. By analytic continuation of these correlators, we can probe the Cauchy horizon. Correlators that capture the Cauchy horizon in our work have a structure closely related to those that capture the singularity in a nonrotating Banados-Teitelboim-Zanelli. As expected, the regions beyond the Cauchy horizon are not probed in this picture, protecting cosmic censorship.

  7. Black holes die hard: Can one spin up a black hole past extremality?

    SciTech Connect

    Bouhmadi-Lopez, Mariam; Nerozzi, Andrea; Rocha, Jorge V.; Cardoso, Vitor

    2010-04-15

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here, we reconsider this gedanken experiment for a variety of black hole geometries, from black holes in higher dimensions to black rings. We show that this particular way of destroying a black hole does not succeed and that cosmic censorship is preserved.

  8. String-Corrected Black Holes

    SciTech Connect

    Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund

    2005-02-07

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.

  9. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  10. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  11. Rotating regular black hole solution

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80, 5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the critical value of the electric charge for which two horizons merge into one sufficiently decreases in the presence of the nonvanishing rotation parameter a of the black hole.

  12. Tunnelling from black holes and tunnelling into white holes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Bhramar; Ghosh, A.; Mitra, P.

    2008-03-01

    Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.

  13. Ultrarelativistic black hole formation.

    PubMed

    East, William E; Pretorius, Frans

    2013-03-01

    We study the head-on collision of fluid particles well within the kinetic energy dominated regime (γ = 8 to 12) by numerically solving the Einstein-hydrodynamic equations. We find that the threshold for black hole formation is lower (by a factor of a few) than simple hoop conjecture estimates, and, moreover, near this threshold two distinct apparent horizons first form postcollision and then merge. We argue that this can be understood in terms of a gravitational focusing effect. The gravitational radiation reaches luminosities of 0.014 c(5)/G, carrying 16 ± 2% of the total energy.

  14. Rotating black holes and Coriolis effect

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Jui; Wu, Xiaoning; Yang, Yi; Yuan, Pei-Hung

    2016-10-01

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  15. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  16. Conformal entropy from horizon states: Solodukhin's method for spherical, toroidal, and hyperbolic black holes in D-dimensional anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Dias, Gonçalo A. S.; Lemos, José P. S.

    2006-08-01

    A calculation of the entropy of static, electrically charged, black holes with spherical, toroidal, and hyperbolic-compact and oriented horizons, in D spacetime dimensions, is performed. These black holes live in an anti de Sitter spacetime, i.e., a spacetime with negative cosmological constant. To find the entropy, the approach developed by Solodukhin is followed. The method consists in a redefinition of the variables in the metric, by considering the radial coordinate as a scalar field. Then one performs a 2+(D-2) dimensional reduction, where the (D-2) dimensions are in the angular coordinates, obtaining a 2-dimensional effective scalar field theory. This theory is a conformal theory in an infinitesimally small vicinity of the horizon. The corresponding conformal symmetry will then have conserved charges, associated with its infinitesimal conformal generators, which will generate a classical Poisson algebra of the Virasoro type. Shifting the charges and replacing Poisson brackets by commutators, one recovers the usual form of the Virasoro algebra, obtaining thus the level zero conserved charge eigenvalue L0, and a nonzero central charge c. The entropy is then obtained via the Cardy formula.

  17. Wormholes as black hole foils

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Solodukhin, Sergey N.

    2007-07-01

    We study to what extent wormholes can mimic the observational features of black holes. It is surprisingly found that many features that could be thought of as “characteristic” of a black hole (endowed with an event horizon) can be closely mimicked by a globally static wormhole, having no event horizon. This is the case for the apparently irreversible accretion of matter down a hole, no-hair properties, quasi-normal-mode ringing, and even the dissipative properties of black hole horizons, such as a finite surface resistivity equal to 377 Ohms. The only way to distinguish the two geometries on an observationally reasonable time scale would be through the detection of Hawking’s radiation, which is, however, too weak to be of practical relevance for astrophysical black holes. We point out the existence of an interesting spectrum of quantum microstates trapped in the throat of a wormhole which could be relevant for storing the information lost during a gravitational collapse.

  18. NASA Now: Black Holes

    NASA Video Gallery

    In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...

  19. Black holes in magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-11-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than vcr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  20. Black holes in magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1992-04-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordström solution. For v

  1. Black holes in magnetic monopoles

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  2. The Nearest Black Hole

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Garcia, Michael

    2005-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  3. Test fields cannot destroy extremal black holes

    NASA Astrophysics Data System (ADS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  4. Quantum radiation of general nonstationary black holes

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Huang, Yong-Chang

    2009-02-01

    Quantum radiation of general nonstationary black holes is investigated by using the method of generalized tortoise-coordinate transformation (GTT). It is shown in general that the temperature and the shape of the event horizon of this kind of black holes depend on time and angle. Further, we find that the chemical potential in the thermal-radiation spectrum is equal to the highest energy of the negative-energy state of particles in nonthermal radiation for general nonstationary black holes.

  5. Test fields cannot destroy extremal black holes

    NASA Astrophysics Data System (ADS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  6. Black hole entropy in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Agulló, Iván; Barbero G, J. Fernando; Borja, E. F.; Díaz-Polo, Jacobo; Villaseñor, Eduardo J. S.

    2012-05-01

    We discuss the recent progress on black hole entropy in loop quantum gravity, focusing in particular on the recently discovered discretization effect for microscopic black holes. Powerful analytical techniques have been developed to perform the exact computation of entropy. A statistical analysis of the structures responsible for this effect shows its progressive damping and eventual disappearance as one increases the considered horizon area.

  7. Stability of Black Holes and Black Branes

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Wald, Robert M.

    2013-08-01

    We establish a new criterion for the dynamical stability of black holes in D ≥ 4 spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, {{E}}, on a subspace, {{T}}, of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. This is shown by proving that—apart from pure gauge perturbations and perturbations towards other stationary black holes—{{E}} is nondegenerate on {{T}} and that, for axisymmetric perturbations, {{E}} has positive flux properties at both infinity and the horizon. We further show that {{E}} is related to the second order variations of mass, angular momentum, and horizon area by {{E} = δ^2 M -sum_A Ω_A δ^2 J_A - κ/8πδ^2 A}, thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that for any black brane corresponding to a thermodynamically unstable black hole, sufficiently long wavelength perturbations can be found with {{E} < 0} and vanishing linearized ADM quantities. Thus, all black branes corresponding to thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of {{E}} on {{T}} is equivalent to the satisfaction of a " local Penrose inequality," thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability. Although we restrict our considerations in this paper to vacuum general relativity, most of the results of this paper are derived using general Lagrangian and Hamiltonian methods and therefore can be

  8. Black Hole Battery

    NASA Astrophysics Data System (ADS)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  9. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garica, M.

    2001-01-01

    In 1995 we proposed to carry out ground-based observations in order to securely identify stellar mass black holes in our galaxy. This type 4 proposal under NASA's UV, Visible, and Gravitational Astrophysics program compliments NASA's space-based research by following up black hole candidates found and studied with space-based observatories, in order to determine if they are indeed black holes. While our primary goal is to securely identify black holes by measuring their masses, a secondary goal is identifying unique visible-range signatures for black holes.

  10. Quantum information erasure inside black holes

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Larus

    2015-12-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  11. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  12. Black holes, parallelizable horizons, and half-BPS states for the Einstein-Gauss-Bonnet theory in five dimensions

    SciTech Connect

    Canfora, Fabrizio; Giacomini, Alex; Troncoso, Ricardo

    2008-01-15

    Exact vacuum solutions with a nontrivial torsion for the Einstein-Gauss-Bonnet theory in five dimensions are constructed. We consider a class of static metrics whose spacelike section is a warped product of the real line with a nontrivial base manifold endowed with a fully antisymmetric torsion. It is shown that requiring solutions of this sort to exist, fixes the Gauss-Bonnet coupling such that the Lagrangian can be written as a Chern-Simons form. The metric describes black holes with an arbitrary, but fixed, base manifold. It is shown that requiring its ground state to possess unbroken supersymmetries fixes the base manifold to be locally a parallelized three-sphere. The ground state turns out to be half-BPS, which could not be achieved in the absence of torsion in vacuum. The Killing spinors are explicitly found.

  13. Black hole entanglement and quantum error correction

    NASA Astrophysics Data System (ADS)

    Verlinde, Erik; Verlinde, Herman

    2013-10-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. The reconstruction makes use of the formalism of quantum error correcting codes, and works for black hole states whose entanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the "firewall" regime of maximally mixed black hole states.

  14. Thermodynamic product formula for a Taub-NUT black hole

    NASA Astrophysics Data System (ADS)

    Pradhan, P.

    2016-01-01

    We derive various important thermodynamic relations of the inner and outer horizons in the background of the Taub-NUT (Newman-Unti-Tamburino) black hole in four-dimensional Lorentzian geometry. We compare these properties with the properties of the Reissner-Nordström black hole. We compute the area product, area sum, area subtraction, and area division of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From the area bound, we derive an entropy bound and an irreducible mass bound for both horizons. We further study the stability of such black holes by computing the specific heat for both horizons. It is shown that due to the negative specific heat, the black hole is thermodynamically unstable. All these calculations might be helpful in understanding the nature of the black hole entropy (both interior and exterior) at the microscopic level.

  15. Kerr Black Hole Entropy and its Quantization

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng

    2016-08-01

    By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.

  16. Quantization of Black Holes

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Ma, Bo-Qiang

    We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy Δ S = 4π k Δ R/{{-{λ }}}, which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.

  17. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  18. Gayge Fields and Black Holes

    NASA Astrophysics Data System (ADS)

    Gal'Tsov, D. V.

    1987-10-01

    Exact solutions of the Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs systems of equations are examined, which describe Black Holes, with gluonic and scalar hairs. A simple deduction of these equations, based on the use of the gayge symmetry is given. The transition to a nonsingular gayge for gravitating Wu - Yang monopoles, in which the singularity is headen inside the horizon, is discussed. Bibliography: 11

  19. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  20. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223

  1. Soft Hair on Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  2. Black hole as a wormhole factory

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Won; Park, Mu-In

    2015-12-01

    There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 < 1 / 2), the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2 = 1 / 2). This solution suggests the "Generalized Cosmic Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER

  3. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  4. Are black holes with hair a normal state of matter?

    SciTech Connect

    Nieuwenhuizen, Th. M.

    2011-03-28

    Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

  5. Black Holes and Quasiblack Holes in Einstein-Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Meinel, Reinhard; Breithaupt, Martin; Liu, Yu-Chun

    2015-01-01

    Continuous sequences of asymptotically flat solutions to the Einstein-Maxwell equations describing regular equilibrium configurations of ordinary matter can reach a black hole limit. For a distant observer, the spacetime becomes more and more indistinguishable from the metric of an extreme Kerr-Newman black hole outside the horizon when approaching the limit. From an internal perspective, a still regular but non-asymptotically flat spacetime with the extreme Kerr-Newman near-horizon geometry at spatial infinity forms at the limit. Interesting special cases are sequences of Papapetrou-Majumdar distributions of electrically counterpoised dust leading to extreme Reissner-Nordström black holes and sequences of rotating uncharged fluid bodies leading to extreme Kerr black holes.

  6. Charged spinning black holes as particle accelerators

    SciTech Connect

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-11-15

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  7. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  8. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    SciTech Connect

    Gim, Yongwan; Kim, Wontae E-mail: wtkim@sogang.ac.kr

    2014-10-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.

  9. Surfing a Black Hole

    NASA Astrophysics Data System (ADS)

    2002-10-01

    . PR Photo 23b/02 : NACO image of the central region of the Milky Way (close-up) . PR Photo 23c/02 : Orbit of the star "S2" around the central Black Hole. PR Video Clip 02/02 : Motion of "S2" and other stars around the central Black Hole. Quasars and Black Holes Ever since the discovery of the quasars (quasi-stellar radio sources) in 1963, astrophysicists have searched for an explanation of the energy production in these most luminous objects in the Universe. Quasars reside at the centres of galaxies, and it is believed that the enormous energy emitted by these objects is due to matter falling onto a supermassive Black Hole, releasing gravitational energy through intense radiation before that material disappears forever into the hole (in physics terminology: "passes beyond the event horizon" [4]). To explain the prodigious energy production of quasars and other active galaxies, one needs to conjecture the presence of black holes with masses of one million to several billion times the mass of the Sun. Much evidence has been accumulating during the past years in support of the above "accreting black hole" model for quasars and other galaxies, including the detection of dark mass concentrations in their central regions. However, an unambiguous proof requires excluding all possible other, non-black hole configurations of the central mass concentration. For this, it is imperative to determine the shape of the gravitational field very close to the central object - and this is not possible for the distant quasars due to technological limitations of the currently available telescopes. The centre of the Milky Way ESO PR Photo 23a/02 ESO PR Photo 23a/02 [Preview - JPEG: 400 x 427 pix - 95k [Normal - JPEG: 800 x 853 pix - 488k] Caption : PR Photo 23a/02 is a reproduction of an image of the innermost area of the Milky Way, only a few light-years across, obtained in mid-2002 with the NACO instrument [3] at the 8.2-m VLT YEPUN telescope. It combines frames in three infrared

  10. Holographic interpretation of acoustic black holes

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Sun, Jia-Rui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long

    2015-10-01

    With the attempt to find the holographic description of the usual acoustic black holes in fluid, we construct an acoustic black hole formed in the d -dimensional fluid located at the timelike cutoff surface of a neutral black brane in asymptotically AdSd +1 spacetime; the bulk gravitational dual of the acoustic black hole is presented at the first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real anti-de Sitter (AdS) black brane in the bulk, and the duality between the phonon scattering in the acoustic black hole and the sound channel quasinormal mode propagating in the bulk perturbed AdS black brane is extracted. We thus point out that the acoustic black hole appearing in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real AdS black holes, in the spirit of the fluid/gravity duality.

  11. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381

  12. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

  13. Toward black hole entropy in shape dynamics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel; Shyam, Vasudev

    2015-11-01

    Shape dynamics is a classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.

  14. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  15. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  16. Black holes as gravitational atoms

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo

    2014-06-01

    Recently, it was argued [A. Almheiri et al., arXiv: 1207.3123, A. Almheiri et al., arXiv: 1304.6483], via a delicate thought experiment, that it is not consistent to simultaneously require that (a) Hawking radiation is pure, (b) effective field theory is valid outside a stretched horizon and (c) infalling observers encounter nothing unusual as they cross the horizon. These are the three fundamental assumptions underlying Black Hole Complementarity and the authors proposed that the most conservative resolution of the paradox is that (c) is false and the infalling observer burns up at the horizon (the horizon acts as a "firewall"). However, the firewall violates the equivalence principle and breaks the CPT invariance of quantum gravity. This led Hawking to propose recently that gravitational collapse may not end up producing event horizons, although he did not give a mechanism for how this may happen. Here we will support Hawking's conclusion in a quantum gravitational model of dust collapse. We will show that continued collapse to a singularity can only be achieved by combining two independent and entire solutions of the Wheeler-DeWitt equation. We interpret the paradox as simply forbidding such a combination. This leads naturally to a picture in which matter condenses on the apparent horizon during quantum collapse.

  17. Acoustic clouds: Standing sound waves around a black hole analogue

    NASA Astrophysics Data System (ADS)

    Benone, Carolina L.; Crispino, Luís C. B.; Herdeiro, Carlos; Radu, Eugen

    2015-05-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  18. Black holes and beyond

    SciTech Connect

    Mathur, Samir D.

    2012-11-15

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.

  19. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  20. Local temperature for dynamical black holes

    NASA Astrophysics Data System (ADS)

    Hayward, Sean A.; di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.

    2009-05-01

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  1. Numerical simulation of orbiting black holes.

    PubMed

    Brügmann, Bernd; Tichy, Wolfgang; Jansen, Nina

    2004-05-28

    We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift condition. We use fixed mesh refinement for computational efficiency. PMID:15245270

  2. Black holes in an expanding universe.

    PubMed

    Gibbons, Gary W; Maeda, Kei-ichi

    2010-04-01

    An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.

  3. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  4. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  5. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779

  6. Introducing the Black Hole

    ERIC Educational Resources Information Center

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  7. Illuminating black holes

    NASA Astrophysics Data System (ADS)

    Barr, Ian A.; Bull, Anne; O’Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  8. Astrophysics: Monster black holes

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2011-12-01

    A combination of ground-based and spacecraft observations has uncovered two black holes of 10 billion solar masses in the nearby Universe. The finding sheds light on how these cosmic monsters co-evolve with galaxies.

  9. Stability of squashed Kaluza-Klein black holes

    SciTech Connect

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju; Soda, Jiro

    2008-03-15

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.

  10. Helical superconducting black holes.

    PubMed

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  11. Universal criterion for black hole stability

    SciTech Connect

    Chatterjee, Ashok; Majumdar, Parthasarathi

    2005-08-15

    It is shown that a nonrotating macroscopic black hole with very large horizon area can remain in stable thermal equilibrium with Hawking radiation provided its mass, as a function of horizon area, exceeds its microcanonical entropy, i.e., its entropy when isolated, without thermal radiation or accretion, and having a constant horizon area (in appropriate units). The analysis does not use properties of specific classical spacetimes, but depends only on the plausible assumption that the mass is a function of the horizon area for large areas.

  12. Black holes and beyond

    NASA Astrophysics Data System (ADS)

    Mathur, Samir D.

    2012-11-01

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole.

  13. Braneworld Black Holes

    NASA Astrophysics Data System (ADS)

    Whisker, Richard

    2008-10-01

    In this thesis we investigate black holes in the Randall-Sundrum braneworld scenario. We begin with an overview of extra-dimensional physics, from the original proposal of Kaluza and Klein up to the modern braneworld picture of extra dimensions. A detailed description of braneworld gravity is given, with particular emphasis on its compatibility with experimental tests of gravity. We then move on to a discussion of static, spherically symmetric braneworld black hole solutions. Assuming an equation of state for the ``Weyl term'', which encodes the effects of the extra dimension, we are able to classify the general behaviour of these solutions. We then use the strong field limit approach to investigate the gravitational lensing properties of some candidate braneworld black hole solutions. It is found that braneworld black holes could have significantly different observational signatures to the Schwarzschild black hole of standard general relativity. Rotating braneworld black hole solutions are also discussed, and we attempt to generate rotating solutions from known static solutions using the Newman-Janis complexification ``trick''.

  14. Newborn Black Holes

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  15. Stability of black holes in de Sitter space

    SciTech Connect

    Mellor, F.; Moss, I. )

    1990-01-15

    The theory of black-hole perturbations is extended to charged black holes in de Sitter space. These spacetimes have wormholes connecting different asymptotic regions. It appears that, at least in some cases, these holes are stable even at the Cauchy horizon. It follows that they violate cosmic censorship and an observer could in principle travel through the black hole to another universe. The stability of these spacetimes also implies the existence of a cosmological no hair'' theorem.

  16. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  17. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  18. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.

  19. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  20. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  1. Bringing Black Holes Home

    NASA Astrophysics Data System (ADS)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  2. Non-Abelian magnetic black strings versus black holes

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  3. A Particle Probing Thermodynamics in Rotating AdS Black Hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-07-01

    We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.

  4. Topological black holes in Horava-Lifshitz gravity

    SciTech Connect

    Cai Ronggen; Cao Liming; Ohta, Nobuyoshi

    2009-07-15

    We find topological (charged) black holes whose horizon has an arbitrary constant scalar curvature 2k in Horava-Lifshitz theory. Without loss of generality, one may take k=1, 0, and -1. The black hole solution is asymptotically anti-de Sitter with a nonstandard asymptotic behavior. Using the Hamiltonian approach, we define a finite mass associated with the solution. We discuss the thermodynamics of the topological black holes and find that the black hole entropy has a logarithmic term in addition to an area term. We find a duality in Hawking temperature between topological black holes in Horava-Lifshitz theory and Einstein's general relativity: the temperature behaviors of black holes with k=1, 0, and -1 in Horava-Lifshitz theory are, respectively, dual to those of topological black holes with k=-1, 0, and 1 in Einstein's general relativity. The topological black holes in Horava-Lifshitz theory are thermodynamically stable.

  5. Better Late than Never: Information Retrieval from Black Holes

    NASA Astrophysics Data System (ADS)

    Braunstein, Samuel L.; Pirandola, Stefano; Życzkowski, Karol

    2013-03-01

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  6. Better late than never: information retrieval from black holes.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-01

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  7. Cosmic censorship of rotating Anti-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  8. Hawking Temperature of Acoustic Black Hole

    NASA Astrophysics Data System (ADS)

    Xie, Zhi Kun

    2014-09-01

    Using a new tortoise coordinate transformation, the Hawking radiation of the acoustic black hole was discussed by studying the Klein-Gordon equation of scalar particles in the curve space-time. It was found that the Hawking temperature is connected with time and position on the event horizon.

  9. Phonon Emission from Acoustic Black Hole

    NASA Astrophysics Data System (ADS)

    Fang, Hengzhong; Zhou, Kaihu; Song, Yuming

    2012-08-01

    We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.

  10. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  11. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-12-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  12. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  13. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  14. Infinitely coloured black holes

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Winstanley, Elizabeth

    2000-04-01

    We formulate the field equations for SU (icons/Journals/Common/infty" ALT="infty" ALIGN="TOP"/> ) Einstein-Yang-Mills theory, and use an analytic approximation to elucidate the properties of spherically symmetric black hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The black holes possess infinite amounts of gauge field hair, and we speculate on possible consequences of this for quantum decoherence, which, however, we do not tackle here.

  15. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  16. Energy extremum principle for charged black holes

    NASA Astrophysics Data System (ADS)

    Fraser, Scott; Funkhouser, Shaker Von Price

    2015-11-01

    For a set of N asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well separated, we prove the following extremum principle: the extremal charge configuration (|qi|=mi for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. We prove this result through second order in an expansion in the inverse separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for other static black holes, and is consistent with the independently known Bogomol'nyi-Prasad-Sommerfield (BPS) energy minimum.

  17. Mass of a Black Hole Firewall

    NASA Astrophysics Data System (ADS)

    Abramowicz, M. A.; Kluźniak, W.; Lasota, J.-P.

    2014-03-01

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio MPl/(8πM).

  18. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-01

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM). PMID:24655237

  19. CFT duals for accelerating black holes

    NASA Astrophysics Data System (ADS)

    Astorino, Marco

    2016-09-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  20. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-01

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).

  1. Black holes in a cubic Galileon universe

    NASA Astrophysics Data System (ADS)

    Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T.

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.

  2. Energy conservation for dynamical black holes.

    PubMed

    Hayward, Sean A

    2004-12-17

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation.

  3. Spherical polytropic balls cannot mimic black holes

    NASA Astrophysics Data System (ADS)

    Saida, Hiromi; Fujisawa, Atsuhito; Yoo, Chul-Moon; Nambu, Yasusada

    2016-04-01

    The so-called black hole shadow is a dark region which is expected to appear in a fine image of optical observation of black holes. It is essentially an absorption cross section of the black hole, and the boundary of shadow is determined by unstable circular orbits of photons (UCOP). If there exists a compact object possessing UCOP but no black hole horizon, it can provide us with the same shadow image as black holes, and detection of a shadow image cannot be direct evidence of black hole existence. This paper examines whether or not such compact objects can exist under some suitable conditions. We investigate thoroughly the static spherical polytropic ball of perfect fluid with single polytrope index, and then investigate a representative example of a piecewise polytropic ball. Our result is that the spherical polytropic ball which we have investigated cannot possess UCOP, if the speed of sound at the center is subluminal (slower than light). This means that, if the polytrope treated in this paper is a good model of stellar matter in compact objects, the detection of a shadow image can be regarded as good evidence of black hole existence. As a by-product, we have found the upper bound of the mass-to-radius ratio of a polytropic ball with single index, M_{ast }/R_{ast } < 0.281, under the condition of subluminal sound speed.

  4. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  5. Black hole hair removal: non-linear analysis

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.

    2010-02-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  6. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  7. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  8. Black-hole astrophysics

    SciTech Connect

    Bender, P.; Bloom, E.; Cominsky, L.

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  9. Nonstationary dark energy around a black hole

    SciTech Connect

    Akhoury, Ratindranath; Saotome, Ryo; Garfinkle, David; Vikman, Alexander

    2011-04-15

    Numerical simulations of the accretion of test scalar fields with nonstandard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well-known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.

  10. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  11. Area (or entropy) product formula for a regular black hole

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-02-01

    We compute the area (or entropy) product formula for a regular black hole derived by Ayón-Beato and García (Phys Rev Lett 80:5056, 1998). By explicit and exact calculation, it is shown that the entropy product formula of two physical horizons strictly depends upon the ADM mass parameter that means it is not an universal (mass-independent) quantity. But a slightly more complicated function of event horizon area and Cauchy horizon area is indeed a mass-independent quantity. We also compute other thermodynamic properties of the said black hole. We further study the stability of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses second order phase transition. The pictorial diagram of the phase transition is given.

  12. Statistical entropy of Calabi-Yau black holes

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.; Pando Zayas, Leopoldo A.

    1999-03-01

    We compute the statistical entropy of nonextremal 4D and extremal 5D Calabi-Yau black holes and find exact agreement with the Bekenstein-Hawking entropy. The computation is based on the fact that the near-horizon geometry of equivalent representations contains as a factor the Bañados-Teitelboim-Zanelli black hole and on subsequent use of Strominger's proposal generalizing the statistical count of microstates of the BTZ black hole due to Carlip.

  13. Gauge-gravity duality and the black hole interior.

    PubMed

    Marolf, Donald; Polchinski, Joseph

    2013-10-25

    We present a further argument that typical black holes with field theory duals have firewalls at the horizon. This argument makes no reference to entanglement between the black hole and any distant system, and so is not evaded by identifying degrees of freedom inside the black hole with those outside. We also address the Einstein-Rosen=Einstein-Podolsky-Rosen conjecture of Maldacena and Susskind, arguing that the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole. PMID:24206473

  14. Gauge-gravity duality and the black hole interior.

    PubMed

    Marolf, Donald; Polchinski, Joseph

    2013-10-25

    We present a further argument that typical black holes with field theory duals have firewalls at the horizon. This argument makes no reference to entanglement between the black hole and any distant system, and so is not evaded by identifying degrees of freedom inside the black hole with those outside. We also address the Einstein-Rosen=Einstein-Podolsky-Rosen conjecture of Maldacena and Susskind, arguing that the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole.

  15. Aharonov-Bohm Effect in a Rotating Acoustic Black Hole

    NASA Astrophysics Data System (ADS)

    Oliveira, E. S.; Crispino, L. C. B.; Dolan, S. R.

    2015-01-01

    A classical analogue to the Aharonov-Bohm (AB) effect occurs in a (idealized) draining bathtub (DBT) vortex system. The DBT vortex presents a sonic horizon, at which the flow rate exceeds the speed of sound. The sonic horizon is the analogue of a black hole event horizon. The DBT vortex also presents an ergoregion, similar to a rotating black hole. Because of the sonic event horizon, the AB effect is modified and has two tuning coefficients proportional to the flow draining and circulation couplings with the perturbation frequency.

  16. Final remnant of binary black hole mergers: Multipolar analysis

    SciTech Connect

    Owen, Robert

    2009-10-15

    Methods are presented to define and compute source multipoles of dynamical horizons in numerical relativity codes, extending previous work in the isolated and dynamical horizon formalisms to allow for horizons that are not axisymmetric. These methods are then applied to a binary black hole merger simulation, providing evidence that the final remnant is a Kerr black hole, both through the (spatially) gauge-invariant recovery of the geometry of the apparent horizon, and through a detailed extraction of quasinormal ringing modes directly from the strong-field region.

  17. Classification of static charged black holes in higher dimensions

    SciTech Connect

    Rogatko, Marek

    2006-06-15

    The uniqueness theorem for a static charged higher dimensional black hole containing an asymptotically flat spacelike hypersurface with compact interior and with both degenerate and nondegenerate components of event horizon is proposed. By studies of the near-horizon geometry of degenerate horizons, one was able to eliminate the previous restriction concerning the inequality fulfilled by the charges of the adequate components of the aforementioned horizons.

  18. Asymmetric interiors for small black holes

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2016-08-01

    We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. We then show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement breaks down at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not see local geometry. This picture of the interior allows the CFT to reconcile unitary Hawking evaporation with the classical experience of infalling observers.

  19. Supersymmetric black holes with lens-space topology.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.

  20. Supersymmetric black holes with lens-space topology.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these. PMID:25479484

  1. Black-hole evaporation and ultrashort distances

    SciTech Connect

    Jacobson, T. )

    1991-09-15

    The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stress tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.

  2. Improved black hole fireworks: Asymmetric black-hole-to-white-hole tunneling scenario

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Tommaso; Perez, Alejandro

    2016-06-01

    A new scenario for gravitational collapse has been recently proposed by Haggard and Rovelli. Presenting the model under the name of black hole fireworks, they claim that the accumulation of quantum gravitational effects outside the horizon can cause the tunneling of geometry from a black hole to a white hole, allowing a bounce of the collapsing star which can eventually go back to infinity. In this paper, we discuss the instabilities of this model and propose a simple minimal modification which eliminates them, as well as other related instabilities discussed in the literature. The new scenario is a time-asymmetric version of the original model with a time scale for the final explosion that is shorter than m log m in Planck units. Our analysis highlights the importance of irreversibility in gravitational collapse which, in turn, uncovers important issues that cannot be addressed in detail without a full quantum gravity treatment.

  3. Constructing black hole entropy from gravitational collapse

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.

    2015-03-01

    Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1 +1 +2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse, we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole end state to the variation of the vacuum gravitational entropy outside the collapsing body.

  4. Tensor network and a black hole

    NASA Astrophysics Data System (ADS)

    Matsueda, Hiroaki; Ishihara, Masafumi; Hashizume, Yoichiro

    2013-03-01

    A tensor-network variational formalism of thermofield dynamics is introduced. The formalism relates the original Hilbert space with its tilde space by a product of two copies of a tensor network. Then, their interface becomes an event horizon, and the logarithm of the tensor rank corresponds to the black hole entropy. Eventually, a multiscale entanglement renormalization ansatz reproduces an anti-de Sitter black hole at finite temperature. Our finding shows rich functionalities of multiscale entanglement renormalization ansatz as efficient graphical representation of AdS/CFT correspondence.

  5. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  6. Distorted five-dimensional electrically charged black holes

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2014-01-01

    In this paper, we study distorted, five-dimensional, electrically charged (nonextremal) black holes on the example of a static and "axisymmetric" black hole distorted by external, electrically neutral matter. Such a black hole is represented by the solution derived here of the Einstein-Maxwell equations which admits an R1×U(1)×U(1) isometry group. The external matter, which is "located" at the asymptotic infinity, is not included in the solution. The space-time singularities are located behind the black hole's inner (Cauchy) horizon, provided that the sources of the distortion satisfy the strong energy condition. The inner (Cauchy) horizon remains regular if the distortion fields are finite and smooth at the outer horizon. The solution has some remarkable properties. There exists a certain duality transformation between the inner and the outer horizon surfaces which links surface gravity, electrostatic potential, and space-time curvature invariants calculated at the black hole horizons. The product of the inner and outer horizon areas depends only on the black hole's electric charge, and the geometric mean of the areas is the upper (lower) limit for the inner (outer) horizon area. The electromagnetic field invariant calculated at the horizons is proportional to the squared surface gravity of the horizons. The horizon areas, electrostatic potential, and surface gravity satisfy the Smarr formula. We formulated the zeroth and the first laws of mechanics and thermodynamics of the distorted black hole and found a correspondence between the global and local forms of the first law. To illustrate the effect of distortion, we consider the dipole-monopole and quadrupole-quadrupole distortion fields. The relative change in the Kretschmann scalar due to the distortion is greater at the outer horizon than at the inner one. By calculating the maximal proper time of free fall from the outer to the inner horizons, we show that the distortion can noticeably change the black hole

  7. BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE

    SciTech Connect

    Takahashi, Masaaki; Takahashi, Rohta

    2010-05-15

    We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

  8. Black Holes and Firewalls

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  9. Foundations of Black Hole Accretion Disk Theory

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Fragile, P. Chris

    2013-12-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  10. Perspectives: Black Holes

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.

  11. Non-abelian black holes and black strings in higher dimensions

    SciTech Connect

    Hartmann, Betti

    2009-05-01

    We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in d>4, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S{sup 2}xS{sup 1} are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.

  12. Hawking radiation by Kerr black holes and conformal symmetry.

    PubMed

    Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard

    2010-11-19

    The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

  13. Entropy of a radiating rotating charged black hole

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Jiang; Zhao, Zheng; Yang, Xue-Jun

    2004-06-01

    The Hawking radiation temperature and the entropy of a radiating rotating charged black hole are calculated by employing the method of tortoise coordinate transformation and the improved brick-wall model. A new tortoise coordinate transformation is introduced which simplifies the cut-off factor and more satisfying results are obtained. The results show that the temperature of the event horizon depends on time and angle, and the entropy of a non-stationary black hole is exactly proportional to its horizon area as in the case of a stationary black hole.

  14. Soft Heisenberg hair on black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Afshar, Hamid; Detournay, Stephane; Grumiller, Daniel; Merbis, Wout; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2016-05-01

    Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two affine u ^(1 ) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near-horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.

  15. Excluding black hole firewalls with extreme cosmic censorship

    SciTech Connect

    Page, Don N.

    2014-06-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states.

  16. Gravitational lensing by black holes: The case of Sgr A*

    SciTech Connect

    Bozza, V.

    2014-01-14

    The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.

  17. Statistical description of the black hole degeneracy spectrum

    SciTech Connect

    Barbero G, J. Fernando; Villasenor, Eduardo J. S.

    2011-05-15

    We use mathematical methods based on generating functions to study the statistical properties of the black hole degeneracy spectrum in loop quantum gravity. In particular we will study the persistence of the observed effective quantization of the entropy as a function of the horizon area. We will show that this quantization disappears as the area increases despite the existence of black hole configurations with a large degeneracy. The methods that we describe here can be adapted to the study of the statistical properties of the black hole degeneracy spectrum for all the existing proposals to define black hole entropy in loop quantum gravity.

  18. Spin and mass of the nearest supermassive black hole

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav I.

    2014-12-01

    Quasi-periodic oscillations (QPOs) of the hot plasma spots or clumps orbiting an accreting black hole contain information on the black hole mass and spin. The promising observational signatures for the measurement of black hole mass and spin are the latitudinal oscillation frequency of the bright spots in the accretion flow and the frequency of black hole event horizon rotation. Both of these frequencies are independent of the accretion model and defined completely by the properties of the black hole gravitational field. Interpretation of the known QPO data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, , and mass, , of the supermassive black hole in the Galactic center. At the same time, the observed 11.5 min QPO period is identified with a period of the black hole event horizon rotation, and, respectively, the 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow. The described approach is applicable to black holes with a low accretion rate, when accreting plasma is transparent up to the event horizon region.

  19. Status Report: Black Hole Complementarity Controversy

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Yeom, Dong-han

    2014-01-01

    Black hole complementarity was a consensus among string theorists for the interpretation of the information loss problem. However, recently some authors find inconsistency of black hole complementarity: large N rescaling and Almheiri, Marolf, Polchinski and Sully (AMPS) argument. According to AMPS, the horizon should be a firewall so that one cannot penetrate there for consistency. There are some controversial discussions on the firewall. Apart from these papers, the authors suggest an assertion using a semi-regular black hole model and we conclude that the firewall, if it exists, should affect to asymptotic observer. In addition, if any opinion does not consider the duplication experiment and the large N rescaling, then the argument is difficult to accept.

  20. Fundamental Dynamics of Black Hole Physics

    NASA Astrophysics Data System (ADS)

    Haramein, Nassim

    2002-04-01

    The dynamics of rotating, charged black holes, obeying the Kerr-Newman metric is presented. These dynamical high-density, gravitationally collapsing, black hole systems for stellar, galactic, intergalactic and cosmogenesis appear to obey similar constraints on their mass, apparent density and radius. Under these extreme conditions, the gravitational force becomes "balanced" with the larger coupling constant of the electromagnetic force. Thus, the gravitational attraction forms dynamic pseudo equilibrium with the plasma dynamics surrounding the black holes. Thermodynamic-type processes occupy a role in energy transfer between gravitational attraction and electro-dynamic repulsion. Solving the modified Einstein-Maxwell's equations under high magnetic field conditions, with additional thermodynamic conditions, leads to a good description of the processes occurring externally, near and in the event horizons of the Kerr-Newman geometry and leads to a unification possibility. Reference; N. Haramein, Bull. Amer. Phys. Soc. AB06, 1154(2001)

  1. Possible observational windows for quantum effects from black holes

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2014-12-01

    Quantum information transfer necessary to reconcile black hole evaporation with quantum mechanics, while approximately preserving regular near-horizon geometry, can be simply parametrized in terms of couplings of the black hole internal state to quantum fields of the black hole atmosphere. The necessity of transferring sufficient information for unitarization sets the strengths of these couplings. Such couplings via the stress tensor offer apparently significant advantages, and behave like quantum fluctuations of the effective metric near the horizon. At the requisite strength, these fluctuations, while soft (low energy/momentum), have significant magnitude, and so can deflect near-horizon geodesics that span distances of order the black hole radius. Thus, the presence of such couplings can result in effects that could be detected or constrained by observation: disruption of near-horizon accretion flows, scintillation of light passing close to the black hole, and alteration of gravitational wave emission from inspirals. These effects could in particular distort features of Sgr A* expected to be observed, e.g., by the Event Horizon Telescope, such as the black hole shadow and photon ring.

  2. The First Black Holes

    NASA Astrophysics Data System (ADS)

    Abel, T.

    star. Within this wide range of possible initial masses the death of these star will lead very different remnants (Heger and Woosley 2001). In the case of stars with masses larger than 260 solar mass no metals may be released in black holes are the natural outcome. This may be an interesting possibility to form intermediate mass black holes which are attractive seeds to be nurtured to the super-massive black holes observed in the centers of nearby galaxies. However, no metals would be released and it would prove difficult to understand the transition to the formation of low mass metal enriched population II stars. Stars with masses below 140 solar masses would enrich the intergalactic medium as well as form massive black holes. The coincidence of the Kelvin Helmholtz time with our computed accretion times at about 120 solar masses may argue in favor of such smaller masses. These first black holes may well leave the halos in which they formed for even rather modest kick velocities >~ 10 km/s. Nevertheless, up to about one hundred thousand of these first black holes may remain in the Milky Way. The realization that structure formation began within one hundred million years after big bang makes it difficult to study observationally these first crucial steps. Future observatories have hence to focus on larger collecting areas and wavelengths for which the universe is transparent up to redshifts of 30. XEUS offers the chance to open a new window to these so far dark ages. The limiting masses quoted here rely on stellar models of primordial stars that do not include rotation, magnetic fields or mass loss and hence are somewhat uncertain.

  3. Acceleration of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  4. Black holes and the multiverse

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  5. How black holes saved relativity

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  6. String duality and black holes

    NASA Astrophysics Data System (ADS)

    Kalara, S.; Nanopoulos, D. V.

    1991-09-01

    In the context of (semi) classical general relativity, the physics of black holes poses many unanswered and unsettling questions. Notable among them are the loss of quantum coherence, which casts doubts on the basic foundations of quantum mechanics, and the understanding of the enormous entropy carried by black holes which is at odds with strong ``no hair'' theorems. We point out that in string theory, black-hole type solutions (S-black holes) carry local discrete charges inherited from the duality symmetries of the string, which allow S-black holes to carry ``quantum hair''. It is further noted that the conservation of the discrete charges and the presence of quantum hair precludes the information about a quantum state from being completely lost in the black hole thus rescuing quantum coherence. We also note that a large number of quantum hair carried by S-black holes may explain their enormous entropy, i.e. it is the duality symmetry of the string theory which redeems outstanding problems of black-hole dynamics. We also discuss a possible description of black holes as solitons of string theory. Supported in part by DOE Grant DE-AS05-81 ER40039.

  7. Vacuum polarization near a distorted black hole

    NASA Astrophysics Data System (ADS)

    Frolov, V. P.; Alberto García, D.

    1983-12-01

    The vacuum polarization near a black hole distorted by the axially symmetric gravitational field of external matter is studied. The explicit expression for <φ2> at the pole of the distorted horizon is obtained. Also at Sección de Graduados, Escuela Superior de Ingeniería Mecánica y Eléctrica del IPN, México DF, México.

  8. Charged Einstein-aether black holes and Smarr formula

    NASA Astrophysics Data System (ADS)

    Ding, Chikun; Wang, Anzhong; Wang, Xinwen

    2015-10-01

    In the framework of the Einstein-Maxwell-aether theory, we present two new classes of exact charged black hole solutions, which are asymptotically flat and possess the universal as well as Killing horizons. We also construct the Smarr formulas and calculate the temperatures of the horizons, using the Smarr mass-area relation. We find that, in contrast to the neutral case, a temperature obtained this way is not proportional to its surface gravity at either of the two types of horizons. Einstein-Maxwell-aether black holes with the cosmological constant and their topological cousins are also presented.

  9. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-01

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  10. Fermion tunneling from higher-dimensional black holes

    SciTech Connect

    Lin Kai; Yang Shuzheng

    2009-03-15

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  11. Fermion tunneling from higher-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-03-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  12. Tunneling Radiation of Massive Vector Bosons from Dilaton Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun; Wu, Xing-Hua

    2016-07-01

    It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza—Klein black hole, and the rotating Kerr—Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature. Supported by National Natural Science Foundation of China under Grant No. 11205048

  13. Interior of black holes and information recovery

    NASA Astrophysics Data System (ADS)

    Kawai, Hikaru; Yokokura, Yuki

    2016-02-01

    We analyze time evolution of a spherically symmetric collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole of which the radius a (t ) decreases in time. The important point is that the shell can never reach a (t ) but it approaches a (t )-a (t )d/a (t ) d t . This situation holds at any radius because the motion of a shell in a spherically symmetric system is not affected by the outside. In this way, we find that the collapsing matter evaporates without forming a horizon. Nevertheless, a Hawking-like radiation is created in the metric, and the object looks the same as a conventional black hole from the outside. We then discuss how the information of the matter is recovered. We also consider a black hole that is adiabatically grown in the heat bath and obtain the interior metric. We show that it is the self-consistent solution of Gμ ν=8 π G ⟨Tμ ν⟩ and that the four-dimensional Weyl anomaly induces the radiation and a strong angular pressure. Finally, we analyze the internal structures of the charged and the slowly rotating black holes.

  14. Inner mechanics of three-dimensional black holes.

    PubMed

    Detournay, Stéphane

    2012-07-20

    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.

  15. Inner mechanics of three-dimensional black holes.

    PubMed

    Detournay, Stéphane

    2012-07-20

    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory. PMID:22861835

  16. Asymptotically flat black holes in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkaç, Gökhan; Kilicarslan, Ercan; Tekin, Bayram

    2016-04-01

    Asymptotically flat black holes in 2 +1 dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (black holes with radiative gravitons) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extended versions of these theories, with modified conserved charges and the thermodynamical quantities, such as the Wald entropy. Besides these we find new conformally flat radiating type solutions to these extended gravity models. We also show that these metrics do not arise in Einstein's gravity coupled to physical perfect fluids.

  17. BLACK HOLES: ONE SIZE DOESN'T FIT ALL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This comparison of the hearts of four elliptical galaxies shows that the more massive a galaxy's central bulge of stars, the heftier its black hole. The galaxies are part of a census of 30 galaxies conducted by astronomers using NASA's Hubble Space Telescope. Black holes are dense, compact objects possessing such strong gravitational forces that not even light can escape them. The column of black-and-white pictures at left, taken by ground-based telescopes, shows the galaxies. The inset boxes define the central regions of stars. Close-up images of these regions, as seen by Hubble's Wide Field and Planetary Camera 2, are in the middle column. The column at right lists the masses of the black holes and illustrates the respective diameters of the event horizons. An event horizon defines a black hole's boundary. Any material that crosses that boundary becomes ensnared in a black hole's grasp and cannot escape. The event horizons cannot be seen in the Hubble images because they are 25 million times smaller than the scale of the pictures. Astronomers determined the mass of each black hole by measuring the motion of stars swirling around it: the closer the stars approach the black hole, the faster their velocity. Only through observations with Hubble's superior vision could astronomers probe to the core of the galaxy where these effects are easily measured. They discovered a remarkable new correlation between a black hole's mass and the average speed of the stars in a galaxy's central bulge. The faster the stars are moving, the more massive the black hole. This information suggests that the galaxy and the black hole grew simultaneously. Credit: NASA and Karl Gebhardt (Lick Observatory)

  18. General Tortoise Coordinate Transformation in a Dynamical Kerr-Newman Black Hole

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Ming; Cheng, Su-Jun; Liu, Wen-Biao

    2012-02-01

    Under the extended dynamical tortoise coordinate transformation, Damour-Ruffini method has been applied to calculate the charged particles' Hawking radiation from the apparent horizon of a dynamical Kerr-Newman black hole. It is shown that Hawking radiation is still purely thermal black body spectrum. Moreover, the temperature of Hawking radiation is corresponding to the apparent horizon surface gravity and the first law of thermodynamics can also be constructed successfully on the apparent horizon in the dynamical Kerr-Newman black hole.

  19. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  20. Black-Hole Feedback in Quasars

    NASA Video Gallery

    This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...

  1. Shadow shapes around the black hole in the galactic centre

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.; Nucita, A. A.; De Paolis, F.; Ingrosso, G.

    Recently Holz & Wheeler (2002) considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. Some time ago Falcke, Melia & Agol (2000) suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.

  2. Thermodynamic Curvature and Black Holes

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George

    In my talk, I will discuss black hole thermodynamics, particularly what happens when you add thermodynamic curvature to the mix. Although black hole thermodynamics is a little off the main theme of this workshop, I hope nevertheless that my message will be of some interest to researchers in supersymmetry and supergravity.

  3. General stationary charged black holes as charged particle accelerators

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Wu, Shao-Feng; Liu, Yu-Xiao; Jiang, Ying

    2011-08-01

    We study the possibility of getting infinite energy in the center-of-mass frame of colliding charged particles in a general stationary charged black hole. For black holes with twofold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For nondegenerate black holes, the ultrahigh center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultrahigh center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame-dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.

  4. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  5. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  6. Stationary solutions of the Dirac equation in the gravitational field of a charged black hole

    SciTech Connect

    Dokuchaev, V. I. Eroshenko, Yu. N.

    2013-07-15

    A stationary solution of the Dirac equation in the metric of a Reissner-Nordstroem black hole has been found. Only one stationary regular state outside the black hole event horizon and only one stationary regular state below the Cauchy horizon are shown to exist. The normalization integral of the wave functions diverges on both horizons if the black hole is non-extremal. This means that the solution found can be only the asymptotic limit of a nonstationary solution. In contrast, in the case of an extremal black hole, the normalization integral is finite and the stationary regular solution is physically self-consistent. The existence of quantum levels below the Cauchy horizon can affect the final stage of Hawking black hole evaporation and opens up the fundamental possibility of investigating the internal structure of black holes using quantum tunneling between external and internal states.

  7. Instabilities of Extremal Rotating Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Ishibashi, Akihiro

    2015-11-01

    Recently, Durkee and Reall have conjectured a criterion for linear instability of rotating, extremal, asymptotically Minkowskian black holes in dimensions, such as the Myers-Perry black holes. They considered a certain elliptic operator, , acting on symmetric trace-free tensors intrinsic to the horizon. Based in part on numerical evidence, they suggested that if the lowest eigenvalue of this operator is less than the critical value -1/4 ( called "effective BF-bound"), then the black hole is linearly unstable. In this paper, we prove an extended version of their conjecture. Our proof uses a combination of methods such as (1) the "canonical energy method" of Hollands-Wald, (2) algebraically special properties of the near horizon geometries associated with the black hole, (3) the Corvino-Schoen technique, and (4) semiclassical analysis. Our method of proof is also applicable to rotating, extremal asymptotically Anti-deSitter black holes. In that case, we find additional instabilities for ultra-spinning black holes. Although we explicitly discuss in this paper only extremal black holes, we argue that our results can be generalized to near extremal black holes.

  8. Properties of the distorted Kerr black hole

    SciTech Connect

    Abdolrahimi, Shohreh; Tzounis, Christos; Kunz, Jutta; Nedkova, Petya E-mail: jutta.kunz@uni-oldenburg.de E-mail: tzounis@ualberta.ca

    2015-12-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J{sup 2}/M{sup 4} > 1 and yet avoid a naked singularity.

  9. Gravity, black holes and the universe

    NASA Astrophysics Data System (ADS)

    Nicolson, I.

    The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.

  10. Gravity, black holes, and the universe

    SciTech Connect

    Nicolson, I.

    1981-01-01

    The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.

  11. Myers-Perry black hole in an external gravitational field

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Kunz, Jutta; Nedkova, Petya

    2015-03-01

    We obtain a new exact solution of the 5D Einstein equations in vacuum describing a distorted Myers-Perry black hole with a single angular momentum. Locally, the solution is interpreted as a black hole distorted by a stationary U (1 )×U (1 ) symmetric distribution of external matter. Technically, the solution is constructed by applying a twofold Bäcklund transformation on a 5D distorted Minkowski spacetime as a seed. The physical quantities of the solution are calculated, and a local Smarr-like relation on the black hole horizon is derived. It possesses the same form as the Smarr-like relation for the asymptotically flat Myers-Perry black hole. It is demonstrated that in contrast to the asymptotically flat Myers-Perry black hole, the ratio of the horizon angular momentum and the mass J2/M3 is unbounded, and can grow arbitrarily large. We study the properties of the ergoregion and the horizon surface. The external field does not influence the horizon topology. The horizon geometry however is distorted, and any regular axisymmetric geometry is possible.

  12. Gamma -bursts by primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    holes density is overestimated in the most popular Big Bang scenarios? (PBH's cannot form at all?!). We pass now an epoch of relative absence of PBH's masses spectrum and particle physics, or the expectations for PBH's explosions are unbiased? Page (1975, 1976) investigated the powers and spectral densities for scalar massive and massles particles, massles neutrinos and gravitons. The numerical computations for electrons was realised later, since no analytical solutions for Dirac equation were known in the Kerr background. I have obtained such solutions, in collaboration with I.M. Ternov and G.A. Chizov in 1980 (Soviet Physics Journal, Volume 23, Issue 8, pp.695-700). Therefore I have calculated the transmission probabilities, absorption cross section and the spectral mass and momentum rate lost in the long wavelength limit for spin 1/2 particles) . It is very interesting that the absorption cross section averaged on the black hole and coincides with the cross section computed earlier by Unruh (1976). I have shown also that the extremely highly rotating black hole is stable against the formation of a naked singularity in spite of the horizon surface of a hole will increase temporarily due to classical generation of particles (Gaina, PHD work, Moscow, 1981; Soviet Physics Journal, Volume 28, Issue 8, pp.682-685). The higher spins particles radiation dominates if the black hole is highly rotating. For a/m<0.6 the emission of lower spin (spin 1/2) particles becomes dominant. The detection of quanta of ~1 Gev is of very great interest.

  13. Dynamic and Thermodynamic Stability of Black Holes and Black Branes

    NASA Astrophysics Data System (ADS)

    Wald, Robert M.

    I describe recent work with Stefan Hollands that establishes a new criterion for the dynamical stability of black holes in D ge 4 spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, E, on a subspace of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. We further show that E is related to the second order variations of mass, angular momentum, and horizon area by fancyscript{E} = δ ^2 M - sum _i \\varOmega _i δ ^2 J_i - (kappa /8π ) δ ^2 A, thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that all black branes corresponding to thermodynamically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of E is equivalent to the satisfaction of a "local Penrose inequality," thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability.

  14. Ultraspinning instability of rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-11-15

    Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  15. Nonrotating black hole in a post-Newtonian tidal environment

    SciTech Connect

    Taylor, Stephanne; Poisson, Eric

    2008-10-15

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The black hole's gravity is described accurately to all orders in Gm/c{sup 2}r, where m is the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  16. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  17. Lower bound on the spectral dimension near a black hole

    SciTech Connect

    Carlip, S.; Grumiller, D.

    2011-10-15

    We consider an evaporating Schwarzschild black hole in a framework in which the spectral dimension of spacetime varies continuously from four at large distances to a number smaller than three at small distances, as suggested by various approaches to quantum gravity. We demonstrate that the evaporation stops when the horizon radius reaches a scale at which spacetime becomes effectively three-dimensional, and argue that an observer remaining outside the horizon cannot probe the properties of the black hole at smaller scales. This result is universal in the sense that it does not depend on the details of the effective dimension as a function of the diffusion time. Observers falling into the black hole can resolve smaller scales, as can external observers in the presence of a cosmological constant. Even in these cases, though, we obtain an absolute bound D{>=}2 on the effective dimension that can be seen in any such attempt to measure the properties of the black hole.

  18. More Hidden Black Hole Dangers

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Black holes such as GRO J1655-40 form from collapsed stars. When stars at least eight times more massive than our Sun exhaust their fuel supply, they no longer have the energy to support their tremendous bulk. These stars explode as supernovae, blasting their outer envelopes into space. If the core is more than three times the mass of the Sun, it will collapse into a singularity, a single point of infinite density.Although light cannot escape black holes, astronomers can see black holes by virtue of the hot, glowing gas often stolen from a neighboring star that orbits these objects. From our vantage point, the light seems to flicker. The Rossi Explorer has recorded this flickering (called quasiperiodic oscillations, or QPOs) around many black holes. QPOs are produced by gas very near the innermost stable orbit the closest orbit a blob of gas can maintain before falling pell-mell into the black hole. As gas whips around the black hole at near light speed, gravity pulls the gas in one direction, then another, adding to the flickering. The QPO is related to the speed and size of this orbit and the mass of the black hole.

  19. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  20. Counting the microstates of a Kerr black hole in M theory.

    PubMed

    Horowitz, Gary T; Roberts, Matthew M

    2007-11-30

    We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a Kaluza-Klein black hole in M theory, or a D0-D6 charged black hole in string theory. Since all the microstates of the latter have recently been identified, one can exactly reproduce the entropy of an extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in M theory. PMID:18233277

  1. Inside black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen

    2016-09-01

    Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers-Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers-Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.

  2. Rotating Kaluza-Klein multi-black holes with Gödel parameter

    NASA Astrophysics Data System (ADS)

    Matsuno, Ken; Ishihara, Hideki; Nakagawa, Toshiharu; Tomizawa, Shinya

    2008-09-01

    We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with the Gödel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no closed timelike curve outside the black hole horizons. At infinity, the space-time is effectively four-dimensional. Each horizon admits various lens space topologies L(n;1)=S3/Zn in addition to a round S3. The space-time can have outer ergoregions disjointed from the black hole horizons, as well as inner ergoregions attached to each horizon. We discuss the rich structures of ergoregions.

  3. Black holes and Higgs stability

    NASA Astrophysics Data System (ADS)

    Tetradis, Nikolaos

    2016-09-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  4. Black Holes: A Traveler's Guide

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  5. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  6. Thermodynamics of Lifshitz black holes

    NASA Astrophysics Data System (ADS)

    Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür

    2011-06-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

  7. Evaporation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  8. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480

  9. Emergent flux from particle collisions near a Kerr black hole

    SciTech Connect

    Banados, Maximo; Hassanain, Babiker; Silk, Joseph; West, Stephen M.

    2011-01-15

    The escape fraction at infinity is evaluated for massless particles produced in collisions of weakly interacting particles accreted into a density spike near the particle horizon of an extremal Kerr black hole, for the case of equatorial orbits. We compare with the Schwarzschild case, and argue that in the case of extremal black holes, redshifted signatures can be produced that could potentially explore the physics of particle collisions at center of mass energies that extend beyond those of any feasible terrestrial accelerator.

  10. Never judge a black hole by its area

    SciTech Connect

    Ong, Yen Chin

    2015-04-01

    Christodoulou and Rovelli have shown that black holes have large interiors that grow asymptotically linearly in advanced time, and speculated that this may be relevant to the information loss paradox. We show that there is no simple relation between the interior volume of an arbitrary black hole and its horizon area. That is, the volume enclosed is not necessarily a monotonically increasing function of the surface area.

  11. A new explanation for statistical entropy of charged black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, LiChun

    2013-09-01

    Using the Unruh-Verlinde temperature obtained by the idea of entropy force, we directly calculated the partition functions of Boson field in Reissner-Nordström spacetime with quantum statistical method. We obtain the expression of the black hole quantum statistical entropy. We find that the term is proportional to the area of black hole horizon and the logarithmic correction term appears. Our result is valid for flat spacetime.

  12. Black hole mass threshold from nonsingular quantum gravitational collapse.

    PubMed

    Bojowald, Martin; Goswami, Rituparno; Maartens, Roy; Singh, Parampreet

    2005-08-26

    Quantum gravity is expected to remove the classical singularity that arises as the end state of gravitational collapse. To investigate this, we work with a toy model of a collapsing homogeneous scalar field. We show that nonperturbative semiclassical effects of loop quantum gravity cause a bounce and remove the black hole singularity. Furthermore, we find a critical threshold scale below which no horizon forms: quantum gravity may exclude very small astrophysical black holes.

  13. Semiclassical S-matrix for black holes

    DOE PAGES

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  14. Semiclassical S-matrix for black holes

    SciTech Connect

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  15. Polarised black holes in AdS

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  16. Naked Black Hole Firewalls.

    PubMed

    Chen, Pisin; Ong, Yen Chin; Page, Don N; Sasaki, Misao; Yeom, Dong-Han

    2016-04-22

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  17. Naked Black Hole Firewalls

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Ong, Yen Chin; Page, Don N.; Sasaki, Misao; Yeom, Dong-han

    2016-04-01

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  18. Naked Black Hole Firewalls.

    PubMed

    Chen, Pisin; Ong, Yen Chin; Page, Don N; Sasaki, Misao; Yeom, Dong-Han

    2016-04-22

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox. PMID:27152788

  19. Black hole spectroscopy from loop quantum gravity models

    NASA Astrophysics Data System (ADS)

    Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro

    2015-12-01

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.

  20. Better late than never: information retrieval from black holes.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-01

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory. PMID:23521247

  1. Regular black holes and noncommutative geometry inspired fuzzy sources

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinpei

    2016-05-01

    We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.

  2. Interior dynamics of neutral and charged black holes

    NASA Astrophysics Data System (ADS)

    Guo, Jun-Qi; Joshi, Pankaj S.

    2015-09-01

    In this paper, we explore the interior dynamics of neutral and charged black holes. Scalar collapses in flat, Schwarzschild, and Reissner-Nordström background geometries are simulated. We examine the dynamics in the vicinities of the central singularity of a Schwarzschild black hole and of the inner horizon of a Reissner-Nordström black hole. In simulating scalar collapses in Schwarzschild and Reissner-Nordström geometries, Kruskal and Kruskal-like coordinates are used, respectively, with the presence of a scalar field being taken into account. It is found that, besides near the inner horizons of Reissner-Nordström and Kerr black holes, mass inflation also takes place near the central singularity in neutral scalar collapse. Approximate analytic expressions for different types of mass inflation are partially obtained via a close interplay between numerical and analytical approaches and an examination of the connections between Schwarzschild black holes, Reissner-Nordström black holes, neutral collapse, and charge scattering. We argue that the mass inflations near the central singularity and the inner horizon are related to the localness of the dynamics in strong gravity regions. This is in accord with the Belinskii, Khalatnikov, and Lifshitz conjecture.

  3. Thermodynamics and luminosities of rainbow black holes

    SciTech Connect

    Mu, Benrong; Wang, Peng; Yang, Haitang E-mail: pengw@scu.edu.cn

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  4. Thermodynamics and luminosities of rainbow black holes

    NASA Astrophysics Data System (ADS)

    Mu, Benrong; Wang, Peng; Yang, Haitang

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1-η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n >= 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  5. Tunnelling, temperature, and Taub-NUT black holes

    NASA Astrophysics Data System (ADS)

    Kerner, Ryan; Mann, R. B.

    2006-05-01

    We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null-geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and nonstatic spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-AdS black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.

  6. Asymptotic Reissner–Nordström black holes

    SciTech Connect

    Hendi, S.H.

    2013-06-15

    We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions.

  7. 'Black holes': escaping the void.

    PubMed

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche.

  8. Black hole accretion disc impacts

    NASA Astrophysics Data System (ADS)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  9. Black hole meiosis

    NASA Astrophysics Data System (ADS)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  10. Hybrid black-hole binary initial data

    NASA Astrophysics Data System (ADS)

    Mundim, Bruno; Kelly, Bernard; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela

    2011-04-01

    Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless ``wavy'' metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features. Thanks NSF and NASA for support.

  11. Hybrid Black-Hole Binary Initial Data

    NASA Technical Reports Server (NTRS)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  12. Black hole portal into hidden valleys

    SciTech Connect

    Dubovsky, Sergei; Gorbenko, Victor

    2011-05-15

    Superradiant instability turns rotating astrophysical black holes into unique probes of light axions. We consider what happens when a light axion is coupled to a strongly coupled hidden gauge sector. In this case superradiance results in an adiabatic increase of a hidden sector CP-violating {theta} parameter in a near horizon region. This may trigger a first order phase transition in the gauge sector. As a result a significant fraction of a black hole mass is released as a cloud of hidden mesons and can be later converted into electromagnetic radiation. This results in a violent electromagnetic burst. The characteristic frequency of such bursts may range from {approx}100 eV to {approx}100 MeV.

  13. Semiclassical geons as solitonic black hole remnants

    SciTech Connect

    Lobo, Francisco S.N.; Olmo, Gonzalo J.; Rubiera-Garcia, D. E-mail: gonzalo.olmo@csic.es

    2013-07-01

    We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to ∼ 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.

  14. Noether currents of charged spherical black holes

    NASA Astrophysics Data System (ADS)

    Ashworth, M. C.; Hayward, Sean A.

    2000-09-01

    We calculate the Noether currents and charges for the Einstein-Maxwell theory using a version of the Wald approach. In spherical symmetry, the choice of time can be taken as the Kodama vector. For the static case, the resulting combined Einstein-Maxwell charge is just the mass of the black hole. Using either a classically defined entropy or the Iyer-Wald selection rules, the entropy is found to be just a quarter of the area of the trapping horizon. We propose identifying the combined Noether charge as an energy associated with the Kodama time. For the extremal black hole case, we discuss the problem of Wald's rescaling of the surface gravity to define the entropy.

  15. Black hole lasers, a mode analysis

    SciTech Connect

    Coutant, Antonin; Parentani, Renaud

    2010-04-15

    We show that the black hole laser effect discovered by Corley and Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes, which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.

  16. Black-hole universe: time evolution.

    PubMed

    Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi

    2013-10-18

    Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.

  17. Superradiant instabilities of asymptotically anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino-Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  18. Superradiant instabilities of asymptotically anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  19. Thermodynamic instability of black holes of third order Lovelock gravity

    SciTech Connect

    Dehghani, M. H.; Pourhasan, R.

    2009-03-15

    In this paper, we compute the mass and the temperature of the uncharged black holes of third order Lovelock gravity as well as the entropy using the first law of thermodynamics. We perform a stability analysis by studying the curves of the temperature versus the mass parameter, and find that an intermediate thermodynamically unstable phase exists for black holes with a hyperbolic horizon. This unstable phase for the uncharged topological black holes of third order Lovelock gravity does not exist in lower order Lovelock gravity. We also perform a stability analysis for a spherical, seven-dimensional black hole of Lovelock gravity and find that, while these kinds of black holes for small values of Lovelock coefficients have an intermediate unstable phase, they are stable for large values of Lovelock coefficients. We also find that an intermediate unstable phase exists for these black holes in higher dimensions. This analysis shows that the thermodynamic stability of black holes with curved horizons is not a robust feature of all the generalized theories of gravity.

  20. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  1. Black holes, quasars, and the universe /2nd edition/

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1980-01-01

    Topics of astronomy are discussed in terms of black holes, galaxies, quasars, and models of the universe. Black holes are approached through consideration of stellar evolution, white dwarfs, supernovae, neutron stars, pulsars, the event horizon, Cygnus X-1, white holes, and worm holes. Attention is also given to radio waves from high speed electrons, the radiation emitted by quasars, active galaxies, galactic energy sources, and interpretations of the redshift. Finally, the life cycle of the universe is deliberated, along with the cosmic time scale, evidence for the Big Bang, and the future of the universe.

  2. Black holes: fundamentals and controversies

    NASA Astrophysics Data System (ADS)

    Romero, G. E.

    2016-08-01

    Black holes are fully gravitational collapsed objects. They have been studied from a theoretical point of view during more than 40 years using the theory of General Relativity. Recently they have been also investigated in the context of alternative theories of gravitation. In this paper I review the main properties of black holes and I discuss, in an accesible way, some recent controversies about the nature of these objects.

  3. Magnetohydrodynamical Analogue of a Black Hole

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Asenjo, Felipe

    2014-03-01

    We study the conditions that a plasma fluid and its container should meet to generate a magneto-acoustic horizon. This effect becomes an alternative to the analogue black hole found in a transonic fluid flow setting. In this context we use the magnetohydrodynamic formalism (MHD) to analyze the evolution of an irrotational plasma fluid interacting with an external constant magnetic field. Under certain plausible approximations, the dynamic of the field perturbations is described by a scalar field potential that follows a second order differential equation. As we prove here, this equation corresponds to the wave equation associated to a scalar field in a curved space-time. This horizon emerges when the local speed of the medium grows larger than the sound velocity. The magnetic field generates an effective pressure which contributes to the magneto-acoustic speed. We compare these results with the known physics of analogue black holes. We will also refer to our ongoing experiment that, in its first stage, attempts to reproduce the wave horizons found in an open channel with an obstacle: PRL 106, 021302 (2011).

  4. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    SciTech Connect

    Faraoni, Valerio

    2009-08-15

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  5. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2009-08-01

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  6. Neutrino Tunneling from NUT Kerr Newman de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Yang, Juan; Li, Jin

    2013-08-01

    In this paper, the method of semi-classical is applied to explore the Hawking radiation of a NUT-Kerr-Newman de Sitter Black Hole from tunneling point of view. The Hamilton-Jacobi equation in NUT-Kerr-Newman de Sitter space time is derived by the method presented by Lin and Yang (Chin. Phys. B, 20:110403, 2011). We obtain the Hawking temperatures at the event horizon and cosmological horizon and we also obtain the tunneling probability of neutrino following the semi-classical quantum equation. The results show the common features of NUT-Kerr-Newman de Sitter Black Hole.

  7. Temperature and Energy of 4-Dimensional Axisymmetric Black Holes from Entropic Force

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan

    2011-01-01

    We investigate the temperature and energy on holographic screens for 4-dimensional axisymmetric black holes with the entropic force idea proposed by Verlinde. According to the principle of thermal equilibrium, the location of holographic screen outside the axisymmetric black hole horizon is not a equivalent radius surface. The location of isothermal holographic screen outside the axisymmetric black hole horizon is obtained. Using the equipartition rule, we derive the correction expression of energy of isothermal holographic screen. When holographic screens are far away the black hole horizon, the entropic force of charged rotating particles can be expressed as Newton's law of gravity. When the screen crosses the event horizon, the temperature of the screen agrees with the Hawking temperature and the entropic force gives rise to the surface gravity for both of the black holes.

  8. The Klein-Gordon equation of a rotating charged hairy black hole in (2 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.

    2016-03-01

    In this paper, we consider the Klein-Gordon equation in a 3D charged rotating hairy black hole background to study behavior of a massive scalar field. In the general case, we find periodic-like behavior for the scalar field which may vanish at the black hole horizon or far from the black hole horizon. For the special cases of non-rotating or near horizon approximation, we find radial solution of Klein-Gordon equation in terms of hypergeometric and Kummer functions. Also for the case of uncharged black hole, we find numerical solution of the Klein-Gordon equation as periodic function which may enhance out of the black hole or vanish at horizon. We find allowed boundary conditions which may yield to the identical bosons described by scalar field.

  9. Black Hole Thermodynamics and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wall, Aron C.

    2010-08-01

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

  10. Black hole phase transitions in Horava-Lifshitz gravity

    SciTech Connect

    Cao Qiaojun; Chen Yixin; Shao Kainan

    2011-03-15

    We study black hole phase transitions in (deformed) Horava-Lifshitz (H-L) gravity, including the charged/uncharged topological black holes and KS black hole. Stability analysis and state space geometry are both used. We find interesting phase structures in these black holes, some of the properties are never observed in Einstein gravity. Particularly, the stability properties of black holes in H-L gravity with small radius change dramatically, which can be considered as a leak of information about the small scale behavior of spacetime. A new black hole local phase transition in H-L gravity which cannot be revealed by thermodynamical metrics has been found. There is an infinite discontinuity at the specific heat curve for charged black hole in H-L gravity with hyperbolic event horizon. However, this discontinuity does not have a corresponding curvature singularity of thermodynamical metrics. Our results may provide new insights towards a better understanding of the H-L gravity, as well as black hole thermodynamics.

  11. Formation and decay of Einstein-Yang-Mills black holes

    NASA Astrophysics Data System (ADS)

    Rinne, Oliver

    2014-12-01

    We study various aspects of black holes and gravitational collapse in Einstein-Yang-Mills theory under the assumption of spherical symmetry. Numerical evolution on hyperboloidal surfaces extending to future null infinity is used. We begin by constructing colored and Reissner-Nordström black holes on surfaces of constant mean curvature and analyze their perturbations. These linearly perturbed black holes are then evolved into the nonlinear regime and the masses of the final Schwarzschild black holes are computed as a function of the initial horizon radius. We compare with an information-theoretic bound on the lifetime of unstable hairy black holes derived by Hod. Finally we study critical phenomena in gravitational collapse at the threshold between different Yang-Mills vacuum states of the final Schwarzschild black holes, where the n =1 colored black hole forms the critical solution. The work of Choptuik et al. [Phys. Rev. D 60, 124011 (1999)] is extended by using a family of initial data that includes another region in parameter space where the colored black hole with the opposite sign of the Yang-Mills potential forms the critical solution. We investigate the boundary between the two regions and discover that the Reissner-Nordström solution appears as a new approximate codimension-two attractor.

  12. Thermodynamic volumes and isoperimetric inequalities for de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Dolan, Brian P.; Kastor, David; Kubizňák, David; Mann, Robert B.; Traschen, Jennie

    2013-05-01

    We consider the thermodynamics of rotating and charged asymptotically de Sitter (dS) black holes. Using Hamiltonian perturbation-theory techniques, we derive three different first-law relations including variations in the cosmological constant, and associated Smarr formulas that are satisfied by such spacetimes. Each first law introduces a different thermodynamic volume conjugate to the cosmological constant. We examine the relation between these thermodynamic volumes and associated geometric volumes in a number of examples, including Kerr-dS black holes in all dimensions and Kerr-Newman-dS black holes in D=4. We also show that the Chong-Cvetic-Lu-Pope solution of D=5 minimal supergravity—analytically continued to positive cosmological constant—describes black hole solutions of the Einstein-Chern-Simons theory and include such charged asymptotically de Sitter black holes in our analysis. In all these examples we find that the particular thermodynamic volume associated with the region between the black hole and cosmological horizons is equal to the naive geometric volume. Isoperimetric inequalities, which hold in the examples considered, are formulated for the different thermodynamic volumes and conjectured to remain valid for all asymptotically de Sitter black holes. In particular, in all examples considered, we find that for a fixed volume of the observable universe, the entropy is increased by adding black holes. We conjecture that this is true in general.

  13. Particle motion and Penrose processes around rotating regular black hole

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.

  14. Entropy of Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Zhao, Ren; Ma, Meng-Sen

    2016-10-01

    Based on the consideration that the black hole horizon and the cosmological horizon of Reissner-Nordström black hole in de Sitter space are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the entanglement between the two horizons, except for the sum of the two horizon entropies. Making use of the globally effective first law and the effective thermodynamic quantities, we derive the total entropy and find that it will diverge as the two horizons tend to coincide.

  15. Generalized uncertainty principle and black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Dutta, Abhijit; Saha, Anirban

    2014-02-01

    We study the Schwarzschild and Reissner-Nordström black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.

  16. Supermassive black hole ancestors

    NASA Astrophysics Data System (ADS)

    Petri, A.; Ferrara, A.; Salvaterra, R.

    2012-05-01

    In the attempt to alleviate the difficulties created by their early formation, we study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy ? and light ? seeds. The former results from the direct collapse of gas in ? K, H2-free haloes; the latter are the end product of a standard H2-based star formation process. The H2-free condition is attained by exposing haloes to a strong (J21≳ 103) Lyman-Werner ultraviolet (UV) background produced by both accreting BHs and stars, thus establishing a self-regulated growth regime. We find that this condition is met already at z˜ 18 in the highly biased regions in which quasars are born. The key parameter allowing the formation of SMBHs by z= 6-7 is the fraction of haloes that can form heavy seeds: the minimum requirement is that fheavy≳ 0.001; SMBH as large as 2 × 1010 M⊙ can be obtained when fheavy approaches unity. Independently of fheavy, the model produces a high-z stellar bulge-BH mass relation which is steeper than the local one, implying that SMBHs formed before their bulge was in place. The formation of heavy seeds, allowed by the Lyman-Werner radiative feedback in the quasar-forming environment, is crucial to achieve a fast growth of the SMBH by merger events in the early phases of its evolution, i.e. z≳ 7. The UV photon production is largely dominated by stars in galaxies, i.e. BH accretion radiation is subdominant. Interestingly, we find that the final mass of light BHs and of the SMBH in the quasar is roughly equal by z= 6; by the same time, only 19 per cent of the initial baryon content has been converted into stars. The SMBH growth is dominated at all epochs z > 7.2 by mergers (exceeding accretion by a factor of 2-50); at later times, accretion becomes by far the most important growth channel. We finally discuss possible shortcomings of the model.

  17. Low-mass black holes as the remnants of primordial black hole formation

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.

    2012-12-01

    Bridging the gap between the approximately ten solar mass `stellar mass' black holes and the `supermassive' black holes of millions to billions of solar masses are the elusive `intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ~104-105Msolar black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  18. Stellar black holes and the origin of cosmic acceleration

    SciTech Connect

    Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.

    2009-08-15

    The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

  19. Superradiant instability of black holes immersed in a magnetic field

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Pani, Paolo

    2014-05-01

    Magnetic fields surrounding spinning black holes can confine radiation and trigger superradiant instabilities. To investigate this effect, we perform the first fully-consistent linear analysis of the Ernst spacetime, an exact solution of the Einstein-Maxwell equations describing a black hole immersed in a uniform magnetic field B. In the limit in which the black-hole mass vanishes, the background reduces to the marginally stable Melvin spacetime. The presence of an event horizon introduces a small dissipative term, resulting in a set of long-lived—or unstable—modes. We provide a simple interpretation of the mode spectrum in terms of a small perfect absorber immersed in a confining box of size ˜1/B and show that rotation triggers a superradiant instability. By studying scalar perturbations of a magnetized Kerr-Newman black hole, we are able to confirm and quantify the details of this instability. The instability time scale can be orders of magnitude shorter than that associated to massive bosonic fields. The instability extracts angular momentum from the event horizon, competing against accretion. This implies that strong magnetic fields set an upper bound on the black-hole spin. Conversely, observations of highly-spinning massive black holes impose an intrinsic limit to the strength of the surrounding magnetic field. We discuss the astrophysical implications of our results and the limitations of the Ernst spacetime to describe realistic astrophysical configurations.

  20. Shadows (Mirages) Around Black Holes and Retro Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.; Nucita, A. A.; Depaolis, F.; Ingrosso, G.

    Recently Holz & Wheeler [1] considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages (a detailed description of the problem is given in [2]). In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. Some time ago Falcke, Melia & Agol [3] suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.

  1. Geometry of deformed black holes. I. Majumdar-Papapetrou binary

    NASA Astrophysics Data System (ADS)

    Semerák, O.; Basovník, M.

    2016-08-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.

  2. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  3. Black Hole Unitarity and Antipodal Entanglement

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2016-09-01

    Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.

  4. Inside the Schwarzschild-Tangherlini black holes

    NASA Astrophysics Data System (ADS)

    Matyjasek, Jerzy; Sadurski, Paweł

    2015-08-01

    The first-order semiclassical Einstein field equations are solved in the interior of the Schwarzschild-Tangherlini black holes. The source term is taken to be the stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling calculated within the framework of the Schwinger-DeWitt approximation. It is shown that for the minimal coupling the quantum effects tend to isotropize the interior of the black hole (which can be interpreted as an anisotropic collapsing universe) for D =4 and 5, whereas for D =6 and 7 the spacetime becomes more anisotropic. Similar behavior is observed for the conformal coupling with the reservation that for D =5 isotropization of the spacetime occurs during (approximately) the first 1 /3 of the lifetime of the interior universe. On the other hand, we find that regardless of the dimension, the quantum perturbations initially strengthen the growth of curvature and its later behavior depends on the dimension and the coupling. It is shown that the Karlhede's scalar can still be used as a useful device for locating the horizon of the quantum-corrected black hole, as expected.

  5. Black Hole Unitarity and Antipodal Entanglement

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2016-05-01

    Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.

  6. Calabi-Yau black holes

    NASA Astrophysics Data System (ADS)

    Shmakova, Marina

    1997-07-01

    We find the entropy of N=2 extreme black holes associated with general Calabi-Yau moduli space and the prepotential F=dABC(XAXBXC/X0). We show that for arbitrary dABC and black hole charges p and q the entropy-area formula depends on combinations of these charges and parameters dABC. These combinations are the solutions of a simple system of algebraic equations. We give a few examples of particular Calabi-Yau moduli spaces for which this system has an explicit solution. For the special case when one of the black hole charges is equal to zero (p0=0) the solution always exists.

  7. Quantum Criticality and Black Holes

    SciTech Connect

    Sachdev, Subir

    2007-08-22

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  8. Liouvillian perturbations of black holes

    NASA Astrophysics Data System (ADS)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  9. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2016-07-12

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  10. Neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1991-01-01

    The radiation of neutron stars is powered by accretion, rotation, or internal heat; accreting black holes are thought to be the central engines of AGNs and of a handful of binary X-ray sources in the Galaxy. The evolution of a neutron star depends on the coupling between the rotating neutron and proton fluids in the interior, and between these fluids and the crust; it also depends on the magnetic and thermal properties of the star. Significant progress has been made in recent years in the understanding of radial and disk accretion by black holes. Radiation from pair plasmas may make an important contribution to the X- and gamma-ray spectra of AGNs and black holes in binary systems.

  11. Black-and-white holes

    NASA Astrophysics Data System (ADS)

    Mikheeva, E. V.; Lukash, V. N.; Strokov, V. N.

    We use the phenomenological approach to study a space-time in the neighborhood of the singularity situated inside the Schwarzschild horizon. Requiring boundedness of the Schwarzschild-like metrics we come to the notion of the integrable singularity that allows the matter to pass to the white-hole region. It leads to production of a new universe that is born already inflated (`singularity-induced inflation').

  12. Hawking radiation from Elko particles tunnelling across black-strings horizon

    NASA Astrophysics Data System (ADS)

    da Rocha, R.; Hoff da Silva, J. M.

    2014-09-01

    We apply the tunnelling method for the emission and absorption of Elko particles in the event horizon of a black-string solution. We show that Elko particles are emitted at the expected Hawking temperature from black strings, but with a quite different signature with respect to the Dirac particles. We employ the Hamilton-Jacobi technique to black-hole tunnelling, by applying the WKB approximation to the coupled system of Dirac-like equations governing the Elko particle dynamics. As a typical signature, different Elko particles are shown to produce the same standard Hawking temperature for black strings. However, we prove that they present the same probability irrespectively of outgoing or ingoing the black-hole horizon. This provides a typical signature for mass-dimension-one fermions, that is different from the mass-dimension-three halves fermions inherent to Dirac particles, as different Dirac spinor fields have distinct inward and outward probability of tunnelling.

  13. Close encounters of three black holes

    SciTech Connect

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  14. Comments on black holes I: the possibility of complementarity

    NASA Astrophysics Data System (ADS)

    Mathur, Samir D.; Turton, David

    2014-01-01

    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer `burns' as he attempts to cross the horizon. We show that measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck-scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to `continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of `fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.

  15. Phantom Accretion onto the Schwarzschild AdS Black Hole with Topological Defect

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Farahani, H.

    2012-09-01

    In this paper, we have studied phantom energy accretion of prefect fluid onto the Schwarzschild AdS black hole with topological defect. We have obtained critical point during the accretion of fluid on the black hole where the speed of flow is equal speed of sound (Sharif and Abbas in Phantom accretion onto the Schwarzschild de-Sitter black hole, 2011, arXiv:1109.1043 [gr-qc]). The critical velocities have been computed so that the speed of fluid into the black hole is less than speed of sound. Finally, we have found that the critical point is near the black hole horizon.

  16. Black hole initial data in Gauss-Bonnet gravity: Momentarily static case

    SciTech Connect

    Yoshino, Hirotaka

    2011-05-15

    We study the method for generating the initial data of black hole systems in Gauss-Bonnet gravity. The initial data are assumed to be momentarily static and conformally flat. Although the equation for the conformal factor is highly nonlinear, it is successfully solved by numerical relaxation for one-black-hole and two-black-hole systems. The common apparent horizon is studied in the two-black-hole initial data, and the result suggests that the Penrose inequalities are satisfied in this system. This is the first step for simulating black hole collisions in higher-curvature theories.

  17. Analytic continuation of the rotating black hole state counting

    NASA Astrophysics Data System (ADS)

    Achour, Jibril Ben; Noui, Karim; Perez, Alejandro

    2016-08-01

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ = ± i,weshowthattheleadingorderterminthesemi-classicalexpansionoftheentropy reproduces the Bekenstein-Hawking law independently of the value of J.

  18. Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.

  19. Emission of Phonons from a Rotating Sonic Black Hole

    NASA Astrophysics Data System (ADS)

    Fang, Heng-Zhong; Zhou, Kai-Hu

    2014-01-01

    We investigate the Hawking radiation from a rotating acoustic black hole. The phonon emission is calculated by using two methods and the same results are obtained. The contribution of the time coordinate to the phonon radiation is also discussed, which cannot be ignored for the coordinate systems that are not well-behaved at the horizon.

  20. Global structure of exact scalar hairy dynamical black holes

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying; Chen, Bin; Lü, H.

    2016-05-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/( n-1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  1. Black holes with vector hair

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  2. The lamppost model of accreting black holes

    NASA Astrophysics Data System (ADS)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  3. Angular momentum conservation for dynamical black holes

    SciTech Connect

    Hayward, Sean A.

    2006-11-15

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.

  4. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  5. Building Black Holes: Supercomputer Cinema

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1988-07-01

    A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.

  6. Understanding the "antikick" in the merger of binary black holes.

    PubMed

    Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis

    2010-06-01

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

  7. Final state boundary condition of the Schwarzschild black hole

    SciTech Connect

    Ahn, Doyeol

    2006-10-15

    It is shown that the internal stationary state of the Schwarzschild black hole can be represented by a maximally entangled two-mode squeezed state of collapsing matter and infalling Hawking radiation. The final boundary condition at the singularity is then described by the random unitary transformation acting on the collapsing matter field. The outgoing Hawking radiation is obtained by the final-state projection on the total wave function, which looks like a quantum teleportation process without the classical information transmitted. The black hole evaporation process as seen by the observer outside the black hole is now a unitary process but nonlocal physics is required to transmit the information outside the black hole. It is also shown that the final-state projection by the evaporation process is strongly affected by the quantum state outside the event horizon, which clearly violates the locality principle.

  8. Conformally invariant thermodynamics of a Maxwell-Dilaton black hole

    NASA Astrophysics Data System (ADS)

    Lopez-Monsalvo, C. S.; Nettel, F.; Quevedo, H.

    2013-12-01

    The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.

  9. A New Way To Weigh Giant Black Holes

    NASA Astrophysics Data System (ADS)

    2008-07-01

    ... Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Black Holes Are The Rhythm at The Heart of Galaxies Discovery of Most Recent Supernova in Our Galaxy Ghost Remains After Black Hole Eruption This effect was predicted by two of the co-authors -- Fabrizio Brighenti from the University of Bologna, Italy, and William Mathews from the University of California at Santa Cruz -- almost 10 years ago, but this is the first time it has been seen and used. "It was wonderful to finally see convincing evidence of the effects of the huge black hole that we expected," said Brighenti. "We were thrilled that our new technique worked just as well as the more traditional approach for weighing the black hole." The black hole in NGC 4649 is in a state where it does not appear to be rapidly pulling in material towards its event horizon, nor generating copious amounts of light as it grows. So, the presence and mass of the central black hole has to be studied more indirectly by tracking its effects on stars and gas surrounding it. This technique is well suited to black holes in this condition. "Monster black holes like this one power spectacular light shows in the distant, early universe, but not in the local universe," said Humphrey. "So, we can’t wait to apply our new method to other nearby galaxies harboring such inconspicuous black holes." These results will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  10. Plasma Waves Dispersion Relation at Near of the Cosmological Black Holes in an Expanding Universe Dominated by Dark Energy

    NASA Astrophysics Data System (ADS)

    Ramezani-Arani, R.; Mirzaee, A. R.; Abdoli-Arani, A.

    2015-09-01

    Propagation of waves in the relativistic plasma at near of the horizon of black holes embedded in Friedman-Robertson-Walker cosmologies is investigated. The metric of the class of black holes, cosmological black holes, is obtained by performing conformal transformation on isotropic black hole space-time. Here we use the Maxwell's equations and relativistic two-fluid plasma in 3 + 1 formulation in Rindler coordinates system. By calculation of the time evolution of scale factor, the dispersion relation of electromagnetic waves near of the cosmological black holes horizon is obtained.

  11. Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring

    NASA Astrophysics Data System (ADS)

    Basovník, M.; Semerák, O.

    2016-08-01

    We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.

  12. Varying fine structure 'constant' and charged black holes

    SciTech Connect

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  13. Action growth for AdS black holes

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Ruan, Shan-Ming; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-09-01

    Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  14. Spectrum of charged black holes - the big fix mechanism revisited

    NASA Astrophysics Data System (ADS)

    Barvinsky, Andrei; Das, Saurya; Kunstatter, Gabor

    2001-11-01

    Following an earlier suggestion of the authors (Barvinsky A and Kunstatter G 1997 Mass spectrum for black holes in generic 2-D dilaton gravity Proc. 2nd International A D Sakharov Conference on Physics ed I M Dremin and A M Seminkhatov (Singapore: World Scientific) pp 210-15), we use some basic properties of Euclidean black hole thermodynamics and the quantum mechanics of systems with periodic phase space coordinate to derive the discrete two-parameter area spectrum of generic charged spherically symmetric black holes in any dimension. For the Reissner-Nordstrom black hole we get A/4Gℎ = π(2n + p + 1), where the integer p = 0, 1, 2,... gives the charge spectrum, with Q = +/- √ ℎp. The quantity π(2n + 1), n = 0, 1,..., gives a measure of the excess of the mass/energy over the critical minimum (i.e. extremal) value allowed for a given fixed charge Q. The classical critical bound cannot be saturated due to vacuum fluctuations of the horizon, so that generically extremal black holes do not appear in the physical spectrum. Consistency also requires the black hole charge to be an integer multiple of any fundamental elementary particle charge: Q = +/-me, m = 0, 1, 2,.... As a by-product this yields a relation between the fine structure constant and integer parameters of the black hole - a kind of the Coleman big fix mechanism induced by black holes. In four dimensions, this relationship is e2/ℎ = p/m2 and requires the fine structure constant to be a rational number. Finally, we prove that the horizon area is an adiabatic invariant, as has been conjectured previously.

  15. Two Monster Black Holes at Work

    NASA Video Gallery

    Zoom into Markarian 739, a nearby galaxy hosting two monster black holes. Using NASA's Swift and Chandra, astronomers have shown that both black holes are producing energy as gas falls into them. T...

  16. Superradiance from a charged dilation black hole

    SciTech Connect

    Shiraishi, K. )

    1992-12-07

    In this paper, the authors study the behavior of the wave function of charged Klein-Gordon field around a charge dilaton black hole. The rate of spontaneous charge loss is estimated for large black hole case.

  17. Merging galaxies and black hole ejections

    NASA Technical Reports Server (NTRS)

    Valtonen, M. J.

    1990-01-01

    In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.

  18. Black Holes: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  19. From Pinholes to Black Holes

    SciTech Connect

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  20. Gravitational Collapse and Black Holes

    ERIC Educational Resources Information Center

    Ryder, Lewis

    1973-01-01

    The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)

  1. 'Black holes': escaping the void.

    PubMed

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. PMID:23351000

  2. Quasi-equilibrium binary black hole initial data for dynamical evolutions

    SciTech Connect

    Yo, H.-J.; Cook, James N.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2004-10-15

    We present a formalism for constructing quasiequilibrium binary black hole initial data suitable for numerical evolution. We construct quasiequilibrium models by imposing an approximate helical Killing symmetry appropriate for quasicircular orbits. We use the sum of two Kerr-Schild metrics as our background metric, thereby improving on conformal flat backgrounds that do not accommodate rotating black holes and providing a horizon-penetrating lapse, convenient for implementing black hole excision. We set inner boundary conditions at an excision radius well inside the apparent horizon and construct these boundary conditions to incorporate the quasiequilibrium condition and recover the solution for isolated black holes in the limit of large separation. We use our formalism both to generate initial data for binary black hole evolutions and to construct a crude quasiequilibrium, inspiral sequence for binary black holes of fixed irreducible mass.

  3. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  4. Small Black Holes in Randall-Sundrum i Scenario

    NASA Astrophysics Data System (ADS)

    Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C. R.

    2004-10-01

    An approximation method to study the properties of a small black hole located on the TeV brane in Randall-Sundrum I scenario is presented. The method enables us to find the form of the metric close to the matter distribution when its asymptotic form is given. The short range solution is found as an expansion in the ratio between the Schwarzschild radius of the black hole and the curvature length of the bulk. Long range properties are introduced using the linearized gravity solution as an asymptotic boundary condition. The solution is found up to first order. It is valid in the region close to the horizon but is not valid on the horizon. The regularity of the horizon is still under study.

  5. Semiclassical methods in curved spacetime and black hole thermodynamics

    SciTech Connect

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-06-15

    Improved semiclassical techniques are developed and applied to a treatment of a real scalar field in a D-dimensional gravitational background. This analysis, leading to a derivation of the thermodynamics of black holes, is based on the simultaneous use of (i) a near-horizon description of the scalar field in terms of conformal quantum mechanics; (ii) a novel generalized WKB framework; and (iii) curved-spacetime phase-space methods. In addition, this improved semiclassical approach is shown to be asymptotically exact in the presence of hierarchical expansions of a near-horizon type. Most importantly, this analysis further supports the claim that the thermodynamics of black holes is induced by their near-horizon conformal invariance.

  6. Resource Letter BH-1: Black Holes.

    ERIC Educational Resources Information Center

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  7. Compensating Scientism through "The Black Hole."

    ERIC Educational Resources Information Center

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…

  8. Information retrieval from black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-08-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.

  9. Extremal higher spin black holes

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.

    2016-04-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.

  10. Black holes as parts of entangled systems

    NASA Astrophysics Data System (ADS)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  11. Tortoise coordinate and Hawking effect in a dynamical Kerr black hole

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhao, Zheng; Liu, Wenbiao

    2011-02-01

    Hawking effect from a dynamical Kerr black hole is investigated using the improved Damour-Ruffini method with a new tortoise coordinate transformation. Hawking temperature of the black hole can be obtained point by point at the event horizon. It is found that Hawking temperatures of different points on the surface are different. Moreover, the temperature does not turn to zero while the dynamical black hole turns to an extreme one.

  12. Hawking radiation of scalars from accelerating and rotating black holes with NUT parameter

    NASA Astrophysics Data System (ADS)

    Jan, Khush; Gohar, H.

    2014-03-01

    We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole

  13. Charged black holes in a five-dimensional Kaluza-Klein universe

    NASA Astrophysics Data System (ADS)

    Kanou, Yuki; Ishihara, Hideki; Kimura, Masashi; Matsuno, Ken; Tatsuoka, Takamitsu

    2014-10-01

    We examine an exact solution which represents a charged black hole in a Kaluza-Klein universe in the five-dimensional Einstein-Maxwell theory. The spacetime approaches to the five-dimensional Kasner solution that describes a universe with the expanding three-dimensional space and the shrinking extra dimension in the far region. The metric is continuous but not smooth at the black hole horizon. There appears a mild curvature singularity that a free-fall observer can traverse the horizon. The horizon is a squashed three-sphere with a constant size, and the metric is approximately static near the horizon.

  14. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  15. How to Recover a Qubit That Has Fallen into a Black Hole

    NASA Astrophysics Data System (ADS)

    Chatwin-Davies, Aidan; Jermyn, Adam S.; Carroll, Sean M.

    2015-12-01

    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.

  16. W∞ algebras, Hawking radiation, and information retention by stringy black holes

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, D. V.

    2016-07-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (the singular regions of which are represented by appropriate Wess-Zumino-Witten models) is retained by quantum W symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from W∞ generators in its vertex function. The latter correspond to delocalized, nonpropagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (stringy black hole) + infalling matter → (stringy black hole)⋆ , where the black hole is viewed as a stringy state with a specific configuration of W∞ charges that are conserved. Hawking radiation is then the reverse process, with conservation of the W∞ charges retaining information. The Hawking radiation spectrum near the horizon of a Schwarzschild or Kerr black hole is specified by matrix elements of higher-order currents that form a phase-space W1 +∞ algebra. We show that an appropriate gauging of this algebra preserves the horizon two-dimensional area classically, as expected because the latter is a conserved Noether charge.

  17. How to Recover a Qubit That Has Fallen into a Black Hole.

    PubMed

    Chatwin-Davies, Aidan; Jermyn, Adam S; Carroll, Sean M

    2015-12-31

    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon. PMID:26764984

  18. How to Recover a Qubit That Has Fallen into a Black Hole.

    PubMed

    Chatwin-Davies, Aidan; Jermyn, Adam S; Carroll, Sean M

    2015-12-31

    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.

  19. A comparison of remnants in noncommutative Bardeen black holes

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid; Ahmadi, M. H.

    2016-09-01

    We derive the mass term of the Bardeen metric in the presence of a noncommutative geometry induced minimal length. In this setup, the proposal of a stable black hole remnant as a candidate to store information is confirmed. We consider the possibility of having an extremal configuration with one degenerate event horizon and compare different sizes of black hole remnants. As a result, once the magnetic charge g of the noncommutative Bardeen solution becomes larger, both the minimal nonzero mass M0 and the minimal nonzero horizon radius r0 get larger. This means, subsequently, under the condition of an adequate amount of g, the three parameters g, M0, and r0 are in a connection with each other linearly. According to our results, a noncommutative Bardeen black hole is colder than the noncommutative Schwarzschild black hole and its remnant is bigger, so the minimum required energy for the formation of such a black hole at particle colliders will be larger. We also find a closely similar result for the Hayward solution.

  20. Chandra Catches "Piranha" Black Holes

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  1. Electromagnetic wave propagation with negative phase velocity in regular black holes

    SciTech Connect

    Sharif, M. Manzoor, R.

    2012-12-15

    We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.

  2. Chaos may make black holes bright

    NASA Astrophysics Data System (ADS)

    Levin, Janna

    1999-09-01

    Black holes cannot be seen directly since they absorb light and emit none, the very quality which earned them their name. We suggest that black holes may be seen indirectly through a chaotic defocusing of light. A black hole can capture light from a luminous companion in chaotic orbits before scattering the light in random directions. To a distant observer, the black hole would appear to light up. If the companion were a bright radio pulsar, this estimate suggests the black hole echo could be detectable.

  3. Black hole production by cosmic rays.

    PubMed

    Feng, Jonathan L; Shapere, Alfred D

    2002-01-14

    Ultrahigh energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasihorizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.

  4. Area-angular-momentum inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  5. A note on black hole entropy in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2015-08-01

    Several recent results have hinted that black hole thermodynamics in loop quantum gravity simplifies if one chooses an imaginary Barbero-Immirzi parameter γ =i. This suggests a connection with {SL}(2,{{C}}) or {SL}(2,{{R}}) conformal field theories at the ‘boundaries’ formed by spin network edges intersecting the horizon. I present a bit of background regarding the relevant conformal field theories, along with some speculations about how they might be used to count black hole states. I show, in particular, that a set of unproven but plausible assumptions can lead to a boundary conformal field theory whose density of states matches the Bekenstein-Hawking entropy.

  6. Black-hole-scalar-field interactions in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Marsa, R. L.; Choptuik, M. W.

    1996-10-01

    We examine the interactions of a black hole with a massless scalar field using a coordinate system which extends ingoing Eddington-Finkelstein coordinates to dynamic spherically-symmetric spacetimes. We avoid problems with the singularity by excising the region of the black-hole interior to the apparent horizon. We use a second-order finite difference scheme to solve the equations. The resulting program is stable and convergent and will run forever without problems. We are able to observe quasinormal ringing and power-law tails as well as an interesting nonlinear feature.

  7. Detailed black hole state counting in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Agullo, Ivan; Barbero G., J. Fernando; Borja, Enrique F.; Diaz-Polo, Jacobo; Villaseñor, Eduardo J. S.

    2010-10-01

    We give a complete and detailed description of the computation of black hole entropy in loop quantum gravity by employing the most recently introduced number-theoretic and combinatorial methods. The use of these techniques allows us to perform a detailed analysis of the precise structure of the entropy spectrum for small black holes, showing some relevant features that were not discernible in previous computations. The ability to manipulate and understand the spectrum up to the level of detail that we describe in the paper is a crucial step toward obtaining the behavior of entropy in the asymptotic (large horizon area) regime.

  8. Detailed black hole state counting in loop quantum gravity

    SciTech Connect

    Agullo, Ivan; Barbero G, J. Fernando; Borja, Enrique F.; Diaz-Polo, Jacobo; Villasenor, Eduardo J. S.

    2010-10-15

    We give a complete and detailed description of the computation of black hole entropy in loop quantum gravity by employing the most recently introduced number-theoretic and combinatorial methods. The use of these techniques allows us to perform a detailed analysis of the precise structure of the entropy spectrum for small black holes, showing some relevant features that were not discernible in previous computations. The ability to manipulate and understand the spectrum up to the level of detail that we describe in the paper is a crucial step toward obtaining the behavior of entropy in the asymptotic (large horizon area) regime.

  9. Statistics, holography, and black hole entropy in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Amit; Noui, Karim; Perez, Alejandro

    2014-04-01

    In loop quantum gravity the quantum states of a black hole horizon consist of pointlike discrete quantum geometry excitations (or punctures) labeled by spin j. The excitations possibly carry other internal degrees of freedom, and the associated quantum states are eigenstates of the area A operator. The appropriately scaled area operator A/(8πℓ) can also be interpreted as the physical Hamiltonian associated with the quasilocal stationary observers located at a small distance ℓ from the horizon. Thus, the local energy is entirely accounted for by the geometric operator A. Assuming that: Close to the horizon the quantum state has a regular energy momentum tensor and hence the local temperature measured by stationary observers is the Unruh temperature. Degeneracy of matter states is exponential with the area exp(λA/ℓp2), which is supported by the well-established results of QFT in curved spacetimes, which do not determine λ but assert an exponential behavior. The geometric excitations of the horizon (punctures) are indistinguishable. And finally that the semiclassical limit the area of the black hole horizon is large in Planck units. It follows that: Up to quantum corrections, matter degrees of freedom saturate the holographic bound, viz., λ must be equal to 1/4. Up to quantum corrections, the statistical black hole entropy coincides with Bekenstein-Hawking entropy S =A/(4ℓp2). The number of horizon punctures goes like N∝√A/ℓp2 ; i.e., the number of punctures N remains large in the semiclassical limit. Fluctuations of the horizon area are small ΔA/A ∝(ℓp2/A)1/4, while fluctuations of the area of an individual puncture are large (large spins dominate). A precise notion of local conformal invariance of the thermal state is recovered in the A→∞ limit where the near horizon geometry becomes Rindler. We also show how the present model (constructed from loop quantum gravity) provides a regularization of (and gives a concrete meaning to) the formal

  10. Theory of Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Björnsson, Gunnlaugur; Pringle, James E.

    1999-03-01

    Part I. Observations of Black Holes: 1. Black holes in our Galaxy: observations P. Charles; 2. Black holes in Active Galactic Nuclei: observations G. M. Madejski; Part II. Physics Close to a Black Hole: 3. Physics of black holes I. D. Novikov; 4. Physics of black hole accretion M. A. Abramowicz; Part III. Turbulence, Viscosity: 5. Disc turbulence and viscosity A. Brandenburg; Part IV. Radiative Processes: 6. The role of electron-positron pairs in accretion flows G. Björnsson; 7. Accretion disc-corona models and X/Y-ray spectra of accreting black holes J. Poutanen; 8. Emission lines: signatures of relativistic rotation A. C. Fabian; Part V. Accretion Discs: 9. Spectral tests of models for accretion disks around black holes J. H. Krolik; 10. Advection-dominated accretion around black holes R. Narayan, R. Mahadevan and E. Quataert; 11. Accretion disc instabilities and advection dominated accretion flows J.-P. Lasota; 12. Magnetic field and multi-phase gas in AGN A. Celotti and M. J. Rees; Part V. Discs in Binary Black Holes: 13. Supermassive binary black holes in galaxies P. Artymowicz; Part VI. Stability of Accretion Discs: 14. Large scale perturbation of an accretion disc by a black hole binary companion J. C. B. Papaloizou, C. Terquem and D. N. C. Lin; 15. Stable oscillations of black hole accretion discs M. Nowak and D. Lehr; Part VI. Coherant Structures: 16. Spotted discs A. Bracco, A. Provenzale, E. A. Spiegel and P. Yecko; Self-organized critically in accretion discs P. Wiita and Y. Xiong; Summary: old and new advances in black hole accretion disc theory R. Svensson.

  11. Theory of Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Björnsson, Gunnlaugur; Pringle, James E.

    2010-08-01

    Part I. Observations of Black Holes: 1. Black holes in our Galaxy: observations P. Charles; 2. Black holes in Active Galactic Nuclei: observations G. M. Madejski; Part II. Physics Close to a Black Hole: 3. Physics of black holes I. D. Novikov; 4. Physics of black hole accretion M. A. Abramowicz; Part III. Turbulence, Viscosity: 5. Disc turbulence and viscosity A. Brandenburg; Part IV. Radiative Processes: 6. The role of electron-positron pairs in accretion flows G. Björnsson; 7. Accretion disc-corona models and X/Y-ray spectra of accreting black holes J. Poutanen; 8. Emission lines: signatures of relativistic rotation A. C. Fabian; Part V. Accretion Discs: 9. Spectral tests of models for accretion disks around black holes J. H. Krolik; 10. Advection-dominated accretion around black holes R. Narayan, R. Mahadevan and E. Quataert; 11. Accretion disc instabilities and advection dominated accretion flows J.-P. Lasota; 12. Magnetic field and multi-phase gas in AGN A. Celotti and M. J. Rees; Part V. Discs in Binary Black Holes: 13. Supermassive binary black holes in galaxies P. Artymowicz; Part VI. Stability of Accretion Discs: 14. Large scale perturbation of an accretion disc by a black hole binary companion J. C. B. Papaloizou, C. Terquem and D. N. C. Lin; 15. Stable oscillations of black hole accretion discs M. Nowak and D. Lehr; Part VI. Coherant Structures: 16. Spotted discs A. Bracco, A. Provenzale, E. A. Spiegel and P. Yecko; Self-organized critically in accretion discs P. Wiita and Y. Xiong; Summary: old and new advances in black hole accretion disc theory R. Svensson.

  12. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  13. Black hole with quantum potential

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Farag; Khalil, Mohammed M.

    2016-08-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  14. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted. PMID:20054358

  15. Disk illumination by black hole superradiance of electromagnetic perturbations

    SciTech Connect

    Kobayashi, Taichi; Onda, Kohei; Tomimatsu, Akira

    2008-03-15

    Using the Kerr-Schild formalism to solve the Einstein-Maxwell equations, we study energy transport due to time-dependent electromagnetic perturbations around a Kerr black hole, which may work as a mechanism to illuminate a disk located on the equatorial plane. For such a disk-hole system it is found that the energy extraction from the hole can occur under the well-known superradiance condition for wave frequency, even though the energy absorption into the hole should be rather dominant near the polar region of the horizon. We estimate the efficiency of the superradiant amplification of the disk illumination. Further we calculate the time-averaged energy density distribution to show explicitly the existence of a negative energy region near the horizon and to discuss the possible generation of a hot spot on the disk.

  16. Transition from regular to chaotic motion in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Kopáček, Ondřej

    2011-10-01

    Cosmic black holes can act as agents of particle acceleration. We study properties of a system consisting of a rotating black hole immersed in a large-scale organized magnetic field. Electrically charged particles in the immediate neighborhood of the horizon are influenced by strong gravity acting together with magnetic and induced electric components. We relax several constraints which were often imposed in previous works: the magnetic field does not have to share a common symmetry axis with the spin of the black hole but they can be inclined with respect to each other, thus violating the axial symmetry. Also, the black hole does not have to remain at rest but it can instead perform fast translational motion together with rotation. We demonstrate that the generalization brings new effects. Starting from uniform electro-vacuum fields in the curved spacetime, we find separatrices and identify magnetic neutral points forming in certain circumstances. We suggest that these structures can represent signatures of magnetic reconnection triggered by frame-dragging effects in the ergosphere. We further investigate the motion of charged particles in these black hole magnetospheres. We concentrate on the transition from the regular motion to chaos, and in this context we explore the characteristics of chaos in relativity. For the first time, we apply recurrence plots as a suitable technique to quantify the degree of chaoticness near a black hole.

  17. AdS black holes from duality in gauged supergravity

    NASA Astrophysics Data System (ADS)

    Halmagyi, Nick; Vanel, Thomas

    2014-04-01

    We study and utilize duality transformations in a particular STU-model of four dimensional gauged supergravity. This model is a truncation of the de Wit-Nicolai =8 theory and as such has a lift to eleven-dimensional supergravity on the seven-sphere. Our duality group is U(1)3 and while it can be applied to any solution of this theory, we consider known asymptotically AdS4, supersymmetric black holes and focus on duality transformations which preserve supersymmetry. For static black holes we generalize the supersymmetric solutions of Cacciatori and Klemm from three magnetic charges to include two additional electric charges and argue that this is co-dimension one in the full space of supersymmetric static black holes in the STU-model. These new static black holes have nontrivial profiles for axions. For rotating black holes, we generalize the known two-parameter supersymmetric solution to include an additional parameter. When lifted to M-theory, these black holes correspond to the near horizon geometry of a stack of BPS rotating M2-branes, spinning on an S 7 which is fibered non-trivially over a Riemann surface.

  18. Black holes without mass and entropy in Lovelock gravity

    SciTech Connect

    Cai Ronggen; Cao Liming; Ohta, Nobuyoshi

    2010-01-15

    We present a class of new black hole solutions in D-dimensional Lovelock gravity theory. The solutions have a form of direct product M{sup m}xH{sup n}, where D=m+n, H{sup n} is a negative constant curvature space, and the solutions are characterized by two integration constants. When m=3 and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when m is odd, it is a constant determined by an Euler characteristic of (m-2)-dimensional cross section of black hole horizon when m is even. We argue that the constant in the entropy should be thrown away. Namely, when m is even, the entropy of these black holes also should vanish. We discuss the implications of these results.

  19. Eternal higher spin black holes: a thermofield Interpretation

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva

    2016-08-01

    We study Lorentzian eternal black holes in the Chern-Simons sector of AdS3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT2. We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS2 region in the extremal limit.

  20. Complexity, action, and black holes

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  1. Complexity, action, and black holes

    DOE PAGES

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  2. FAST TRACK COMMUNICATION: Local Hawking temperature for dynamical black holes

    NASA Astrophysics Data System (ADS)

    Hayward, S. A.; Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.

    2009-03-01

    A local Hawking temperature is derived for any future outer trapping horizon in spherical symmetry, using a Hamilton Jacobi variant of the Parikh Wilczek tunneling method. It is given by a dynamical surface gravity as defined geometrically. The operational meaning of the temperature is that Kodama observers just outside the horizon measure an invariantly redshifted temperature, diverging at the horizon itself. In static, asymptotically flat cases, the Hawking temperature as usually defined by the Killing vector agrees in standard cases, but generally differs by a relative redshift factor between the horizon and infinity, this being the temperature measured by static observers at infinity. Likewise, the geometrical surface gravity reduces to the Newtonian surface gravity in the Newtonian limit, while the Killing definition instead reflects measurements at infinity. This may resolve a long-standing puzzle concerning the Hawking temperature for the extremal limit of the charged stringy black hole, namely that it is the local temperature which vanishes. In general, this confirms the quasi-stationary picture of black-hole evaporation in early stages. However, the geometrical surface gravity is generally not the surface gravity of a static black hole with the same parameters.

  3. World-volume effective theory for higher-dimensional black holes.

    PubMed

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.

  4. World-volume effective theory for higher-dimensional black holes.

    PubMed

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes. PMID:19518938

  5. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  6. Constraints on black hole remnants

    SciTech Connect

    Giddings, S.B. )

    1994-01-15

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain a problem barring what would be described in that theory as a strong coupling conspiracy. The relation to Euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g., Reissner-Noerdstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microsopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.

  7. Hydrodynamics of primordial black hole formation

    NASA Technical Reports Server (NTRS)

    Nadezhin, D. K.; Novikov, I. D.; Polnarev, A. G.

    1979-01-01

    The hydrodynamic picture of the formation of primordial black holes (PBH) at the early stages of expansion of the Universe is considered. It is assumed that close to singularity, expansion occurs in a quasi-isotropic way. Using an EVM, a spherically symmetrical nonlinear problem of the evolution of primary strong deviation from the Fridman solution was solved. What these deviations must be, so that the formation of PBH occurred was clarified. Attention was devoted to the role of pressure gradients. It is pointed out that at the moment of formation of PBH, only a small part of matter enters into it, primarily the component of perturbation. It is also pointed out that at this moment, the mass of PBH essentially is smaller than the mass considered within the cosmic horizon. The possibility of changing the mass of the PBH as a result of accretion is analyzed.

  8. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  9. Is there life inside black holes?

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    2011-12-01

    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third-kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.

  10. Black Holes, Worm Holes, and Future Space Propulsion

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  11. Quantum state of the black hole interior

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2015-08-01

    If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a "firewall", as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.

  12. Black holes, information, and Hilbert space for quantum gravity

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2013-04-01

    A coarse-grained description for the formation and evaporation of a black hole is given within the framework of a unitary theory of quantum gravity preserving locality, without dropping the information that manifests as macroscopic properties of the state at late times. The resulting picture depends strongly on the reference frame one chooses to describe the process. In one description based on a reference frame in which the reference point stays outside the black hole horizon for sufficiently long time, a late black hole state becomes a superposition of black holes in different locations and with different spins, even if the back hole is formed from collapsing matter that had a well-defined classical configuration with no angular momentum. The information about the initial state is partly encoded in relative coefficients—especially phases—of the terms representing macroscopically different geometries. In another description in which the reference point enters into the black hole horizon at late times, an S-matrix description in the asymptotically Minkowski spacetime is not applicable, but it still allows for an “S-matrix” description in the full quantum gravitational Hilbert space including singularity states. Relations between different descriptions are given by unitary transformations acting on the full Hilbert space, and they in general involve superpositions of “distant” and “infalling” descriptions. Despite the intrinsically quantum mechanical nature of the black hole state, measurements performed by a classical physical observer are consistent with those implied by general relativity. In particular, the recently-considered firewall phenomenon can occur only for an exponentially fine-tuned (and intrinsically quantum mechanical) initial state, analogous to an entropy decreasing process in a system with large degrees of freedom.

  13. Charged Dilation Black Holes as Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-07-01

    We examine the possibility of arbitrarily high energy in the Center-of-mass frame of colliding neutral particles in the vicinity of the horizon of a charged dilation black hole(BH). We show that it is possible to achieve the infinite energy in the background of the dilation black hole without fine-tuning of the angular momentum parameter. It is found that the center-of-mass energy (E_{cm}) of collisions of particles near the infinite red-shift surface of the extreme dilation BHs are arbitrarily large while the non-extreme charged dilation BHs have the finite energy. We have also compared the E_{cm} at the horizon with the ISCO(Innermost Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for extremal RN BH and Schwarzschild BH. We find that for extreme RN BH the inequality becomes E_{cm}mid_{r_{+}}>E_{cm}mid_{r_{mb}}> E_{cm}mid_{r_{ISCO}} i.e. E_{cm}mid_{r_{+}=M}: E_{cm}mid_{r_{mb}= ({3+√{5}}/{2})M} : E_{cm}mid_{r_{ISCO}=4M} =∞ : 3.23 : 2.6 . While for Schwarzschild BH the ratio of CM energy is E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=4M} : E_{cm}mid_{r_{ISCO}=6M} = √{5} : √{2} : {√{13}}/{3}. Also for Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) BHs the ratio is being E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=2M} : E_{cm}mid_{r_{ISCO}=2M}=∞ : ∞ : ∞.

  14. On the Thermal Property of Arbitrarily Accelerating Charged Black Hole with a New Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Zhenfeng, Niu; Wenbiao, Liu

    2006-07-01

    After a new tortoise coordinate transformation is adopted, the entropy and non-thermal radiation of an arbitrarily accelerating charged black hole are discussed as an example of non-stationary black holes. The same cut-off relation is chosen as static case, which is independent of space-time, and then the entropy of the non-stationary black hole is also proportional to the area of its event horizon. Meanwhile, the crossing of the particle energy levels near the event horizon is studied, the representative of the maximum value of the crossing energy levels is the same as the usual tortoise coordinate transformation.

  15. Stationary black hole metrics and inverse problems in two space dimensions

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory; Hall, Michael

    2016-09-01

    We study the wave equation for a stationary Lorentzian metric in the case of two space dimensions. Assuming that the metric has a singularity of the appropriate form, surrounded by an ergosphere which is a smooth Jordan curve, we prove the existence of a black hole with a boundary (called the event horizon) that is piecewise smooth, generally having corners. We consider a physical model of acoustic black hole whose event horizon has corners. Finally we consider the determination of a black hole by the boundary measurements.

  16. Shapes of rotating nonsingular black hole shadows

    NASA Astrophysics Data System (ADS)

    Amir, Muhammed; Ghosh, Sushant G.

    2016-07-01

    It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .

  17. A Black Hole in Our Galactic Center

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  18. Supermassive Black Hole Mimics Smaller Cousins

    NASA Astrophysics Data System (ADS)

    2002-06-01

    shooting away perpendicularly from the plane of a black hole's accretion disk, moving at 98 percent of the speed of light. In microquasars, radio-emitting features become visible in a jet shortly after X rays from the accretion disk get dimmer -- as if the accretion disk suddenly flushes into the black hole and disappears, fueling the jet. These radio "blobs" then appear to move at faster-than- light speeds, an illusion caused by their ultra-high speeds and their orientation with respect to Earth. Now the team of scientists sees this same phenomenon in 3C120. Roughly every ten months, the X-ray-emitting accretion disk around its supermassive black hole becomes suddenly dim, and a month later the telltale bright spot of radio emission appears in the jet. Over a three-year period, the team observed a series of radio blobs floating along the particle jet like smoke puffs, each time following a dip in the brightness of X rays from the accretion disk. "What we are likely seeing is the inner part of the accretion disk becoming unstable and suddenly plunging into the black hole," said Marscher. "We detect a 'dip' in the X-ray flux as the hot gas in the disk disappears after it passes the event horizon. The remainder of the disk is channeled into the jets, which we see as a knot of radio emission bubbling away from the black hole. Slowly the accretion disk fills with more interstellar gas until about ten months later, when something disturbs the accretion disk orbit, and the whole thing flushes and blows again." Joining Marscher on this observation and analysis are Svetlana Jorstad of Boston University; Jose-Luis Gomez of the Astrophysical Institute of Andalucia in Granada, Spain; Margo Aller of the University of Michigan; Harri Terasranta of the Helsinki University of Technology; Matthew Lister of NRAO; and Alastair Stirling of the University of Central Lancashire, England. The VLBA is a continent-wide radio-telescope system, with one telescope on Hawaii, another on St. Croix in

  19. Grazing Collision of Binary Black Holes II: From Merger Towards Ringdown

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2000-04-01

    One of the great challenges in gravitational physics is to simulate the collision of two black holes in order to study the resulting gravitational radiation. The Agave collaboration has successfully collided two spinning black holes in a grazing merger. The eventual goal of this work is to simulate the orbit, merger and ringdown stages of an astrophysical binary black hole system. The success of the grazing collision has proven to be strongly dependent on predicting the dynamics of the apparent horizons during the evolution. This is due to the fact that the region inside the apparent horizon containing the singularity is removed from the computational domain. Once the black holes have merged, one is left with a single black hole horizon. The spacetime is of a highly distorted black hole. We present results from simulations of the merged to ringdown stage in the life of a binary black hole collision. We show not only how crucial a role the dynamics of the apparent horizon plays in extending the lifetime of the simulation towards ringdown, but also the vital role the appropriate prescription of gauge conditions plays.

  20. Quantum electron levels in the field of a charged black hole

    SciTech Connect

    Dokuchaev, V. I.; Eroshenko, Yu. N.

    2015-12-15

    Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.

  1. A Chandra survey of quiescent black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kong, Albert

    2009-09-01

    We propose to detect quiescent X-ray emission and jets from three quiescent black holes, H 1705-250, GRS 1009-45, 4U 1543-47, with ACIS-S observations. Our proposed observations will allow us: 1) to test the prediction of the ADAF model to distinguish black hole and neutron star systems, and strengthen the evidence of the existence of event horizon; 2) to provide strong proof that accretion continues in quiescent black hole, and 3) to test if black hole systems require outflows.

  2. Entropy increase during physical processes for black holes in Lanczos-Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Kolekar, Sanved; Padmanabhan, T.; Sarkar, Sudipta

    2012-07-01

    We study quasistationary physical process for black holes within the context of Lanczos-Lovelock gravity. We show that the Wald entropy of the stationary black holes in Lanczos-Lovelock gravity monotonically increases for quasistationary physical processes in which the horizon is perturbed by the accretion of positive energy matter and the black hole ultimately settles down to a stationary state. This result reinforces the physical interpretation of Wald entropy for Lanczos-Lovelock models and takes a step towards proving the analogue of the black hole area increase theorem in a wider class of gravitational theories.

  3. Black Hole Instabilities and Local Penrose Inequalities

    NASA Astrophysics Data System (ADS)

    Figueras, Pau; Murata, Keiju; Reall, Harvey S.

    2015-01-01

    Various higher-dimensional black holes have been shown to be unstable by studying linearized gravitational perturbations. A simpler method for demonstrating instability is to find initial data that describes a small perturbation of the black hole and violates a Penrose inequality. We use the method to confirm the existence of the "ultraspinning" instability of Myers-Perry black holes. We also study black rings and show that "fat" black rings are unstable. We find no evidence of any rotationally symmetric instability of "thin" black rings.

  4. Relationship between five-dimensional black holes and de Sitter spaces

    NASA Astrophysics Data System (ADS)

    Myung, Y. S.

    2004-02-01

    We study a close relationship between the topological anti-de Sitter (TAdS) black holes and topological de Sitter (TdS) spaces including the Schwarzschild de Sitter (SdS) black hole in five dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing k by -k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild TdS space by substituting m with -m. For this purpose we calculate thermal quantities of bulk (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further, we compute logarithmic corrections to the Bekenstein Hawking entropy, Cardy Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that in the thermal relation between the TdS spaces and TAdS black holes, the cosmological horizon plays the same role as the horizon of TAdS black holes. Finally we note that the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes.

  5. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    SciTech Connect

    McInnes, Brett; Ong, Yen Chin E-mail: yenchin.ong@nordita.org

    2015-11-01

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' mass E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.

  6. Super-entropic black holes and the Kerr-CFT correspondence

    NASA Astrophysics Data System (ADS)

    Sinamuli, Musema; Mann, Robert B.

    2016-08-01

    We demonstrate that Kerr-CFT duality can be extended to super-entropic black holes, which have non-compact horizons with finite area. We demonstrate that this duality is robust insofar as the ultra-spinning limit of a Kerr-AdS black hole (which yields the super-entropic class) commutes with the near-horizon limit (which yields the Kerr-CFT duality). Consequently the Bekenstein-Hawking and the CFT entropies are equivalent. We show that the duality holds for both singly-spinning super-entropic black holes in 4 dimensions and for doubly-spinning super-entropic black holes of gauged supergravity in 5 dimensions. In both cases we obtain not only the expected left/right temperatures, but also temperatures associated with electric charge and with a new thermodynamic parameter specific to super-entropic black holes.

  7. THE DISTRIBUTION AND ANNIHILATION OF DARK MATTER AROUND BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.

    2015-06-20

    We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.

  8. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-01

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  9. Neutral and charged matter in equilibrium with black holes

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Zaslavskii, O. B.

    2011-10-01

    We study the conditions of a possible static equilibrium between spherically symmetric, electrically charged or neutral black holes and ambient matter. The following kinds of matter are considered: (1) neutral and charged matter with a linear equation of state pr=wρ (for neutral matter the results of our previous work are reproduced), (2) neutral and charged matter with pr˜ρm, m>1, and (3) the possible presence of a “vacuum fluid” (the cosmological constant or, more generally, anything that satisfies the equality T00=T11 at least at the horizon). We find a number of new cases of such an equilibrium, including those generalizing the well-known Majumdar-Papapetrou conditions for charged dust. It turns out, in particular, that ultraextremal black holes cannot be in equilibrium with any matter in the absence of a vacuum fluid; meanwhile, matter with w>0, if it is properly charged, can surround an extremal charged black hole.

  10. Quantum tunneling of the non-stationary BTZ black hole

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Yang, Shu Zheng

    2009-07-01

    The semi-classical tunneling method is extended to study the Hawking tunneling radiation from the non-stationary BTZ black hole via general tortoise coordination transformation and WKB approximation. In this paper, we simplify the spin-0 scalar field equation and the spin-1/2 Dirac equation at the event horizon of this black hole, and then the quantum tunneling probability and Hawking temperature are obtained. Finally, the correctional tunneling rate is researched, and the results show that after considering the changed background space-time of the non-stationary BTZ black hole, the tunneling rate depends not only on the entropy change but also on the integral about {\\dot r}_H .

  11. Hawking Temperature of a Static Black Hole in Harmonic Coordinates

    NASA Astrophysics Data System (ADS)

    He, Guan-Sheng; Lin, Wei-Bin

    2015-12-01

    Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole. Supported in part by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20110184110016, the National Basic Research Program of China (973 Program) Grant No. 2013CB328904, and the Fundamental Research Funds for the Central Universities under Grant No. 2682014ZT32

  12. Magnetic and electric black holes in arbitrary dimensions

    SciTech Connect

    Belhaj, Adil; Diaz, Pablo; Segui, Antonio

    2009-08-15

    In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.

  13. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the

  14. Stationary black holes: large D analysis

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-09-01

    We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1 /D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1 /D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1 /D expansion.

  15. Entropy of Non-stationary and Slowly Changing Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Han

    2014-01-01

    Simplifying Dirac equation near the horizon, Hawking temperature is obtained by applying a new tortoise coordinate transformation. Using the improved thin film brick-wall model and WKB approximation, the entropy of Dirac field in the non-stationary and slowly changing Reissner-Nordström black hole is calculated. The result shows that the entropy of the black hole is still proportional to the horizon area, and black hole entropy is just identical to the entropy of the quantum state at the horizon. In addition, the new tortoise coordinate transformation can make the cut-off parameter introduced in solving the entropy of non-stationary black hole simplified to the same as that in the static and stationary cases.

  16. Particle collisions near a Kerr-like black hole in Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-11-01

    A recent discovery in 2009 by Bañados, Silk and West (BSW), which generated a lot of interest, involves the arbitrary high center-of-mass (c.m.) energies for free particle collisions at the horizon of an extreme kerr black hole when one of the free particles has a critical value of the angular momentum. In light of this we consider the rotating Kerr-like black hole solution in Brans-Dicke theory and study the motion of scalar test charges in the vicinity of the black hole horizon. We show that the interaction of the test scalar charges with the background scalar field in this spacetime suppresses the c.m. energy for collisions occurring near the event horizon, and the value of the c.m. energy there, is finite irrespective of whether the black hole is extreme or not and its value is also independent of the angular momenta of the colliding test charges.

  17. Vacuum polarization of massive spinor and vector fields in the spacetime of a nonlinear black hole

    SciTech Connect

    Matyjasek, Jerzy

    2007-10-15

    Building on general formulas obtained from the approximate renormalized effective action, the stress-energy tensor of the quantized massive spinor and vector fields in the spacetime of the regular black hole is constructed. Such a black hole is the solution to the coupled system of nonlinear electrodynamics and general relativity. A detailed analytical and numerical analysis of the stress-energy tensor in the exterior region is presented. It is shown that for small values of the charge as well as large distances from the black hole the leading behavior of the stress-energy tensor is similar to that in the Reissner-Nordstroem geometry. Important differences appear when the inner horizon becomes close to the event horizon. A special emphasis is put on the extremal configuration and it is shown that the stress-energy tensor is regular inside the event horizon of the extremal black hole.

  18. Destroying Kerr-Sen black holes

    NASA Astrophysics Data System (ADS)

    Siahaan, Haryanto M.

    2016-03-01

    By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.

  19. Boosting jet power in black hole spacetimes

    PubMed Central

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  20. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  1. Hawking temperature of constant curvature black holes

    SciTech Connect

    Cai Ronggen; Myung, Yun Soo

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  2. Boosting jet power in black hole spacetimes.

    PubMed

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  3. Escape of black holes from the brane.

    PubMed

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  4. Charged rotating black holes on a 3-brane

    SciTech Connect

    Aliev, A.N.; Guemruekcueoglu, A.E.

    2005-05-15

    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles.

  5. Particles Generation and Bose Instability in Primordial Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The author makes a connection between the Kepler's laws of motion for planets in the gravitational field of the Sun with the motion of test particles in classical mechanics. Subsequently He discusses the quantum problem, or the motion of scalar particles described by Klein-Gordon equation in the gravitational field of a black hole, when the Particle's Energy is less than the Rest Energy of the Particle: E< mc^2. It is mentioned that the spectrum of energies will be discrete one as in the case of the Hydrogen atom. But, due to very fast decreasing of the Potential energy of the particle near the horizon of the Black Hole, or the Black Hole itself, the spectrum will be a quasidiscrete one. The imaginary part of the Energy describes the fall of the particle into Black Hole. There are two features, which could complicate the problem: 1) The rotation of the Black Hole 2) The spin of the Particles. The first circumstance will lead, as is shown by author, to superradiation (the Imaginary part of the Energy will change the sign) as in the case of Particles scattering (E>mc^2). As in that case detailed calculations show that the black Hole will drop the angular momentum very fast if the black Hole is highly rotating. Electrically charged particles cannot develop such a process due to very fast ionization of bosonic levels by electromagnetic radiation. Meanwhile, neutral particles produces Gamma-bursts of energies 67.5, 274.5, 932 Mev correspondingly. The duration of bursts is 1.26* 10^-17 s (for neutral pion), 2.99*10^-18 s (for Eta meson), 8.55*10^-19 s (for D^0 meson). The radiated energies are 1.2 * 10^35 erg, 8.67*10^34 erg, 8.55*10^33 erg, corresponding to very great powers of the order of magnitude 10^52 erg/s. The second circumstance does stops the superradiative decay due to Pauli exclussion principle. The imaginary part of the Energy will not change the sign, and the particles levels are decaying only. For this reason the superradiative bound levels decay of the

  6. Boson shells harboring charged black holes

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  7. Black holes in the milky way galaxy.

    PubMed

    Filippenko, A V

    1999-08-31

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

  8. Statistical Entropy of an Acoustic Black Hole in Bose—Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Zhao, Hui-Hua; Zhao, Ren

    2013-12-01

    The entanglement entropy of an acoustic black hole in a Bose—Einstein condensates (BEC) is derived, which is associated with the phonons generated via the Hawking mechanism in a sonic hole. Considering the dispersion relation of a BEC, we recalculate the entanglement entropy of the acoustic black hole by means of statistical method in two limits. We find that the entropy is still proportional to the area of event horizon, but with a coefficient dependent on the infrared cutoff.

  9. A new method dealing with hawking effects of evaporating black holes

    SciTech Connect

    Zhao, Z.; Dai, X. )

    1992-06-28

    This paper reports that, both the location and the temperature of event horizons of evaporating black holes can be easily given if one proposes the Klein-Gordon equation approaches the standard form of wave equation near event horizons by using tortoise-type coordinates.

  10. A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-06-01

    Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.

  11. Fermions Tunneling from Bardeen-Vaidya Black Hole via General Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Kai, Lin; Shuzheng, Yang

    In this paper, we research on the scalar field particles and 1/2 spin fermions tunneling from the event horizon of Bardeen-Vaidya black hole by semiclassical method and general tortoise coordinate transformation, and obtain the Hawking temperature and tunneling rate near the event horizon.

  12. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  13. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism. PMID:23250434

  14. Structure of the singularity inside a realistic rotating black hole

    NASA Astrophysics Data System (ADS)

    Ori, Amos

    1992-04-01

    The structure and results of an analysis of the asymptotic behavior of nonlinear, asymmetric, metric perturbations near the Cauchy horizon inside a Kerr black hole are presented. This analysis suggests that metric perturbations, to all orders in the perturbation expansion, are finite and small at the Cauchy horizon, even though their gradients (and the curvature) diverge there. Accordingly, objects which fall into a realistic rotating blackhole a longtime after the collapse will not be crushed by a tidal gravitational deformations as they approach the curvature singularity.

  15. On the black hole limit of electrically counterpoised dust configurations

    NASA Astrophysics Data System (ADS)

    Meinel, Reinhard; Hütten, Moritz

    2011-11-01

    By means of a simple scaling transformation any asymptotically flat Papapetrou-Majumdar solution of the Einstein-Maxwell equations corresponding to a localized regular distribution of electrically counterpoised dust can be reformulated as a one-parameter family of solutions admitting a black hole limit. In the limit, a characteristic separation of spacetimes occurs. From the exterior point of view, the extreme Reissner-Nordström metric outside the event horizon is formed. From the interior point of view, a regular, non-asymptotically flat (and in general non-spherically symmetric) spacetime with the extreme Reissner-Nordström near-horizon geometry at spatial infinity results.

  16. The critical phenomena of charged rotating de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Guo, Xiongying; Li, Huaifan; Zhang, Lichun; Zhao, Ren

    2016-07-01

    In this paper, we investigate the effective thermodynamic quantities in Kerr-Newman-de Sitter spacetime by considering the relations between the black hole event horizon and the cosmological event horizon. We find the effect of the critical point of Kerr-Newman-de Sitter spacetime for the different state parameters. We study the critical phenomena of the system taking different state parameters. This result is consistent with the nature of a liquid-gas phase transition at the critical point, hence deepening the understanding of the analogy of charged de Sitter spacetime and liquid-gas systems.

  17. Quantum jump from singularity to outside of black hole

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-02-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  18. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew R.; Piro, Anthony; Ott, Christian D.

    2015-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. Using the observed BH mass distribution from Galactic X-ray binaries, we investigate the probability that a star will make a BH as a function of its ZAMS mass. Although the shape of the black hole formation probability function is poorly constrained by current measurements, we believe that this framework is an important new step toward better understanding BH formation. We also consider some of the implications of this probability distribution, from its impact on the chemical enrichment from massive stars, to its connection with the structure of the core at the time of collapse, to the birth kicks that black holes receive. A probabilistic description of BH formation will be a useful input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  19. Exp(1076) Shades of Black: Aspects of Black Hole Microstates

    NASA Astrophysics Data System (ADS)

    Vasilakis, Orestis

    In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and

  20. Thermodynamics of Sultana-Dyer black hole

    SciTech Connect

    Majhi, Bibhas Ranjan

    2014-05-01

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.