40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.20 Applicability: description of the carbon black...
40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...
40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability: description of the carbon black thermal process subcategory. 458.20 Section 458.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal...
Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.
Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru
2015-01-21
Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.
Xu, Baojun; Chang, Sam K C
2011-12-01
The effects of boiling and steaming processes on the antiproliferative and cellular antioxidant properties, as well as phytochemicals, of two types of common beans (pinto and black beans) and two types of soybeans (yellow and black) were investigated. All thermal-processing methods caused significant (p<0.05) decreases in total phenolic content (TPC), total saponin content (TSC) and phytic acid content (PAC) values in all bean types (except for TPC values in pressure-steamed yellow soybeans) as compared to those of the raw beans. All types of uncooked raw beans exhibited cellular antioxidant activities (CAA) in dose-dependent manners. Black soybeans exhibited the greatest CAA, followed by black beans, pinto beans and yellow soybeans. The CAA of cooked beans were generally diminished or eliminated by thermal processing. The hydrophilic extracts from raw pinto beans, black beans and black soybeans exhibited antiproliferation capacities against human gastric (AGS) and colorectal (SW480) cancer cells in dose-dependent manners. The raw yellow soybeans exhibited dose-dependent antiproliferation activities against the SW480 cells. Most of the cooked beans lost their antiproliferation capacities as observed in the raw beans. These results indicate that different processing methods may have various effects on phytochemical profiles and bioactivities. Overall, thermal processing caused a significant reduction of the health-promotion effects of beans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Physicochemical Characteristics of Black Garlic after Different Thermal Processing Steps
Kang, Ok-Ju
2016-01-01
This study investigated the physicochemical characteristics of black garlic (BG) after different thermal processing steps. Compared with fresh garlic (FG), the moisture content and pH in BG decreased significantly, while the ash content and browning intensity increased during thermal processing. The total mineral and the free sugar contents were significantly higher than that of the BG2 and BG4 samples, respectively. The free sugar content increased by 16-fold in the BG cloves compared with that of FG, while the amino acid content increased during the first stage of thermal processing, and subsequently decreased. The thiosulfinate content in all samples decreased to during thermal processing. The pyruvic acid content initially increased and then decreased during thermal processing. These results contribute to our understanding of the role of thermal processing in the quality formation of BG. PMID:28078257
Xu, Baojun; Chang, Sam K C
2009-06-10
The effects of boiling and steaming processes at atmospheric and high pressures on the phenolic components and antioxidant properties of pinto and black beans were investigated. In comparison to the original raw beans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free-radical scavenging activity (DPPH), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) values in both pinto and black beans. Steaming processing resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values than the boiling processes in both pinto and black beans. To further investigate how thermal processing affected phenolic compositions and to elucidate the contribution of individual phenolic compounds to antioxidant properties, phenolic acids, anthocyanins, flavan-3-ols, and flavonols were quantitatively analyzed by high-performance liquid chromatography (HPLC). All thermal processing significantly (p < 0.05) affected individual phenolic acids, anthocyanins, flavan-3-ols, and flavonols, significantly (p < 0.05) reduced total phenolic acid contents in both pinto and black beans and total flavonol contents in pinto beans, and dramatically reduced anthocyanin contents in black beans. Phenolic acids and flavonols may play important roles on the overall antioxidant activities of pinto beans, while anthocyanins, flavan-3-ols, and flavonols may play important roles on the overall antioxidant activities of black beans.
An analysis of the changes on intermediate products during the thermal processing of black garlic.
Yuan, Heng; Sun, Linjuan; Chen, Min; Wang, Jun
2018-01-15
The thermal processing of black garlic was simulated. Fresh garlic was incubated at 55°C with 80% humidity and sampled every 5 or 10days. The changes in relevant products were as follows: the fructan content was decreased by 84.79%, and the fructose content was increased by 508.11%. The contents of Maillard reaction intermediate products were first increased and then decreased. The colour of garlic gradually became dark and the pH decreased from 6.13 to 4.00. By analyzing these changes, the mechanism of black garlic formation and the changes on the Maillard reaction were revealed. The sweetness of black garlic resulted mainly from the fructose that was produced, and the black colour was largely due to the Maillard reaction between fructose/glucose and amino acids. An understanding of this process is useful to explain the formation mechanism of black garlic and could lead to better control of the quality of black garlic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaporation of (quantum) black holes and energy conservation
NASA Astrophysics Data System (ADS)
Torres, R.; Fayos, F.; Lorente-Espín, O.
2013-03-01
We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the information loss paradox since the non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the backscattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.
NASA Astrophysics Data System (ADS)
Yan, Hao-Peng; Liu, Wen-Biao
2016-08-01
Using Parikh-Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein-Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.
On the Effect of Energy Conservation on Black Hole Evaporation
NASA Astrophysics Data System (ADS)
Torres, R.; Fayos, F.; Lorente-Espín, O.
2013-06-01
We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.
Black hole thermalization, D0 brane dynamics, and emergent spacetime
NASA Astrophysics Data System (ADS)
Riggins, Paul; Sahakian, Vatche
2012-08-01
When matter falls past the horizon of a large black hole, the expectation from string theory is that the configuration thermalizes and the information in the probe is rather quickly scrambled away. The traditional view of a classical unique spacetime near a black hole horizon conflicts with this picture. The question then arises as to what spacetime does the probe actually see as it crosses a horizon, and how does the background geometry imprint its signature onto the thermal properties of the probe. In this work, we explore these questions through an extensive series of numerical simulations of D0 branes. We determine that the D0 branes quickly settle into an incompressible symmetric state—thermalized within a few oscillations through a process driven entirely by internal nonlinear dynamics. Surprisingly, thermal background fluctuations play no role in this mechanism. Signatures of the background fields in this thermal state arise either through fluxes, i.e. black hole hair; or if the probe expands to the size of the horizon—which we see evidence of. We determine simple scaling relations for the D0 branes’ equilibrium size, time to thermalize, lifetime, and temperature in terms of their number, initial energy, and the background fields. Our results are consistent with the conjecture that black holes are the fastest scramblers as seen by matrix theory.
Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus
NASA Astrophysics Data System (ADS)
Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie
2018-01-01
We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.
Unthermal charged massive Hawking radiation from a Reissner-Nordström-de Sitter black hole
NASA Astrophysics Data System (ADS)
Khayrul Hasan, M.
2015-05-01
We investigate the massive charged particles' Hawking radiation from a Reissner-Nordström-de Sitter (RNdS) black hole by Damour-Ruffini's method. We get the unthermal spectrum when the back-reaction of particles' energy and charge to spacetime is considered. The information will get out from the black hole with the corrected spectrum. The radiation is not exactly thermal and because the derivation obeys conservation laws, the non thermal Hawking radiation can carry information from the black hole. In our work the method is more simple and explicit and it can be used to explain the black hole information loss paradox, and the process satisfies underlying unitary theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rath, Swagat S., E-mail: swagat.rath@gmail.com; Nayak, Pradeep; Mukherjee, P.S.
2012-03-15
Highlights: Black-Right-Pointing-Pointer Sentences/phrases were modified. Black-Right-Pointing-Pointer Necessary discussions for different figures were included. Black-Right-Pointing-Pointer More discussion have been included on the flue gas analysis. Black-Right-Pointing-Pointer Queries to both the reviewers have been given. - Abstract: The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values asmore » a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Nanothermodynamics Applied to Thermal Processes in Heterogeneous Materials
2012-08-03
models agree favorably with a wide range of measurements of local thermal and dynamic properties. Progress in understanding basic thermodynamic...Monte- Carlo (MC) simulations of the Ising model .7 The solid black lines in Fig. 4 show results using the uncorrected (Metropolis) algorithm on the...parameter g=0.5 (green, dash-dot), g=1 (black, solid ), and g=2 (blue, dash-dot-dot). Note the failure of the standard Ising model (g=0) to match
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li, E-mail: wangshunli@mail.ncyu.edu.tw
To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm{sup -1} and the stepwise appearance of several new IR peaks atmore » 1731, 1712, 1676, 1651, 1557 and 1265 cm{sup -1} with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline-citric acid cocrystal formation. Highlights: Black-Right-Pointing-Pointer Cogrinding process could gradually induce the cocrystal formation between TP and CA. Black-Right-Pointing-Pointer The TP-CA cocrystal was formed through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was similar to the solvent-evaporated cocrystal. Black-Right-Pointing-Pointer The thermal-induced TP-CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 Degree-Sign C. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was stable at accelerated condition over a storage time of 60 days.« less
Measurement of stimulated Hawking emission in an analogue system.
Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A
2011-01-14
Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.
Effects of temperature on the quality of black garlic.
Zhang, Xinyan; Li, Ningyang; Lu, Xiaoming; Liu, Pengli; Qiao, Xuguang
2016-05-01
Black garlic is a type of garlic product that is generally produced by heating raw garlic at high temperature with controlled humidity for more than 30 days. Black garlic has appeared on the market for many years. It is crucial to investigate the characteristics of quality formation of black garlic during processing at various temperatures. In this study, fresh garlic was processed to black garlic at temperatures of 60, 70, 80 and 90 °C. Moisture, amino acid nitrogen and allicin contents decreased gradually during thermal processing of various temperatures. Reducing sugar, 5-hydroxymethylfurfural, total phenols, total acids contents and browning increased. The changing rate of quality indicators and flavour of black garlic varied at different temperatures. Browning intensity reached about 74 when black garlic aged. The sensory score was significantly higher in black garlic aged at 70 °C (39.95 ± 0.31) compared with that at other temperatures, suggesting that 70 °C might facilitate formation of good quality and flavour of black garlic during processing. Temperature had a remarkable impact on the quality and flavour of black garlic. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Evaluation of thermal processing variables for reducing acrylamide in canned black ripe olives
USDA-ARS?s Scientific Manuscript database
Acrylamide formed in plant foods at elevated cooking temperatures has been identified as a probable carcinogen. A wide variation and high acrylamide concentration in commercial canned black ripe olives has been reported. The objective of this study was to determine if different safe sterilization co...
Overcoming black body radiation limit in free space: metamaterial superemitter
NASA Astrophysics Data System (ADS)
Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.
2016-01-01
Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.
Low Cost High Performance Nanostructured Spectrally Selective Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sungho
2017-04-05
Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guidedmore » by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.« less
Quantum Non-thermal Effect from Black Holes Surrounded by Quintessence
NASA Astrophysics Data System (ADS)
Gong, Tian-Xi; Wang, Yong-Jiu
2009-11-01
We present a short and direct derivation of Hawking radiation as a tunneling process across the horizon and compute the tunneling probability. Considering the self-gravitation and energy conservation, we use the Keskiy Vakkuri, Kraus, and Wilczek (KKW) analysis to compute the temperature and entropy of the black holes surrounded by quintessence and obtain the temperature and entropy are different from the Hawking temperature and the Bekenstein-Hawking entropy. The result we get can offer a possible mechanism to deal with the information loss paradox because the spectrum is not purely thermal.
Structural and optical properties of copper-coated substrates for solar thermal absorbers
NASA Astrophysics Data System (ADS)
Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa
2016-10-01
Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less
Black chrome solar selective coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, R.B.; Sowell, R.R.
1980-01-01
Electrodeposited black chrome solar selective coatings have frequently experienced thermal stability problems when heated to temperatures above 250/sup 0/C (480/sup 0/F) in air. By reducing the trivalent chromium concentration in the standard black chrome plating bath, coatings on nickel substrates are obtained which are stable for thousands of hours at 350/sup 0/C (660/sup 0/F) and for hundreds of hours at 400/sup 0/C (750/sup 0/F). These results have been obtained consistently on a laboratory scale, but difficulty in reproducing the results has been encountered in a production environment. A current study of the effects of known plating variables on the opticalmore » properties and thermal stability of coatings is aimed at establishing an acceptable range for each plating parameter. A preliminary process specification for electroplating mild steel substrates with a stable black chrome coating is presented.« less
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...
Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B
Sun, Wei; Xu, Haiyan; Xu, Fei
2017-01-01
Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance. PMID:29143785
Evolving non-thermal electrons in simulations of black hole accretion
NASA Astrophysics Data System (ADS)
Chael, Andrew A.; Narayan, Ramesh; Saḑowski, Aleksander
2017-09-01
Current simulations of hot accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. However, processes like magnetic reconnection and shocks can accelerate electrons into a non-thermal distribution, which will not quickly thermalize at the very low densities found in many systems. Such non-thermal electrons have been invoked to explain the infrared and X-ray spectra and strong variability of Sagittarius A* (Sgr A*), the black hole at the Galactic Center. We present a method for self-consistent evolution of a non-thermal electron population in the general relativistic magnetohydrodynamic code koral. The electron distribution is tracked across Lorentz factor space and is evolved in space and time, in parallel with thermal electrons, thermal ions and radiation. In this study, for simplicity, energy injection into the non-thermal distribution is taken as a fixed fraction of the local electron viscous heating rate. Numerical results are presented for a model with a low mass accretion rate similar to that of Sgr A*. We find that the presence of a non-thermal population of electrons has negligible effect on the overall dynamics of the system. Due to our simple uniform particle injection prescription, the radiative power in the non-thermal simulation is enhanced at large radii. The energy distribution of the non-thermal electrons shows a synchrotron cooling break, with the break Lorentz factor varying with location and time, reflecting the complex interplay between the local viscous heating rate, magnetic field strength and fluid velocity.
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Kang, Joon Sang; Ke, Ming; Hu, Yongjie
2017-03-08
Two-dimensional van der Waals materials have shown novel fundamental properties and promise for wide applications. Here, we report for the first time an experimental demonstration of the in situ characterization and highly reversible control of the anisotropic thermal conductivity of black phosphorus. We develop a novel platform based on lithium ion batteries that integrates ultrafast optical spectroscopy and electrochemical control to investigate the interactions between lithium ions and the lattices of the black phosphorus electrode. We discover a strong dependence of the thermal conductivity on battery charge states (lithium concentrations) during the discharge/charge process. The thermal conductivity of black phosphorus is reversibly tunable over a wide range of 2.45-3.86, 62.67-85.80, and 21.66-27.58 W·m -1 ·K -1 in the cross-plan, zigzag, and armchair directions, respectively. The modulation in thermal conductivity is attributed to phonon scattering introduced by the ionic intercalation in between the interspacing layers and shows anisotropic phonon scattering mechanism based on semiclassical model. At the fully discharged state (x ∼ 3 in Li x P), a dramatic reduction of thermal conductivity by up to 6 times from that of the pristine crystal has been observed. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions in the layered structures and may open up new opportunities in controlling energy transport based on novel operation mechanisms and the rational design of nanostructures.
Solar-thermal fluid-wall reaction processing
Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
Solar-Thermal Fluid-Wall Reaction Processing
Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
Baryogenesis in extended inflation. 2: Baryogenesis via primordial black holes
NASA Technical Reports Server (NTRS)
Barrow, John D.; Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
Baryogenesis at the end of extended inflation is studied. Extended inflation is brought to an end by the collisions of bubble walls surrounding regions of true vacuum, a process which produces particles well out of thermal equilibrium. The possibility that the wall collisions may provide a significant density of primordial black holes is considered and their possible role in generating a baryon asymmetry is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com; Kiani Rashid, A.R.; Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir
Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility ofmore » the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.« less
Black shale - Its deposition and diagenesis.
Tourtelot, H.A.
1979-01-01
Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.
NASA Technical Reports Server (NTRS)
Dennis, Brian R.
2006-01-01
This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.
NASA Astrophysics Data System (ADS)
Wang, Tianyu; Han, Meng; Wang, Ridong; Yuan, Pengyu; Xu, Shen; Wang, Xinwei
2018-04-01
Frequency-resolved Raman spectroscopy (FR-Raman) is a new technique for nondestructive thermal characterization. Here, we apply this new technique to measure the anisotropic thermal conductivity of suspended nm-thick black phosphorus samples without the need of optical absorption and temperature coefficient. Four samples with thicknesses between 99.8 and 157.6 nm are studied. Based on steady state laser heating and Raman measurement of samples with a specifically designed thermal transport path, the thermal conductivity ratio (κZZ/κAC) is determined to be 1.86-3.06. Based on the FR-Raman measurements, the armchair thermal conductivity is measured as 14-22 W m-1 K-1, while the zigzag thermal conductivity is 40-63 W m-1 K-1. FR-Raman has great potential for studying the thermal properties of various nanomaterials. This study significantly advances our understanding of thermal transport in black phosphorus and facilitates the application of black phosphorus in novel devices.
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...
Evolving Nonthermal Electron Distributions in Simulations of Sgr A*
NASA Astrophysics Data System (ADS)
Chael, Andrew; Narayan, Ramesh
2018-01-01
The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.
Evidence Of A Black Hole In The X-ray Binary System Cygnus X-3
NASA Astrophysics Data System (ADS)
Lombardi, C.; Virgilli, E.; Titarchuk, L.; Frontera, F.; Farinelli, R.
2011-09-01
Recently a close correlation between the photon index of the power law component and either the frequency of Quasi Periodic Oscillations (QPOs) or the flow of accretion disk has been found in the X-ray data concerning Black Holes (BH) in binary systems. The shape of this relationship, characterized by a saturation index when the system achieves high spectral brightness, finds a natural explanation in the processes of thermal and bulk Comptonization which are unique characteristic of the presence of a BH. For the whole set of observation we adopted a model consisting of the spectral component of BMC (Bulk Motion Comptonization model) that takes into account the direct emission of black body and the Comptonization process.
No WIMP mini-spikes in dwarf spheroidal galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanders, Mark; Bertone, Gianfranco; Weniger, Christoph
The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center of galaxies like the Milky Way are efficiently disrupted by baryonic processes, but mini-spikes can form and survive undisturbed at the center of dwarf spheroidal galaxies. We show that Fermi LAT satellite data allow to set very stringent limits on the existence of mini-spikes in dwarf galaxies: for thermal WIMPsmore » with mass between 100 GeV and 1 TeV, we obtain a maximum black hole mass between 100 and 1000 M{sub ⊙}, ruling out black holes masses extrapolated from the M-σ relationship in a large region of the parameter space. We also performed Monte Carlo simulations of merger histories of black holes in dwarf spheroidals in a scenario where black holes form from the direct collapse of primordial gas in early halos, and found that this specific formation scenario is incompatible at the 84% CL with dark matter being in the form of thermal WIMPs.« less
Thermodynamics of higher dimensional black holes with higher order thermal fluctuations
NASA Astrophysics Data System (ADS)
Pourhassan, B.; Kokabi, K.; Rangyan, S.
2017-12-01
In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.
Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the Comptonization in a bulk motion region near an accreting black hole by Laurent & Titarchuk (2010) strongly support this scenario. strongly support this scenario
Catalyst Complexed Carbon Slurry Fuel Development.
1981-01-01
materials of fine particle size made by procedures denoted as furnace, channel , thermal, and lamp. Car- bon black materials are composed essentially of...far the largest group of commercially available materials, and are prepared by partial combustion of heavy hydrocarbon liquids. Channel blacks are...manufactured by impingement of natural gas flames on cold channel irons. Thermal blacks are produced by thermal decomposition of natural gas, while
Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao
2015-01-01
Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials. PMID:26472285
Lee, Sangwook; Yang, Fan; Suh, Joonki; ...
2015-10-16
Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less
Chemistry of the Konica Dry Color System
NASA Astrophysics Data System (ADS)
Suda, Yoshihiko; Ohbayashi, Keiji; Onodera, Kaoru
1991-08-01
While silver halide photosensitive materials offer superiority in image quality -- both in color and black-and-white -- they require chemical solutions for processing, and this can be a drawback. To overcome this, researchers turned to the thermal development of silver halide photographic materials, and met their first success with black-and-white images. Later, with the development of the Konica Dry Color System, color images were finally obtained from a completely dry thermal development system, without the use of water or chemical solutions. The dry color system is characterized by a novel chromogenic color image-forming technology and comprises four processes. (1) With the application of heat, a color developer precursor (CDP) decomposes to generate a p-phenylenediamine color developer (CD). (2) The CD then develops silver salts. (3) Oxidized CD then reacts with couplers to generate color image dyes. (4) Finally, the dyes diffuse from the system's photosensitive sheet to its image-receiving sheet. The authors have analyzed the kinetics of each of the system's four processes. In this paper, they report the kinetics of the system's first process, color developer (CD) generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.
2015-12-14
Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less
Towards experimentally testing the paradox of black hole information loss
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng; You, Li
2013-02-01
Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exact thermality when backreaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black hole, contrasting the differences between the nonthermal and thermal spectra. Of great interest, we find that the energy covariances of Hawking radiations for the thermal spectrum are exactly zero, while the energy covariances are nontrivial for the nonthermal spectrum. Consequently, the nonthermal spectrum can be distinguished from the thermal one by counting the energy covariances of successive emissions, which provides an avenue towards experimentally testing the long-standing “information loss paradox.”
Thermal stability of black holes with arbitrary hairs
NASA Astrophysics Data System (ADS)
Sinha, Aloke Kumar
2018-02-01
We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Martínez-Casas, Lucía; Lage-Yusty, María; López-Hernández, Julia
2017-12-13
Black garlic is an elaborated product obtained from fresh garlic (Allium sativum L.) at a controlled high humidity and temperature, which leads to modifications in color, taste, and texture. To clarify the physicochemical changes that occur during the thermal process, this work aimed to evaluate and contrast the antioxidant capacity and that of other compounds between purple garlic ecotype "Purple from Las Pedroñeras" and its black garlic derivative. Our results showed numerous differences between both, because black garlic presented a significant divergence in its volatile profile, a decreased amount of ascorbic acid, an increment in sugar and polyphenol contents, a greater antioxidant capacity, and a different composition of phenolic acids and flavonoids.
Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir
2017-01-01
In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.
NASA Astrophysics Data System (ADS)
Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng
2017-10-01
Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The project is being carried out under contract to the United States Department of Energy. As discussed in the previous quarterly report, promising results were obtained by liquefying Illinois No. 6 bituminous and Black Thunder subbituminous coals using oil-soluble catalysts Molyvan L and molybdenum octoate. In this quarter, the liquefaction of Black Thunder coal was continued. Runs were made in catalytic/thermal (C/T) mode with supported AMOCAT{trademark} 1C (NiMo) and AMOCAT{trademark} 1B (Mo) catalysts. Although the initialmore » performance in these runs was good (90% conversion with no resid production), both catalysts deactivated rapidly. Spent catalysts showed severe coke deposition as well as formation of a calcium-rich shell on the catalyst surface. Overall, C/T liquefaction is not a good process option for Black Thunder coal.« less
Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan
2015-01-01
Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Paulin, Irena; Skapin, Sreco D.
2012-10-15
The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra canmore » be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.« less
NASA Astrophysics Data System (ADS)
Zieg, M. J.; Hone, S. V.
2017-12-01
Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.
GRO: Black hole models for gamma-ray bursts
NASA Technical Reports Server (NTRS)
Ruderman, Malvin
1995-01-01
The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) has established that the distribution of gamma-ray bursts (GRB's) is isotropic but is bound radially. This finding suggests that the bursts are either cosmological or they originate from an extended Galactic halo. The implied luminosities and the observed variability of the GRB's on time scales as short as one millisecond suggest that they originate from compact objects. We are presently studying black hole models for GRB's. Any such model must produce a non-thermal photon spectrum to agree with the observed properties. For a wide range of burst parameters the assumed bursting source consists of a non-thermal electron-positron-photon plasma of very high density. It seems possible to produce such a plasma in accretion onto black holes. In our on-going work, we are developing the kinetic theory for a non-equilibrium pair plasma. The main new features of our work are as follows: (1) We do not assume the presence of a thermal electron bath. (2) Non-thermal, high-energy pairs are allowed to have an arbitrary concentration and energy distribution. (3) There is no soft photon source in our model; initially all the photons in the plasma are either energetic X-rays or gamma-rays. (4) The initial energy distribution of the pairs as well as photons is arbitrary. (5) We collect the analytical expressions for the kinetic kernels for all relevant processes. And (6) we present a different approach to finding the time-evolution of pair and photon spectra, which is a combination of the kinetic-theory and the non-linear Monte-Carlo schemes. We have developed many Monte-Carlo programs to model various process, to take into account the time evolution, and to incorporate various physical effects which are unique to non-thermal plasmas. The hydrodynamics of fireballs in GRB's was studied before. Applying results from kinetic theory will improve our understanding of these systems.
Thermal stability of charged rotating quantum black holes
NASA Astrophysics Data System (ADS)
Sinha, Aloke Kumar; Majumdar, Parthasarathi
2017-12-01
Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Sanitising black water by auto-thermal aerobic digestion (ATAD) combined with ammonia treatment.
Nordin, Annika C; Vinnerås, Björn
2015-01-01
The effect of a two-step process on the concentration of pathogens and indicator microorganisms in black water (0.9-1% total solids) was studied. The treatment combined auto-thermal aerobic digestion (ATAD) and ammonia sanitisation. First, the temperature of the black water was increased through ATAD and when a targeted temperature was reached (33, 41 and 45.5 °C studied), urea was added to a 0.5% concentration (total ammonia nitrogen >2.9 g L⁻¹). Escherichia coli and Salmonella spp. were reduced to non-detectable levels within 3 days following urea addition at temperatures above 40 °C, whereas when urea was added at 33 °C E. coli was still present after 8 days. By adding urea at temperatures of 40 °C and above, a 5 log10 reduction in Enterococcus spp. and a 3 log10 reduction in Ascaris suum eggs was achieved 1 week after the addition. With combined ATAD and ammonia treatment using 0.5% ww urea added at an aerobic digestion temperature >40 °C, black water was sanitised regarding the pathogens studied in 2 weeks of total treatment time.
Geologic interpretation of HCMM and aircraft thermal data
NASA Technical Reports Server (NTRS)
1982-01-01
Progress on the Heat Capacity Mapping Mission (HCMM) follow-on study is reported. Numerous image products for geologic interpretation of both HCMM and aircraft thermal data were produced. These include, among others, various combinations of the thermal data with LANDSAT and SEASAT data. The combined data sets were displayed using simple color composites, principal component color composites and black and white images, and hue, saturation intensity color composites. Algorithms for incorporating both atmospheric and elevation data simultaneously into the digital processing for creation of quantitatively correct thermal inertia images, are in the final development stage. A field trip to Death Valley was undertaken to field check the aircraft and HCMM data.
Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Coles, James B.
2012-01-01
Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.
Characterization of PLA parts made with AM process
NASA Astrophysics Data System (ADS)
Spina, Roberto; Cavalcante, Bruno; Lavecchia, Fulvio
2018-05-01
The main objective of the presented work is to evaluate the thermal behavior of Poly-lactic acid (PLA) parts made with a Fused Deposition Modelling (FDM) process. By using a robust framework for the testing sequence of PLA parts, with the aim of establishing a standard testing cycle for the optimization of the part performance and quality. The research involves study the materials before and after 3D printing. Two biodegradable PLA polymers are investigated, characterized by different colors (one black and the other transparent). The study starts with the examination of each polymeric material and measurements of its main thermal properties.
Thermal evaporation and condensation synthesis of metallic Zn layered polyhedral microparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Waheed S.; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Usman, Zahid
2011-12-15
Highlights: Black-Right-Pointing-Pointer Zn polyhedral microparticles prepared by thermal evaporation and condensation route. Black-Right-Pointing-Pointer Vapour-solid process based growth model governs the formation of Zn microparticles. Black-Right-Pointing-Pointer A strong PL emission band is observed at 369 nm in UV region. Black-Right-Pointing-Pointer Radiative recombination of electrons in the s, p conduction band and the holes in the d bands causes this emission. -- Abstract: Metallic zinc layered polyhedral microparticles have been fabricated by thermal evaporation and condensation technique using zinc as precursor at 750 Degree-Sign C for 120 min and NH{sub 3} as a carrier gas. The zinc polyhedral microparticles with oblate sphericalmore » shape are observed to be 2-9 {mu}m in diameter along major axes and 1-7 {mu}m in thickness along minor axes. The structural, compositional and morphological characterizations were performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapour-solid (VS) mechanism based growth model has been proposed for the formation of Zn microparticles. Room temperature photoluminescence (PL) emission spectrum of the product exhibited a strong emission band at 369 nm attributed to the radiative recombination of electrons in the s, p conduction band near Fermi surface and the holes in the d bands generated by the optical excitation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Shanshan; Jing Xiaoyan; Liu Jingyuan
2013-01-15
Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo
2012-01-15
Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less
Microwavable thermal energy storage material
Salyer, I.O.
1998-09-08
A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.
Microwavable thermal energy storage material
Salyer, Ival O.
1998-09-08
A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.
Hawking radiation by Kerr black holes and conformal symmetry.
Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard
2010-11-19
The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.
Gamma ray astronomy and black hole astrophysics
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1990-01-01
The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.
Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon
2009-01-01
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 458.22 Section 458.22 Protection of Environment ENVIRONMENTAL PROTECTION... Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology...
Hawking radiation as tunneling in Schwarzschild anti-de Sitter black hole
NASA Astrophysics Data System (ADS)
Sefiedgar, A. S.; Ashrafinejad, A.
2017-08-01
The Hawking radiation from a (d+1) -dimensional Schwarzschild Anti-de Sitter (SAdS) black hole is investigated within rainbow gravity. Based on the method proposed by Kraus, Parikh and Wilczek, the Hawking radiation is considered as a tunneling process across the horizon. The emission rate of massless particles which are tunneling across the quantum-corrected horizon is calculated. Enforcing the energy conservation law leads to a dynamical geometry. Both the dynamical geometry and the quantum effects of space-time yield some corrections to the emission rate. The corrected radiation spectrum is not purely thermal. The emission rate is related to the changes of modified entropy in rainbow gravity and the corrected thermal spectrum may be consistent with an underlying unitary quantum theory. The correlations between emitted particles are also investigated in order to address the recovery of information.
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
Thermodynamic studies of different black holes with modifications of entropy
NASA Astrophysics Data System (ADS)
Haldar, Amritendu; Biswas, Ritabrata
2018-02-01
In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.
Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.
Chen, Jige; Chen, Shunda; Gao, Yi
2016-07-07
Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.
Approaches on calibration of bolometer and establishment of bolometer calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong
2015-10-01
Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.
The difference between radio-loud and radio-quiet active galaxies
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-01-01
The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.
Terrier Black Brant VC design characteristics and program status. [rocket development
NASA Technical Reports Server (NTRS)
Payne, B. R.; Mayo, E. E.
1979-01-01
In the present paper, the design analysis of the Terrier-Black Brant VC, representing the latest addition to the Black Brant rocket family, is discussed, including the aerodynamic, structural, thermal, and operational aspects. An appreciable increase in apogee, as compared to the BBVC and Nike/BBVC, is achieved without any modifications to the well-proven BBV motor or degradation of the thermal or dynamic flight environment.
NASA Astrophysics Data System (ADS)
Ali, M. Hossain; Sultana, Kausari
2013-08-01
In some recent derivations thermal characters of the inner horizon have been employed; however, the understanding of possible role that may play the inner horizons of black holes in black hole thermodynamics is still somewhat incomplete. Motivated by this problem we investigate Hawking radiation of the Reissner-Nordström-Taub-NUT (RNTN) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and the thin film brick wall model to calculate the temperature and the entropy of the inner horizon of the RNTN black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area, and it thus may contribute to the total entropy of the black hole in the context of Nernst theorem. Considering conservations of energy and charge and the back-reaction of emitting particles to the spacetime, the emission spectra are obtained for both the inner and outer horizons. The total emission rate is the product of the emission rates of the inner and outer horizons, and it deviates from the purely thermal spectrum and can bring some information out. Thus, the result can be treated as an explanation to the information loss paradox.
NASA Technical Reports Server (NTRS)
Bauer, J. L.
1987-01-01
An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.
Uncooled thin film pyroelectric IR detector with aerogel thermal isolation
Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.
1999-01-01
A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.
Discrete quantum spectrum of black holes
NASA Astrophysics Data System (ADS)
Lochan, Kinjalk; Chakraborty, Sumanta
2016-04-01
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Liu, Hong; Zheng, Jie; Liu, Pengzhan; Zeng, Fankui
2018-06-01
In this study, the effects of different pulverizing methods on the chemical attributes and thermal properties of black, white and green pepper were evaluated. Cryogenic grinding minimally damaged the lipid, moisture, crude protein, starch, non-volatile ether extract, piperine, essential oil and the typical pepper essential oil compounds of the spices. The pulverizing methods and storage significantly affected the compositions of the fatty acid in the peppers, except for palmitic acid and lignoceric acid. The amino acid contents and the thermo-gravimetric analysis curve were hardly influenced by the grinding techniques. The use of cryogenic grinding to prepare pepper ensured the highest quality of pepper products. Regardless of grinding technique, the values of moisture, piperine, unsaturated fatty acids, essential oil, monoterpenes, and the absolute concentrations of typical pepper essential oil constituents (except caryophyllene oxide) decreased, whereas the amino acid, lipid, protein, starch, and non-volatile ether extract content as well as the thermal properties were insignificantly changed after storage at 4 °C for 6 months.
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Momennia, Mehrab
2018-02-01
Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.
We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...
NASA Technical Reports Server (NTRS)
Stothers, R. B.; Ezer, D.
1972-01-01
Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.
Pyrolysis of polyolefins for increasing the yield of monomers' recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.
2012-05-15
Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.« less
Effect of thermal maturity on remobilization of molybdenum in black shales
NASA Astrophysics Data System (ADS)
Ardakani, Omid H.; Chappaz, Anthony; Sanei, Hamed; Mayer, Bernhard
2016-09-01
Molybdenum (Mo) concentrations in sedimentary records have been widely used as a method to assess paleo-redox conditions prevailing in the ancient oceans. However, the potential effects of post-depositional processes, such as thermal maturity and burial diagenesis, on Mo concentrations in organic-rich shales have not been addressed, compromising its use as a redox proxy. This study investigates the distribution and speciation of Mo at various thermal maturities in the Upper Ordovician Utica Shale from southern Quebec, Canada. Samples display maturities ranging from the peak oil window (VRo ∼ 1%) to the dry gas zone (VRo ∼ 2%). While our data show a significant correlation between total organic carbon (TOC) and Mo (R2 = 0.40, n = 28, P < 0.0003) at lower thermal maturity, this correlation gradually deteriorates with increasing thermal maturity. Intervals within the thermally overmature section of the Utica Shale that contain elevated Mo levels (20-81 ppm) show petrographic and sulfur isotopic evidence of thermochemical sulfate reduction (TSR) along with formation of recrystallized pyrite. X-ray Absorption Fine Structure spectroscopy (XAFS) was used to determine Mo speciation in samples from intervals with elevated Mo contents (>30 ppm). Our results show the presence of two Mo species: molybdenite Mo(IV)S2 (39 ± 5%) and Mo(VI)-Organic Matter (61 ± 5%). This new evidence suggests that at higher thermal maturities, TSR causes sulfate reduction coupled with oxidation of organic matter (OM). This process is associated with H2S generation and pyrite formation and recrystallization. This in turn leads to the remobilization of Mo and co-precipitation of molybdenite with TSR-derived carbonates in the porous intervals. This could lead to alteration of the initial sedimentary signature of Mo in the affected intervals, hence challenging its use as a paleo-redox proxy in overmature black shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detering, B.A.; Kong, P.C.; Thomas, C.P.
This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reducemore » the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.« less
Very-High Energy Processes in Black Hole Magnetosphere: the Case of M87
NASA Astrophysics Data System (ADS)
Vincent, Stephane
2014-03-01
M87 is a nearby radio galaxy that is detected at energies ranging from radio to very high energy (VHE) γ-rays. Its proximity and its jet, misaligned from our line of sight, enable detailed morphological studies. The detection of rapidly variable TeV emissions on timescale of 1 day implies a source of a few Schwarzschild radii RSch. The γ-ray telescopes cannot provide images with a sufficient resolution to localize the sites of the γ-ray production. However, both X-ray and radio observations have shown evidence that charged particles are accelerated in the immediate vicinity of the black hole closer than 100 RSch. We propose that the non-thermal particle acceleration and the VHE emission processes may occur in a pair-starved region of the black hole (BH) magnetosphere. We produce a broadband spectral energy distribution (SED) of the resulting radiation and compare the model with the observed fluxes from the nucleus of M87 for the high γ-ray activities.
Patterning of oxide-hardened gold black by photolithography and metal lift-off
NASA Astrophysics Data System (ADS)
Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.
Black hole as a point radiator and recoil effect on the brane world.
Frolov, Valeri; Stojković, Dejan
2002-10-07
A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.
Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon
2015-01-01
The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.
Light in Thermal Environments (LITE) Workshop
NASA Technical Reports Server (NTRS)
1993-01-01
Light emitted from high temperature black smokers (350 C) at mid-ocean ridge spreading centers has been documented, but the source of this light and its photochemical and biological consequences have yet to be investigated. Preliminary studies indicate that thermal radiation alone might account for the 'glow' and that a novel photoreceptor in shrimp colonizing black smoker chimneys may detect this 'glow.' A more controversial question is whether there may be sufficient photon flux of appropriate wavelengths to support geothermally-driven photosynthesis (GDP) by microorganisms. Although only a very low level of visible and near infrared light may be emitted from any single hydrothermal vent, several aspects of the light make it of more than enigmatic interest. First, the light is clearly linked to geophysical (and perhaps geochemical) processes; its attributes may serve as powerful index parameters for monitoring change in these processes. Second, while the glow at a vent orifice is a very local phenomenon, more expansive subsurface environments may be illuminated, thereby increasing the spatial scale at which biological consequences of this light might be considered. Third, in contrast to intermittent bioluminescent light sources in the deep sea, the light emitted at vents almost certainly glows or flickers continuously over the life of the individual black smokers (years to decades); collectively, light emitted from black smokers along the ocean's spreading centers superimposed on background Cerenkov radiation negates the concept of the deep sea as an environment devoid of abiotic light. Finally, the history of hydrothermal activity predates the origin of life; light in the deep sea has been a continuous phenomenon on a geological time scale and may have served either as a seed or refugium for the evolution of biological photochemical reactions or adaptations.
Results from a NIST-EPA Interagency Agreement on Understanding Systematic Measurement Error in Thermal-Optical Analysis for PM Black Carbon Using Response Surfaces and Surface Confidence Intervals will be presented at the American Association for Aerosol Research (AAAR) 24th Annu...
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Pan, Feng; Wu, Xin-Meng
2017-09-01
It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham-Gabadadze-Tolley (dRGT) massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T-E diagram is similar as the Schwarzschild black hole case. For the second case, a new T-E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.
Automation of disbond detection in aircraft fuselage through thermal image processing
NASA Technical Reports Server (NTRS)
Prabhu, D. R.; Winfree, W. P.
1992-01-01
A procedure for interpreting thermal images obtained during the nondestructive evaluation of aircraft bonded joints is presented. The procedure operates on time-derivative thermal images and resulted in a disbond image with disbonds highlighted. The size of the 'black clusters' in the output disbond image is a quantitative measure of disbond size. The procedure is illustrated using simulation data as well as data obtained through experimental testing of fabricated samples and aircraft panels. Good results are obtained, and, except in pathological cases, 'false calls' in the cases studied appeared only as noise in the output disbond image which was easily filtered out. The thermal detection technique coupled with an automated image interpretation capability will be a very fast and effective method for inspecting bonded joints in an aircraft structure.
The epoch of cosmic heating by early sources of X-rays
NASA Astrophysics Data System (ADS)
Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana
2018-05-01
Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.
NASA Technical Reports Server (NTRS)
Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.
1986-01-01
Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.
Soft gamma rays from black holes versus neutron stars
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1992-01-01
The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.
In thermal-optical analysis (TOA), particulate organic carbon (OC) as well as black carbon (BC) must be quantified. Both the BC that is native to the filter and instrument-produced OC char are products of incomplete combustion and have similar optical as well as chemical properti...
Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study
NASA Astrophysics Data System (ADS)
Devi, Anjna; Singh, Amarjeet
2018-04-01
In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-01
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness. PMID:28772480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology.
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-28
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness.
Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P
2003-07-01
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sockalingam, K., E-mail: gd130106@siswa.uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my
2015-07-22
Black tilapia (Oreochromis mossambicus) fish wastes (scales) were evaluated for its suitability as sources of gelatin. Scales were subjected to acid treatment for demineralization before it undergoes thermal extraction process. The raw scales were characterized via Scanning Electron Microscopy (SEM), which demarcated the cycloid pattern of the scales. SEM images also reveal the presence of collagen fiber in the fish scale. The black tilapia fish scales yields 11.88 % of gelatin, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw scale and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) andmore » proximate analysis. The scale gelatin shows high protein content (86.9 %) with low moisture (8.2 %) and ash (1.4 %). This further proves the effectiveness of the demineralization and extraction method used. The black tilapia fish scale is found to be a prospective source of gelatin with good chemical and functional properties.« less
Testing quantum gravity through dumb holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7
We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less
Recent advances in spacecraft thermal-control materials research.
NASA Technical Reports Server (NTRS)
Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.
1972-01-01
The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.
Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.
Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad
2018-04-18
Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.
X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek
1997-01-01
Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.
Charged black holes in quartic quasi-topological gravity
NASA Astrophysics Data System (ADS)
Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.
2018-05-01
In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.
X-ray-binary spectra in the lamp post model
NASA Astrophysics Data System (ADS)
Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.
2016-05-01
Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a result, instead of fluorescent iron emission line, we locally observe absorption lines produced in the hot disk atmosphere. Absorption lines are narrow and disappear after ray tracing the local spectrum. Conclusions: Our results mainly highlight the importance of considering the angle dependence of the local spectrum when computing reprocessed spectra, as was already found in a recent study. The main new result of our work is to show the importance of computing the thermal bump of the spectrum, as this feature can change considerably the observed iron-line complex. Thus, in particular for fitting black hole spins, the full spectrum, rather than only the reflected part, should be computed self-consistently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, H. C.; Oh, J.; Zhang, Y.
2012-06-01
We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements.more » Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.« less
Supermassive black holes and their feedback effects in the IllustrisTNG simulation
NASA Astrophysics Data System (ADS)
Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars
2018-06-01
We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 108.5 M⊙, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass - stellar bulge mass relation in good agreement with observations, whereas the simulation tends to over-predict the high-redshift quasar luminosity function.
Tunneling of Charged Massive Particles from Taub-NUT-Reissner-Nordström-AdS Black Holes
NASA Astrophysics Data System (ADS)
Ali, M. Hossain; Sultana, Kausari
2014-05-01
We apply the null-geodesic method to investigate tunneling radiation of charged and magnetized massive particles from Taub-NUT-Reissner-Nordström black holes endowed with electric as well as magnetic charges in Anti-de Sitter (AdS) spaces. The geodesics of charged massive particle tunneling from the black hole is not lightlike, but can be determined by the phase velocity. We find that the tunneling rate is related to the difference of Bekenstein-Hawking entropies of the black hole before and after the emission of particles. The entropy differs from just a quarter area at the horizon of black holes with NUT parameter. The emission spectrum is not precisely thermal anymore and the deviation from the precisely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle's energy and charges.
The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve
NASA Astrophysics Data System (ADS)
Hotta, Masahiro; Sugita, Ayumu
2015-12-01
The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.
NASA Astrophysics Data System (ADS)
Israel, W.
2006-07-01
The evaporation of a black hole formed by the collapse of matter is a nonunitary process involving loss of information. At least, this is how it appears in Hawking's semiclassical description, in which gravity is not quantized and the emergent radiation appears thermal. Since unitarity is one of the pillars of quantum mechanics there has been an understandable reluctance to accept this as an ironclad conclusion. Conformal field theories in flat space are manifestly unitary, and the AdS/CFT correspondence therefore suggests that the information trapped in the depths of the hole must find some way to escape—a conclusion almost universally accepted today, at least among particle theorists. Just how it could escape remains a mystery, however, since nothing can escape without violating causality until the black hole has shrunk too far to hold much information. Gerard 't Hooft and the senior author of this book, Leonard Susskind, have been vocal advocates of the view that the information paradox poses a real crisis for physics requiring significant paradigm shifts. They suggest that locality must be given up as an objective property of physical phenomena (even on large scales) and replaced by a new principle of 'black hole complementarity'. Specifically, there are two very different ways to view the process of collapse and evaporation. To a free-falling observer, nothing unusual happens at the horizon and matter and information fall deep into the hole. To a stationary observer hovering just outside the hole it appears instead that the matter and information are deposited on the horizon (which he experiences as very hot because of his large acceleration), to be eventually re-emitted from there as Hawking radiation. According to 't Hooft and Susskind, these must be viewed as equally valid, 'complementary' descriptions of the same process. Black hole complementarity is essentially the statement (supported by operational arguments) that their simultaneous validity cannot lead to inconsistencies. Students and non-specialists will welcome this book, which provides an entry into this fascinating realm at a level that can be enjoyed by an enterprising undergraduate. The first chapter introduces the Schwarzschild black hole and the various coordinate systems used for its description. In four brief chapters (29 pages) the authors then manage a clear presentation of the thermal properties of quantum fields in Rindler and Schwarzschild space that skirts the operator formalism of QFT. Two further chapters treat charged black holes and the stretched-horizon description of black hole electrodynamics. Chapter 8, 'The Laws of Nature', explains how information is quantified, the quantum xerox principle and the entanglement entropy of black holes, with a detailed account of how this evolves as the hole evaporates. This sets the stage for a discussion of the black hole information puzzle and the complementarity principle in chapter 9. The pace heats up in the second part of the book, which in 48 pages sketches a variety of topics: Bousso's entropy bound and holography, the AdS/CFT correspondence, a 13 page introduction to string theory and the ideas underlying the string-based derivations of the entropy area relation for higher-dimensional black holes. This well-planned, stimulating and sometimes provocative book can be enthusiastically recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Ming-Liang, E-mail: mingliang0301@163.com
Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initialmore » tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.« less
Thermal fluctuations of dilaton black holes in gravity's rainbow
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-06-01
In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.
One-loop transition amplitudes in the D1D5 CFT
NASA Astrophysics Data System (ADS)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-01-01
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.
Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field
NASA Astrophysics Data System (ADS)
Meng, Kun; Yang, Da-Bao
2018-05-01
In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.
Patterning of oxide-hardened gold black by photolithography and metal lift-off
Deep Panjwani; Mehmet Yesiltas; Janardan Nath; D.E. Maukonen; Imen Rezadad; Evan M. Smith; R.E. Peale; Carol Hirschmugl; Julia Sedlmair; Ralf Wehlitz; Miriam Unger; Glenn Boreman
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at
Dynamical thermalization in isolated quantum dots and black holes
NASA Astrophysics Data System (ADS)
Kolovsky, Andrey R.; Shepelyansky, Dima L.
2017-01-01
We study numerically a model of quantum dot with interacting fermions. At strong interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a regime of quantum chaos. We show that above the Åberg threshold for interactions there is an onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of dynamical thermalization with the entropy described by the quantum Gibbs distribution. This dynamical thermalization takes place in an isolated system without any contact with a thermostat. We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold ions in optical lattices.
Hroncová, Emília; Ladomerský, Juraj; Musil, Juraj
2018-03-01
Currently, it is necessary to deal with issues related to the emissions as there is a constantly increasing interest in combusting sludge from sewage treatment plants in the boilers for wood. An analysis of the energetic importance of the combustion of sewage sludge has already been carried out, but the effects of various treatments of the sludge are not always clear, e.g. composting and subsequent combustion to the air pollution. Investments in other thermal processes of energetic utilisation of sewage sludge and organic waste are not always successfully implemented. The objective of this paper is to point out some problematic cases for acceptance of thermal processes related to energetic use of waste in terms of the air protection. The other aim is to mention the experience with solutions of such issues in Slovakia. There are mentioned first results of the operational validation experiments during the energy generation in circulating fluidized bed boiler in peaking power plant (Power 110MW) with the addition of the so-called alternative fuel based on wood and sewage sludge to the main fuel - black coal (anthracite). And there has already been achieved the highest share of 12.4%w. (dry matter) of sewage sludge in form of compost in blend with black coal, which is technologically viable. Moreover analyzed the problems of the authorization and operation of the co-combustion of sewage sludge and of combustion of products of various kinds of pyrolysis waste - pyrolysis gas and pyrolysis oil are analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, A.; Villanueva, R.; Vie, D.
2013-01-15
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less
On non-linear magnetic-charged black hole surrounded by quintessence
NASA Astrophysics Data System (ADS)
Nam, Cao H.
2018-06-01
We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, R. L.
1976-06-14
Program GRAY is written to perform the matrix manipulations necessary to convert black-body radiation heat-transfer view factors to gray-body view factors as required by thermal analyzer codes. The black-body view factors contain only geometric relationships. Program GRAY allows the effects of multiple gray-body reflections to be included. The resulting effective gray-body factors can then be used with the corresponding fourth-power temperature differences to obtain the net radiative heat flux. The program is written to accept a matrix input or the card image output generated by the black-body view factor program CNVUFAC. The resulting card image output generated by GRAY ismore » in a form usable by the TRUMP thermal analyzer.« less
The ESTE test program measured the mold resistance of Armacell AP Armaflex Black insulation. Tests for emissions of VOCs and formaldehyde were also performed. AP Armaflex Roll Insulation is a black flexible closed-cell, fiber-free elastomeric thermal insulation. The expanded clos...
Kim, Sung-Youn; Sagong, Hun-Gu; Choi, Sang Ho; Ryu, Sangryeol; Kang, Dong-Hyun
2012-02-01
The efficacy of radio-frequency (RF) heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice was investigated. A 27.12 MHz RF heating system consisted of two parallel-plate electrodes was used, with the sample being placed between them. Black peppers (whole and ground) and red peppers (+ 16 mesh, -16 + 25 mesh, and -25 mesh) inoculated with S. Typhimurium and E. coli O157:H7 were treated with RF energy during 50s for black peppers and 40s for red peppers, and color change of samples was evaluated after treatment. RF heating for 50s resulted in 2.80 to 4.29 log CFU/g reductions of S. Typhimurium and E. coli O157:H7 in black peppers and RF heating of red peppers for 40s reduced pathogens by 3.38 log CFU/g to more than 5 log CFU/g (below the detection limit) without affecting the color quality change. The results suggest that RF heating has the potential for novel thermal process to control foodborne pathogens in spice. Copyright © 2011 Elsevier B.V. All rights reserved.
The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic.
Yuan, Heng; Sun, Linjuan; Chen, Min; Wang, Jun
2016-07-01
Black garlic is produced through thermal processing and is used as a healthy food throughout the world. Compared with fresh garlic, there are obvious changes in the color, taste, and biological functions of black garlic. To analyze and explain these changes, the contents of water-soluble sugars, fructan, and the key intermediate compounds (Heyns and Amadori) of the Maillard reaction in fresh raw garlic and black garlic were investigated, which were important to control and to evaluate the quality of black garlic. The results showed that the fructan contents in the black garlics were decreased by more than 84.6% compared with the fresh raw garlics, which translated into changes in the fructose and glucose contents. The water-soluble sugar content was drastically increased by values ranging from 187.79% to 790.96%. Therefore, the taste of the black garlic became very sweet. The sucrose content in black garlic was almost equivalent to fresh garlic. The Amadori and Heyns compounds were analyzed by HPLC-MS/MS in multiple reaction monitoring mode using the different characteristic fragment ions of Heyns and Amadori compounds. The total content of the 3 main Amadori and 3 Heyns compounds in black garlic ranged from 762.53 to 280.56 μg/g, which was 40 to 100-fold higher than the values in fresh raw garlic. This result was significant proof that the Maillard reaction in black garlic mainly utilized fructose and glucose, with some amino acids. © 2016 Institute of Food Technologists®
Fermo, Paola; Turrion, Raquel Gonzalez; Rosa, Mario; Omegna, Alessandra
2015-04-01
The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon-TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.
Alumoxanes: Rationalization of Black Box Materials
1993-05-18
complexes for the synthesis of polyketones , ICH2CH(R)C(O)in. The activity observed is comparable to commercial systems but without the instability issues...see below). Commercial samples of polyketones suffer from severe thermal decomposition during melt processing. The Patent literature describes the...as well as the structure and molecular weight of the polymer. We intend to further our work with the catalytic synthesis of polyketones . We will
NASA Astrophysics Data System (ADS)
Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair
2018-05-01
In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.
Hawking radiation of charged Dirac particles from a Kerr-Newman black hole
NASA Astrophysics Data System (ADS)
Zhou, Shiwei; Liu, Wenbiao
2008-05-01
Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.
The effects of solar radiation and black body re-radiation on thermal comfort.
Hodder, Simon; Parsons, Ken
2008-04-01
When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.
40 CFR 458.26 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...
40 CFR 458.26 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal... pollutant property-Oil and grease. Pretreatment standard-100mg/liter. [60 FR 33972, June 29, 1995] ...
Thermalization of Wightman functions in AdS/CFT and quasinormal modes
NASA Astrophysics Data System (ADS)
Keränen, Ville; Kleinert, Philipp
2016-07-01
We study the time evolution of Wightman two-point functions of scalar fields in AdS3 -Vaidya, a spacetime undergoing gravitational collapse. In the boundary field theory, the collapse corresponds to a quench process where the dual 1 +1 -dimensional CFT is taken out of equilibrium and subsequently thermalizes. From the two-point function, we extract an effective occupation number in the boundary theory and study how it approaches the thermal Bose-Einstein distribution. We find that the Wightman functions, as well as the effective occupation numbers, thermalize with a rate set by the lowest quasinormal mode of the scalar field in the BTZ black hole background. We give a heuristic argument for the quasinormal decay, which is expected to apply to more general Vaidya spacetimes also in higher dimensions. This suggests a unified picture in which thermalization times of one- and two-point functions are determined by the lowest quasinormal mode. Finally, we study how these results compare to previous calculations of two-point functions based on the geodesic approximation.
Thermally Altered Silurian Cyanobacterial Mats: A Key to Earth's Oldest Fossils
NASA Astrophysics Data System (ADS)
Kazmierczak, Józef; Kremer, Barbara
2009-10-01
Diagenetic changes in thermally altered cyanobacterial mats from early Silurian black radiolarian cherts of southwestern Poland (Bardzkie Montains, Sudetes) have been studied. These early diagenetically silicified mats are composed of variously degraded remains of benthic microbes that resemble some modern chroococcalean and pleurocapsalean cyanobacteria. Two modes of degradational processes have been recognized in the studied mats: (i) early postmortem biodegradation and (ii) late diagenetic thermal or thermobaric degradation. The latter led to partial transformation of the fossilized organic remnants of cyanobacterial sheaths and capsules, which resulted in the formation of objects morphologically distant from the original microbiota but preserved features that allow for their identification as bona fide biogenic structures. Some of these thermally generated Silurian fossils are highly similar to the controversial microfossil-like carbonaceous structures described from the Early Archean Apex Chert of Australia. This similarity opens a promising way for credible recognition of remnants of cyanobacteria and similar microbiota in other thermally metamorphosed Archean sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sockalingam, K., E-mail: gd130106@siswa.uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my
Black tilapia (Oreochromis mossambicus) fish head bones were evaluated for its possibilities in extracting gelatin. Head bones were subjected to pre-treatment with 3% of hydrochloric acid (HCl) for demineralization before undergoes thermal extraction process. The raw head bones were characterized via Scanning Electron Microscopy (SEM) in order to investigate the external and internal surface morphology. SEM images also reveal the presence of collagen fiber with 1 µm diameter in the head bone. The black tilapia fish head bones yields 5.75 % of gelatin in wet weight basis, indicating the possibility of this fish species as sources of gelatin. Further characterizations weremore » done on both raw head bones and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The head bones gelatin shows high protein (10.55%) and ash (3.11 %) content with low moisture. This further proves the effectiveness of demineralization and extraction method used. The black tilapia fish head bones are found to be a prospective source of gelatin with good chemical and functional properties.« less
Characterization of cellulosic wastes and gasification products from chicken farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan
Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less
NASA Astrophysics Data System (ADS)
Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa
2016-12-01
The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.
Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa
2016-12-01
The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s -1 ), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m -2 . Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.
Extremal noncommutative black holes as dark matter furnaces
NASA Astrophysics Data System (ADS)
Kawamoto, Shoichi; Wei, Chun-Yu; Wen, Wen-Yu
2017-09-01
In this paper, we consider dark matter annihilation in the gravitational field of noncommutative black holes. Instead of a violent fate predicted in the usual Hawking radiation, we propose a thermal equilibrium state where a mildly burning black hole relic is fueled by dark matter accretion at the final stage of evaporation.
A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster
NASA Astrophysics Data System (ADS)
Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.
2018-06-01
A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.
NASA Astrophysics Data System (ADS)
Parentani, Renaud; Spindel, Philippe
2011-12-01
Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.
Observing the Super-Massive Black Hole of the Galactic center with Simbol-X .
NASA Astrophysics Data System (ADS)
Goldwurm, A.
The Center of our Galaxy is one of the prime objective of the Simbol-X mission. This region of several square degrees around the dynamical center of the galaxy hosts a large variety of high energy sources and violent phenomena that involve different non-thermal processes contributing to the hard X-ray emission from the region. Here we present in detail the case for the observation of Sgr A*, the super-massive black hole of the galactic nucleus, with Simbol-X, stressing on the presently open questions and on the crucial measurements that will be performed in the hard X-ray domain with this formation-flying hard X-ray focussing telescope expected to flight in the next decade.
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-02-01
Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.
Image based performance analysis of thermal imagers
NASA Astrophysics Data System (ADS)
Wegner, D.; Repasi, E.
2016-05-01
Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.
Influence of weather conditions on the flight of migrating black storks
Chevallier, D.; Handrich, Y.; Georges, J.-Y.; Baillon, F.; Brossault, P.; Aurouet, A.; Le Maho, Y.; Massemin, S.
2010-01-01
This study tested the potential influence of meteorological parameters (temperature, humidity, wind direction, thermal convection) on different migration characteristics (namely flight speed, altitude and direction and daily distance) in 16 black storks (Ciconia nigra). The birds were tracked by satellite during their entire autumnal and spring migration, from 1998 to 2006. Our data reveal that during their 27-day-long migration between Europe and Africa (mean distance of 4100 km), the periods of maximum flight activity corresponded to periods of maximum thermal energy, underlining the importance of atmospheric thermal convection in the migratory flight of the black stork. In some cases, tailwind was recorded at the same altitude and position as the birds, and was associated with a significant rise in flight speed, but wind often produced a side azimuth along the birds' migratory route. Whatever the season, the distance travelled daily was on average shorter in Europe than in Africa, with values of 200 and 270 km d−1, respectively. The fastest instantaneous flight speeds of up to 112 km h−1 were also observed above Africa. This observation confirms the hypothesis of thermal-dependant flight behaviour, and also reveals differences in flight costs between Europe and Africa. Furthermore, differences in food availability, a crucial factor for black storks during their flight between Europe and Africa, may also contribute to the above-mentioned shift in daily flight speeds. PMID:20427337
Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.
Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P
2017-10-01
Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hawking Tunneling Radiation of Black Holes in de Sitter and ANTI-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Li, Hui-Ling; Yang, Shu-Zheng; Chen, De-You
Applying Parikh-Wilczek's semiclassical quantum tunneling method, we investigate the tunneling radiation characteristics of a torus-like black hole and Kerr-Newman-Kausya de Sitter black hole. Both black holes have the cosmological constant Λ, but a torus-like black hole is in anti-de Sitter spacetime and the other black hole is in de Sitter spacetime. The derived results show that the tunneling rate is related to the change of Bekenstein-Hawking entropy, and the factual radiated spectrum is not precisely thermal, but is consistent with an underlying unitary theory, which gives a might explanation to the paradox of black hole information lost.
One-loop transition amplitudes in the D1D5 CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed of the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. Wemore » consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coeffcients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.« less
One-loop transition amplitudes in the D1D5 CFT
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-01-02
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed of the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. Wemore » consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coeffcients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.« less
NASA Astrophysics Data System (ADS)
Ali, M. Hossain; Sultana, Kausari
2013-12-01
We investigate Hawking radiation of electrically and magnetically charged Dirac particles from a dyonic Kerr-Newman-Kasuya-Taub-NUT-Anti-de Sitter (KNKTN-AdS) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and membrane method to calculate the temperature and the entropy of the inner horizon of the KNKTN-AdS black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area. The inner horizon entropy contributes to the total entropy of the black hole in the context of Nernst theorem. Considering conservation of energy, charges, angular momentum, and the back-reaction of emitting particles to the spacetime, we obtain the emission spectra for both the inner and outer horizons. The total emission rate is obtained as the product of the emission rates of the inner and outer horizons. It deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor and can bring some information out. The result thus can be treated as an explanation to the information loss paradox.
Determination of the thermal and physical properties of black tattoo ink using compound analysis.
Humphries, Alexander; Lister, Tom S; Wright, Philip A; Hughes, Michael P
2013-07-01
Despite the widespread use of laser therapy in the removal of tattoos, comparatively little is known about its mechanism of action. There is a need for an improved understanding of the composition and thermal properties of the tattoo ink in order that simulations of laser therapy may be better informed and treatment parameters optimised. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry identified that the relative proportions of the constituent compounds of the ink likely to exist in vivo are the following: carbon black pigment (89 %), carvacrol (5 %), eugenol (2 %), hexenol (3 %) and propylene glycol (1 %). Chemical compound property tables identify that changes in phase of these compounds lead to a considerable reduction in the density and thermal conductivity of the ink and an increase in its specific heat as temperature increases. These temperature-dependent values of density, thermal conductivity and specific heat are substantially different to the constant values, derived from water or graphite at a fixed temperature, which have been applied in the simulations of laser therapy as previously described in the literature. Accordingly, the thermal properties of black tattoo ink described in this study provide valuable information that may be used to improve simulations of tattoo laser therapy.
NASA Astrophysics Data System (ADS)
Wang, Zhili; Wang, Qiuyan; Zhang, Hua
2017-12-01
We used an online aerosol-climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea-land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea-land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea-land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.
NASA Astrophysics Data System (ADS)
Saputra, Asep Handaya; Sungkar, Faraj
2017-11-01
Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.
Seawater Circulation and Thermal Sink at OCEAN Ridges - FIELD Evidence in Oman Ophiolite
NASA Astrophysics Data System (ADS)
Nicolas, A. A.; Boudier, F. I.; Cathles, L. M.; Buck, W. R.; Celerier, B. P.
2014-12-01
Exceptionally, the lowermost gabbros in the Oman ophiolite are black and totally fresh, except for minute traces of impregnation by seawater fluids at very high temperature (~1000°C). These black gabbros sharply contrast with normal, whitish gabbros altered down to Low-T~500-350°C. These hydrous alterations are ascribed to an unconventional model of seawater circulation and cooling of the permanent magma chambers of fast spreading ocean ridges. In this model, gabbros issued from the magma chamber cross a ~100 m thick thermal boundary layer (TBL) before reaching a narrow, Low-T high permeability channel where the heated return seawater is flowing towards black smokers and the local gabbros are altered. Uprising mantle diapirs in Oman diverge at ~5 km on each side of the palaeo-ridge axis and feed an overlying magma chamber that closes at this distance from axis. Preservation of black gabbros along the Moho implies that the loop of seawater alteration locally does not reach Moho beyond this ~5km distance (otherwise black gabbros would be altered in whitish gabbros). This defines an internal "thermal sink" within ~5 km to the ridge axis. There, the sink is efficiently cooled by the active hydrothermal convection that is ridge transverse. This has been documented near the Galapagos ridge by marine geophysical data, within the same distance. Beyond this critical distance, the cooling system becomes dominantly conductive and ridge-parallel. The TBL and attached return flow channels must be rising into the overcooled, accreted crust. Beyond the thermal sink, the 500°C isotherm rebounds into the crust. It is only after ~ 1My of crustal drift that this isotherm penetrates into the uppermost mantle in a sustained fashion, developing serpentinites at the expense of peridotites.
Tong, Da-Peng; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming
2018-02-01
This paper studied the inhibition of water extract of natural or baked black tea on the activity of α-amylase and α- glucosidase. Baking treatment was found to be one effective way to enhance the inhibition of black tea on both α-amylase and α- glucosidase, and IC 50 of water extract of baked black tea (BBTWE) were 1.213mg/mL and 4.190mg/mL, respectively, while IC 50 of water extract of black tea (BTWE) were 1.723mg/mL and 6.056mg/mL, respectively. This study further studied the mechanism of the effect of water extract on α-amylase and α- glucosidase using HPLC, circular dichroism, and synchronous fluorescence. HPLC analysis of tea polyphenols showed that the content of tea polyphenols with low polarity increased after baking. In addition, BBTWE had higer abilty on decreasing the hydrophobicity of tryptophan residues than BTWE for both α-amylase and α- glucosidase.The increase of α-helix proportion of α-amylase when treated with BBTWE was more obvious than that when treated with BTWE. In a word, thermal process of baked foods may be beneficial for tea polyphenols to reduce the rate of starch digestion. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental controls on sap flow in black locust forest in Loess Plateau, China.
Ma, Changkun; Luo, Yi; Shao, Mingan; Li, Xiangdong; Sun, Lin; Jia, Xiaoxu
2017-10-13
Black locust accounts for over 90% of artificial forests in China's Loess Plateau region. However, water use of black locust is an uphill challenge for this semi-arid region. To accurately quantify tree water use and to explain the related hydrological processes, it is important to collect reliable data for application in the estimation of sap flow and its response to environmental factors. This study measured sap flow in black locust in the 2015 and 2016 growth seasons using the thermal dissipation probes technique and laboratory-calibrated Granier's equation. The study showed that the laboratory calibrated coefficient α was much larger than the original value presented by Granier, while the coefficient β was similar to the original one. The average daily transpiration was 2.1 mm day -1 for 2015 and 1.6 mm day -1 for 2016. Net solar radiation (Rn) was the key meteorological factor controlling sap flow, followed by vapor pressure deficit (VPD) and then temperature (T). VPD had a threshold control on sap flow at threshold values of 1.9 kPa for 2015 and 1.6 kPa for 2016. The effects of diurnal hysteresis of Rn, VPD and T on sap flow were evident, indicating that black locust water use was conservative.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Hagopian, John G.; Getty, Stephanie; Kinzer, Raymond (Robin) E., Jr.; Wollack, Edward
2011-01-01
Recent visible wavelength observations of Multiwalled Carbon Nanotubes (MWCNT) coatings have revealed that they represent the blackest materials known in nature with a Total Hemispherical Reflectance (THR) less than .25%. This makes them as exceptionally good absorbers, with the potential to provide order-of-magnitude improvement in stray-light suppression over current black surface treatments when used in an optical system. Here we extend the characterization of this class of materials into the infrared spectral region to further evaluate their potential for use on instrument baffles for stray-light suppression and to manage spacecraft thermal properties to dissipate heat through radiant heat transfer process. These characterizations will include the wavelength-dependent Total Hemispherical Reflectance properties in the mid-IR and far-infrared spectral regions (2-100 micrometers). Determination of the temperature-dependent emittance will be investigated in the temperature range of 20 to 300 K. These results will be compared against other more conventional black coatings such as Acktar Fractal Black or Z-306 coatings among others.
Electronic and Thermal Properties of Puckered Orthorhombic Materials
NASA Astrophysics Data System (ADS)
Fei, Ruixiang
Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in-plane polarization. We have developed an effective mean-field method for Monte Carlo simulations to calculate the phase transition of ferroelectricity. Moreover, we point out that the piezoelectric effect of these monolayer materials is dramatically enhanced, and the piezoelectric coefficient is about two orders of magnitude larger than that of other 2D and bulk materials. In the last part of thesis, we study the topological phase transition in compressed black phosphorus. In this study, we use the k · p model to figure out the quantum phase transition of black phosphorus from a normal insulator to a Dirac nodal line semimetal. Via the low-energy effective Hamiltonian, a novel "pseudo-spin-orbit" coupling mechanism is proposed to explain such a phase transition in this material with the mirror symmetry. By first principles simulations, we predict that applying a moderate uniaxial or hydrostatic pressure (>0.6 GPa) on bulk or multilayer black phosphorus can diminish its bandgap and produce two-dimensional Dirac cones, which has been confirmed by recent experiments.
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; Zhao, Xiujian
2018-01-01
Black phosphorus, which is a relatively rare allotrope of phosphorus, was first discovered by Bridgman in 1914. Since the advent of two-dimensional (2D) black phosphorus (which is known as phosphorene due to its resembling graphene sheets) in early 2014, research interest in the arena of black phosphorus was reignited in the scientific and technological communities. Henceforth, a myriad of research studies on this new member of the 2D world have been extensively emerged. Fascinatingly, 2D black phosphorus exhibits a distinctive wrinkled structure with the high hole mobility up to 1000 cm2 V-1 s-1, excellent mechanical properties, tunable band structures, anisotropic thermal, electrical and optical properties, thus leading to its marvelous prospects in device applications. This review firstly introduces the state-of-the-art development, structural properties and preparation routes of black phosphorus. In particular, anisotropy involved in mechanical properties, thermal conductivity, carrier transport as well as optical properties is comprehensively discussed. Apart from discussing the recent progress in black phosphorus which is applied to devices (i.e. field effect transistors and optoelectronic), the review also highlights the bottlenecks encountered by the society and finally casts an invigorating perspective and insightful outlook on the future direction of the next-generation 2D black phosphorus by harnessing its remarkable characteristics for energy production.
Bhawamai, Sassy; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa
2016-01-01
Evidence on biological activities of cooked black rice is limited. This study examined the effects of washing and cooking on the bioactive ingredients and biological activities of black rice. Cooked rice was prepared by washing 0-3 times followed by cooking in a rice cooker. The acidic methanol extracts of raw and cooked rice were used for the analyses. Raw black rice, both washed and unwashed, had higher contents of polyphenols, anthocyanins, and cyanidin-3-glucoside (C3G), but lower protocatechuic acid (PA), than did cooked samples. Similarly, raw rice extracts were higher in ferric-reducing antioxidant power (FRAP) activities than extracts of cooked samples. Nonetheless, extracts of raw and cooked rice showed similar inhibitory potencies on nitric oxide, tumor necrosis factor-α, and interleukin-6 productions in lipopolysaccharide-activated macrophages, whereas equivalent amounts of C3G and PA did not possess such inhibitory effects. Thermal cooking decreased total anthocyanin and C3G contents and the FRAP antioxidative capacity, but did not affect anti-inflammatory activities of black rice. Neither C3G nor PA contributed to the anti-inflammatory activity of black rice.
On the Role and Origin of Nonthermal Electrons in Hot Accretion Flows
NASA Astrophysics Data System (ADS)
Niedźwiecki, Andrzej; Stȩpnik, Agnieszka; Xie, Fu-Guo
2015-02-01
We study the X-ray spectra of tenuous, two-temperature accretion flows using a model involving an exact, Monte Carlo computation of the global Comptonization effect as well as a general relativistic description of both the flow structure and radiative processes. In our previous work, we found that in flows surrounding supermassive black holes, thermal synchrotron radiation is not capable of providing a sufficient seed photon flux to explain the X-ray spectral indices as well as the cut-off energies measured in several best-studied active galactic nuclei (AGNs). In this work, we complete the model by including seed photons provided by nonthermal synchrotron radiation and we find that it allows us to reconcile the hot flow model with the AGN data. We take into account two possible sources of nonthermal electrons. First, we consider e ± produced by charged-pion decay, which should always be present in the innermost part of a two-temperature flow due to proton-proton interactions. We find that for a weak heating of thermal electrons (small δ) the synchrotron emission of pion-decay e ± is much stronger than the thermal synchrotron emission in the considered range of bolometric luminosities, L ~ (10-4-10-2) L Edd. The small-δ model including hadronic effects, in general, agrees with the AGN data, except for the case of a slowly rotating black hole and a thermal distribution of protons. For large δ, the pion-decay e ± have a negligible effect and, in this model, we consider nonthermal electrons produced by direct acceleration. We find an approximate agreement with the AGN data for the fraction of the heating power of electrons, which is used for the nonthermal acceleration η ~ 0.1. However, for constant η and δ, the model predicts a positive correlation of the X-ray spectral index with the Eddington ratio, and hence a fine tuning of η and/or δ with the accretion rate is required to explain the negative correlation observed at low luminosities. We note a significant difference between the dependence of plasma parameters, T e and τ, on the Eddington ratio that is predicted by the large- and small-δ models. This may be the key property allowing for the estimation of the value of δ. However, a precise measurement of the spectral cut-off is required, and we note that differences between results available in the literature are similar in magnitude to the difference between the model predictions. In flows surrounding stellar-mass black holes, the synchrotron emission of pion-decay e ± exceeds the thermal synchrotron only above ~0.01 L Edd. Furthermore, in such flows, the nonthermal synchrotron radiation is emitted at energies of >~ 1 keV, and therefore the Compton cooling is less efficient than in flows surrounding supermassive black holes. This may explain spectral differences between AGNs and black-hole transients around ~0.01 L Edd (the latter being typically much harder).
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Watson, M.; Fuerst, S.; Wu, K.; Hardee, P.; Fishman, G. J.
2007-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous code. The simulation results show the jet formations from a geometrically thin accretion disk near a nonrotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field configuration including issues for future research. A General Relativistic Particle-in-Cell Code (GRPIC) has been developed using the Kerr-Schild metric. The code includes kinetic effects, and is in accordance with GRMHD code. Since the gravitational force acting on particles is extreme near black holes, there are some difficulties in numerically describing these processes. The preliminary code consists of an accretion disk and free-falling corona. Results indicate that particles are ejected from the black hole. These results are consistent with other GRMHD simulations. The GRPIC simulation results will be presented, along with some remarks and future improvements. The emission is calculated from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by GRMHD simulations considering thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We would like to extend this research using GRPIC simulations and examine a possible new mechanism for certain X-ray quasi-periodic oscillations (QPOs) observed in blackhole X-ray binaries.
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less
Rowe, John W; Clark, David L; Mortensen, Rebecca A; Commissaris, Carolyn V; Wittle, Lawrence W; Tucker, John K
2016-10-01
Color and pigmentation patterns of the integument can facilitate crypsis, thermoregulation, and social signaling. According to the "thermal melanism hypothesis", cold environmental temperature should increase the quantity of melanin that is deposited in the integument thereby facilitating radiative warming. We studied the influences of water temperature (26°C or 31°C) and substrate color (black or white) on the degree of melanization in the red-eared slider, Trachemys scripta elegans, under laboratory conditions. Turtles reared on a black substrate, or in 26°C water, for 120 days were darker than those reared on a white substrate or in 31°C water. A potential tradeoff between the fitness benefits of crypsis and the benefits of radiative warming through melanism was detected because turtles reared in 26°C water and on a white substrate were darker than those reared on a white substrate and in 31°C water. Low temperatures limited metabolic processes because turtles reared in 26°C water grew more slowly than those reared in 31°C water. However, histological analyses revealed that melanization was a dynamic process in all treatments confirming that the degree of melanization in the cool water treatment was not influenced by the initial and relatively dark hatchling coloration in individuals that grew relatively slowly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verification of surface preparation for adhesive bonding
NASA Technical Reports Server (NTRS)
Myers, Rodney S.
1995-01-01
A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.
Aerospace video imaging systems for rangeland management
NASA Technical Reports Server (NTRS)
Everitt, J. H.; Escobar, D. E.; Richardson, A. J.; Lulla, K.
1990-01-01
This paper presents an overview on the application of airborne video imagery (VI) for assessment of rangeland resources. Multispectral black-and-white video with visible/NIR sensitivity; color-IR, normal color, and black-and-white MIR; and thermal IR video have been used to detect or distinguish among many rangeland and other natural resource variables such as heavy grazing, drought-stressed grass, phytomass levels, burned areas, soil salinity, plant communities and species, and gopher and ant mounds. The digitization and computer processing of VI have also been demonstrated. VI does not have the detailed resolution of film, but these results have shown that it has considerable potential as an applied remote sensing tool for rangeland management. In the future, spaceborne VI may provide additional data for monitoring and management of rangelands.
Formation resistivity as an indicator of oil generation in black shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hester, T.C.; Schmoker, J.W.
1987-08-01
Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.
2017-10-01
Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.
A microscopic description of black hole evaporation via holography
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
2016-07-19
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
A microscopic description of black hole evaporation via holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
Dennis, L.W.; Maciel, G.E.; Hatcher, P.G.; Simoneit, B.R.T.
1982-01-01
Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500??C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration. ?? 1982.
Maqbool, Qysar; Srivastava, Aasheesh
2017-10-09
Coloured TiO 2 is coveted for its ability to extract energy from the visible region of electromagnetic spectrum. Here a facile synthesis of black anatase titania microspheres (B-TiO 2 ) through a two-step process is reported. In the first step, amorphous white TiO 2 microspheres (W-TiO 2 ) are obtained by hydrolysing titanium tetraisopropoxide by ammonia vapours in ethanol. In the second step, the W-TiO 2 is thermally annealed at 500 °C to obtain B-TiO 2 . The diffuse reflectance analysis showed that B-TiO 2 absorbs across visible spectrum with absorption extending well into NIR region. Raman scattering together with EPR analysis showed compelling evidence of the existence of oxygen deficiency within the crystal in B-TiO 2 that induces black colouration in the sample. The defects present in the black anatase sample were confirmed to be single-electron-trapped (or paramagnetic) oxygen vacancies (V o ⋅) by XPS and EPR studies. The magnetic susceptibility studies showed existence of antiferromagnetic interactions between these unpaired electron spins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.
Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh
2009-11-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.C.; Lee, W.J.; Shih, S.I.
2009-07-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less
NASA Astrophysics Data System (ADS)
Ng, Keith K.; Mann, Robert B.; Martín-Martínez, Eduardo
2017-10-01
The RP3 geon and the Schwarzschild black hole are two black hole spacetimes which differ only behind the event horizon. We show that the thermal Hawking radiation emanating from the two black holes contains nontrivial correlations, that these correlations contain information about their interiors, and demonstrate that a particle detector can recover these correlations. In this manner, a simple particle detector can determine the structure behind the event horizon of an eternal black hole.
Hawking temperature of rotating charged black strings from tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk
2011-11-01
Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.
Water-evaporation-induced electricity with nanostructured carbon materials.
Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin
2017-05-01
Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.
Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam
2015-12-01
Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.
Black hole formation in a contracting universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca
We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales,more » and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.« less
NASA Astrophysics Data System (ADS)
Haldar, Amritendu; Biswas, Ritabrata
2018-06-01
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.
Physicochemical properties of black pepper (Piper nigrum) starch.
Zhu, Fan; Mojel, Reuben; Li, Guantian
2018-02-01
Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Investigation of Stress Dependent Atomic Oxygen Erosion of Black Kapton Observed on MISSE 6
NASA Astrophysics Data System (ADS)
Miller, Sharon K. R.; Banks, Bruce A.; Sechkar, Edward
Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films, typical of those used for thermal control blankets or supporting membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to determine the magnitude of the stress and erosion dependence using a ground-based thermal energy atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors present in LEO that cause stress dependent erosion.
An Investigation of Stress Dependent Atomic Oxygen Erosion of Black Kapton Observed on MISSE 6
NASA Technical Reports Server (NTRS)
Miller, Sharon K. R.; Banks, Bruce A.; Sechkar, Edward
2012-01-01
Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films, typical of those used for thermal control blankets or supporting membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to determine the magnitude of the stress and erosion dependence using a ground-based thermal energy atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors present in LEO that cause stress dependent erosion.
Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials
NASA Technical Reports Server (NTRS)
Viehmann, W.; Predmore, R. E.
1987-01-01
Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.
NASA Astrophysics Data System (ADS)
Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong
2018-03-01
Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.
Unthermal Hawking Radiation from a General Stationary Black Hole
NASA Astrophysics Data System (ADS)
Zhang, Yong-Ping; Dai, Qian; Liu, Wen-Biao
2008-02-01
Using Damour Ruffini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it
Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less
A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California
Clynne, M.A.
1999-01-01
The eruption of Lassen Peak in May 1915 produced four volcanic rock types within 3 days, and in the following order: (1) hybrid black dacite lava containing (2) undercooled andesitic inclusions, (3) compositionally banded pumice with dark andesite and light dacite bands, and (4) unbanded light dacite. All types represent stages of a complex mixing process between basaltic andesite and dacite that was interrupted by the eruption. They contain disequilibrium phenocryst assemblages characterized by the co-existence of magnesian olivine and quartz and by reacted and unreacted phenocrysts derived from the dacite. The petrography and crystal chemistry of the phenocrysts and the variation in rock compositions indicate that basaltic andesite intruded dacite magma and partially hybridized with it. Phenocrysts from the dacite magma were reacted. Cooling, cyrstallization, and vesiculation of the hybrid andesite magma converted it to a layer of mafic foam. The decreased density of the andesite magma destabilized and disrupted the foam. Blobs of foam rose into and were further cooled by the overlying dacite magma, forming the andesitic inclusions. Disaggregation of andesitic inclusions in the host dacite produced the black dacite and light dacite magmas. Formation of foam was a dynamic process. Removal of foam propagated the foam layer downward into the hybrid andesite magma. Eventually the thermal and compositional contrasts between the hybrid andesite and black dacite magmas were reduced. Then, they mixed directly, forming the dark andesite magma. About 40-50% andesitic inclusions were disaggregated into the host dacite to produce the hybrid black dacite. Thus, disaggregation of inclusions into small fragments and individual crystals can be an efficient magma-mixing process. Disaggregation of undercooled inclusions carrying reacted host-magma phenocrysts produces co-existing reacted and unreacted phenocrysts populations.
Do, D D; Do, H D
2004-12-07
Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann for ethane and Wick et al. for ethylene and (ii) AUA4-LJ model of Ungerer et al. for ethane and Bourasseau et al. for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.
Superresolving Black Hole Images with Full-Closure Sparse Modeling
NASA Astrophysics Data System (ADS)
Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent
2018-01-01
It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.
Bitner-Mathé, Blanche Christine; David, Jean Robert
2015-08-01
Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.
Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).
Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E
2009-03-11
The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P < 0.001) decreases in the anthocyanins identified. Pressure cooking resulted in the greatest loss of cyanidin-3-glucoside (79.8%) followed by the rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.
Dark information of black hole radiation raised by dark energy
NASA Astrophysics Data System (ADS)
Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu
2018-06-01
The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.
NASA Astrophysics Data System (ADS)
Potter, William J.
2017-02-01
We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.
Jonathan A. O' Donnell; Vladimir E. Romanovsky; Jennifer W. Harden; A. David McGuire
2009-01-01
Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity...
A Test of Black-Hole Disk Truncation: Thermal Disk Emission in the Bright Hard State
NASA Astrophysics Data System (ADS)
Steiner, James
2017-09-01
The assumption that a black hole's accretion disk extends inwards to the ISCO is on firm footing for soft spectral states, but has been challenged for hard spectral states where it is often argued that the accretion flow is truncated far from the horizon. This is of critical importance because black-hole spin is measured on the basis of this assumption. The direct detection (or absence) of thermal disk emission associated with a disk extending to the ISCO is the smoking-gun test to rule truncation in or out for the bright hard state. Using a self-consistent spectral model on data taken in the bright hard state while taking advantage of the complementary coverage and capabilities of Chandra and NuSTAR, we will achieve a definitive test of the truncation paradigm.
Black carbon (BC), light absorbing particles emitted primarily from incomplete combustion, is operationally defined through a variety of instrumental measurements rather than with a universal definition set forth by the research or regulatory communities. To examine the consiste...
Video System Highlights Hydrogen Fires
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.
1992-01-01
Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.
The electrothermal conductance and heat capacity of black phosphorus
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-01
We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
The electrothermal conductance and heat capacity of black phosphorus.
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-14
We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee
2018-03-01
The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
Non-thermal X-ray emission from tidal disruption flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2016-09-01
A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.
Narayan, Jagdish; Chen, Yok
1983-01-01
This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.
Quantum loop corrections of a charged de Sitter black hole
NASA Astrophysics Data System (ADS)
Naji, J.
2018-03-01
A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.
Variable intertidal temperature explains why disease endangers black abalone
Ben-Horin, Tal; Lenihan, Hunter S.; Lafferty, Kevin D.
2013-01-01
Epidemiological theory suggests that pathogens will not cause host extinctions because agents of disease should fade out when the host population is driven below a threshold density. Nevertheless, infectious diseases have threatened species with extinction on local scales by maintaining high incidence and the ability to spread efficiently even as host populations decline. Intertidal black abalone (Haliotis cracherodii), but not other abalone species, went extinct locally throughout much of southern California following the emergence of a Rickettsiales-like pathogen in the mid-1980s. The rickettsial disease, a condition known as withering syndrome (WS), and associated mortality occur at elevated water temperatures. We measured abalone body temperatures in the field and experimentally manipulated intertidal environmental conditions in the laboratory, testing the influence of mean temperature and daily temperature variability on key epizootiological processes of WS. Daily temperature variability increased the susceptibility of black abalone to infection, but disease expression occurred only at warm water temperatures and was independent of temperature variability. These results imply that high thermal variation of the marine intertidal zone allows the pathogen to readily infect black abalone, but infected individuals remain asymptomatic until water temperatures periodically exceed thresholds modulating WS. Mass mortalities can therefore occur before pathogen transmission is limited by density-dependent factors.
Spectral reflectance properties of black chrome for use as a solar selective coating
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1974-01-01
The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. Black chrome electroplated coating has high absorbtance in the solar spectrum and low emissivity in the 250 F blackbody thermal spectrum. The spectral reflectance properties of a commercially prepared black chrome on steel have been measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.
Blackbody Cavity for Calibrations at 200 to 273 K
NASA Technical Reports Server (NTRS)
Howell, Dane; Ryan, Robert; Ryan, Jim; Henderson, Doug; Clayton, Larry
2004-01-01
A laboratory blackbody cavity has been designed and built for calibrating infrared radiometers used to measure radiant temperatures in the range from about 200 to about 273 K. In this below-room-temperature range, scattering of background infrared radiation from room-temperature surfaces could, potentially, contribute significantly to the spectral radiance of the blackbody cavity, thereby contributing a significant error to the radiant temperature used as the calibration value. The present blackbody cavity is of an established type in which multiple reflections from a combination of conical and cylindrical black-coated walls are exploited to obtain an effective emissivity greater than the emissivity value of the coating material on a flat exposed surface. The coating material in this case is a flat black paint that has an emissivity of approximately of 0.91 in the thermal spectral range and was selected over other, higher-emissivity materials because of its ability to withstand thermal cycling. We found many black coatings cracked and flaked after thermal cycling due to differences in the coefficient of expansion differences. On the basis of theoretical calculations, the effective emissivity is expected to approach 0.999. The cylindrical/conical shell enclosing the cavity is machined from copper, which is chosen for its high thermal conductivity. In use, the shell is oriented vertically, open end facing up, and inserted in a Dewar flask filled with isopropyl alcohol/dry-ice slush. A flange at the open end of the shell is supported by a thermally insulating ring on the lip of the Dewar flask. The slush cools the shell (and thus the black-body cavity) to the desired temperature. Typically, the slush starts at a temperature of about 194 K. The slush is stirred and warmed by bubbling dry air or nitrogen through it, thereby gradually increasing the temperature through the aforementioned calibration range during an interval of several hours. The temperature of the slush is monitored by use of a precise thermocouple probe.
40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp... production of carbon black by the lamp process. ...
Monitoring of Thermal and Gas Activities in Mining Dump Hedvika, Czech Republic
NASA Astrophysics Data System (ADS)
Surovka, D.; Pertile, E.; Dombek, V.; Vastyl, M.; Leher, V.
2017-10-01
The negative consequences of mining of the black coal is occurrence of extractive waste storage locations - mining dumps. The mining activities carried out within the area of Ostrava are responsible for at least six mine dumps of loose materials arising as wastes from mining of mineral resources, many of which show presence of thermal processes. The thermal activity in dumps is responsible for many hazardous substances that pollute the environment and harm human health in the surroundings. This paper deals with the results of the first phase of project CZ.11.4.120/0.0/0.0/15_006/0000074 TERDUMP, on exploration of thermally active mining dumps are published in the article. As a first studied thermally active dump was a Hedvika dump. To localize of hot spots with hot gas emission was used a thermovision scanning by drone. The place with high temperature (49.8 °C) identified natural gas emission through natural cracks. Analysing the occurring pollutants in Hedvika Dump using the GC-MS or HPLC, respectively and the inert gases (CO2, CO and SO2) were determined by ion chromatography. The pollutants were determined in five sampling points during two measurements executed from July to August 2017.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Gholibeigian, Ghasem; Amirshahkarami, Azim; Gholibeigian, Kazem
2017-01-01
Four animated sub-particles (sub-strings) as origin of the life and generator of momentum (vibration) of elementary particles (strings) are communicated for transferring information for processing and preparing fundamental particles for the next step. It means that information may be a ``dimension'' of the nature which fundamental particles, dark matter/energy and space-time are floating in it and listening to its whispering and getting quantum information packages about their conditions and laws. So, communication of information which began before the spark to B.B. (Convection Bang), may be a ``Fundamental symmetry'' in the nature because leads other symmetries and supersymmetry as well as other phenomena. The processed information are always carried by fundamental particles as the preserved history and entropy of Universe. So, information wouldn't be destroyed, lost or released by black hole. But the involved fundamental particles of thermal radiation, electromagnetic and gravitational fields carry processed information during emitting from black hole, while they are communicated from fifth dimension for their new movement. AmirKabir University of Technology, Tehran, Iran.
Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes
NASA Astrophysics Data System (ADS)
Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi
2018-01-01
The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.
Small black holes in global AdS spacetime
NASA Astrophysics Data System (ADS)
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
Can Black Hole Relax Unitarily?
NASA Astrophysics Data System (ADS)
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Nonthermal Hawking radiation from NUT-Taub-like black hole
NASA Astrophysics Data System (ADS)
Zhao, GuoMing; Li, PengZhang
2012-04-01
Using Damour-Ruffini method, we investigate Hawking radiation from NUT-Taub-like (NT-like) black hole. Considering the total energy conservation and the back reaction of the particle to the spacetime, we get the radiation spectrum on the black hole event horizon, which is related to the change of Bekenstein-Hawking entropy. Meanwhile, we find that the radiation is not exactly thermal, and can take out information from the black hole, which can be used to explain the information loss paradox. The result that we get satisfies the unitary theory of quantum mechanics and is consistent with the work finished before.
ASTER Images the Island of Hawaii
2000-04-26
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum. Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing. Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences. http://photojournal.jpl.nasa.gov/catalog/PIA02604
NASA Astrophysics Data System (ADS)
Wegerer, Eva; Sachsenhofer, Reinhard; Misch, David; Aust, Nicolai
2016-04-01
Mineralogical data of 112 core samples from 12 wells are used to investigate lateral and vertical variations in the lithofacies of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets-Basin. Sulphur and carbonate contents as well as organic geochemical parameters, including TOC and Hydrogen Index have been determined on the same sample set within the frame of an earlier study (Sachsenhofer et al. 2010). This allows the correlation of inorganic and organic composition of the black shales. Aims of the study are to distinguish between detrital and authigenic minerals, to relate the lithofacies of the black shales with the tectono-stratigraphic sequences of the Dniepr-Donets Basin, to contribute to the reconstruction of the depositional environment and to relate diagenetic processes with the thermal history of the basin. Mineral compositions were determined primarily using XRD-measurements applying several measurement procedures, e.g. chemical and temperature treatment, and specific standards. Major differences exist in the mineralogical composition of the black shales. For example, clay mineral contents range from less than 20 to more than 80 Vol%. Kaolinite contents are significantly higher in rocks with a Tournaisian or Early Visean age than in any other stratigraphic unit. This is also true for two Lower Visean coal samples from the shallow north-westernmost part of the basin. Chlorite contents reach maxima in uppermost Visean and overlying rocks. Quartz contents are often high in Upper Visean rocks and reach maxima in Bashkirian units. Feldspar-rich rocks are observed in Devonian sediments from the north-western part of the study area and may reflect the proximity to a sediment source. Carbonate contents are typically low, but reach very high values in some Tournaisian, Lower Visean and Serpukhovian samples. Pyrite contents reach maxima along the basin axis in Tournaisian and Visean rocks reflecting anoxic conditions. Mixed layer minerals are dominated by illite. Their presence in samples from depth exceeding 5 km reflects the low thermal overprint of Paleozoic rocks in the north-western Dniepr-Donets-Basin.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.
1976-01-01
The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.
Band-aid for information loss from black holes
NASA Astrophysics Data System (ADS)
Israel, Werner; Yun, Zinkoo
2010-12-01
We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing “information loss paradox.”
Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R
2015-05-14
Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
Probing the Accretion Geometry of Black Holes with X-Ray Polarization
NASA Technical Reports Server (NTRS)
Schnitman, Jeremy D.
2011-01-01
In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.
A High-Resolution Measurement of Ball IR Black Paint's Low-Temperature Emissivity
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Canavan, Ed; DiPirro, Mike; Li, Xiaoyi; Franck, Randy; Green, Dan
2011-01-01
High-emissivity paints are commonly used on thermal control system components. The total hemispheric emissivity values of such paints are typically high (nearly 1) at temperatures above about 100 Kelvin, but they drop off steeply at lower temperatures. A precise knowledge of this temperature-dependence is critical to designing passively-cooled components with low operating temperatures. Notable examples are the coatings on thermal radiators used to cool space-flight instruments to temperatures below 40 Kelvin. Past measurements of low-temperature paint emissivity have been challenging, often requiring large thermal chambers and typically producing data with high uncertainties below about 100 Kelvin. We describe a relatively inexpensive method of performing high-resolution emissivity measurements in a small cryostat. We present the results of such a measurement on Ball InfraRed BlackTM(BIRBTM), a proprietary surface coating produced by Ball Aerospace and Technologies Corp (BATC), which is used in spaceflight applications. We also describe a thermal model used in the error analysis.
The Matter-Gravity Entanglement Hypothesis
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2018-03-01
I outline some of my work and results (some dating back to 1998, some more recent) on my matter-gravity entanglement hypothesis, according to which the entropy of a closed quantum gravitational system is equal to the system's matter-gravity entanglement entropy. The main arguments presented are: (1) that this hypothesis is capable of resolving what I call the second-law puzzle, i.e. the puzzle as to how the entropy increase of a closed system can be reconciled with the asssumption of unitary time-evolution; (2) that the black hole information loss puzzle may be regarded as a special case of this second law puzzle and that therefore the same resolution applies to it; (3) that the black hole thermal atmosphere puzzle (which I recall) can be resolved by adopting a radically different-from-usual description of quantum black hole equilibrium states, according to which they are total pure states, entangled between matter and gravity in such a way that the partial states of matter and gravity are each approximately thermal equilibrium states (at the Hawking temperature); (4) that the Susskind-Horowitz-Polchinski string-theoretic understanding of black hole entropy as the logarithm of the degeneracy of a long string (which is the weak string coupling limit of a black hole) cannot be quite correct but should be replaced by a modified understanding according to which it is the entanglement entropy between a long string and its stringy atmosphere, when in a total pure equilibrium state in a suitable box, which (in line with (3)) goes over, at strong-coupling, to a black hole in equilibrium with its thermal atmosphere. The modified understanding in (4) is based on a general result, which I also describe, which concerns the likely state of a quantum system when it is weakly coupled to an energy-bath and the total state is a random pure state with a given energy. This result generalizes Goldstein et al.'s `canonical typicality' result to systems which are not necessarily small.
The Matter-Gravity Entanglement Hypothesis
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2018-05-01
I outline some of my work and results (some dating back to 1998, some more recent) on my matter-gravity entanglement hypothesis, according to which the entropy of a closed quantum gravitational system is equal to the system's matter-gravity entanglement entropy. The main arguments presented are: (1) that this hypothesis is capable of resolving what I call the second-law puzzle, i.e. the puzzle as to how the entropy increase of a closed system can be reconciled with the asssumption of unitary time-evolution; (2) that the black hole information loss puzzle may be regarded as a special case of this second law puzzle and that therefore the same resolution applies to it; (3) that the black hole thermal atmosphere puzzle (which I recall) can be resolved by adopting a radically different-from-usual description of quantum black hole equilibrium states, according to which they are total pure states, entangled between matter and gravity in such a way that the partial states of matter and gravity are each approximately thermal equilibrium states (at the Hawking temperature); (4) that the Susskind-Horowitz-Polchinski string-theoretic understanding of black hole entropy as the logarithm of the degeneracy of a long string (which is the weak string coupling limit of a black hole) cannot be quite correct but should be replaced by a modified understanding according to which it is the entanglement entropy between a long string and its stringy atmosphere, when in a total pure equilibrium state in a suitable box, which (in line with (3)) goes over, at strong-coupling, to a black hole in equilibrium with its thermal atmosphere. The modified understanding in (4) is based on a general result, which I also describe, which concerns the likely state of a quantum system when it is weakly coupled to an energy-bath and the total state is a random pure state with a given energy. This result generalizes Goldstein et al.'s `canonical typicality' result to systems which are not necessarily small.
Ruppert, Leslie F.; Trippi, Michael H.; Hower, James C.; Grady, William C.; Levine, Jeffrey R.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin and part of the Black Warrior basin were determined by compiling previously published and unpublished percent-vitrinite-reflectance (%R0) measurements and preparing isograd maps on the basis of the measurements. The isograd values range from 0.6 %R0 in Ohio and the western side of the Eastern Kentucky coal field to 5.5 %R0 in the Southern field in the Pennsylvania Anthracite region, Schuylkill County, Pa. The vitrinite-reflectance values correspond to the American Society of Testing Materials (ASTM) coal-rank classes of high-volatile C bituminous to meta-anthracite, respectively. In general, the isograds show that thermal maturity patterns of Pennsylvanian coals within the Appalachian basin generally decrease from east to west. In the Black Warrior basin of Alabama, the isograds show a circular pattern with the highest values (greater than 1.6 %R0) centered in Jefferson County, Ala. Most of the observed patterns can be explained by variations in the depth of burial, variations in geothermal gradient, or a combination of both; however, there are at least four areas of higher ranking coal in the Appalachian basin that are difficult to explain by these two processes alone: (1) a set of west- to northwest-trending salients centered in Somerset, Cambria, and Fayette Counties, Pa.; (2) an elliptically shaped, northeast-trending area centered in southern West Virginia and western Virginia; (3) the Pennsylvania Anthracite region in eastern Pennsylvania; and (4) the eastern part of the Black Warrior coal field in Alabama. The areas of high-ranking coal in southwestern Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland associated with Alleghanian deformation. In addition to the higher heat flow from these fluids, the Pennsylvania Anthracite region also was buried more deeply than other parts of the Appalachian basin. The area of high rank coal in southwestern Virginia probably was controlled primarily by overburden thickness, but may also have been influenced by higher geothermal gradients.
Circumnuclear media of quiescent supermassive black holes
NASA Astrophysics Data System (ADS)
Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.
2015-10-01
We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.
Song, Won-Jae; Sung, Hye-Jung; Kim, Sung-Youn; Kim, Kwang-Pyo; Ryu, Sangryeol; Kang, Dong-Hyun
2014-02-17
This study evaluated the efficacy of gamma irradiation to inactivate foodborne pathogens in black pepper (Piper nigrum) and red pepper (dried Capsicum annuum). Black pepper and red pepper inoculated with Escherichia coli O157:H7 and Salmonella Typhimurium were subjected to gamma irradiation in the range of 0, 1, 2, 3 and 5 kGy, and color change was evaluated after treatment. Pathogen populations decreased with increasing treatment doses. A gamma irradiation dose of 5 kGy decreased E. coli O157:H7 and S. Typhimurium populations >4.4 to >5.2 log CFU/g in black pepper without causing color change. Similarly, 5 kGy of gamma irradiation yielded reduction of 3.8 to >5.2 log CFU/g for E. coli O157:H7 and S. Typhimurium in red pepper. During gamma irradiation treatment, L*, a* and b* values of red pepper were not significantly changed except for 297 μm to 420 μm size red pepper treated with 5 kGy of gamma irradiation. Based on the D-value of pathogens in black pepper and red pepper, S. Typhimurium showed more resistant to gamma irradiation than did E. coli O157:H7. These results show that gamma irradiation has potential as a non-thermal process for inactivating foodborne pathogens in spices with minimal color changes. Copyright © 2013 Elsevier B.V. All rights reserved.
Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Rahul; Vogelsberger, Mark; Pfrommer, Christoph
Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne outmore » by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.« less
NASA Astrophysics Data System (ADS)
Feria, Erlan H.
2017-06-01
Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a sensible dark matter candidade with a mass of 235.14 μeV which is within the predicted range of 50 μeV to 1,500 μeV for the axion after inflation (Borsanyi, et al. 2016, Nature, http://dx.doi.org/10.1038/nature20115).
Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics
NASA Astrophysics Data System (ADS)
Czinner, Viktor G.; Iguchi, Hideo
2017-12-01
Thermodynamics of rotating black holes described by the Rényi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Rényi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence.
2016-09-01
test method for measuring the thermal insulation of clothing using a heated manikin. 2010. 2. ASTM International. F2370-10 Standard test method for...PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT DISCLAIMER The opinions or assertions contained herein are the...SHIRTS: COMPARISON OF SPECTROPHOTOMETRIC AND OTHER BIOPHYSICAL PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT
Influence of the silicon carbide deposit on the thermal resistance of fire protection
NASA Astrophysics Data System (ADS)
Kim, K. A.; Lemeshev, D. O.
2018-04-01
The ceramics samples with structure of SiC-Al2O3-Fireclay having good thermal resistance were received. As materials were used: black α-SiC F-120, corundum α-Al2O3 F-1000 and Kudinovsky fire-clay. As a temporary technological bundle used polyvinyl alcohol (PVA). Thermal stability was determined by method of heat changes.
Transient Thermal Stability of Polymer Nanocomposites
2012-08-01
modified Montmorillonite, Nanocor masterbatch ) 1 wt % carbon black (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O Multiwalled Carbon Nanotubes (Nanocyl... masterbatch ) Twin screw extrusion (190C) Slow Heating Regime Thermogravimetric Analysis Nanospecies improve thermal stability as expected Laser
Radiation transport around Kerr black holes
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy David
This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable effects: the inverse-Compton process alters the photon spectrum by adding a high energy power-law tail, and the random scattering of each photon effectively damps out the highest frequency modulations in the X-ray light curve. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)
40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace Process Subcategory § 458.10 Applicability; description of the carbon black...
40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.30 Applicability; description of the carbon black...
Preventing Cracking of Anodized Coatings
NASA Technical Reports Server (NTRS)
He, Charles C.; Heslin, Thomas M.
1995-01-01
Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.
NASA Astrophysics Data System (ADS)
Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.
2018-02-01
Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.
Quantitative approaches to information recovery from black holes
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Czech, Bartłomiej
2011-08-01
The evaporation of black holes into apparently thermal radiation poses a serious conundrum for theoretical physics: at face value, it appears that in the presence of a black hole, quantum evolution is non-unitary and destroys information. This information loss paradox has its seed in the presence of a horizon causally separating the interior and asymptotic regions in a black hole spacetime. A quantitative resolution of the paradox could take several forms: (a) a precise argument that the underlying quantum theory is unitary, and that information loss must be an artifact of approximations in the derivation of black hole evaporation, (b) an explicit construction showing how information can be recovered by the asymptotic observer, (c) a demonstration that the causal disconnection of the black hole interior from infinity is an artifact of the semiclassical approximation. This review summarizes progress on all these fronts.
Cho, Tae-Yeon; Han, Chi-Whan; Jun, Yongseok; Yoon, Soon-Gil
2013-01-01
Acetylene-black paste without a light scattering layer was applied to meso-porous TiO2 photo-electrode films with a crystalline framework, a low residual carbon, and a tunable morphological pore size. The thermal-treated TiO2 photo-electrode films had an increased acetylene-black concentration with an increase in artificial pores and a decrease in residual carbon. The performance of dye-sensitized solar cells (DSSCs) was enhanced by the use of the TiO2 photo-anode pastes at various acetylene-black concentrations. The photo-conversion efficiency of the DSSCs using TiO2 photo-electrode films with 1.5 wt% acetylene-black was enhanced from 7.98 (no acetylene-black) to 9.75% without the integration of a light- scattering layer. PMID:23511122
Magnetized black holes and nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
NASA Technical Reports Server (NTRS)
Sommers, R. D.; Raquet, C. A.; Cassidy, J. F.
1972-01-01
Cat-a-lac Black, and S13G thermal control coatings were exposed to the exhaust of a thruster in a simulated space environment. Vacuum was maintained at less than 10 to the minus 5th power torr during thruster firing in the liquid helium cooled facility. The thruster was fired in a 50-millisecond pulse mode and the accumulated firing time was 224 seconds. Solar absorptance (alpha sub s) and thermal emittance (sigma) of the coatings were measured in-situ at intervals of 300 pulses. A calorimetric technique was used to measure alpha sub s and sigma. The tests, technique, and test results are presented. The Cat-a-lac Black coatings showed no change in alpha sub s or sigma. The S13G showed up to 25 percent increase in alpha sub s but no change in sigma.
2002-02-01
Information from images of Railroad Valley, Nevada captured on August 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) may provide a powerful tool for monitoring crop health and maintenance procedures. These images cover an area of north central Nevada. The top image shows irrigated fields, with healthy vegetation in red. The middle image highlights the amount of vegetation. The color code shows highest vegetation content in red, orange, yellow, green, blue, and purple and the lowest in black. The final image is a thermal infrared channel, with warmer temperatures in white and colder in black. In the thermal image, the northernmost and westernmost fields are markedly colder on their northwest areas, even though no differences are seen in the visible image or the second, Vegetation Index image. This can be attributed to the presence of excess water, which can lead to crop damage. http://photojournal.jpl.nasa.gov/catalog/PIA03463
A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.
van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P
2016-01-01
The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection. Copyright © 2016, American Association for the Advancement of Science.
Quantum information erasure inside black holes
Lowe, David A.; Thorlacius, Larus
2015-12-15
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has beenmore » erased by the black hole singularity. Furthermore, this property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.« less
Estimate of the influence of thermophysical parameter deviations on SC thermal regime
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Rassamakin, B. M.; Taranova, T. A.; Khoroshylov, V. S.
The necessity of accurate information on actual values of thermophysical properties for the SC with passive thermal control system is substantiated. On the basis of the telemetry information from the temperature sensors of the AUOS-SM-KF SC, the degradation of black enamel AK-512 is analyzed using inverse-scattering method as well as effective thermal conductivity of honeycomb panel and embedded heat-pipes is evaluated.
Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data
NASA Astrophysics Data System (ADS)
Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina
2015-04-01
Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE
EPR investigations of gamma-irradiated ground black pepper
NASA Astrophysics Data System (ADS)
Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter
2006-02-01
The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.
No Disk Winds in Failed Black Hole Outbursts? New Observations of H1743-322
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickael; Motta, Sara; Fender, Rob P.; Ponti, Gabriele; Corbel, Stephane
2016-04-01
The rich and complex physics of stellar-mass black holes in outburst is often referred to as the "disk-jet connection," a term that encapsulates the evolution of accretion disks over several orders of magnitude in Eddington ratio; through Compton scattering, reflection, and thermal emission; as they produce steady compact jets, relativistic plasma ejections, and (from high spectral resolution revelations of the last 15 years) massive, ionized disk winds. It is well established that steady jets are associated with radiatively inefficient X-ray states, and that winds tend to appear during states with more luminous disks, but the underlying physical processes that govern these connections (and their changes during state transitions) are not fully understood. I will present a unique perspective on the disk-wind-jet connection based on new Chandra HETGS, NuSTAR, and JVLA observations of the black hole H1743-322. Rather than following the usual outburst track, the 2015 outburst of H1743 fizzled: the disk never appeared in X-rays, and the source remained spectrally hard for the entire ~100 days. Remarkably, we find no evidence for any accretion disk wind in our data, even though H1743-322 has produced winds at comparable hard X-ray luminosities. I will discuss the implications of this "failed outburst" for our picture of winds from black holes and the astrophysics that governs them.
Black Hole Accretion and Feedback Driven by Thermal Instability
NASA Astrophysics Data System (ADS)
Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.
2013-03-01
Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.
The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, P.
2014-01-01
NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.
The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, K.
2013-01-01
NASA uses high-emissivity surfaces on deep-space radiators or thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.
X-Ray Spectra from MHD Simulations of Accreting Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.
2011-01-01
We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.
Kimberly P. Wickland; Jason C. Neff
2007-01-01
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how...
Analysis of Thermal Imagery Collected at Grayling II, Grayling, Michigan
1994-11-01
during Grayling II exercise ............................................. 36 12 Deciduous (black oak) treeline LWB and SWB IR signatures and air... treeline LWB and SWB IR signaures and air temperature (E3 station, 2 m above ground) during Grayling I exercise ................................. 39 ii...tree. e. Deciduous (black oak) treeline . f. Coniferous (pine) tree. g. Coniferous (pine) treeline . Figure 4 contains color photographs and IR images
Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame
NASA Astrophysics Data System (ADS)
Tao, Jun; Wang, Peng; Yang, Haitang
2017-09-01
To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.
40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting...
40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting from the...
Davies Critical Point and Tunneling
NASA Astrophysics Data System (ADS)
La, Hoseong
2012-04-01
From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.
Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin
Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less
NASA Astrophysics Data System (ADS)
Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin
2015-10-01
A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.
O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.
2009-01-01
Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming
2017-02-01
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.
Unruh thermal hadronization and the cosmological constant
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.
2018-05-01
We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.
Choice of observational networks used for inverse re-estimation of elemental (or black) carbon (EC) emissions in the United States impacts results. We convert the Thermal Optical Transmittance (TOT) EC measurements to the Thermal Optical Reflectance (TOR) equivalent to make full...
Schaefer, Donald H.; Welch, Alan H.; Mauzer, Douglas K.
1983-01-01
Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to low thermal diffusivity resulting from low moisture content. The surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3,200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. (USGS)
Thermal Hawking radiation of black hole with supertranslation field
NASA Astrophysics Data System (ADS)
Iofa, Mikhail Z.
2018-01-01
Using the analytical solution for the Schwarzschild metric containing supertranslation field, we consider two main ingredients of calculation of the thermal Hawking black hole radiation: solution for eigenmodes of the d'Alambertian and solution of the geodesic equations for null geodesics. For calculation of Hawking radiation it is essential to determine the behavior of both the eigenmodes and geodesics in the vicinity of horizon. The equation for the eigenmodes is solved, first, perturbatively in the ratio O( C) /M of the supertranslation field to the mass of black hole, and, next, non-perturbatively in the near- horizon region. It is shown that in any order of perturbation theory solution for the eigenmodes in the metric containing supertranslation field differs from solution in the pure Schwarzschild metric by terms of order L 1/2 = (1 - 2 M/r)1/2. In the non-perturbative approach, solution for the eigenmodes differs from solution in the Schwarzschild metric by terms of order L 1/2 which vanish on horizon. Using the simplified form of geodesic equations in vicinity of horizon, it is shown that in vicinity of horizon the null geodesics have the same behavior as in the Schwarzschild metric. As a result, the density matrices of thermal radiation in both cases are the same.
Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.
Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo
2017-10-11
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.
Charged BTZ black holes in the context of massive gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.; Upadhyay, S.; Eslam Panah, B.
2017-04-01
Banados, Teitelboim, and Zanelli (BTZ) black holes are excellent laboratories for studying black hole thermodynamics, which is a bridge between classical general relativity and the quantum nature of gravitation. In addition, three-dimensional gravity could have equipped us for exploring some of the ideas behind the two-dimensional conformal field theory based on the AdS3/CFT2 . Considering the significant interest in these regards, we examine charged BTZ black holes. We consider the system contains massive gravity with energy dependent spacetime to enrich the results. In order to make high curvature (energy) BTZ black holes more realistic, we modify the theory by energy dependent constants. We investigate thermodynamic properties of the solutions by calculating heat capacity and free energy. We also analyze thermal stability and study the possibility of the Hawking-Page phase transition. At last, we study the geometrical thermodynamics of these black holes and compare the results of various approaches.
Black hole thermodynamics based on unitary evolutions
NASA Astrophysics Data System (ADS)
Feng, Yu-Lei; Chen, Yi-Xin
2015-10-01
In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.
Detail view of the leading and top edge of the ...
Detail view of the leading and top edge of the vertical stabilizer of the Orbiter Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFRSI) blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges. The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Wonaschütz, Anna; Hitzenberger, Regina; Bauer, Heidi; Pouresmaeil, Parissa; Klatzer, Barbara; Caseiro, Alexandre; Puxbaum, Hans
2009-02-15
Until about a decade ago, black carbon (BC) was thought to be the only light absorbing substance in the atmospheric aerosol except for soil or desert dust In more recent years, light absorbing polymeric carbonaceous material was found in atmospheric aerosols. Absorption increases appreciably toward short wavelengths, so this fraction was called brown carbon. Because brown carbon is thermally rather refractory, it influences the split between organic carbon (OC) and elemental carbon (EC) in thermal methods and, through its light absorption characteristics, leads to overestimations of BC concentrations. The goal of the present study was to extend the integrating sphere method to correct the BC signal for the contribution of brown carbon and to obtain an estimate of brown carbon concentrations. Humic acid sodium salt was used as proxy for brown carbon. The extended method is first tested on mixtures of test substances and then applied to atmospheric samples collected during biomass smoke episodes (Easter bonfires) in Austria. The resulting concentrations of black and brown carbon are compared to EC obtained with a widely used thermal method, the Cachier method (Cachier et al. Tellus 1989, 41B, 379-390) and a thermal-optical method (Schmid et al. Atmos. Environ. 2001, 35, 2111-2121), as well as to concentrations of humic like substances (HULIS) and to biomass smoke POM (particulate organic matter). Both the thermal methods were found to overestimate BC on days with large contributions of woodsmoke, which agrees with the findings of the method intercomparison study by Reisinger et at. (Environ. Sci. Technol. 2008, 42, 884-889). During the days of the bonfires, the Cachier method gave EC concentrations that were higher by a factor of 3.8 than the BC concentrations, while the concentrations obtained with the thermal-optical method were higher by a factor of 2.6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita
2012-12-15
The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO{sub 3} has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3{sup Macron }c structure of LaFeO{sub 3} is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO{sub 3} at T{sub N}=735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO{sub 3} to gain insight tomore » the magnetoelectric coupling in BiFeO{sub 3}, which is also multiferroic. The first order phase transition of LaFeO{sub 3} from Pbnm to R3{sup Macron }c was observed at 1228{+-}9 K, and a subsequent transition to Pm3{sup Macron }m was extrapolated to occur at 2140{+-}30 K. The stability of the Pbnm and R3{sup Macron }c polymorphs of LaFeO{sub 3} is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V{sub A}/V{sub B}. - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO{sub 3}. Highlights: Black-Right-Pointing-Pointer The crystal structure of LaFeO{sub 3} is studied by HTXRD from RT to 1533 K. Black-Right-Pointing-Pointer A non-linear expansion across the Neel temperature is observed for LaFeO{sub 3}. Black-Right-Pointing-Pointer The ratio V{sub A}/V{sub B} is used to rationalize the thermal evolution of the structure.« less
Thermoregulation in a naturally oil-contaminated Black-billed Murre Uria aalge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenssen, B.M.; Ekker, M.; Bech, C.
1985-07-01
The effect of oiled plumages on seabirds is considered to be reduced thermal insulation, with a resultant increase in metabolic rate. This conclusion is based on results from ducks with experimentally oil-contaminated plumages. In the present paper, data on body temperature, metabolic rate, and insulation in a Black-billed Murre (Uria aalge) contaminated during an oil-spill at sea are presented.
Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials
NASA Astrophysics Data System (ADS)
De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio
2017-07-01
Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.
Entanglement in a model for Hawking radiation: An application of quadratic algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com
2013-03-15
Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less
NASA Astrophysics Data System (ADS)
Zoran, Maria
The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is a larger thermal plume up to 5-6 km far along Danube Black Sea Canal ,the temperature change is about 1.0 oC.
Calculation of day and night emittance values
NASA Technical Reports Server (NTRS)
Kahle, Anne B.
1986-01-01
In July 1983, the Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a midday and predawn flight within a two-day period. The availability of calibrated digital data permitted the calculation of day and night surface temperature and surface spectral emittance. Image processing of the data included panorama correction and calibration to radiance using the on-board black bodies and the measured spectral response of each channel. Scene-dependent isolated-point noise due to bit drops, was located by its relatively discontinuous values and replaced by the average of the surrounding data values. A method was developed in order to separate the spectral and temperature information contained in the TIMS data. Night and day data sets were processed. The TIMS is unique in allowing collection of both spectral emittance and thermal information in digital format with the same airborne scanner. For the first time it was possible to produce day and night emittance images of the same area, coregistered. These data add to an understanding of the physical basis for the discrimination of difference in surface materials afforded by TIMS.
Survey of selective solar absorbers and their limitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattox, D.M.; Sowell, R.R.
1980-01-01
A number of selective absorber coating systems with high solar absorptance exist which may be used in the mid-temperature range. Some of the systems are more chemically and thermally stable than others. Unfortunately, there are large gaps in the stability data for a large number of the systems. In an inert environment, the principle degradation mechanisms are interdiffusion between the layers or phases and changes in surface morphology. These degradation mechanisms would be minimized by using refractory metals and compounds for the absorbing layer and using refractory materials or diffusion barriers for the underlayer. For use in a reactive environment,more » the choice of materials is much more restrictive since internal chemical reactions can change phase compositions and interfacial reactions can lead to loss of adhesion. For a coating process to be useful, it is necessary to determine what parameters influence the performance of the coating and the limits to these parameters. This process sensitivity has a direct influence on the production process controls necessary to produce a good product. Experience with electroplated black chrome has been rather disappointing. Electroplating should be a low cost deposition process but the extensive bath analysis and optical monitoring necessary to produce a thermally stable produce for use to 320/sup 0/C has increased cost signficantly. 49 references.« less
An evaluation of two flat-black silicone paints for space application
NASA Technical Reports Server (NTRS)
Clatterbuck, Carroll H.; Scialdone, John J.
1990-01-01
Tests were conducted on two flat-black silicone paints suggested for space applications to determine their optical, electrical, and mechanical properties. Three different types of substrate materials were chosen for these paint tests; the application of the paints onto the primed substrates was carried out by spray coating. The adhesion properties were verified by thermal shock and sudden immersion into liquid nitrogen. A controlled thermal vacuum tests was also carried out by varying the temperature of the paint from -100 to 225 C. The measured optical properties included normal and hemispherical emittance, and solar absorption/reflectance. A simultaneous exposure to low-energy proton/UV irradiation in vacuum, and high-energy proton/electron irradiation was carried out. Additional tests of the paints are described.
Accretion flows onto supermassive black holes
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.
1988-01-01
The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.
The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, J.; Canavan, E.; DiPirro, M.
NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and comparemore » the results with predictions from a detailed thermal model of each honeycomb configuration.« less
Thermal-optical analysis (TOA) is the principal method of the U.S. EPA's National Air Monitoring System for determining refractory carbon from combustion, or elemental carbon (EC), in particulate matter <2.5 µm (PM2.5). To isolate and quantify EC from organic carbon (...
NASA Astrophysics Data System (ADS)
Sakalli, Izzet; Halilsoy, Mustafa; Pasaoglu, Hale
2012-07-01
In this study, we explore a particular type Hawking radiation which ends with zero temperature and entropy. The appropriate black holes for this purpose are the linear dilaton black holes. In addition to the black hole choice, a recent formalism in which the Parikh-Wilczek's tunneling formalism amalgamated with quantum corrections to all orders in ħ is considered. The adjustment of the coefficients of the quantum corrections plays a crucial role on this particular Hawking radiation. The obtained tunneling rate indicates that the radiation is not pure thermal anymore, and hence correlations of outgoing quanta are capable of carrying away information encoded within them. Finally, we show in detail that when the linear dilaton black hole completely evaporates through such a particular radiation, entropy of the radiation becomes identical with the entropy of the black hole, which corresponds to "no information loss".
Proper temperature of the Schwarzschild AdS black hole revisited
NASA Astrophysics Data System (ADS)
Eune, Myungseok; Kim, Wontae
2017-10-01
The Unruh temperature calculated by using the global embedding of the Schwarzschild AdS spacetime into the Minkowski spacetime was identified with the local proper temperature; however, it became imaginary in a certain region outside the event horizon. So, the temperature was assumed to be zero of non-thermal radiation for that region. In this work, we revisit this issue in an exactly soluble two-dimensional Schwarzschild AdS black hole and present an alternative resolution to this problem in terms of the Tolman's procedure. However, the process appears to be non-trivial in the sense that the original procedure assuming the traceless energy-momentum tensor should be extended in such a way that it should cover the non-vanishing case of the energy-momentum tensor in the presence of the trace anomaly. Consequently, we show that the proper temperature turns out to be real everywhere outside the event horizon without any imaginary value, in particular, it vanishes at both the horizon and the asymptotic infinity.
Paltineanu, Cristian; Septar, Leinar; Chitu, Emil
2016-03-01
The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.
NASA Astrophysics Data System (ADS)
Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek
2018-04-01
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.
NASA Tech Briefs, December 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: 1) SNE Industrial Fieldbus Interface; 2) Composite Thermal Switch; 3) XMOS XC-2 Development Board for Mechanical Control and Data Collection; 4) Receiver Gain Modulation Circuit; 5) NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions; 6) Digital Interface Board to Control Phase and Amplitude of Four Channels; 7) CoNNeCT Baseband Processor Module; 8) Cryogenic 160-GHz MMIC Heterodyne Receiver Module; 9) Ka-Band, Multi-Gigabit-Per-Second Transceiver; 10) All-Solid-State 2.45-to-2.78-THz Source; 11) Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn); 12) Space Environments Testbed; 13) High-Performance 3D Articulated Robot Display; 14) Athena; 15) In Situ Surface Characterization; 16) Ndarts; 17) Cryo-Etched Black Silicon for Use as Optical Black; 18) Advanced CO2 Removal and Reduction System; 19) Correcting Thermal Deformations in an Active Composite Reflector; 20) Umbilical Deployment Device; 21) Space Mirror Alignment System; 22) Thermionic Power Cell To Harness Heat Energies for Geothermal Applications; 23) Graph Theory Roots of Spatial Operators for Kinematics and Dynamics; 24) Spacesuit Soft Upper Torso Sizing Systems; 25) Radiation Protection Using Single-Wall Carbon Nanotube Derivatives; 26) PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure; 27) Lidar Luminance Quantizer; 28) Distributed Capacitive Sensor for Sample Mass Measurement; 29) Base Flow Model Validation; 30) Minimum Landing Error Powered-Descent Guidance for Planetary Missions; 31) Framework for Integrating Science Data Processing Algorithms Into Process Control Systems; 32) Time Synchronization and Distribution Mechanisms for Space Networks; 33) Local Estimators for Spacecraft Formation Flying; 34) Software-Defined Radio for Space-to-Space Communications; 35) Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding; and 36) Molecular Adsorber Coating
Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity
NASA Astrophysics Data System (ADS)
Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua
2018-03-01
We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.
NASA Astrophysics Data System (ADS)
Tuttle, J.; Canavan, E.
2015-12-01
High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.
Nonthermal production of dark matter from primordial black holes
NASA Astrophysics Data System (ADS)
Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek
2018-03-01
We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.
40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process...
40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process...
The origin of seed photons for Comptonization in the black hole binary Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Kajava, J. J. E.; Veledina, A.; Tsygankov, S.; Neustroev, V.
2016-06-01
Aims: The black hole binary Swift J1753.5-0127 is providing a unique data set to study accretion flows. Various investigations of this system and of other black holes have not, however, led to an agreement on the accretion flow geometry or on the seed photon source for Comptonization during different stages of X-ray outbursts. We place constraints on these accretion flow properties by studying long-term spectral variations of this source. Methods: We performed phenomenological and self-consistent broad band spectral modeling of Swift J1753.5-0127 using quasi-simultaneous archived data from INTEGRAL/ISGRI, Swift/UVOT/XRT/BAT, RXTE/PCA/HEXTE, and MAXI/GSC instruments. Results: We identify a critical flux limit, F ~ 1.5 × 10-8 erg cm-2 s-1, and show that the spectral properties of Swift J1753.5-0127 are markedly different above and below this value. Above the limit, during the outburst peak, the hot medium seems to intercept roughly 50 percent of the disk emission. Below it, in the outburst tail, the contribution of the disk photons reduces significantly and the entire spectrum from the optical to X-rays can be produced by a synchrotron-self-Compton mechanism. The long-term variations in the hard X-ray spectra are caused by erratic changes of the electron temperatures in the hot medium. Thermal Comptonization models indicate unreasonably low hot medium optical depths during the short incursions into the soft state after 2010, suggesting that non-thermal electrons produce the Comptonized tail in this state. The soft X-ray excess, likely produced by the accretion disk, shows peculiarly stable temperatures for over an order of magnitude changes in flux. Conclusions: The long-term spectral trends of Swift J1753.5-0127 are likely set by variations of the truncation radius and a formation of a hot, quasi-spherical inner flow in the vicinity of the black hole. In the late outburst stages, at fluxes below the critical limit, the source of seed photons for Comptonization is not the thermal disk, but more likely they are produced by non-thermal synchrotron emission within the hot flow near the black hole. The stability of the soft excess temperature is, however, not consistent with this picture and further investigations are needed to understand its behavior.
Hawking Radiation from a Spherically Symmetric Static Black Hole
NASA Astrophysics Data System (ADS)
Dai, Qian; Liu, Wenbiao
2007-08-01
The massive particles’ Hawking radiation from a spherically symmetric static black hole is investigated with Parikh-Wilczek method, Hamilton Jacobi method and Damour Ruffini’s method. When energy conservation is considered, the same result can be concluded that the radiation spectrum is not precisely thermal. The corrected spectrum is consistent to the underlying unitary quantum theory, which can be used to explain the information loss paradox possibly.
Higher curvature self-interaction corrections to Hawking radiation
NASA Astrophysics Data System (ADS)
Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.
2017-07-01
The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.
Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri
The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less
Revisiting the quantum Szilard engine with fully quantum considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hai; School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264000; Zou, Jian, E-mail: zoujian@bit.edu.cn
2012-12-15
By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from themore » bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.« less
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1992-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.
Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they closely approximate the thermal maturity patterns in the Marcellus Shale, Upper Devonian Rhinestreet Shale Member, and Upper Devonian Huron Member of the Ohio Shale, which are the most important source rocks for oil and gas in the Appalachian basin (de Witt and Milici, 1989; Klemme and Ulmishek, 1991). The Marcellus, Rhinestreet, and Huron units are black-shale source rocks for oil and (or) gas in the Lower Devonian Oriskany Sandstone, the Upper Devonian sandstones, the Middle and Upper Devonian black shales, and the Upper Devonian-Lower Mississippian(?) Berea Sandstone (Patchen and others, 1992; Roen and Kepferle, 1993; Laughrey and Baldassare, 1998).
The exotic remnants of compact object binary mergers
NASA Astrophysics Data System (ADS)
Duez, Matthew
2017-01-01
The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.
Thermal radiative properties: Coatings.
NASA Technical Reports Server (NTRS)
Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.
1972-01-01
This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.
El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.
2018-03-01
Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.
NASA Astrophysics Data System (ADS)
van Velzen, S.
2018-01-01
The tidal disruption of a star by a massive black hole is expected to yield a luminous flare of thermal emission. About two dozen of these stellar tidal disruption flares (TDFs) may have been detected in optical transient surveys. However, explaining the observed properties of these events within the tidal disruption paradigm is not yet possible. This theoretical ambiguity has led some authors to suggest that optical TDFs are due to a different process, such as a nuclear supernova or accretion disk instabilities. Here we present a test of a fundamental prediction of the tidal disruption event scenario: a suppression of the flare rate due to the direct capture of stars by the black hole. Using a recently compiled sample of candidate TDFs with black hole mass measurements, plus a careful treatment of selection effects in this flux-limited sample, we confirm that the dearth of observed TDFs from high-mass black holes is statistically significant. All the TDF impostor models we consider fail to explain the observed mass function; the only scenario that fits the data is a suppression of the rate due to direct captures. We find that this suppression can explain the low volumetric rate of the luminous TDF candidate ASASSN-15lh, thus supporting the hypothesis that this flare belongs to the TDF family. Our work is the first to present the optical TDF luminosity function. A steep power law is required to explain the observed rest-frame g-band luminosity, {dN}/{{dL}}g\\propto {L}g-2.5. The mean event rate of the flares in our sample is ≈ 1× {10}-4 galaxy‑1 yr‑1, consistent with the theoretically expected tidal disruption rate.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
NASA Astrophysics Data System (ADS)
Li, Gu-Qiang
2017-04-01
The tunneling radiation of particles from black holes in Lovelock-Born-Infeld (LBI) gravity is studied by using the Parikh-Wilczek (PW) method, and the emission rate of a particle is calculated. It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory. Compared to the conventional tunneling rate related to the increment of black hole entropy, the entropy of the black hole in LBI gravity is obtained. The entropy does not obey the area law unless all the Lovelock coefficients equal zero, but it satisfies the first law of thermodynamics and is in accordance with earlier results. It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole. Supported by Guangdong Natural Science Foundation (2016A030307051, 2015A030313789)
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-02-01
In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it becomes clear that there are two distinct angular velocities for the shell, the mechanical and thermodynamic angular velocities. We comment on the relationship between these two velocities. In passing, we clarify, for a static spacetime with a thermal shell, the meaning of the Tolman temperature formula at a generic radius and at the shell.
The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces
NASA Astrophysics Data System (ADS)
Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.
2013-12-01
One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field spectroscopy (TINS) for broadband chemical nano-spectroscopic imaging, where the thermally driven vibrational optical dipoles provide their own intrinsic light source.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.
High surface area carbon black (BP-2000) as a reinforcing agent for poly[(₋)-lactide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Paula A.; Brutman, Jacob P.; Masica, Kristina
2016-10-26
We report that the brittle nature and low-heat distortion resistance of a promising biorenewable thermoplastics, poly((₋)-lactide) (PLA), motivate the investigation of strengthening additives that can address these deficiencies. Here in our work, a high surface area carbon black (BP-2000) as well as biobased carbon blacks (hydrochars) were examined as reinforcement agents for PLA. When 1–5 wt % BP-2000 was added to PLA, the crystallization of PLA was accelerated, resulting in higher crystallinity, tensile strength, and heat resistance. A thermal creep experiment revealed that the composites exhibited no significant deformation after 30 min with 2 N of uniaxial tensile force atmore » 80°C (above the Tg), whereas neat PLA (with similar thermal history) elongated to 79% after 5 min under the same conditions. PLA–hydrochar composites demonstrated similar brittle behavior to neat PLA. Finally, despite the promising nucleating ability of hydrochars, they displayed low interfacial adhesion with PLA because of their low surface area, resulting in poor energy transfer on stretching« less
Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black.
Loeb, Stephanie; Li, Chuanhao; Kim, Jae-Hong
2018-01-02
A simple heat treatment, perhaps the most globally recognized point-of-use water sterilization method, is seemingly effective against all major pathogens of concern, but bulk water boiling is not energy efficient or sustainable. Herein, we present the first application of solar-to-thermal converting nanomaterials for the direct inactivation of bacteria and viruses in drinking water through the application of Au nanorods, carbon black, and Au nanorod-carbon black composite materials as light absorbers. With broad absorption bands spanning the visible and near-infrared wavelengths, at sufficient concentrations, these nanoparticles induce multiple scattering events, increasing photon absorption probability and concentrating the light within a small spatial domain, leading to localized, intense heating that inactivates microorganisms in close proximity. Moving toward practical device design, we have developed a facile silane immobilization approach to fabricate films with densely packed layers of photothermal nanomaterials. Our results suggest that upon irraditaion with simulated solar light, these films can thermally inactivate bacteria and viruses, as demonstrated through the inactivation of surrogate organisms Escherichia coli K-12, and bacteriophages MS2 and PR772.
Testing holography using lattice super-Yang-Mills theory on a 2-torus
NASA Astrophysics Data System (ADS)
Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby
2018-04-01
We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.
String in AdS black hole: A thermo field dynamic approach
NASA Astrophysics Data System (ADS)
Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz
2012-10-01
Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.
A preferred mass range for primordial black hole formation and black holes as dark matter revisited
NASA Astrophysics Data System (ADS)
Georg, Julian; Watson, Scott
2017-09-01
Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.
Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-02-01
In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.
NASA Spacecraft Views Erupting Chilean Volcano
2015-03-13
On March 3, 2015, Chile's Villarrica volcano erupted, forcing the evacuation of thousands of people. The eruption deposited a layer of ash over the volcano's eastern slope, blanketing and darkening the normal winter snow cover. The eruption and its effects were captured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft on March 9. Black flows on the other flanks are mud and ash flows. Vegetation is displayed in red colors. The thermal infrared image shows hot spots (white colored) at the summit crater, indicating continuing volcanic activity. The ash blanket is warmer (brighter) than the cold snow (black). The image covers an area of 13.5 by 16.5 kilometers, and is located at 39.4 degrees south, 71.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19241
Structure of thermal pair clouds around gamma-ray-emitting black holes
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1991-01-01
Using certain simplifying assumptions, the general structure of a quasi-spherical thermal pair-balanced cloud surrounding an accreting black hole is derived from first principles. Pair-dominated hot solutions exist only for a restricted range of the viscosity parameter. These results are applied as examples to the 1979 HEAO 3 gamma-ray data of Cygnus X-1 and the Galactic center. Values are obtained for the viscosity parameter lying in the range of about 0.1-0.01. Since the lack of synchrotron soft photons requires the magnetic field to be typically less than 1 percent of the equipartition value, a magnetic field cannot be the main contributor to the viscous stress of the inner accretion flow, at least during the high gamma-ray states.
Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata
2016-06-01
A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai
2017-02-10
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factormore » correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.« less
E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...
Thermal winds in stellar mass black hole and neutron star binary systems
NASA Astrophysics Data System (ADS)
Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki
2018-01-01
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Kaisheng; Henan Normal University, School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Xin xiang, Henan 453007; Lu, Weiwei
A novel method was proposed for successful fabrication of CuS nanostructures with various morphologies. At the ionic liquids (ILs)-modulated CHCl{sub 3}-H{sub 2}O interface, copper cupferronate [Cu(cup){sub 2}] in CHCl{sub 3} reacted with thiourea in water to generate CuS nanostructures via a solvothermal reaction process. The effects of alkyl chain length of imidazolium cations and nature of anions of the ILs, molar ratio of Cu(cup){sub 2} to thiourea, the reaction temperature and time on the morphology of the products were studied systematically. It was shown that by changing alkyl chain length of imidazolium cations and nature of anions of the ILs,more » CuS nanostructures with various morphologies, including flowers, urchins, large nanodisks and nanoparticles, could be obtained at the liquid-liquid interface, and the ILs played important template roles in directing the formation of CuS nanostructures. Furthermore, the as-prepared CuS samples exhibited high catalytic activity for photodegradation of methyl orange and thermal decomposition of ammonium perchlorate. - Graphical abstract: At the ionic liquids-modulated CHCl{sub 3}-H{sub 2}O interface, the CuS nanostructures with the various morphologies of flowers, urchins, large nanodisks and nanoparticles have been successfully prepared via a solvothermal reaction process. Highlights: Black-Right-Pointing-Pointer The properties of oil-H{sub 2}O interface can be modulated by employing different ILs. Black-Right-Pointing-Pointer The modulated interface has been used to prepare CuS nanostructures with various morphologies. Black-Right-Pointing-Pointer The CuS samples exhibited high catalytic activity for the photodegradation of methyl orange.« less
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Dehghani, A.
2015-03-01
In this paper, we obtain topological black hole solutions of third-order Lovelock gravity coupled with two classes of Born-Infeld-type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of the Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider the extended phase space thermodynamics to obtain a generalized first law of thermodynamics as well as the extended Smarr formula.
Measuring Quasar Spin via X-ray Continuum Fitting
NASA Astrophysics Data System (ADS)
Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack
2018-01-01
We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.
Hawking radiation in sonic black holes.
Giovanazzi, S
2005-02-18
I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analog of a black hole. The quantum treatment of the noninteracting case establishes a close relationship between sonic Hawking radiation and quantum tunneling through the barrier. Quasiparticle excitations appear at the barrier and are then radiated with a thermal distribution in exact agreement with Hawking's formula. The signature of the radiation can be found in the dynamic structure factor, which can be measured in a scattering experiment. The possibility for experimental verification of this new transport phenomenon for ultracold atoms is discussed.
Configural face processing impacts race disparities in humanization and trust
Cassidy, Brittany S.; Krendl, Anne C.; Stanko, Kathleen A.; Rydell, Robert J.; Young, Steven G.; Hugenberg, Kurt
2018-01-01
The dehumanization of Black Americans is an ongoing societal problem. Reducing configural face processing, a well-studied aspect of typical face encoding, decreases the activation of human-related concepts to White faces, suggesting that the extent that faces are configurally processed contributes to dehumanization. Because Black individuals are more dehumanized relative to White individuals, the current work examined how configural processing might contribute to their greater dehumanization. Study 1 showed that inverting faces (which reduces configural processing) reduced the activation of human-related concepts toward Black more than White faces. Studies 2a and 2b showed that reducing configural processing affects dehumanization by decreasing trust and increasing homogeneity among Black versus White faces. Studies 3a–d showed that configural processing effects emerge in racial outgroups for whom untrustworthiness may be a more salient group stereotype (i.e., Black, but not Asian, faces). Study 4 provided evidence that these effects are specific to reduced configural processing versus more general perceptual disfluency. Reduced configural processing may thus contribute to the greater dehumanization of Black relative to White individuals. PMID:29910510
Black Hole Event Horizons and Advection-Dominated Accretion
NASA Technical Reports Server (NTRS)
McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)
2001-01-01
The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the thermal energy will disappear through the event horizon, and the object will be very dim. On the other hand, if the central object is a neutron star or any other object with a surface, then the energy will be radiated from the surface, and the object will be bright.
NASA Technical Reports Server (NTRS)
1986-01-01
The University of Georgia used NASTRAN, a COSMIC program that predicts how a design will stand up under stress, to develop a model for monitoring the transient cooling of vegetables. The winter use of passive solar heating for poultry houses is also under investigation by the Agricultural Engineering Dept. Another study involved thermal analysis of black and green nursery containers. The use of NASTRAN has encouraged student appreciation of sophisticated computer analysis.
East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.
2012-01-01
Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).
Thermodynamics of new black hole solutions in the Einstein-Maxwell-dilaton gravity
NASA Astrophysics Data System (ADS)
Dehghani, M.
In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein-Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott-Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.
1993-10-01
The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings.more » The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.« less
Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer
2014-01-01
shadows. The HyperOCRs are all thermally characterized for temperature corrections and spectrally characterized to account for stray light corrections...August 24,2010 is shown in Figure 4A along with the mean percent difference between the NOAA Hyperpro ( Black /Dash) and the other two identical Hyperpro...difference (n=24) between the NOAA Hyperpro ( Black /Dash, Fig. 4A) and the other two Hyperpro systems. The dotted line for the red (bottom) and dash line for
X-Ray Spectra from MHD Simulations of Accreting Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2012-01-01
We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com; Ikeda, Hiroko; Iefuji, Haruyuki
Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1)more » promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.« less
40 CFR 458.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory... apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp process. ...
40 CFR 458.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory... apply to this subpart. (b) The term “product” shall mean carbon black manufactured by the lamp process. ...
Willinger, Ulrike; Hergovich, Andreas; Schmoeger, Michaela; Deckert, Matthias; Stoettner, Susanne; Bunda, Iris; Witting, Andrea; Seidler, Melanie; Moser, Reinhilde; Kacena, Stefanie; Jaeckle, David; Loader, Benjamin; Mueller, Christian; Auff, Eduard
2017-05-01
Humour processing is a complex information-processing task that is dependent on cognitive and emotional aspects which presumably influence frame-shifting and conceptual blending, mental operations that underlie humour processing. The aim of the current study was to find distinctive groups of subjects with respect to black humour processing, intellectual capacities, mood disturbance and aggressiveness. A total of 156 adults rated black humour cartoons and conducted measurements of verbal and nonverbal intelligence, mood disturbance and aggressiveness. Cluster analysis yields three groups comprising following properties: (1) moderate black humour preference and moderate comprehension; average nonverbal and verbal intelligence; low mood disturbance and moderate aggressiveness; (2) low black humour preference and moderate comprehension; average nonverbal and verbal intelligence, high mood disturbance and high aggressiveness; and (3) high black humour preference and high comprehension; high nonverbal and verbal intelligence; no mood disturbance and low aggressiveness. Age and gender do not differ significantly, differences in education level can be found. Black humour preference and comprehension are positively associated with higher verbal and nonverbal intelligence as well as higher levels of education. Emotional instability and higher aggressiveness apparently lead to decreased levels of pleasure when dealing with black humour. These results support the hypothesis that humour processing involves cognitive as well as affective components and suggest that these variables influence the execution of frame-shifting and conceptual blending in the course of humour processing.
Thermodynamics of novel charged dilatonic BTZ black holes
NASA Astrophysics Data System (ADS)
Dehghani, M.
2017-10-01
In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.
Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin
2012-03-15
Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less
Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools
NASA Astrophysics Data System (ADS)
El Moumni, H.
2018-01-01
In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.
Time-Symmetric Quantization in Spacetimes with Event Horizons
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Rodd, Nicholas
2013-08-01
The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.
Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.
Zhao, Chuan; Sekhar, M Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong
2018-06-15
Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.
Samsonek, J; Puype, F
2013-01-01
In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.
A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model
NASA Astrophysics Data System (ADS)
Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing
2016-04-01
Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.
NASA Astrophysics Data System (ADS)
Choi, Michael K.
2017-09-01
The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go sample acquisition, and Return Cruise mission phases.
Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.
Villegas, Cesar E P; Rocha, A R; Marini, Andrea
2016-08-10
Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).
Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus
NASA Astrophysics Data System (ADS)
Zhao, Chuan; Sekhar, M. Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong
2018-06-01
Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.
Effects of high-energy particles on accretion flows onto a super massive black hole
NASA Astrophysics Data System (ADS)
Kimura, Shigeo
We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.
Using BPCA and pyrolysis-GC/MS patterns as a measure of charring intensity
NASA Astrophysics Data System (ADS)
Kaal, Joeri; Schneider, Maximilian P. W.; Schmidt, Michael W. I.
2010-05-01
Many questions remain on the molecular properties of Black C (organic fire residues such as charcoal and soot). Here we compare parameters from two methods that have recently shown to be related to the degree of thermal modification ("charring intensity") of charcoal-Black C: i) the proportion of mellitic acid (B6CA) among benzenepolycarboxylic acids in the BPCA method [1,2,3] and ii) the relative proportions and degree of alkylation of pyrolysis products from Black C in pyrolysis-GC/MS [4]. For that purpose we used laboratory chars from rice straw (grass) and chestnut wood (wood) produced at 200-1000 °C under N2 flow. The chars obtained at 450 °C are reference materials of the Black Carbon Ring Trial [5]. Positive correlations between the charring temperature and BPCA and pyrolysis patterns confirm that these methods can be used to study the degree of thermal impact of charred remains. Pyrolysis-GC/MS allowed us to track the thermal degradation of the major biocomponents lignin, polysaccharides, tannin, aliphatic chain lipids, triterpenoids, chlorophyll and proteins, mostly between 250 and 450 °C. The proportions of the pyrolysis products of Black C (benzene, toluene, benzonitrile, PAHs, etc.) and also the ratios that reflect the abundance of aliphatic cross-linkages between aromatic moieties (benzene/toluene, naphthalene/alkylnaphthalenes, benzofuran/alkylbenzofurans), increase with charring intensity. Nonetheless, chars obtained at T > 600 °C (especially for wood) gave low quality pyrograms and poor reproducibility because of high thermal stability. The relative contributions of B6CA, one of the molecular markers used for the BPCA method, are indicative for the degree of condensation of the chars. The BPCA approach showed a clear increase in the relative contribution of B6CA from ca. 5 % at 200 °C to ca. 95 % at 1000 °C, confirming the ability of this parameter to assess charring intensity. The relative contribution of B6CA remains almost constant at ca. 30 % between 250 and 450 °C. Thus, with regard to estimating the charring intensity of Black C, the BPCA method is more suitable for high T chars (> 450 °C) while pyrolysis-GC/MS seems more appropriate in the lower T range (< 500 °C). This is not surprising as larger clusters of polyaromatic domains (high T) can be assessed by the BPCA method but are resistant against pyrolysis. On the other hand, smaller clusters and non-polycondensed portions of Black C (low T) are amenable to pyrolysis-GC/MS but escape the analytical window of the BPCA method. The two methods may therefore be considered complementary, with BPCA giving reliable quantitative data on Black C content and charring degree of high T chars while pyrolysis-GC/MS is quantitatively weak but provides highly detailed information on the molecular properties of especially lower T chars. References [1] Brodowski, S., Rodionov, A., Haumeier L., Glaser, B., Amelung, W. (2005) Org. Geochem. 36, 1299-1310. [2] Glaser, B., Haumeier, L., Guggenberger, G., Zech, W. (1998) Org. Geochem. 29, 811-819. [3] Schneider, M.P.W., Hilf, M., Vogt, U.F., Schmidt, M.W.I., Org. Geochem. (submitted) [4] Kaal, J., Rumpel, C. (2009) Org. Geochem. 40, 1179-1187. [5] Hammes, K., Schmidt, M.W.I., Smernik, R.J. et al. (2007) Global Biogeochemical Cycles 21, 1-18.
40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace...
40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel...
40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace...
40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the carbon black channel process subcategory. 458.30 Section 458.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel...
Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind
NASA Astrophysics Data System (ADS)
Dubovsky, S. L.; Sibiryakov, S. M.
2006-07-01
We study the effect of spontaneous breaking of Lorentz invariance on black hole thermodynamics. We consider a scenario where Lorentz symmetry breaking manifests itself by the difference of maximal velocities attainable by particles of different species in a preferred reference frame. The Lorentz breaking sector is represented by the ghost condensate. We find that the notions of black hole entropy and temperature loose their universal meaning. In particular, the standard derivation of the Hawking radiation yields that a black hole does emit thermal radiation in any given particle species, but with temperature depending on the maximal attainable velocity of this species. We demonstrate that this property implies violation of the second law of thermodynamics, and hence, allows construction of a perpetuum mobile of the 2nd kind. We discuss possible interpretation of these results.
Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.
Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang
2016-11-23
Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.
Black hole collapse in the 1 /c expansion
NASA Astrophysics Data System (ADS)
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian
2016-07-01
We present a first-principles CFT calculation corresponding to the spherical collapse of a shell of matter in three dimensional quantum gravity. In field theory terms, we describe the equilibration process, from early times to thermalization, of a CFT following a sudden injection of energy at time t = 0. By formulating a continuum version of Zamolodchikov's monodromy method to calculate conformal blocks at large central charge c, we give a framework to compute a general class of probe observables in the collapse state, incorporating the full backreaction of matter fields on the dual geometry. This is illustrated by calculating a scalar field two-point function at time-like separation and the time-dependent entanglement entropy of an interval, both showing thermalization at late times. The results are in perfect agreement with previous gravity calculations in the AdS3-Vaidya geometry. Information loss appears in the CFT as an explicit violation of unitarity in the 1 /c expansion, restored by nonperturbative corrections.
Black hole collapse in the 1/c expansion
Anous, Tarek; Hartman, Thomas; Rovai, Antonin; ...
2016-07-25
We present a first-principles CFT calculation corresponding to the spherical collapse of a shell of matter in three dimensional quantum gravity. In field theory terms, we describe the equilibration process, from early times to thermalization, of a CFT following a sudden injection of energy at time t = 0. By formulating a continuum version of Zamolodchikov’s monodromy method to calculate conformal blocks at large central charge c, we give a framework to compute a general class of probe observables in the collapse state, incorporating the full backreaction of matter fields on the dual geometry. This is illustrated by calculating amore » scalar field two-point function at time-like separation and the time-dependent entanglement entropy of an interval, both showing thermalization at late times. Furthermore, the results are in perfect agreement with previous gravity calculations in the AdS 3-Vaidya geometry. Information loss appears in the CFT as an explicit violation of unitarity in the 1/c expansion, restored by nonperturbative corrections.« less
The initial design of LAPAN's IR micro bolometer using mission analysis process
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.
2016-11-01
As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process
Anisotropic in-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus
2015-10-16
optoelectronic devices where the anisotropic properties might be used10,21–23. Although electronic and photovoltaic properties have been extensively...investigated, thermal transport studies of BP, especially experimental ones, are still lacking. Recently, the thermoelectric power of bulk BP has been...reported, indicating that BP could be used as an efficient thermoelectric material at around 380K24. Some recent first-principles studies also raised
Baby de Sitter black holes and dS3/CFT2
NASA Astrophysics Data System (ADS)
de Buyl, Sophie; Detournay, Stéphane; Giribet, Gaston; Ng, Gim Seng
2014-02-01
Unlike three-dimensional Einstein gravity, three-dimensional massive gravity admits asymptotically de Sitter space (dS) black hole solutions. These black holes present interesting features and provide us with toy models to study the dS/CFT correspondence. A remarkable property of these black holes is that they are always in thermal equilibrium with the cosmological horizon of the space that hosts them. This invites us to study the thermodynamics of these solutions within the context of dS/CFT. We study the asymptotic symmetry group of the theory and find that it indeed coincides with the local two-dimensional conformal algebra. The charge algebra associated to the asymptotic Killing vectors consists of two copies of the Virasoro algebra with non-vanishing central extension. We compute the mass and angular momentum of the dS black holes and verify that a naive application of Cardy's formula exactly reproduces the entropy of both the black hole and the cosmological horizon. By adapting the holographic renormalization techniques to the case of dS space, we define the boundary stress tensor of the dual Euclidean conformal field theory.
Modeling of laser transmission contour welding process using FEA and DoE
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-07-01
In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS® multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection-radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable.
The capacity to transmit classical information via black holes
NASA Astrophysics Data System (ADS)
Adami, Christoph; Ver Steeg, Greg
2013-03-01
One of the most vexing problems in theoretical physics is the relationship between quantum mechanics and gravity. According to an argument originally by Hawking, a black hole must destroy any information that is incident on it because the only radiation that a black hole releases during its evaporation (the Hawking radiation) is precisely thermal. Surprisingly, this claim has never been investigated within a quantum information-theoretic framework, where the black hole is treated as a quantum channel to transmit classical information. We calculate the capacity of the quantum black hole channel to transmit classical information (the Holevo capacity) within curved-space quantum field theory, and show that the information carried by late-time particles sent into a black hole can be recovered with arbitrary accuracy, from the signature left behind by the stimulated emission of radiation that must accompany any absorption event. We also show that this stimulated emission turns the black hole into an almost-optimal quantum cloning machine, where the violation of the no-cloning theorem is ensured by the noise provided by the Hawking radiation. Thus, rather than threatening the consistency of theoretical physics, Hawking radiation manages to save it instead.
NASA Astrophysics Data System (ADS)
Mestreau-Garreau, Agnes; Pezant, Christian; Cousin, Bernard; Etcheto, Pierre; Otrio, Georges
2017-11-01
In the context of Research and Technology (R&T), studies have been performed on the coatings of vane edge in the 0.4 to 1 μm spectral range. The main purposes of the study were to improve the diffusing black coatings available on the market and to look for other diffusing black coatings. At the same time, we have also improved the machining technologies of vane edges. The characterisation (thermal tests, radiometric measurements, adhesion tests) of the most promising technologies has been carried out. The results have pointed out the stainless steel vanes with the edge obtained by polishing or by advanced grinding.
Using Monte-Carlo Simulations to Study the Disk Structure in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Y.; Zhang, S. N.; Zhang, X. L.; Feng, Y. X.
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broad-band spectra in hard state with BeppoSAX is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power- law component and a broad excess feature above 10 keV (disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently.We propose that the additional soft component is due to the thermal Comptonization process between the s oft disk photon and the warm plasma cloud just above the disk.i.e., a warm layer. We use Monte-Carlo technique t o simulate this Compton scattering process and build several table models based on our simulation results.
NASA Astrophysics Data System (ADS)
Chen, De-You; Jiang, Qing-Quan; Yang, Shu-Zheng
2007-12-01
Applying Parikh’s semi-classical quantum tunneling method, the tunneling radiation characteristic of the charged particle from the event horizon of the Reissner Nordström anti de Sitter black hole is researched. The result shows the derived spectrum is not purely thermal one, but is consistent with the underlying unitary theory, which gives a might explanation to the information loss paradox and is the correct amendment to the Hawking radiation.
Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole
NASA Astrophysics Data System (ADS)
He, Xiao-Kai; Liu, Wen-Biao
2007-08-01
Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour-Ruffini method is more concise and understandable.
NASA Astrophysics Data System (ADS)
1999-04-01
The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.
A unitary model of the black hole evaporation
NASA Astrophysics Data System (ADS)
Feng, Yu-Lei; Chen, Yi-Xin
2014-12-01
A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.
NASA Technical Reports Server (NTRS)
Young, P. J.; Shields, G. A.; Wheeler, J. C.
1977-01-01
The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.
Evaporation of large black holes in AdS: coupling to the evaporon
NASA Astrophysics Data System (ADS)
Rocha, Jorge V.
2008-08-01
Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
Modelling The Energy And Mass Balance Of A Black Glacier
NASA Astrophysics Data System (ADS)
Grossi, G.; Taschner, S.; Ranzi, R.
A distributed energy balance hydrologic model has been implemented to simulate the melting season of the Belvedere glacier, situated in the Anza river basin (North- Western Italy) for a few years. The Belvedere Glacier is an example of SblackS glacier, ´ since the ablation zone is covered by a significant debris layer. The glacierSs termi- nus has an altitude of 1785 m asl which is very unusual for the Southern side of the European Alps. The model accounts for the energy exchange processes at the inter- face between the atmospheric boundary layer and the snow/ice/debris layer. To run the model hydrometeorological and physiographic data were collected, including the depth of the debris cover and the tritium (3H) concentration in the glacial river. Mea- surements of the soil thermal conductivity were carried out during a field campaign organised within the glaciers monitoring GLIMS project, at the time of the passage of the Landsat and the Terra satellites last 15 August 2001. A comparison of the different energy terms simulated by the model assigns a dominant role to the shortwave radia- tion, which provides the highest positive contribution to the energy available for snow- and ice-melt, while the sensible heat turns out to be the second major source of heat. Longwave radiation balance and latent heat seem to be less relevant and often nega- tive. The role of the debris cover is not negligible, since its thermal insulation causes, on average, a decrease in the ice melt volume. One of the model variables is the tem- perature of the debris cover, which can be a useful information when a black glacier is to be monitored through remote sensing techniques. The visible and near infrared radi- ation data do not always provide sufficient information to detect the glaciers' margins beneath the debris layer. For this reason the information of the different thermal sur- face characteristics (pure ice, debris covered ice, rock), proved by the energy balance model results was applied for the glacierSs classification with a Landsat-TM image. Taking into account also the thermal infrared band leads to an improved classification result.
ASTER Images the Island of Hawaii
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.
Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Changes in oxidation state of chromium during LDEF exposure
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
1992-01-01
The solar collector used for the McDonnell-Douglas Cascade Variable Heat Pipe, Experiment A0076 (Michael Grote - Principal Investigator) was finished with black chromium plating as a thermal control coating. The coating is metallic for low emittance, and is finely microcrystalline to a dimension which yields its high absorptivity. An underplate of nickel was applied to the aluminum absorber plate in order to achieve optimal absorptance characteristics from the black chromium plate surface. Experiment A0076 was located at tray position F9, receiving a projected 8.7 x 10 exp 21 atomic oxygen atoms/sq cm and 11,200 ESH solar radiation. During retrieval, it was observed that the aluminized kapton thermal blankets covering most of the tray were severely eroded by atomic oxygen, and that a 'flap' of aluminum foil was overlaying a roughly triangular shaped portion of the absorber panel. The aluminum foil 'flap' was lost sometime between the Long Duration Exposure Facility (LDEF) retrieval and deintegration. At deintegration, the black chromium was observed to have discolored where it had been covered by the foil 'flap'. A summary of the investigation into the cause of the discoloration is presented.
Safeguards Approaches for Black Box Processes or Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John
2013-09-25
The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. Thismore » analysis identified the necessary conditions for safeguardability of black box processes and facilities.« less
How sensitive is Hawking radiation to superluminal dispersion relations?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannes, G.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid; Barcelo, C.
2009-05-01
We discuss the Hawking radiation process in a collapse scenario with superluminal dispersion relations. Due to these superluminal modifications, the horizon effectively becomes frequency-dependent. At every moment of the collapse, a critical frequency can be calculated such that frequencies higher than this critical frequency do not couple to the collapsing geometry and hence do not see any horizon. We discuss three important consequences. First, the late-time radiation in general has a lower intensity than in the standard Hawking picture. Second, the thermal output spectrum depends on the surface gravity, thereby effectively exploring the physics inside the black hole. Third, themore » radiation dies off as time advances.« less
Spectral evolution in young active galactic nuclei
NASA Technical Reports Server (NTRS)
Boldt, E.; Leiter, D.
1986-01-01
The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.
Ogden, Jane; Russell, Sheriden
2013-12-01
This qualitative think aloud study explored how Black women (n = 32) processed information from a White or Black fashion magazine. Comments to the 'White' magazine were characterised by rejection, being critical of the media and ambivalence, whereas they responded to the 'Black' magazine with celebration, identification and a search for depth. Transcending these themes was their self-identity of being a Black woman that was brought to the fore either by a sense of exclusion (White magazine) or engagement (Black magazine). Such an identity provides resilience against the media's thin ideals by minimising the processes of social comparison and internalisation.
Cosmic microwave background radiation of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.
2010-11-01
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir
Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less
Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Kalemci, Emrah; Kaaret, Philip; Markoff, Sera; Corbel, Stephane; Migliari, Simone; Fender, Rob; Bailyn, Charles D.; Buxton, Michelle M.
2008-01-01
A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (Rg) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and coworkers show evidence for disk material very close to the black hole's innermost stable circular orbit. That work studied GX 339-4 at a luminosity of approximately 5% of the Eddington limit (L(sub Edd) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approximately 0.2 keV at 2.3% L (sub Edd). At both luminosities, we detect broad features due to iron K-alpha that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10 Rg, and the measurements are consistent with the disk's inner radius remaining at approximately 4 Rg down to 0.8% L(sub Edd). However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.
NASA Technical Reports Server (NTRS)
Kalemci, E.; Tomsick, J. A.; Corbel; Kaaret, P.; Rothschild, R. E.; Pottschmidt, K.
2006-01-01
Multiwavelength observations of Galactic black hole transients during outburst decay are instrumental for our understanding of the accretion geometry and the formation of outflows around black hole systems. H1743-322, a black hole transient observed intensely in X-rays and also covered in the radio band during its 2003 decay, provides clues about the changes in accretion geometry during state transitions and also the general properties of X-ray emission during the intermediate and low-hard states. In this work, we report on the evolution of spectral and temporal properties in X-rays and the flux in the radio band, with the goal of understanding the nature of state transitions observed in this source. We concentrate on the transition from the thermal dominant state to the intermediate state that occurs on a timescale of 1 day. We show that the state transition is associated with a sudden increase in power-law flux. We determine that the ratio of the power-law flux to the overall flux in the 3-25 keV band must exceed 0.6 for us to observe strong timing noise. Even after the state transition, once this ratio was below 0.6, the system transited back to the thermal dominant state for 1 day. We show that the emission from the compact radio core does not turn on during the transition from the thermal dominant state to the intermediate state but does turn on when the source reaches the low-hard state, as seen in 4U 1543-47 and GX 339-4. We find that the photon index correlates strongly with the QPO frequency and anticorrelates with the rms amplitude of variability. We also show that the variability is more likely to be associated with the power-law emission than the disk emission.
Gaussian interferometric power and Black box estimation of Unruh temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jieci, E-mail: jcwang@hunnu.edu.cn; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Cao, Haixin
2016-10-15
We present a black box estimation paradigm of Unruh temperature in a relativistic bosonic continuous-variable setting. It is shown that the guaranteed precision for the estimation of Unruh temperature can be evaluated by the Gaussian interferometric power for a given probe state. We demonstrate that the amount of interferometric power is always beyond the entanglement type quantum correlations in a relativistic setting. It is found that due to the fact that Unruh radiation acts as a thermal bath on the probe system, it destroys available resources of the probe system and reduces the guaranteed precision of the estimation of Unruhmore » temperature. We also find that the thermal noise induced by Unruh effect will generate interferometric power between accelerated Bob and his auxiliary partner anti-Bob, while it does not generate any correlation between inertial Alice and anti-Bob.« less
Emission of fermions in little string theory
NASA Astrophysics Data System (ADS)
Lorente-Espín, Oscar
2013-03-01
It is well known that little string theory (LST) black holes radiate a purely thermal spectrum of scalar particles. This theory lives in a Hagedorn phase with a fixed Hagedorn temperature that does not depend on its mass. Therefore, the theory keeps a thermal profile even taking into account self-gravitating effects and the backreaction of the metric. This has implications concerning the information loss paradox; one would not be able to recover any information from the LST black hole since the emission of scalar particles is totally uncorrelated. Several studies of the emission spectrum in LST concern scalar fields; it is our aim in this work to extend the study to the emission of fermions in order to verify that the most relevant conclusion for the scalar field remains valid for the fermion fields. Thus, we have calculated the emission probability, the flux, and also the greybody factor corresponding to a fermion field in LST background.
Vitrinite equivalent reflectance of Silurian black shales from the Holy Cross Mountains, Poland
NASA Astrophysics Data System (ADS)
Smolarek, Justyna; Marynowski, Leszek; Spunda, Karol; Trela, Wiesław
2014-12-01
A number of independent methods have been used to measure the thermal maturity of Silurian rocks from the Holy Cross Mountains in Poland. Black shales are characterized by diverse TOC values varying from 0.24-7.85%. Having calculated vitrinite equivalent reflectance using three different formulas, we propose that the most applicable values for the Silurian rocks are those based on Schmidt et al. (2015) equation. Based on this formula, the values range from % 0.71 VReqvVLR (the vitrinite equivalent reflectance of the vitrinite-like macerals) to % 1.96 VReqvVLR. Alternative, complementary methods including Rock Eval pyrolysis and parameters based on organic compounds (CPI, Pr/n-C17, Ph/n-C18, MPI1, and MDR) from extracts did not prove adequate as universal thermal maturity indicators. We have confirmed previous suggestions that Llandovery shales are the most likely Silurian source rocks for the generation of hydrocarbons in the HCM.
Disks around merging binary black holes: From GW150914 to supermassive black holes
NASA Astrophysics Data System (ADS)
Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2018-02-01
We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.
Observational constraints on black hole accretion disks
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1994-01-01
We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.
Instability of black strings in the third-order Lovelock theory
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
Study of the utilization of EREP data from the Wabash River Basin
NASA Technical Reports Server (NTRS)
Silva, L. F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The analysis of the Sl/4 S192 data over Ft. Wayne, Indiana, taken on January 25, 1974 indicates that the thermal resolution of the thermal band in the X-5 detector array is of sufficient quality to distinguish factories, school houses, commercial buildings, and groups of residential houses from the cooler background surroundings. It is speculated that the higher thermal energy being radiated from these manmade buildings is due to a combination of the heat loss of the buildings and to the high solar absorption by the black tar roofs.
Radiative contribution to thermal conductance in animal furs and other woolly insulators.
Simonis, Priscilla; Rattal, Mourad; Oualim, El Mostafa; Mouhse, Azeddine; Vigneron, Jean-Pol
2014-01-27
This paper deals with radiation's contribution to thermal insulation. The mechanism by which a stack of absorbers limits radiative heat transfer is examined in detail both for black-body shields and grey-body shields. It shows that radiation energy transfer rates should be much faster than conduction rates. It demonstrates that, for opaque screens, increased reflectivity will dramatically reduce the rate of heat transfer, improving thermal insulation. This simple model is thought to contribute to the understanding of how animal furs, human clothes, rockwool insulators, thermo-protective containers, and many other passive energy-saving devices operate.
NASA Astrophysics Data System (ADS)
Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum
2017-11-01
High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.
NASA Astrophysics Data System (ADS)
Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina
2012-06-01
The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.
Thermal-infrared imager TIR on Hayabusa2: Result of ground calibration
NASA Astrophysics Data System (ADS)
Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Imamura, T.; Senshu, H.; Sekiguchi, T.; Ogawa, Y.; Demura, H.; Sakatani, N.; Horikawa, Y.; Helbert, J.; Mueller, T.; Hagermann, A.; H. TIR-Team
2014-07-01
Thermal-infrared imager TIR on Hayabusa2 will image C-class NEA (162173)1999JU3 in 8-12 micrometer band. TIR observation is not only for scientific investigation of asteroid thermo-physical properties, but also for assessment of landing site selection and safety descent operation. Hayabusa2 is the follow-on mission after Hayabusa that accomplished the first asteroid sample-return in 2010. Hayabusa2 is primarily an asteroid sample-return mission, but remote sensing of the asteroid is also essential to understand the global nature of asteroid, complementary to returned samples. Active impact experiment using SCI (Small Carry-on Impactor) and surface measurements using MASCOT lander which carries camera, NIR imaging microscope, radiator, and magnetometer, as well as hopping rover MINERVA are also planned in this mission. A thermal-infrared imager is to image the surface temperature profile and its temporal variation by asteroid rotation. TIR adopts a non- cooled bolometer array NEC 320A with 328×248 effective pixels. Its fields of view covers 16°×12° with 0.05° per pixel. The image can be taken at 60 Hz, and summation onboard can be set from 1 to 128 to improve signal-to-background ratio. The imaging is interlaced with the shutter open and close. The subtraction of shutter-close image (bias data) from shutter-open image (biased image) produces the realistic thermal images. To improve more accurate data in radiation intensity, those realistic thermal images can be summed by onboard software. Data compression is also conducted by onboard software[1]. TIR is based on LIR on Akatsuki Venus climate orbiter [2]. We know something about C-type meteorites but little about C-class asteroids. We know little about asteroid 1999JU3 but it is considered as something like low-dense and huge-cratered as asteroid 253 Mathilde, or like rubble-piled, sedimented small asteroid 25143 Itokawa. To investigate the nature of asteroid and its formation processes, thermo-physical properties of boulders or materials inside huge crates are important targets to observe. Evident thermal measurements are conducted to compare them with thermal model for ground observation, and to investigate Yarkovsky or YORP effects. If the orbiting satellites or dust clouds exist at the surroundings, asteroid mass or dust properties will be determined. Cooperative observation with radiometer on MASCOT is also important to determine the thermo-physical properties precisely. We conducted radiometric and geometric calibration for TIR. We use the cavity black-body and oil-bath based black-body plates for calibration at higher temperature from 25 to 150 °C. We also use the black-body plate inside the vacuum chamber for lower temperature from -40 to +50 °C. Both of appratuses share the temperature region from 25 to 50 °C. For geometrical correction, collimator is used measure the square-shaped target. For cross-calibration, the same targets are used for other instruments: 30 cm diameter serpentine target plate with heater is shared with MARA radiometer on MASCOT, and the same meteorite samples (Murchison CM2 meteorites, Murray CM2 meteorites) are shared with NIRS3 spectrometer and ONC camera. The landscape and the walls of test sites were imaged for demonstration. TIR is able to measure the surface temperature from -40 to 150 °C at the central region of images (a little wider range but less resolution at non-central region). The absolute temperature is less than 2 °C, and the resolution (NETD) is less than 0.3 °C for most of conditions. TIR is well calibrated thermal-infrared imager to take thermal images of asteroid and investigate its thermo-physical properties. This type of instruments will be used in other future missions for scientific and operational purposes.
Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves
NASA Technical Reports Server (NTRS)
Kusunose, Masaaki; Mineshige, Shin
1992-01-01
All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.
2012-03-15
From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less
Particle motion and Penrose processes around rotating regular black hole
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon
2016-07-01
The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.
Terrestrial black holes as sources of super-high energy radiation
NASA Astrophysics Data System (ADS)
Trofimenko, A. P.; Gurin, V. S.
1993-04-01
The study proposes small black holes which can be located in the earth's interior as sources of superhigh energy radiation; their origin is not constrained to the big bang. The intensity and spectrum of massless and massive particle radiation due to the Hawking effect for black holes with masses of 10 exp 8 to 10 exp 16 are estimated. The possibility of their detection according to a number of features (high particle energies, thermal energetic spectrum, transientness or an explicit trend to intensity and energy increase, and some expressed direction of emission associated with source localization) is explored. The rates of the radiation of massless particles with spin-1/2 and with spin-1 are illustrated in graphic form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br; Muniz, C.R., E-mail: celiomuniz@yahoo.com
This work considers the influence of the gravitational field produced by a charged and rotating black hole (Kerr–Newman spacetime) on a charged massive scalar field. We obtain exact solutions of both angular and radial parts of the Klein–Gordon equation in this spacetime, which are given in terms of the confluent Heun functions. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of charged massive scalar particles. - Highlights: • The covariant Klein–Gordon equation for a charged massive scalar field in the Kerr–Newman black hole is solved.more » • Both angular and radial parts are transformed to a Heun-type equation. • The resulting Hawking radiation spectrum of scalar particles has a thermal character.« less
A new pulping process for wheat straw to reduce problems with the discharge of black liquor.
Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G
2007-11-01
Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.
2006-01-01
Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.
The Extreme Spin of the Black Hole in Cygnus X-1
NASA Technical Reports Server (NTRS)
Gou, Lijun; McClintock, Jeffre E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.
2005-01-01
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* > 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.
The Extreme Spin of the Black Hole in Cygnus X-1
NASA Technical Reports Server (NTRS)
Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.
2011-01-01
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamical model, we find a. > 0.92 (3 ). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk s low luminosity.
Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1
NASA Astrophysics Data System (ADS)
Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul
2013-11-01
There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.
Non-strictly black body spectrum from the tunnelling mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corda, Christian, E-mail: cordac.galilei@gmail.com
2013-10-15
The tunnelling mechanism is widely used to explain Hawking radiation. However, in many cases the analysis used to obtain the Hawking temperature only involves comparing the emission probability for an outgoing particle with the Boltzmann factor. Banerjee and Majhi improved this approach by explicitly finding a black body spectrum associated with black holes. Their result, obtained using a reformulation of the tunnelling mechanism, is in contrast to that of Parikh and Wilczek, who found an emission probability that is compatible with a non-strictly thermal spectrum. Using the recently identified effective state for a black hole, we solve this contradiction viamore » a slight modification of the analysis by Banerjee and Majhi. The final result is a non-strictly black body spectrum from the tunnelling mechanism. We also show that for an effective temperature, we can express the corresponding effective metric using Hawking’s periodicity arguments. Potential important implications for the black hole information puzzle are discussed. -- Highlights: •We review an important result by Banerjee and Majhi on the tunnelling mechanism in the framework of Hawking radiation. •This result is in contrast to another result reported by Parikh and Wilczek. •We introduce the effective state of a black hole. •We explain the contrast via a slight modification of the analysis by Banerjee and Majhi. •We discuss potential important implications for the black hole information puzzle.« less
Mapping Rock and Soil Units in the MPF IMP SuperPan Using a Kohonen Self Organizing Map
NASA Technical Reports Server (NTRS)
Farrand, W.; Merenyi, E.; Murchie, S.; Barnouin-Jha, O.; Johnson, J.
2004-01-01
The 1997 Mars Pathfinder mission provided information on a site in the Ares Vallis floodplain. Initial analysis of multispectral data from the Imager for Mars Pathfinder (IMP) indicated the presence of only a single rock type, the 'gray rock' spectral class and various coated variants thereof (e.g., 'maroon rock'). Continued analysis of the IMP 'SuperPan' mosaic has confirmed multiple examples of a second 'black rock' spectral class existing as small cobbles in the near field and as boulders in the far field. These results are consistent with recent analysis of MGS Thermal Emission Spectrometer (TES) data which indicates that there is likely a mix of both 'Surface Type 1' (ST1) and 'Surface Type 2' (ST2) spectral classes at the MPF landing site. Nominally, the black rock spectral class would correspond to ST1 (basalts) and 'gray rock' would correspond to ST2 (andesites). Orbital remote sensing has also revealed the pervasive presence of layering on Mars. Recently it was suggested that there are extensive outcrops of the black rock spectral class in the SuperPan far field on the flanks of the Twin Peaks and on the rim of Big Crater. These authors suggested that these exposures represented outcrops of black rock from beneath a surficial, flood deposited layer. In this work, we have reexamined the MPF IMP SuperPan mosaic using an artificial neural network self organizing map (SOM) processing architecture in order to classify the distribution of spectral classes within the SuperPan. In this paper, we present initial results from that work and draw specific attention to a subset of the identified spectral classes in order to address questions relating to whether there are extensive exposures of black rock in the IMP far field, what other materials might be exposed in the far field, and what evidence there is for subsurface layering at the MPF landing site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed
According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetimemore » that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.« less
WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.
With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less
WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.
2016-02-01
With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.
Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma
NASA Technical Reports Server (NTRS)
Leiter, D.; Boldt, E.
1982-01-01
A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.
NASA Astrophysics Data System (ADS)
Yan, Han
2012-08-01
Extending Parikh-Wilczek's semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of ( n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.
Modified Hawking radiation in a BTZ black hole using Damour Ruffini method
NASA Astrophysics Data System (ADS)
He, Xiaokai; Liu, Wenbiao
2007-09-01
Considering energy conservation, angular momentum conservation, and the particles' back reaction to space-time, the scalar particles' Hawking radiation from a BTZ black hole was investigated using Damour-Ruffini method. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the previous literatures. It is in agreement with an underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas, the method is more concise and understandable.
Process of super-black shading material applied to the star sensor based on Ni-P alloys
NASA Astrophysics Data System (ADS)
Liu, Fengdeng; Xing, Fei; Wu, Yuelong; You, Zheng
2014-12-01
Super-black materials based on Nanotechnology have very important applications in many science fields. Super-black materials which have been reported currently, although have excellent light-trapping properties, most of them need the use of sophisticated equipment , the long-time synthesis , high temperature environment and release flammable, explosive and other dangerous gases. So many kinds of problems have hindered the application of such super-black material in practice. This project had nano super-black material developed with simple equipment and process, instead of complicated and dangerous process steps in high temperature and high pressure. On the basis of literature research, we successfully worked out a set of large-area Ni-P alloy plating method through a series of experiments exploring and analyze the experimental results. In the condition of the above Ni-P alloy, we took the solution, which anodized the Ni-P alloy immersed in the non-oxidizing acid, instead of conventional blackening process. It`s a big break for changing the situation in which oxidation, corrosion, vigorous evolution of hydrogen gas in the process are performed at the same location. As a result, not only the reaction process decreased sensitivity to time error, but also the position of the bubble layer no longer located in the surface of the workpiece which may impede observing the process of reaction. Consequently, the solution improved the controllability of the blackening process. In addition, we conducted the research of nano super-black material, exploring nano-super-black material in terms of space optical sensor.
PCM/wood composite to store thermal energy in passive building envelopes
NASA Astrophysics Data System (ADS)
Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.
2017-10-01
The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.
Black holes as bubble nucleation sites
NASA Astrophysics Data System (ADS)
Gregory, Ruth; Moss, Ian G.; Withers, Benjamin
2014-03-01
We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.
In-situ X-ray diffraction study of phase transformations in the Am-O system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebreton, Florent, E-mail: florent.lebreton@cea.fr; GEMH, ENSCI, 87065 Limoges; Belin, Renaud C., E-mail: renaud.belin@cea.fr
2012-12-15
In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{submore » 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic-to-hexagonal transition. Black-Right-Pointing-Pointer Lattice parameter thermal expansion of hexagonal Am{sub 2}O{sub 3} is given up to 1840 K. Black-Right-Pointing-Pointer We give additional data on AmO{sub 2} lattice parameter expansion under self-irradiation.« less
Evaporation of 2-dimensional black holes
NASA Astrophysics Data System (ADS)
Ramazanoglu, Fethi M.
We present a detailed analysis of results from a new study of the quantum evaporation of Callan-Giddings-Harvey-Strominger (CGHS) black holes within the mean-field approximation. The CGHS model is a two dimensional model of quantum gravity which has been extensively investigated in the last two decades. Moreover, Ashtekar, Taveras and Varadarajan have recently proposed a solution to the information loss paradox within the context of this model, which has rekindled the interest in it. However, many aspects of black hole evaporation in this model has been overlooked because of lack of a solution for black holes with macroscopic mass. We show that this was due to, in part, limited numerical precision and, in part, misinterpretation of certain properties and symmetries of the model. By addressing these issues, we were, for the first time, able to numerically evolve macroscopic-mass black hole spacetimes of the CGHS model within the mean-field approximation, up to the vicinity of the singularity. Our calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. One of the anticipated properties we confirm is that the semi-classical space-time is asymptotically flat at right future null infinity, I+R , yet incomplete in the sense that null observers reach a future Cauchy horizon in finite affine time. Unexpected behavior includes that the Bondi mass traditionally used in the literature can become negative even when the area of the horizon is macroscopic; an improved Bondi mass remains positive until the end of semi-classical evaporation, yet the final value can be arbitrarily large relative to the Planck mass; and the flux of the quantum radiation at I+R is non-thermal even when the horizon area is large compared to the Planck scale. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties, which offer problems to attack to the mathematical relativity and geometric analysis communities. Our results also provide support for the full quantum scenario developed by Ashtekar et al.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go (TAG) sample acquisition, and Return Cruise mission phases.The OSIRIS-REx Outbound Cruise flight temperature telemetry and USM_3_DPC_0_CURRENT flight currenttelemetry data have been analyzed. It is evident that at the nominal Outbound Cruise spacecraft Sun-pointing attitude(i.e., Sun on +X), sunlight impinging on the PolyCam, OTES, IMU-sunshade and OLA-sunshade MLIs is reflected orscattered to the forward deck and components on the forward deck. It illuminates the forward deck. The StowCam imageof Day 265 2016 also provided an evidence. The reflected or scattered sunlight cause warming to the forward deck andcomponents on its +Z side. It may also contribute to degradation of thermal coatings over the mission life. It is a factorthat the OVIRS detector operating temperature exceeds the 105K maximum AFT limit. The OVIRS PrincipalInvestigator indicated that it is not optimum but acceptable for science. With exception of the OVIRS detector, thecorrelated flight system thermal model predictions for the components on the forward deck have adequate margins in theProximity Ops, TAG and Return Cruise phases. The margins are expected to cover the warming caused by the solarimpingement and the contribution to degradation of thermal coatings. The solar impingement is not expected to be athermal risk to the OSIRIS-REx mission. The second SRC Optical Properties characterization will be repeated in theReturn Cruise to provide a good characterization of any changes in optical properties that might have occurred duringthe TAG, or during several years in space. If the SRC battery runs much warmer than that of the first characterization inthe Outbound Cruise, it will be necessary to make some changes to the SRC Release timeline to assure the SRC batterytemperature are within limits. If GBK, instead of microporous black PTFE, were used on the PolyCam sunshade MLI,much more sunlight would have been reflected or scattered to the forward deck and components on its +Z side.Microporous black PTFE should be considered to mitigate the optical and thermal issues of sunlight reflected/scatteredby MLI blankets in future missions.
40 CFR 458.45 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the provisions of this subpart: There shall be no discharge of process waste water pollutants to navigable waters. ...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...
Full action of two deformation operators in the D1D5 CFT
NASA Astrophysics Data System (ADS)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-11-01
We are interested in thermalization in the D1D5 CFT, since this process is expected to be dual to black hole formation. We expect that the lowest order process where thermalization occurs will be at second order in the perturbation that moves us away from the orbifold point. The operator governing the deformation off of the orbifold point consists of a twist operator combined with a supercharge operator acting on this twist. In a previous paper we computed the action of two twist operators on an arbitrary state of the CFT. In the present work we compute the action of the supercharges on these twist operators, thereby obtaining the full action of two deformation operators on an arbitrary state of the CFT. We show that the full amplitude can be related to the amplitude with just the twists through an action of the supercharge operators on the initial and final states. The essential part of this computation consists of moving the contours from the twist operators to the initial and final states; to do this one must first map the amplitude to a covering space where the twists are removed, and then map back to the original space on which the CFT is defined.
1980-12-01
he or she deals with members of other groups [ Rice , 19691. With this in mind, it must be pointed out that the aim of organizational socialization is... Rice , A. K., "Individual, Group and Intergroup Processes," Human Relations, 22, pp. 565-584, 1969. Ryan, William, Blaming the Victim, Pantheon, New...and Standford M. Lyman, "Accounts," American Sociological Review, 33: 46-62, 1968. 119 Smythe, Mabel M., (ed.) The Black American Reference Book
Equivalence of emergent de Sitter spaces from conformal field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less
Toward a Unified View of Black-Hole High-Energy States
NASA Technical Reports Server (NTRS)
Nowak, Michael A.
1995-01-01
We present here a review of high-energy (greater than 1 keV) observations of seven black-hole candidates, six of which have estimated masses. In this review we focus on two parameters of interest: the ratio of 'nonthermal' to total luminosity as a function of the total luminosity divided by the Eddington luminosity, and the root-mean-square (rms) variability as a function of the nonthermal-to-total luminosity ratio. Below approx. 10% Eddington luminosity, the sources tend to be strictly nonthermal (the so called 'off' and 'low' states). Above this luminosity the sources become mostly thermal (the 'high' state). with the nonthermal component increasing with luminosity (the 'very high' and 'flare' states). There are important exceptions to this behavior, however, and no steady - as opposed to transient - source has been observed over a wide range of parameter space. In addition, the rms variability is positively correlated with the ratio of nonthermal to total luminosity, although there may be a minimum level of variability associated with 'thermal' states. We discuss these results in light of theoretical models and find that currently no single model describes the full range of black-hole high-energy behavior. In fact, the observations are exactly opposite from what one expects based upon simple notions of accretion disk instabilities.
Equivalence of emergent de Sitter spaces from conformal field theory
Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire
2016-09-27
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less
NASA Technical Reports Server (NTRS)
Hughes, David; Dazzo, Tony
2007-01-01
This viewgraph presentation reviews the use of particle analysis to assist in preparing for the 4th Hubble Space Telescope (HST) Servicing mission. During this mission the Space Telescope Imaging Spectrograph (STIS) will be repaired. The particle analysis consisted of Finite element mesh creation, Black-body viewfactors generated using I-DEAS TMG Thermal Analysis, Grey-body viewfactors calculated using Markov method, Particle distribution modeled using an iterative Monte Carlo process, (time-consuming); in house software called MASTRAM, Differential analysis performed in Excel, and Visualization provided by Tecplot and I-DEAS. Several tests were performed and are reviewed: Conformal Coat Particle Study, Card Extraction Study, Cover Fastener Removal Particle Generation Study, and E-Graf Vibration Particulate Study. The lessons learned during this analysis are also reviewed.
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
Ethnic Differences in Family Stress Processes Among African-Americans and Black Caribbeans
Caldwell, Cleopatra Howard; Bellatorre, Anna; Jackson, James S.
2012-01-01
Several theories of stress exposure, including the stress process and the family stress model for economically disadvantaged families, suggest that family processes work similarly across race/ethnic groups. Much of this research, however, treats African-Americans as a monolithic group and ignores potential differences in family stress processes within race that may emerge across ethnic groups. This study examines whether family stress processes differ intraracially in African-American and Black Caribbean families. Using data from the National Survey of American Life, a national representative data set of African-American and Black Caribbean families, we assess the extent to which parents’ stress appraisals and psychological adjustment are related to their adolescent children’s stress appraisals, psychological adjustment, and depressive symptoms. Our study illustrates that stress processes differ by ethnicity and operate through varying pathways in African-American and Black Caribbean families. The implications of intraracial variations in stress processes are discussed. PMID:23349643
Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned
NASA Technical Reports Server (NTRS)
Otero, Veronica; Mosier, Carol; Neuberger, David
2013-01-01
The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal control of these boxes is the responsibility of Orbital Sciences Corporation, the spacecraft developer. The TIRS thermal subsystem design was successfully verified during months of testing campaign, from component & subsystem level to two instrument-level thermal vacuum tests. The Instrument, despite an aggressive schedule, was delivered to the spacecraft vendor in February of 2012 and is currently undergoing the final stages of spacecraft environmental testing in preparation for launch.
Degradation of black liquor from bioethanol process using coagulation and Fenton-like methods
NASA Astrophysics Data System (ADS)
Muryanto, Muryanto; Sari, Ajeng Arum; Abimanyu, Haznan
2017-01-01
Black liquor is one of the main by-products of the pretreatment process in bioethanol production from oil palm empty fruit bunches. Black liquor wastewater releases black coloured effluent with high chemical oxygen demand (COD) and low dissolved oxygen (DO). It had a distinctive dark coloration, high alkalinity (pH=13), high organic content (COD > 50,000 ppm) and a high solid content (TSS > 5,000 ppm). Lignin destruction can be done by using high oxidation from OH radical system such as advanced oxidation processes (AOPs). Thereafter, the high concentration of COD, color, and TSS can be removed. The general aim of the present investigation was to determine degradation of black liquor wastewater by using a combined coagulation and Fenton-like methods. In this research, we use Poly Aluminum Chloride (PAC) as a coagulant and FeCl3.6H2O and H2O2 for Fenton-like's reagent. The process was conducted in jar test at 200 rpm for 30 minutes and after that slowly mixed for 2 hours and left for sedimentation 24 hours. 50 ml black liquor was added with variation dose of 1-5% PAC, and 10 % Fenton-like reagent. Hydroxyl radical was generated by the Fenton-like's reagent (ratio FeCl3.6H2O : H2O2 was varied). The highest decolorization of black liquor 70 % was obtained under 5% PAC coagulant. The pH of the wastewater was reduced from 13.00 to 8.07 after the addition of the coagulant. The decolorization of original black liquor was approximately 58% through the Fenton-like process. The combination of PAC and Fenton-like reagent has able to enhance the decolorization of black liquor up to 97%.
Soul Music: Techniques for Therapeutic Intervention
ERIC Educational Resources Information Center
Toldson, Ivory L.; Pasteur, Alfred B.
1972-01-01
The authors conclude that using black music in the educational process aligns educational input with black culture. This approach, which extends and utilizes the spiritual dimension of black life, is consistent with the black value system and can help black learners integrate and internalize an aspect of their cultural heritage. (Author/BY)
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.
Beer, S K; Lawson, S A
2013-08-01
An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.
Black Perceptions of the Mayor: An Empirical Test.
ERIC Educational Resources Information Center
Foster, Lorn S.
1978-01-01
During the past ten years Blacks have increased their participation in the urban political process. In a few urban areas, such as Newark and Detroit, Blacks constitute an electoral majority and have elected Black mayors. (Author/RLV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyongwoon
Microstructural characteristics of the CGHAZ (coarse grained heat affected zone) made of the 2.25Cr-1Mo-V-Ti material for the thermal power plant boiler tube were discussed using the technique of tint etching. To conduct the micro structural characterization, the sample on which CGHAZ was produced by using a high temperature thermal cycle simulator, Gleeble 3500 equipment was used for comparative analyses using the existing Nital etching (ASTM E407-74) and the alkaline etching (ASTM E40785). The latter was used to observe a specific phase. For the microstructure on which the alkaline etching was experimented, the shape of a black strip (Ghost microstructure) inmore » a few microns was observed, which was not observed from the Nital etching. It was found from the phase identifications based EPMA, EBSD and TEM experiments that the image of the black strip in a few microns represented the alpha phase in which C, Cr and Mo became segregated. In addition, it was verified that austenite and M{sub 23}C{sub 6} phase were present around the segregated zone. Based on such results, the mechanism by which the image of the black strip in a few microns was formed at the CGHAZ. In this study, we have investigated the mechanism of the appeared black strip in the CGHAZ. - Highlights: •Ghost microstructure was observed which was not observed from the nital etching. •Ghost microstructure has high concentrations of carbon and molybdenum than matrix. •Schematic illustration proposed of why Ghost microstructure was generated. •Ghost microstructure caused by partial dissolution of M{sub 23}C{sub 6} precipitation.« less
Collisionless magnetic reconnection in curved spacetime and the effect of black hole rotation
NASA Astrophysics Data System (ADS)
Comisso, Luca; Asenjo, Felipe A.
2018-02-01
Magnetic reconnection in curved spacetime is studied by adopting a general-relativistic magnetohydrodynamic model that retains collisionless effects for both electron-ion and pair plasmas. A simple generalization of the standard Sweet-Parker model allows us to obtain the first-order effects of the gravitational field of a rotating black hole. It is shown that the black hole rotation acts to increase the length of azimuthal reconnection layers, thus leading to a decrease of the reconnection rate. However, when coupled to collisionless thermal-inertial effects, the net reconnection rate is enhanced with respect to what would happen in a purely collisional plasma due to a broadening of the reconnection layer. These findings identify an underlying interaction between gravity and collisionless magnetic reconnection in the vicinity of compact objects.
Extracting black-hole rotational energy: The generalized Penrose process
NASA Astrophysics Data System (ADS)
Lasota, J.-P.; Gourgoulhon, E.; Abramowicz, M.; Tchekhovskoy, A.; Narayan, R.
2014-01-01
In the case involving particles, the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor Tμν and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks," we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to ˜300% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.
Apparatus and method for transient thermal infrared spectrometry
McClelland, John F.; Jones, Roger W.
1991-12-03
A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.
Modeling Lolium perenne L. roots in the presence of empirical black holes
USDA-ARS?s Scientific Manuscript database
Plant root models are designed for understanding structural or functional aspects of root systems. When a process is not thoroughly understood, a black box object is used. However, when a process exists but empirical data do not indicate its existence, you have a black hole. The object of this re...
System and process for upgrading hydrocarbons
Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.
2015-08-25
In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.
NASA Astrophysics Data System (ADS)
Shang, Jingge; He, Wei; Fan, Chengxin
2015-01-01
Thermally activated pinecone (TAP) was used for the adsorption of dimethyl trisulfide (DMTS) from aqueous solutions, which was proved to be the main odorous in algae-caused black bloom. The effects of adsorbent dosage, adsorbate concentration and contact time on DMTS biosorption were studied. The TAP produced at 600°C exhibited a relatively high surface area (519.69 m2/g) and excellent adsorption capacity. The results show that the adsorption of DMTS was initially fast and that the equilibrium time was 6 h. Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity. The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of DMTS is more appropriately described by the Freundlich isotherm ( R 2 =0.996 1) than by the Langmuir isotherm ( R 2 =0.916 9). The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
Resource Letter BH-1: Black Holes.
ERIC Educational Resources Information Center
Detweiler, Steven
1981-01-01
Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)
Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Metzger, Brian D.
2018-05-01
Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.
NASA Astrophysics Data System (ADS)
Barai, Paramita; Proga, D.; Nagamine, K.
2011-01-01
Our motivation is to numerically test the assumption of Black Hole (BH) accretion (that the central massive BH of a galaxy accretes mass at the Bondi-Hoyle accretion rate, with ad-hoc choice of parameters), made in many previous galaxy formation studies including AGN feedback. We perform simulations of a spherical distribution of gas, within the radius range 0.1 - 200 pc, accreting onto a central supermassive black hole (the Bondi problem), using the 3D Smoothed Particle Hydrodynamics code Gadget. In our simulations we study the radial distribution of various gas properties (density, velocity, temperature, Mach number). We compute the central mass inflow rate at the inner boundary (0.1 pc), and investigate how different gas properties (initial density and velocity profiles) and computational parameters (simulation outer boundary, particle number) affect the central inflow. Radiative processes (namely heating by a central X-ray corona and gas cooling) have been included in our simulations. We study the thermal history of accreting gas, and identify the contribution of radiative and adiabatic terms in shaping the gas properties. We find that the current implementation of artificial viscosity in the Gadget code causes unwanted extra heating near the inner radius.
A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.
Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G
2014-10-09
Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.
Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes
NASA Astrophysics Data System (ADS)
Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro
2017-08-01
The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.
Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.
2017-05-22
Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup.more » Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.« less
Accretion disks around black holes
NASA Technical Reports Server (NTRS)
Abramowicz, M. A.
1994-01-01
The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.
ERIC Educational Resources Information Center
Moschella, Eric J.
2013-01-01
This study sought to understand the process by which Black undergraduate men on predominately White college campuses become leaders of predominately White organizations. Using the theoretical frameworks of Black and White racial identity development (Helms, 1990), Critical Race Theory (Delgado & Stefancic, 2001), and Wijeyesinghe's (2001)…
Correlations of Power-law Spectral and QPO Features In Black Hole Candidate Sources
NASA Technical Reports Server (NTRS)
Fiorito, Ralph; Titarchuk, Lev
2004-01-01
Recent studies have shown that strong correlations are observed between low frequency QPO s and the spectral power law index for a number of black hole candidate sources (BHCs), when these sources exhibit quasi-steady hard x-ray emission states. The dominant long standing interpretation of QPO's is that they are produced in and are the signature of the thermal accretion disk. Paradoxically, strong QPO's are present even in the cases where the thermal component is negligible. We present a model which identifies the origin of the QPO's and relates them directly to the properties of a compact coronal region which is bounded by the adjustment from Kepleriaa to sub-Kelperian inflow into the BH, and is primarily responsible for the observed power law spectrum. The model also predicts the relationship between high and low frequency QPO's and shows how BH's can be unique identified from observations of the soft states of NS's and BHC's.
Pereira, Lucas Cardoso; Barros, Marilia
2016-06-01
Basal thermal values of captive adult black tufted-ear marmosets (Callithrix penicillata) in a thermoneutral environment were measured via different methods, along with body weight and hematological parameters. Body temperatures were recorded with rectal (RC), subcutaneous (SC) microchip transponder and infrared (left and right) tympanic membrane (TM) thermometries. Thermal values were correlated with body mass and some hematological data. Similar RC and SC temperatures were observed, these being significantly higher than the left and right TM values. SC temperature was positively correlated and in close agreement with RC measurements. Although body temperatures were not influenced by gender, capture time, or body weight, they were correlated with hematological parameters. Thus, body temperatures in this species seem to reflect some of the characteristics of the assessments' location, with SC microchip transponders being a less invasive method to assess body temperature in these small-bodied non-human primates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu
2017-07-01
The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).
Castro-Mayorga, Jinneth Lorena
2018-01-01
The present study evaluated the effect of using electrospun polycaprolactone (PCL) as a barrier coating and black pepper oleoresin (OR) as a natural extract on the morphology, thermal, mechanical, antimicrobial, oxygen, and water vapor barrier properties of solvent cast gelatin (GEL). The antimicrobial activity of the developed multilayer system obtained by the so-called electrospinning coating technique was also evaluated against Staphylococcus aureus strains for 10 days. The results showed that the multilayer system containing PCL and OR increased the thermal resistance, elongated the GEL film, and significantly diminished its permeance to water vapor. Active multilayer systems stored in hermetically closed bottles increased their antimicrobial activity after 10 days by inhibiting the growth of Staphylococcus aureus. This study demonstrates that addition of electrospun PCL ultrathin fibers and OR improved the properties of GEL films, which promoted its potential use in active food packaging applications. PMID:29597268
Use of Cold Radiometers in Several Thermal/Vacuum Tests
NASA Technical Reports Server (NTRS)
DiPirro, M.; Tuttle, J.; Canavan, E.; Shirron, P.
2011-01-01
We have developed a low cost low temperature broadband radiometer for use with low temperature tests as a diagnostic tool for measuring stray thermal radiation and remote measurement of material properties. So far these radiometers have been used in two large thermal/vacuum tests for the James Webb Space Telescope (JWST) Project. In the first test the radiometers measured stray radiation in a test of part of the JWST sunshield, and in the second test the radiometers were used to measure the reflectivity and specularity of black Z307 painted aluminum walls on a 25 K cooled shroud. These results will be presented as well as plans for future tests to measure the residual energy through a baffled aperture in the shroud and other stray thermal energy measurements.
NASA Astrophysics Data System (ADS)
Hutchinson, John; Stojkovic, Dejan
2016-07-01
We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.
Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.
Radiation of quantum black holes and modified uncertainty relation
NASA Astrophysics Data System (ADS)
Kamali, A. D.; Pedram, P.
In this paper, using a deformed algebra [X,P] = iℏ/(1 ‑ λ2P2) which is originated from various theories of gravity, we study thermodynamical properties of quantum black holes (BHs) in canonical ensembles. We exactly calculate the modified internal energy, entropy and heat capacity. Moreover, we investigate a tunneling mechanism of massless particle in phase space. In this regard, the tunneling radiation of BH receives new corrections and the exact radiant spectrum is no longer precisely thermal. In addition, we show that our results are compatible with other quantum gravity (QG) approaches.
Pair production of scalar dyons in Kerr-Newman black holes
NASA Astrophysics Data System (ADS)
Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi
2018-06-01
We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.
Phonon thermal conduction in novel 2D materials.
Xu, Xiangfan; Chen, Jie; Li, Baowen
2016-12-07
Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS 2 , black phosphorous and silicene.
NASA Astrophysics Data System (ADS)
Moore, E. A.; Kurtz, A. C.
2005-12-01
The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.
Long-term monitoring of temperature in the subsoil using Fiber Optic Distributed Sensing
NASA Astrophysics Data System (ADS)
Susanto, Kusnahadi; Malet, Jean-Philippe; Gance, Julien; Marc, Vincent
2017-04-01
Monitoring changes in soil water content in the vadose zone of soils is a great importance for various hydrological, agronomical, ecological and environmental studies. By using soil temperature measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS), we can indirectly document soil water changes at high spatial and temporal frequency. In this research, we installed an observatory of soil temperature on a representative black marl slope of the long-term Draix-Bléone hydrological observatory (South French Alps, Réseau de Basins-Versants / RBV). A 350 m long reinforced fiber optic cable was buried at 0.05, 0.10 and 0.15 m of depths and installed at the soil surface. The total length of the monitored profile is 60 m, and it three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.50 m using a double-ended configuration. Both passive and active (heating of the FO) is used to document soil water changes. We present the analysis of a period of 6 months of temperature measurements (January-July 2016). Changes in soil temperature at various temporal scales (rainfall event, season) and for the three units are discussed. These changes indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. We further test several inversion strategies to estimate soil water content from the thermal diffusivity of the soils using simple and more complex thermal models. Some limitations of using this indirect technique for long-term monitoring are also presented. The work is supported by the research project HYDROSLIDE and the large infrastructure project CRITEX funded by the French Research Agency (ANR).
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miknis, F.P.; Netzel, D.A.
The results of coal swelling measurements using 1,4-dioxane as the swelling reagent for premoisturized coals (raw) and coal dried thermally, chemically, and with microwave radiation are presented. An increase in the swelling ratio relative to raw coal indicates a decrease in the amount of cross-linking in the coal. Conversely, a decrease in the ratio indicates an increase in cross-linking. The extent of cross-linking (as measured by 1,4-dioxane) for Texas, Black Thunder, and Eagle Butte Coals are about the same. Illinois {number_sign}6 coal appears to have less cross-linking relative to the other three coals. These results are expected on the basismore » of coal rank. The increase in cross linking is most pronounced for coals dried thermally and with microwave radiation. A decrease in the swelling ratios for all four coals suggests that cross-linking had occurred possibly due to partial devolatilization process. However, low temperature, chemical dehydration of the coals causes only a small or no change in the internal structure for Texas and Illinois {number_sign}6 coals whereas a significant decrease in the cross-linking structure for the Black Thunder and Eagle Butte coals is observed. It is possible that the solvent (CH{sub 3}OH) and products resulting from the chemical dehydrating (acetone and methanol) occupy the surface sites that water had before the reaction and thus preventing cross-linking to occur. These reagents can also promote swelling of coals and may account for some of the decrease in the cross-linking of the coal structure observed for the chemically dried coals.« less
Effects of anisotropic thermal conduction on wind properties in hot accretion flow
NASA Astrophysics Data System (ADS)
Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei
2016-06-01
Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.
ERIC Educational Resources Information Center
Mlambo, Yeukai Angela
2017-01-01
Black African women are grossly underrepresented as academic staff in engineering programs at South African universities. The problem is exacerbated at historically White institutions (HWI) where Black women are simply absent as engineering research and teaching staff. The absence of Black African women in the academy occurs despite Black African…
ERIC Educational Resources Information Center
Muhammad, Gholnecsar E.; McArthur, Sherell A.
2015-01-01
Identity formation is a critical process shaping the lives of adolescents and can present distinct challenges for Black adolescent girls who are positioned in society to negotiate ideals of self when presented with false and incomplete images representing Black girlhood. Researchers have found distorted images of Black femininity derived from…
Why Are Black Employers More Likely Than White Employers To Hire Blacks? Discussion Paper.
ERIC Educational Resources Information Center
Stoll, Michael A.; Raphael, Steven; Holzer, Harry J.
This study investigated why black employers tend to hire blacks at higher rates than do white employers and examined individual steps in the hiring process, the role of the hiring agent's race, and the degree to which variation in black application rates related to differences in observable characteristics, such as an establishment's physical…
Enviro-HIRLAM Applicability for Black Carbon Studies in Arctic
NASA Astrophysics Data System (ADS)
Nuterman, Roman; Mahura, Alexander; Baklanov, Alexander; Kurganskiy, Alexander; Amstrup, Bjarne; Kaas, Eigil
2015-04-01
One of the main aims of the Nordic CarboNord project ("Impact of black carbon on air quality and climate in Northern Europe and Arctic") is focused on providing new information on distribution and effects of black carbon in Northern Europe and Arctic. It can be done through assessing robustness of model predictions of long-range black carbon distribution and its relation to climate change and forcing. In our study, the online integrated meteorology-chemistry/aerosols model - Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) - is used. This study, at first, is focused on adaptation (model setup, domain for the Northern Hemisphere and Arctic region, emissions, boundary conditions, refining aerosols microphysics and chemistry, cloud-aerosol interaction processes) of Enviro-HIRLAM model and selection of most unfavorable weather and air pollution episodes for the Arctic region. Simulations of interactions between black carbon and meteorological processes in northern conditions for selected episodes will be performed (at DMI's supercomputer HPC CRAY-XT5), and then long-term simulations at regional scale for selected winter vs. summer months. Modelling results will be compared on a diurnal cycle and monthly basis against observations for key meteorological parameters (such as air temperature, wind speed, relative humidity, and precipitation) as well as aerosol concentration. Finally, evaluation of black carbon atmospheric transport, dispersion, and deposition patterns at different spatio-temporal scales; physical-chemical processes and transformations of black carbon containing aerosols; and interactions and effects between black carbon and meteorological processes in Arctic weather conditions will be done.
NASA Astrophysics Data System (ADS)
Wardani, A. K.; Purqon, A.
2016-08-01
Thermal conductivity is one of thermal properties of soil in seed germination and plants growth. Different soil types have different thermal conductivity. One of soft-computing promising method to predict thermal conductivity of soil types is Artificial Neural Network (ANN). In this study, we estimate the thermal conductivity of soil prediction in a soil-plant complex systems using ANN. With a feed-forward multilayer trained with back-propagation with 4, 10 and 1 on the input, hidden and output layers respectively. Our input are heating time, temperature and thermal resistance with thermal conductivity of soil as a target. ANN prediction demonstrates a good agreement with Mean Squared Error-testing (MSEte) of 9.56 x 10-7 for soils with green beans and those of bare soils is 7.00 × 10-7 respectively Green beans grow only on black-clay soil with a thermal conductivity of 0.7 W/m K with a sufficient water content. Our results demonstrate that temperature, moisture content, colour, texture and structure of soil are greatly affect to the thermal conductivity of soil in seed germination and plant growth. In future, it is potentially applied to estimate more complex compositions of plant-soil systems.
The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33.
Thöne, C C; de Ugarte Postigo, A; Fryer, C L; Page, K L; Gorosabel, J; Aloy, M A; Perley, D A; Kouveliotou, C; Janka, H T; Mimica, P; Racusin, J L; Krimm, H; Cummings, J; Oates, S R; Holland, S T; Siegel, M H; De Pasquale, M; Sonbas, E; Im, M; Park, W-K; Kann, D A; Guziy, S; García, L Hernández; Llorente, A; Bundy, K; Choi, C; Jeong, H; Korhonen, H; Kubànek, P; Lim, J; Moskvitin, A; Muñoz-Darias, T; Pak, S; Parrish, I
2011-11-30
Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy.
Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Maulana, Muhammad Ilham
2018-02-01
Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu
2017-01-01
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity. PMID:28616256
Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography
Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee
2012-01-01
A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang
2017-02-27
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.
The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers
OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko
2015-01-01
Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853
Geologic framework of thermal springs, Black Canyon, Nevada and Arizona
Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.
2014-01-01
Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.
Continuous flux of dissolved black carbon from a vanished tropical forest biome
NASA Astrophysics Data System (ADS)
Dittmar, T.; Rezende, C. E.; Manecki, M.; Niggemann, J.; Coelho Ovalle, A. R.; Bernardes, M. C.
2012-04-01
Humans have extensively used fire as a tool to shape Earth's vegetation. One of the biggest events in this context was the destruction of Brazilian's Atlantic forest, once among the largest tropical forest biomes on Earth. We estimate that the slash-and-burn practice produced 200 to 500 million tons of black carbon from the 1850' to 1973. The fate of this charred organic matter is unknown. Here we show continuous runoff of dissolved black carbon from the cleared forest biome, more than 35 years after the widespread burning of the forest ended. During the 11-year observation period (1997-2008) of this study, on average 0.04 to 0.08 tons of dissolved black carbon were annually exported per square kilometer land. We estimate an annual runoff of 48,000 to 97,000 tons dissolved black carbon from the former Atlantic forest biome. Dissolved black carbon was mobilized by water percolating through the soil during the rainy season. During base flow conditions, dissolved organic carbon (DOC) did not contain black carbon, whereas at peak flow up to 6% of DOC was combustion-derived. If runoff was the only removal mechanism of black carbon from soils, even the highly condensed and presumably refractory component of black carbon would have a half-life of only 440 to 2300 years in the soil. In areas with higher precipitation, stronger runoff and consequently a shorter half-life can be expected. In the deep ocean, dissolved black carbon is virtually inert on this time scale. The disappearance of the Atlantic forest provides a worst-case scenario for tropical forests worldwide, most of which are cleared at increasing rate. Because of the comparably fast mobilization of dissolved black carbon from soils and its resistivity in the deep ocean, an increase of black carbon production on land may alter the size of the global pool of >12 Pg carbon of thermally altered DOC in the ocean on the long term.
Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds
NASA Astrophysics Data System (ADS)
Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge
2017-11-01
We compute the thermal X-ray emission from hydrodynamic simulations of the 30 Wolf-Rayet (WR) stars orbiting within a parsec of Sgr A*, with the aim of interpreting the Chandra X-ray observations of this region. The model well reproduces the spectral shape of the observations, indicating that the shocked WR winds are the dominant source of this thermal emission. The model X-ray flux is tied to the strength of the Sgr A* outflow, which clears out hot gas from the vicinity of Sgr A*. A moderate outflow best fits the present-day observations, even though this supermassive black hole (SMBH) outflow ended ~100 yr ago.
Natural radio noise - A mini-review
NASA Technical Reports Server (NTRS)
Flock, W. L.; Smith, E. K.
1984-01-01
Natural radio noise in telecommunication systems can be accounted for by the contribution which it makes to antenna noise temperature. Attenuation due to water vapor and oxygen, clouds, and precipitation is accompanied by thermal noise which further degrades the applicable signal-to-noise ratio. Extraterrestrial noise may be of thermal or nonthermal origin and may cover a continuum of frequencies or occur at discrete frequencies. The spectral index n (the exponent giving the variation of noise power density with wavelength) is -2 for a black body and between 0 and -2 for thermal emission in general. The mechanism responsible for much of the extensive nonthermal extraterrestrial noise is synchrotron radiation, characterized by a positive spectral index.